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ABSTRACT
In emerging applications such as location-based services,sensor
monitoring and biological management systems, the values of the
database items are naturally imprecise. For these uncertain databases,
an important query is the Probabilistick-Nearest-Neighbor Query
(k-PNN), which computes the probabilities of sets ofk objects for
being the closest to a given query point. The evaluation of this
query can be both computationally- and I/O- expensive, since there
is an exponentially large number ofk object-sets, and numerical in-
tegration is required. Often a user may not be concerned about the
exact probability values. For example, he may only need answers
that have sufficiently high confidence. We thus propose the Prob-
abilistic Thresholdk-Nearest-Neighbor Query (T -k-PNN), which
returns sets ofk objects that satisfy the query with probabilities
higher than some thresholdT . Three steps are proposed to handle
this query efficiently. In the first stage, objects that cannot con-
stitute an answer arefiltered with the aid of a spatial index. The
second step, calledprobabilistic candidate selection, significantly
prunes a number of candidate sets to be examined. The remain-
ing sets are sent forverification, which derives the lower and up-
per bounds of answer probabilities, so that a candidate set can be
quickly decided on whether it should be included in the answer. We
also examine spatially-efficient data structures that support these
methods. Our solution can be applied to uncertain data with arbi-
trary probability density functions. We have also performed exten-
sive experiments to examine the effectiveness of our methods.

1. INTRODUCTION
Uncertainty is inherent in many emerging applications. In the Global-
Positioning System (GPS), for example, the location valuescol-
lected from the mobile devices have measurement errors and it
is difficult to remove them due to the lacking of domain knowl-
edge [1, 2]. As another example, consider a habitat monitoring
system where data like temperature, humidity, and light intensity
are acquired from sensors. Due to the impreciseness of sensing
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devices, the data obtained are often noisy [3]. In biometricand
biological databases, the attribute values of the extracted feature
vectors are again not perfect [4, 5] due to the limitation of extrac-
tion methods. Recent works also propose to introduce a controlled
amount of uncertainty to a user’s location data, as a means ofre-
ducing resource utilization [1, 6] or improving the user’s location
privacy [7, 8]. To deal with the increasing needs of managingdata
uncertainty and providing high-quality services, researchers have
recently proposed the use of “uncertain databases”, where uncer-
tainty is treated as a “first-class citizen”. In particular,these un-
certain data are evaluated byprobabilistic queries, which produces
answers with probabilistic and statistical guarantees [9,6, 10, 11].

A widely-used data model assumed by uncertain databases is the
attribute uncertainty, where the actual attribute value is located in-
side a closed area, or theuncertainty region. A non-zero probabil-
ity density function (pdf) is associated with the uncertainty region,
such that the integration of pdf inside the region equals to one. Fig-
ure 1(a) shows that in a location-based service, the uncertainty of
a moving object’s location can be treated as a normalized Gaussian
distribution [1, 2]. The uncertainty region is a circular area, with
a radius called the “distance threshold”. The newest location is re-
ported to the system when it deviates from the old one by more than
this threshold (Figure 1(a)). Gaussian distributions are also used to
model values of a feature vector in biometric databases [4].Fig-
ure 1(b) shows the histogram of temperature values recordedby a
sensor network deployed in a geographical area observed in aweek.
The pdf, as a histogram, depicts an arbitrary distribution between
30oF and40oF .
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Figure 1: Location and sensor uncertainty.

In this paper, we study theProbabilistick-Nearest Neighbor Query
(k-PNN) for databases with attribute uncertainty. This queryre-
turns the non-zero probability (calledqualification probability) of



each set ofk objects for being the nearest neighbor of a given point
q. Given an uncertain databaseD of n uncertain objects, where
D = {o1, ..., on}, thek-PNN query can be defined as follows:

DEFINITION 1.1. A Probabilistic k-NN Query (k-PNN) re-
turns a list of answers{(S, p(S))}, whereS is a subset ofD of
cardinality k, andp(S) is the non-zero probability thatS consists
of thek nearest neighbors ofq.

Figure 2 shows an example ofk-PNN, evaluated over eight uncer-
tain objects (o1, . . . , o8). If k = 3, then the query returns a set of
3-ary tuples, together with their chances for satisfying the query. In
this example,{o1, o2, o5} and{o1, o2, o3} have qualification prob-
abilities of 0.05 and 0.3 respectively. Notice in this definition, the
number ofk-subsets that satisfy the query may be exponential, and
it may be necessary to have additional constraints (e.g., return ob-
jects whose probabilities are higher than some threshold) in order
to limit the size of the answer set.

Thek-PNN can be considered as a version of thek-nearest neigh-
bor query (k-NN) evaluated on uncertain data. Thek-NN query
has been widely used in different applications, including location-
based services [12], natural habitat monitoring [3], network traf-
fic analysis [13], knowledge discovery [14], and CAD/CAM sys-
tems [15]. For example, in mobile e-commerce, a driver is sup-
plied with the location information of the nearest gas stations. A
CAM system usesk-NN queries to discover similar patterns over
multi-dimensional data obtained from sensors installed inproduc-
tion lines [15]. A k-NN query can also be used to answer other
ranking queries, such ask-min andk-max queries. For one-dimensional
data, ak-min (k-max) query can be considered as ak-NN query by
settingq to −∞ (respectively+∞). Such queries can be used in
scientific monitoring applications to answer questions like: “What
are thek bird nests that yield the highest temperature?” [3].

Most works aboutk-NN queries assume that the data being queried
is precise. However, as we can see from the applications mentioned
before, data on whichk-NN is evaluated (e.g., locations of moving
objects and sensor values) are often imprecise. To our best knowl-
edge, few researches (e.g., [16, 5]) have studied the evaluation of
k-NN queries over uncertain data. Therefore, our goal is to in-
vestigate efficient methods for evaluatingk-NN queries for these
databases.

Computing ak-PNN is usually more complex than its precise coun-
terpart. Consider, for example, the computation of the probability
that {o1, o2, o5} are the three closest neighbors toq in Figure 2.
Since each object’s value is not exactly known, we need to con-
sider the values in its uncertainty region. Moreover, the qualifica-
tion probability of{o1, o2, o5} depends not just on the three ob-
jects’ values, but also on the relative values of other objects (e.g.,
o3). If there is a chance that two objects have the same distance
from q (e.g.,o2 ando3), then their pdfs must be considered in or-
der to derive the probabilities. The problem is further aggravated
by the large number of combinations of objects. For example,for
a 3-PNN evaluated over eight objects in Figure 2, we may have
to compute the probabilities forC8

3 = 56 possible answers. The
number of answers that satisfy the query can also be exponential.
Clearly, we need better semantics and methods to handle thisquery.
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Figure 2: Probabilistic k-NN Query (k-PNN) with k = 3.

1.1 Solution Overview
We observe that a user may not always be interested in gettingthe
precise probability values. He may only require answers with con-
fidence that meets some predefined condition. For example, a user
may only require answers with confidence higher than some fixed
value. In Figure 2, for instance, if an answer with at least 20% prob-
ability is needed, then the sets{o1, o2, o3} and{o1, o2, o4} would
be the only answers. We term the variant ofk-PNN with a probabil-
ity threshold constraint,T (e.g.,20%), as theProbability Threshold
k-Nearest-Neighbor Query(or T -k-PNN in short). The threshold
constraint allows the user to control the desired confidencerequired
in a query answer. In Figure 2, for example, a0.2-3-PNN returns
{o1, o2, o3} and{o1, o2, o4} as the query answer. Such a query an-
swer also allows a user to extract some useful information (e.g.,o1

ando2 appear in both3-subsets in this example). Notice that with
a moderate value ofT , the number ofk-subsets returned is quite
small in practice. For instance, in our experiments, atT = 0.1,
two k-subsets are returned on average.

Moreover, we present three methods to efficiently process aT -k-
PNN query. The first method, calledk-bound filtering, effectively
removes all objects that have no chance to be a query answer. Let
us consider Figure 2 again, which shows the “k-bound” (as a dot-
ted circle centered atq) that completely encloses the three objects
o1, o2 ando3. The radius of the3-bound is defined as the third
minimum of the maximal distances of the objects fromq (in this
example, the maximum distance ofo3 from q). With thek-bound,
objectso7 ando8 can be pruned immediately, since they have no
chance to overtake any of the objectso1, o2 or o3 to become part
of the answer to the 3-PNN query. Generally, with thek-bound,
a lot of objects can be removed, and as we show in the paper, its
usage can be easily leveraged to a spatial index (e.g., R-tree). For
convenience, we call the objects that are not pruned by thek-bound
filtering (i.e., those that overlap thek-bound) thecandidate objects.

After k-bound filtering, we still need to consider thek-subsets of
the candidate objects. In Figure 2, for instance,C6

3 = 20 of sets
of cardinality 3 may need to be considered. To further reduce
the search space, we propose the second method, namelyProba-
bilistic Candidate Selection(or PCS), which can efficiently detect
k-subsets (i.e., subsets of databaseD with cardinality k) whose
qualification probabilities are less thanT , also calledunqualified
k-subsets. While k-bound filtering utilizes distance information
for pruning, the PCS makes use of the probability information of
uncertain data to remove unqualifiedk-subsets. The rationale be-
hind PCS is that given the probability of a candidate object that
lies within thek-bound (calledcutoff probability), the qualifica-
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Figure 3: Solution Framework of T -k-PNN.

tion probability of ak-subset must be lower than the product of the
cutoff probabilities of its subsets. In Figure 2, for example, the cut-
off probabilities ofo4, o5, ando6 are 0.5, 0.2 and 0.1 respectively
(shown as the shaded area). The qualification probability ofthe
3-subset{o2, o4, o5} must be lower than the product of the cutoff
probabilities of{o4, o5}, or 0.5 × 0.2 = 0.1. If T = 0.2, then
{o2, o4, o5} can be pruned. Based on this useful fact, the PCS al-
gorithm constructsk-subsets by growing the list of thei-subsets
with respect toi (wherei = 1, 2, .., k). At each iterationi, the
product of the cutoff probabilities of eachi-subset are checked on
whether it is less thanT , and thei-subset is pruned if that is true.
In addtion, we also design a technique, called “seed-pruning”, to
further improve the performance of PCS by removing the unqual-
ified k-subsets with the “seeds” – objects that are located within
thek-bound. Moreover, an efficient data compression method that
suppresses the amount of intermediate storage overhead required
by PCS is presented. Our experiments show that PCS reduces a
significant portion ofk-subsets to be examined.

The third method, calledverification, is useful for handlingk-subsets
that are not filtered by the previous two methods. This technique
determines whether ak-subset is a query answer, by making use
of the uncertainty pdf of objects returned byk-bound filtering. We
propose two kinds of verification:lower-boundandupper-bound
verification, which quickly computes the lower and upper bounds
of qualification probabilities ofk-subsets. These bounds can then
be used to determine how thek-subset should be handled. For ex-
ample, ak-subset can be removed if its upper bound probability
is smaller thanT ; it should be included in the query answer if its
lower bound probability is higher thanT . We will show the de-
tailed design, complexity analysis, as well as correctnessproofs for
these methods.

Figure 3 depicts the framework of our solution, which consists of
four steps. First, thek-bound filtering removes objects that must
not be part of thek-nearest neighbor ofq. All candidate objects are
then passed to the PCS, which derivesk-subsets based on the cut-
off probability information. Next, the lower (upper) bounds of the
qualification probabilities of thek-subsets are used to accept (re-
ject) thek-subsets. Those that still cannot be determined are sent
for refinement, whose exact probabilities are computed. While re-
finement is expensive, it can utilize the information generated dur-
ing verification. Thus this is still faster than computing the qualifi-

cation probability ofk-subsets directly.

To summarize, we propose a computationally- and I/O- efficient
solution for evaluating aT -k-PNN query. Our solution reduces
I/O overhead by using a spatial index (e.g., R-tree) to pruneaway
a large number of objects. To alleviate the large computational
overhead, we propose PCS for reducing the number ofk-subsets to
be examined, as well as verification/refinement for avoidingexact
probability computation. We propose a framework to connectthese
techniques in order to provide an efficient solution. We further in-
vestigate storage-efficient data structures to support oursolution.
Our experiments show that our approach can significantly improve
the performance of query evaluation. For example, atT = 0.1 and
k = 5 the time required by our method is only 1.6% of the time
needed by calculating qualification probabilities directly.

The rest of this paper is organized as follows. We discuss therelated
work in Section 2. In Section 3, we present the formal semantics
of theT -k-PNN, and our solution framework. Section 4 explains
the filtering and the probabilistic candidate selection process. The
details of verification and refinement are developed in Section 5.
We present the experimental results in Section 6. The paper is con-
cluded in Section 7.

2. RELATED WORK
Recently, a few uncertain database prototypes (e.g., [17, 18, 19, 20,
3]) have been developed. In these systems, two major classesof
uncertainty models are assumed: tuple- and attribute-uncertainty.
Tuple-uncertainty records the probability that a given tuple is part
of a relation [17]. Attribute-uncertainty represents the inexactness
of an attribute value as an uncertainty region and a pdf bounded in
the region [1, 2, 6, 5, 4]. A formal database model for combining
tuple and attribute uncertainty has also been proposed [21]. In this
paper, we use the attribute uncertainty model.

A number of studies have been focused on the evaluation of Prob-
abilistic Nearest-neighbor (PNN) queries on attribute uncertainty.
A PNN, which can be regarded as a 1-PNN (in Definition 1.1), re-
turns the probability of a single object for being the closest to a
given query pointq. In [22], an R-tree-based indexing solution for
PNN has been presented. In this paper, we develop an indexing
solution (calledk-bound filtering) fork-PNN. In [6, 22], qualifica-
tion probabilities of objects for satisfying a PNN are obtained by
transforming the uncertainty of each object into two functions: pdf
and cdf of an object’s distance from the query point. They show
how this conversion can be done for 1D uncertainty (intervals) and
2D uncertainty (circle and line). The qualification probabilities are
then derived by evaluating an integral of an expression thatinvolves
distance pdfs and cdfs of multiple objects. We show how the com-
putation ofk-PNN can be performed using distance pdfs and cdfs.
Another method for evaluating a PNN is proposed in [23], where
each object is represented as a set of points sampled from theob-
ject’s continuous pdf. More recently, the probability thatan object
exists in the database (calledexistential probabilityis used to de-
rive lower and upper bounds and pruning for nearest-neighbors [16,
24]. In [25], the authors address how to efficiently retrievedata ob-
jects that have the minimum aggregate distance from a set of query
points.

In order to improve the evaluation of qualification probabilities for
1-PNN, [26] has proposed a variant of 1-PNN that uses proba-
bility threshold as an answering criterion, and has developed effi-
cient verification methods for deriving lower and upper bounds of



an object’s qualification probabilities. These methods arenot read-
ily used by ak-PNN (with k ≥ 1) for three reasons. First, the
evaluation ofk-PNN faces the additional problem of examining a
large number ofk-subsets. To handle this problem, we develop
new methods to significantly reduce the number of candidatek-
subsets Secondly, the probability bound verification is designed for
1-PNN queries only. We develop new lower/upper bound compu-
tation methods fork-PNN queries. Thirdly, the solution of [26] can
only be used to handle distance pdfs of the candidate objectsrepre-
sented as arbitrary histograms. Our techniques, on the other hand,
are not restricted to histogram pdfs.

To our best knowledge, few work has addressedk-NN queries over
uncertain data. Soliman et al. [16] proposed a query that ranks the
probability each object is the nearest neighbor ofq, and returns
the k objects with the highest probabilities. Notice that the rank-
ing criterion is based solely on each object’s probability of being
the nearest-neighbor ofq. This is not the probability that all ob-
jects returned in the query answer are thek nearest neighbors of
q (by considering all the possible worlds). In other words, the k
object answer returned by [16] may not appear in the same possi-
ble world. On the other hand, the query studied in this paper is a
“true” k-nearest-neighbor query, where we consider the probability
that a set of objects are thek nearest neighbors ofq. In [5], Ljosa
et al. proposed an efficient index structure, called APLA-tree, for
evaluatingk-NN queries. They used the expected distance (under
L1-norm) of an object’s uncertainty pdf fromq as a ranking crite-
rion. Thus, theirk-NN query is based on the expected distance, and
does not have probabilities in their answers.

The evaluation and indexing methods for other probabilistic queries
on attribute uncertainty have been studied. This includes range
queries [27], location-dependent queries [7], skyline queries [28,
29], and top-k queries [30, 31]. The issue of uncertainty have also
been considered in the domain of biometric databases [4] andac-
cess control [32]. More recently, the issues of conditioning and
cleaning a probabilistic database have been studied [33, 34].

3. PRELIMINARIES
We now present the semantics of theT -k-PNN query (Section 3.1).
Then we explain a simple solution for this query (Section 3.2).

3.1 Definition of T -k-PNN
Let p(S) ∈ [0, 1] be the probability that the elements of ak-subset
S are thek nearest neighbors of query pointq (i.e., qualification
probability). Then, aT -k-PNN can be defined as follows.

DEFINITION 3.1. A Probability Threshold k-NN Query (T -
k-PNN) returns a setS, such that{S|S ⊆ D ∧ |S| = k} and
p(S) ≥ T , whereT ∈ (0, 1].

We callT the thresholdparameter. Ak-subsetS is allowed to be
returned as an answer if its qualification probability is notless than
T . Compared withk-PNN (Definition 1.1), this query does not
return the actual qualification probability ofS to the user. Also,
we can further use other constraints (e.g., the maximum number
of answers) to limit the number ofk-subsets returned to the user.
Table 1 summarizes the symbols used in the definition ofT -k-PNN.

3.2 Basic Evaluation ofT -k-PNN

Symbol Meaning
D Uncertain database
oi Uncertain objecti of D (i = 1, . . . , |D|)
ri |oi − q|

di(r) pdf of ri (distance pdf)
Di(r) cdf of ri (distance cdf)

q Query point
T Probability Threshold
S {oi|oi ∈ D}

p(S) Qualification prob. ofS

Table 1: Symbols forT -k-PNN.
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Figure 4: Distance pdf and cdf

Let us now present a simple solution for answering theT -k-PNN,
which forms the basis for further discussions. This method utilizes
the probability distribution of each object’s distance from q. For-
mally, letri ∈ ℜ be the absolute distance of an uncertain objectoi

from q. That is,ri = |oi − q|. We assume thatri takes on a value
r ∈ ℜ. Then, the distance pdf and cdf ofoi are defined below [6,
22].

DEFINITION 3.2. Given an uncertain objectoi, its distance
pdf, denoted bydi(r), is a pdf ofRi; its distance cdf, denoted
byDi(r), is a cdf ofRi.

We use an example to illustrate these two functions. Figure 4(a)
shows a one-dimensional uncertain object,o1, which has a uniform
pdf of value 1

u−l
in uncertainty region[l, u]. A query point,q0,

is also shown. In Figure 4(b), the distance pdf (shaded) ofr1 =
|o1 − q0|, ranging from zero tou− q0, is illustrated. The distance
pdf in [0, q0 − l] is the sum of the pdf on both sides ofq0, which is
equal to 2

u−l
. In [q0− l, u− q0], the distance pdf ofr1 is 1

u−l
. The

distance cdf ofr1, drawn as a solid line, is found by integrating the
distance pdf.

For the detailed procedures of deriving distance pdf and cdf, read-
ers are referred to [26] (for 1D arbitrary histogram uncertainty pdf)
and [22] (for 2D circle and line segment uncertainty regionswith
uniform pdf).

Based on the uncertainty pdf and cdf of each object, the qualifica-
tion probability of ak-subsetS (i.e.,p(S)) can be computed. The
probability,p(S), is then used to compare againstT ; if p(S) ≥ T ,
thenS becomes an answer. Now let us take a look at howp(S) is
computed:

p(S) =
∑
oi∈S

∫
+∞

0

di(r)
∏

oj∈S∧oj 6=oi

Dj(r)
∏

oh∈D−S

(1−Dh(r))dr (1)



To understand Equation 1, observe that forS to be a query an-
swer, the distance of any objectoh (whereoh /∈ S) from q must
be greater than that ofoi (whereoi ∈ S). Now, at distancer, the
pdf that objectoi ∈ S has thek-th shortest distance fromq is the
product of the following factors:

• the pdf thatoi has a distance ofr from q, i.e.,di(r);

• the probability that all objects inS other thanoi have shorter
distances thanr, i.e.,

∏
oj∈S∧oj 6=oi

Dj(r); and

• the probability that objects inD − S have longer distances
thanr, i.e.,

∏
oh∈D−S (1−Dh(r)).

The integration function in Equation 1 is essentially the product of
the above three factors. By integrating this function over(0, +∞),
we obtain the probability thatS contains thek nearest neighbors
with oi as thek-th nearest neighbor. Finally, by summing up this
probability value for all objectsoi ∈ S, Equation 1 is obtained.

Equation 1 is inefficient to evaluate. First, the distance pdf and cdf
of each object has to be computed. Secondly, Equation 1 involves
costly numerical integration, and has to be performed over alarge
range. Thirdly, the probability of eachk-subsetS has to be com-
puted, and the number of thesek-subsets is exponential. However,
we found thatT -k-PNN can be handled in a better way. Specifi-
cally, later, in Section 4, we exploit the extent of the objects’ uncer-
tainty regions and probability threshold to significantly prune the
number ofk-subsets to be examined. Then, in Section 5, we derive
the lower and upper bounds ofk-subsets’ qualification probabili-
ties, so that the decision of whether ak-subset should be accepted
as a query answer can be made without computing its actual prob-
ability.

4. GENERATING K-SUBSETS
In this section, we examine two efficient methods for generating
k-subsets that can potentially satisfy theT -k-PNN queries. Sec-
tion 4.1 discusses the design and implementation ofk-bound filter-
ing. We then present the Probabilistic Candidate Selection(PCS)
process in Section 4.2. We investigate a spatially-efficient com-
pression method for supporting PCS in Section 4.3.

4.1 k-bound Filtering
Given a query point, a naive solution is to enumerate all possible
combinations of sets of sizek from the uncertain databaseD and
compute their probabilities according to Equation 1. If theproba-
bility is greater thanT , the set will be returned as a result. Clearly,
this is an inefficient approach with respect to computation and I/O
costs. In fact, given aT -k-PNN, we can first utilize the distance
information of the objects to prune those that are not qualified for
the answers. Specifically, we propose an efficient filter based on
the k-th minimum of maximal distancefk, calledk-bound filter,
to remove objects that have zero probability to be the answers of
T -k-PNN. The rationale behind thek-bound filter is stated in the
following Lemma.

LEMMA 4.1. Given an objectoi ∈ D, a query pointq, if min(ri) >
fk, thenoi will not appear in any answer data set, wherefk is the
kth minimum of maximal distance (k-bound) among allrj ’s for
(j = 1, ..., n), andri is the distance betweenq andoi.

PROOF. If min(ri) > fk holds,oi cannot belong to thek near-
est neighbors ofq since there always exist at leastk objects with
distances smaller than or equal tofk. Therefore, no answer set
S contain such anoi according to theT -k-PNN definition. In
other words, the fact thatS is thek nearest neighbors ofq implies
min(ri) ≤ fk(∀oi ∈ S).

Lemma 4.1 offers a filtering method by that usesk-bound as illus-
trated in Figure 2. In particular, withk-bound filtering, objectso7

ando8’s minimum distances toq are larger than the bound, and so
they can be excluded for further consideration. The rest of the ob-
jects that overlap with or are contained in thek-bound are used to
generatek-subsets. Another advantage ofk-bound filtering is, after
filtering, probability computation is easier (compared to Equation
1), since the integration range[0,∞] is reduced to[0, fk] for nu-
merical integration.

The performance ofk-bound filtering can be sped up with the help
of a spatial index structure. In this work we index the uncertainty
region of each data object in the R-tree [35], on which thek-bound
filtering can be conducted. The reason we choose R-tree is due
to its popularity. However other spatial index structures can also
be used. The R-tree recursively groups uncertain data objects with
minimum bounding rectangles(MBRs) until one final node (root)
is obtained. The process of filtering over R-tree is detailedin Algo-
rithm 1 (k-bound_Processing). The algorithm maintains a mini-
mum heapHwhich contains the entry of form(v, key), wherekey
is themin(dist(q, v)). H is first initialized (line 1). The candidate
object set is emptied andfk is set as infinity (lines 2 and 3). Then,
the root node is loaded and stored inH (line 4). Each time we pop
out an entry(v, key) from heapH (line 6), and check whetherkey
is smaller thanfk (line 7). If the answer is negative, this entry is
discarded (Lemma 4.1). Otherwise, we then check whetherv is a
leaf node (line 8). If the answer is yes, we insert this founded can-
didate object intoC (line 9). If v is an intermediate node, for each
entryvi in v, we compute its minimum distance fromq (lines 11
and 12). If this minimum distance is also smaller thanfk, we insert
vi into the heapH and updatefk if necessary (lines 13 to 15). This
process repeats until the queue is empty.

4.2 Probabilistic Candidate Selection
After k-bound filtering, assume we obtainm ∈ [k, n] objects, i.e.
C = {o1, ..., om}, there could still beCm

k possiblek-subset an-
swers. Directly computing these answer sets will result in expo-
nential cost in both memory and computation. In fact, it is not nec-
essary to generate all thek-subsets. In this section, we propose a
candidate set generation method based on the probability informa-
tion, namelyprobabilistic candidate selection(PCS). Specifically,
we make use of the probability of an object that lies within the k-
bound, calledcutoff probability(CP) (shown in Figure 5(a)) and
the fact that the qualification probability of ak-subset must be less
than the product of the cutoff probabilities of its members.The
following lemma states this fact.

LEMMA 4.2. p(S) ≤ UBProb(S′) , ∀S′ ⊆ S,

whereUBProb(S′) =
∏

oi∈S′ Pr(ri ≤ fk)

PROOF. According to Lemma 4.1, the fact “S containsk nearest
neighbors” requires that all member objects ofS to have distances
from q not larger thanfk. That meansp(S) must not be larger than



input : R-treeI constructed overD
input : q: the query point
input : k
output: the candidate object setC andfk

initialize min-heapH accepting entries in the form1

(v, key);
C ← ∅;2

fk ← +∞;3

insert(root(I), 0) into heapH;4

whileH is not emptydo5

(v, key)← de-heapH;6

if key < fk then7

if v is an uncertain objectthen8

insertv into C;9

else10

for each entryvi contained inv do11

computekey ← min(dist(q, vi));12

if key < fk then13

insert(vi, key) toH;14

updatefk according tokey;15

return C, fk;16

Algorithm 1 : k-bound_Processing

∏
oi∈S

Pr(ri ≤ fk), i.e. the product of the cutoff probabilities
of its member objects. Since the cutoff probabilities are always
smaller than or equal to 1,UBProb(S′) gives an upper bound of∏

oi∈S
Pr(ri ≤ fk). Thus Lemma 4.2 is proved.

Based on the cutoff probability of each candidate object within the
k-bound, the PCS algorithm constructsk−subsets by growing the
list of i-subsets with respect toi (wherei = 1 to k − 1). The steps
of PCS are listed in Algorithm 2. First, the algorithm generates
1-subsets based on the candidate setC (line 1). Then, the(i + 1)-
subsets are generated by unioningi-subsets andC (lines 2 to 13).
The value ofUBProb(S′) could be obtained by Lemma 4.2 (line
10). All those subsets withUBProb(S′) smaller than the thresh-
old will be pruned (line 11). Therefore, many intermediate subsets
are pruned, and the number ofk-subsets will be greatly reduced.
When we extendS to S′ by addingoj , and find thatS′ should be
pruned, then it is no need to check the extensions withoj+1, ..., om

(line 13), since the data objects are sorted in descending order of
their cutoff probabilities.

Figures 5(a)-5(c) show an example of generating candidatek−subsets
based on the cutoff probability of each candidate object within the
k-bound. Figure 5(a) lists the cutoff probability (CP) of each ob-
ject. We can safely remove candidate objecto6 since its CP is less
than the thresholdT = 0.2. Then, in the second round, as shown
in Figure 5(b), the subset{o4, o5} can be removed. Similarly, in
the third round (Figure 5(c)) the candidate subsets{o1, o4, o5},
{o2, o4, o5} and{o3, o4, o5} can be safely removed.

In the previous discussions, in each roundi, we have used CP and
T to determine whether the generatedi-subset should be kept for
further extension. Here we propose an enhancement that utilizes
thei-th minimum maximum distance (i.e.,fi) to further remove the

input : C = {o1, ..., om}, q,k, T
output: Ck: the set of candidate object sets

C1 ← {{o1}, ..., {om}};1

for i← 1 to k − 1 do2

Ci+1 ← ∅;3

for eachS ∈ Ci do4

z ← maxoi∈S(i) ;5

for j ← z + 1 to c do6

if oj /∈ S then7

S′ ← S ∪ {oj};8

if S′ /∈ Ci+1 then9

if UBProb(S′)≥ T then10

Ci+1.add(S′)11

else12

break;13

return Ck14

Algorithm 2 : Prob_Cand_Sel

unqualified subsets generated in each round. We can obtain thesefi

values by slightly changing the Algorithmk-bound_Processing
to return all thefi values. Next, we suppose all candidate objects
have been sorted in ascending order of their maximum distances
from q. We put the objects with thek lowest values of maxi-
mum distance into an array calledseeds, and derive the following
lemma.

LEMMA 4.3. If the lower bound ofrj of data objectoj is larger
thanfi (i-th minimum maximum distance ofseeds[i]), anyk-subset
S containingoj cannot be the answer to theT -k-PNN if ∃ot ∈
{seeds[1], ..., seeds[i]} andot /∈ S.

PROOF. The fact that “the lower bound ofrj is larger than the
fi” implies that all objects in{seeds[1], ..., seeds[i]} must have
shorter distances thanrj . Therefore, ifoj happens to be inside a
probabilistic k-nearest neighbors answer set, sayS, all objects in
{seeds[1], ..., seeds[i]}must also be contained inS.

Lemma 4.3 indicates that a qualifiedk-subset should contain some
specific seeds to become a valid result. This rule can help us prune
many unqualified subsets without estimating their qualification prob-
abilities. The detailed steps are listed in Algorithm 3 (Seed_Pruning).
In order to use seed pruning method to remove unqualified inter-
mediate subsets generated in each round of PCS, we can invoke
Algorithm Seed_Pruning immediately after line 4 of Algorithm
Prob_Can_Sel.

4.3 A Storage-Efficient Compression Method
The PCS algorithm can be quite expensive in terms of memory con-
sumption, since in each roundi, we have to store all thei-subsets
whose CPs are greater thanT , and the number of suchi-subsets
could be exponentially large.

To reduce the memory cost we propose a simple but effective com-
pression method. We first present our observations on thei-subsets
generated by the PCS algorithm which forms the basis of our dis-
cussions. As shown in Figures 5(a)-5(c), the elements of thegener-
ated subsets in each round using Algorithm 2 (Prob_Cand_Set)



1-subset CP
{o1} 1
{o2} 1
{o3} 1
{o4} 0.5
{o5} 0.2
{o6} 0.1

(a) Round 1

2-subset CP
{o1, o2} 1
{o1, o3} 1
{o1, o4} 0.5
{o1, o5} 0.2
{o2, o3} 1
{o2, o4} 0.5
{o2, o5} 0.2
{o3, o4} 0.5
{o3, o5} 0.2
{o4,o5} 0.1

(b) Round 2

3-subset CP
{o1, o2, o3} 1
{o1, o2, o4} 0.5
{o1, o2, o5} 0.2
{o1, o3, o4} 0.5
{o1, o3, o5} 0.2
{o1, o4, o5} 0.1
{o2, o3, o4} 0.5
{o2, o3, o5} 0.2
{o2, o4, o5} 0.1
{o3, o4, o5} 0.1

(c) Round 3

Figure 5: Step-by-step generating candidate subsets basedon CP

Size-1 Set CP
{o1} 1
{o2} 1
{o3} 1
{o4} 0.5
{o5} 0.2

(a) Round 1

Size-2 Set CP
{o1, o5} 1
{o2, o5} 1
{o3, o5} 1

(b) Round 2

Size-3 Set CP
{o1, o2, o5} 1
{o1, o3, o5} 1
{o2, o3, o5} 1

(c) Round 3

Figure 6: Compressed candidate subsets based on CP

input : seeds, S andfi, . . . , fk.
output: A boolean value indicating whetherS is a possible

result.

for eachoj ∈ S do1

if min(rj) < f1 then2

γ ← 0;3

else4

γ ← the largesti satisfyingmin(rj) ≥ fi;5

if γ > 0 then6

if not{seeds[1], . . . , seeds[γ]} ⊆ S then7

return False8

return True9

Algorithm 3 : Seed_Pruning

are sorted in the descending order of their CPs. In addition,we can
also find that many subsets of the same size share a common prefix.
For example, in Figures 5(b), the first four 2-subsets share the com-
mon prefix{o1}. Similarly, in Figure 5(c), the first three 3-subsets
share the common prefix{o1, o2}. Based on these observations, we
propose to compress the subsets of the same size that share a com-
mon prefix. Specifically, for the subsets of the same size, we store
the common prefix of the subsets and the last element of the subset
that has the minimum product of cutoff probability greater thanT .
We also call this element aboundary element. For example, given
the first four 2-subsets in Figures 5(b), after compression,we only
store{o1, o5} as shown in the first entry of compressed storage
in Figure 6(b). In this entry{o1} is the common prefix ando5 is
the last element of subset{o1, o5}, whose subset has the minimum
product probability among first four 2-subsets in Figure 5(b). As
shown in Figure 6(b), in addition to the compressed item{o1, o5},
we also store the product probability of the common prefix, here it

is {o1}’s CP , which is1. Thus, in our compression scheme, for
each compressed entry, we store the common prefix, the boundary
element, and the product probability of the prefix. As another ex-
ample, the first three 3-subsets in Figure 5(c) are compressed into
{o1, o2, o5}, as shown in Figure 6(c). The whole compressed en-
try is {{o1, o2, o5}, 1}, where1 is the product probability of prefix
{o1, o2}. Figures 6(a)-6(c) show the whole compressed results of
subsets in Figures 5(a)-5(c). Note that entries in bold fonts of Fig-
ures 5(a)-5(c) are unqualified entries.

Whenever it is necessary to decompress an compressed entry,we
can generate the uncompressed subsets by appending all the possi-
ble elements starting from theimmediate successorof the last ele-
ment in the prefix to the bounding element. Let us use Figure 6(b)
as an example. Given the compressed entry{{o1, o5}, 1}, the pre-
fix is {o1}, the bounding element iso5, the immediate successor
element ofo1 is o2, as all the candidate objects are sorted in the de-
scending order according to their CPs. Then the decompressed set
is {o1, o2}, {o1, o3}, {o1, o4}, and{o1, o5}. The corresponding
CP of each decomposed subset is the product of the compressed
entry’s CP (now is 1) and the appended element’s CP. Similarly, for
the compressed entry{{o1, o2, o5}, 1} shown in Figure 6(c),o3 is
the immediate successor of last element in prefix{o1, o2}, so we
can generate{o1, o2, o3}, {o1, o2, o4}, and{o1, o2, o5}, the corre-
sponding CPs for these decompressed entries are:1∗1, 1∗0.5, and
1 ∗ 0.2 respectively. Our experiments show that this compression
scheme reduces the storage required in this phase significantly.

5. VERIFICATION AND REFINEMENT
Based on thek-subsets generated by PCS, we now present efficent
techniques for handling thek-subsets. We discuss techniques for
deriving lower and upper bounds of the qualification probabilities
of k-subsets in Section 5.1. We then study how these techniques
facilitate probability computation (in Section 5.2).



Symbol Meaning
C candidate set
Q Set ofk-subsets yielded by PCS

[p(S).l, p(S).u] Lower & upper prob. bounds ofp(S)
m(S) max({ri|oi ∈ S})

ej Thej-th end point
Pj Thej-th partition, wherePj = [ej , ej+1]
M Total no. of partitions

yj(S) Prob(m(S) ∈ Pj)
pj(S) Qualification prob. ofS, givenm(S) ∈ Pj

[pj(S).l, pj(S).u] Lower & upper bounds ofpj(S)

Table 2: Symbols used by verification.

5.1 Lower and Upper Bound Verification
Partitions. Let us first sort the set of objectsC retained after the
k-bound filtering in ascending order of their shortest distances from
the query pointq. For convenience, let us assume thato1, o2, . . . , o|c|
are sorted in this order. Figure 7(a) illustrates three distance pdfs
with respect toq, wherek = 2. As illustrated, the range between
e1 (i.e., the closest distance of all objects fromq) and the pointf2

obtained fromk-bound filtering (i.e.,e5) is subdivided into non-
overlapping fragments calledpartitions. We call each fragmentPj ,
wherePj is embraced by two end-points, namely,ej andej+1, cir-
cled in the figure. In this example, there are four partitions, e.g.,
P1 = [e1, e2], P2 = [e2, e3].

The partitions can have variable sizes. Thus, the system hasflex-
ibility in deciding the number of partitions to be used. The more
partitions are defined, the more accurate will be the lower and up-
per verification, with the need of more overhead for storing the
partition information and prolonging the verification process. We
found that the verification performs well when the boundaries of
the objects’ distance pdfs are used as end-points.

The number above each range indicates the probability that an un-
certain object has that range of distance from the query point. For
each partitionPj of an objectoi, we evaluate the distance cdf of
Pj ’s upper end-point (i.e.,Di(ej+1)). In general, the distance cdf
of Pj ’s lower end-point is the same as that ofPj−1’s upper end
point. For partitionP1, its lower end-point has a distance pdf of
zero. Figure 7(b) illustrates the distance cdf values extracted from
(a). For example, forr1 in P3, D1(e4) = 0.8. We store the values
of Di(ej+1) in a two-dimensional array of dimensions|C| ×M ,
whereM is the number of partitions, so that they can be accessed
in O(1) times. The time for sorting and initializing this array is
O(|C| log |C| + M |C|). Table 2 lists the symbols used by verifi-
cation.

Verification Process. We now demonstrate how partitions can be
used to efficiently derive lower and upper bounds of eachk-subset’s
qualification probability (i.e.,p(S)). Let [p(S).l, p(S).u] be the
lower and upper bounds ofp(S). Let X be the data structure that
stores the partition information, andQ be the set ofk-subsets gen-
erated from the PCS algorithm. Given these inputs, the verifica-
tion algorithm (Algorithm 4 judges whether ak-subsetS should be
considered as a query answer. It produces an answer setA (i.e.,k-
subsets that satisfy the query) and a refinement setU (i.e.,k-subsets
that need to be further investigated).

In Algorithm 4, Step 1 initializes the two sets,A andU , to empty
sets. For everyk-subsetS ∈ Q, Step 3 uses subroutineUB to find
the upper bound ofS’s qualification probability (i.e.,p(S).u). If

input : Partition info.X, setQ of k-subsets
output: setA of answers, setU of k-subsets to be refined

A← ∅; U ← ∅;1

for eachS ∈ Q do2

if UB(X, S) ≥ T then3

if LB (X, S) ≥ T then4

insertS into A;5

else6

insertS into U ;7

return A, U8

Algorithm 4 : Verification.

p(S).u is smaller thanT , thenS cannot satisfy the query and is
pruned. Next, subroutineLB is invoked to findp(S).l. If this value
is not less thanT , thenS is inserted to the answer set (Steps 4,5).
Otherwise,S is put into the setU for further processing (Step 7).
Step 8 returns the setsA andU .

It is worth mention that in Step 3, we putUB beforeLB. This is
because in our experiments, a large number ofk-subsets can be
pruned byUB (in Step 3). By testing thek-subsets withUB first,
we avoid applying theLB test to thek-subsets, which have to be
pruned anyway. We will revisit this issue in Section 6.

We now explain the design ofLB and UB, which returnsp(S).l
andp(S).u. Supposem(S) is the maximum distance between all
objects inS andq, i.e.,max({ri|oi ∈ S}). Let yj(m(S)) be the
probability thatm(S) is within the partitionPj = [ej , ej+1]. Let
pj(S) be the qualification probability ofp(S), given thatm(S)
lies inPj . Let [pj(S).l, pj(S).u] be the lower and upper bounds of
pj(S). If there areM partitions, we have:

p(S).l =
M∑

j=1

pj(S).l · yj(m(S)) (2)

p(S).u =
M∑

j=1

pj(S).u · yj(m(S)) (3)

Moreover,

yj(m(S)) =
∏

oi∈S

Di(ej+1)−
∏

oi∈S

Di(ej) (4)

This is because the term
∏

oi∈S
Di(ej+1) is the probability that

all objects inS have distance fromq not larger than the end-point
ej+1. By subtracting

∏
oi∈S

Di(ej) from it, we obtain the proba-
bility that at least one object is located insidePj = [ej , ej+1]. This
is also the chance that the maximum distance of all objects inS
(i.e., m(S)) is within Pj , as shown in Equation 4. The following
describes the formulas forpj(S).l andpj(S).u.

LEMMA 5.1. Given thatm(S) ∈ Pj , the lower and upper
bounds of qualification probabilities ofk-subset,S, are:

pj(S).l ≥
∏

oi∈C−S

(1−Di(ej+1)) (5)

pj(S).u ≤
∏

oi∈C−S

(1−Di(ej)) (6)
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Figure 7: Illustrating the distance pdfs and partition prob abilities (for k = 2).
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Partition Pj

ej+1q

S (5 objects)

m(S)

O-S

Figure 8: Correctness proofs forpj(S).l and pj(S).u.

PROOF. Equation 5: Since the maximum distance of all objects
in S from q is less thanej+1, S must be the answer if all other
objects inC − S have distances more thanej+1. For example,
Figure 8 shows thatS, a 5-subset, has a maximum distance (m(S))
not more thanej+1. If the remaining objects (C − S) are on the
right of ej+1 (circled), thenS must constitute a query answer. The
probability that this event happens is

∏
oi∈O−S

(1−Di(ej+1)) (the
right side of Equation 5), which is also the lower bound ofpj(S).

Equation 6: If any object inC − S has distance fromq shorter
thanej , thenS could not be the set ofk closest neighbors ofq. In
Figure 8, for example, since an object (colored black) is on the left
of ej , it is certainly closer toq then at least one object inS. So,
S cannot be a query answer fork = 5. The event that all objects
in C − S have distance fromq more thanej is thus a precondition
for S to be the query answer. The probability that this event hap-
pens, i.e.,

∏
oi∈O−S

(1−Di(ej)) (the right side of Equation 6), is
therefore the upper bound ofpj(S).

With Equation 4 and Lemma 5.1, the lower and upper bounds of
p(S) (i.e., Equations 2 and 3) can be estimated. If the partition data
structure presented earlier is used, retrievingDi(ej) (giveni andj)
needsO(1) times. Evaluating Equation 4 thus needsO(k) times.
Computation of Equations 5 and 6 both requiresO(|C|) times.
Thus theLB andUB functions have a complexity ofO(kM |C|).
The total complexity of the verification algorithm isO(kM |C||Q|)).

5.2 Incremental Refinement
After verification, objects stored in the setU (Step 3 of Figure 4)
require further processing, whose exact qualification probabilities
need to be computed. This can be expensive, since numerical in-
tegration may be needed (see Equation 1). Interestingly, wecan
speed up this process with the information obtained during verifica-
tion. This main idea is to treat the probability of an object as a sum
of qualification probabilities inside partitions. By usingthe bound
information of probabilities in each partition, the answerprobabil-
ities can be gradually computed.

Specifically, observe that the probability bounds of eachk-subset
S in each partitionPj (i.e., [pj(S).l, pj(S).u]) have been obtained
during verification. For eachPj , once we get the value ofpj(S) (by
Equation 1), we can collapse[pj(S).l, pj(S).u] into pj(S), update
the probability bound ofp(S) (i.e., [p(S).l, p(S).u]), and test this
new bound against the thresholdT . This process is repeated for the
next partition until we can decide whetherS should be included
in the answer. As shown in our experiments, “incremental refine-
ment” is usually faster than computing probabilities directly, since
performing numerical integration on a partition is faster than on
[0, fk], which has a larger area of integration.

6. RESULTS
We have performed extensive experiments on a real data set toex-
amine the effectiveness of our solution. We first describe the exper-
imental setup in Section 6.1. Then we present the results in Section
6.2.

6.1 Experimental Setup
We use theLong Beachdataset1 which includes 53,144 rectangles,
distributed in the two-dimension space of10K × 10K units. Each
rectangle is treated as an uncertainty region, with a uniform pdf as
the default. We also perform experiments on Gaussian pdf (repres-
nted as a histogram). For eachT -k-PNN query, the default values
of probability threshold (T ) andk are0.1 and6 respectively. The
query point is randomly chosen from the 2D space. Each data point

1Available at http://www.census.gov/geo/www/tiger/.
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Figure 9: # of Loaded Data Objects.
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Figure 10: Basic vs. GVR.
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Figure 11: Generating k-subsets.
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Figure 12: Effect of T on PCS (k = 6).
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Figure 13: Seed Pruning (# k-Subsets).
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Without Seeds Pruning
With Seeds Pruning

Figure 14: Seed Pruning (Response Time).

is an average of results for 50 runs. Under these settings, aT -k-
PNN query produces twok-subsets as answers on average.

The experiments, written in Java, are executed on a PC with anIn-
tel 2.66GHz CPU and 2GB of main memory. We have also imple-
mented thek-bound filtering with the R-tree library in the Spatial
Index Library2.

6.2 Results
1. k-bound Filtering. In the first experiment, we examine the
effectiveness of thek-bound filtering in pruning away unqualified
objects. Fig. 9 illustrates the number of loaded data objects re-
turned byk-bound filtering with anR-tree. As we can see, when
k varies from one to nine, the size of the candidate object set in-
creases smoothly. This is because the size of thek-bound increases
with k. Consequently, thek-bound has overlap with more objects,
and so more candidates need to be investigated. Another observa-
tion is that the number of candidate objects is small. In fact, the
average fraction of the total database size to be examined isless
than0.04%. Thus, the pruning power ofk-bound filtering is quite
impressive.

On the other hand, although only a small fraction of objects are
returned byk-bound filtering, the number ofk-subsets generated
by the candidate object set can still be very large. Atk = 9, for
instance, 22 objects are left. Out of these objects, a total of C22

9

(around 375K)k-subsets need to be examined. This renders a huge
computational effort. To alleviate this problem, we needk-subset
Generation (with PCS),Verification, andRefinement techniques.
Let us call these techniques collectively as theGVR method, and
examine its effectiveness.

2. Performance of GVR.Here we compare the performance of

2http://u-foria.org/marioh/spatialindex/index.html

GVR with that of Basic evaluation (described in Section 3.2).
We assume thatk-bound filtering has been applied first for both
methods. As shown in Figure 10, the time required byBasicrises
sharply withk, since the increase ink makes Equation 1 more ex-
pensive to compute. On the other hand, the query response time
of GVR is an order of magnitude less thanBasic. For example,
whenk = 5, GVR spends only 1.6% of the time required byBa-
sic. We can thus see that GVR is important for improving the query
performance. Next, let us investigate individual methods of GVR.

3. k-subset Generation. In this experiment, we study the per-
formance of the PCS algorithm in generatingk-subsets. Figure 11
shows the number ofk-subsets produced by different techniques, in
log scale. Compared with the “brute-force” method (i.e., enumerat-
ing all possiblek-subsets from the candidate objects), PCS consis-
tently generates lessk-subsets under a wide range ofT values. The
savings are significant; atk = 9, for example, the improvement of
PCS over the brute-force method is90% (for T = 0.05) and99%
(for T = 0.5). Figure 12 shows that whenT increases, the number
of candidatek-subsets decreases sharply. Thus, the effectiveness of
PCS improves with a higher value ofT . It also shows that PCS can
exploit the probability threshold to provide better performance.

To further enhance PCS, we have proposedseed pruning(in Sec-
tion 4.3). As shown in Figure 13, this technique reduces the num-
ber ofk-subsets produced over a wide range ofk. For example, at
k = 9, the improvement is about80%. Figure 14 shows the corre-
sponding effect on query response time, which addresses a saving
of 69% atk = 9. Thus, seed pruning improves the performance of
PCS significantly.

In view of the potentially large number ofk-subsets generated dur-
ing and after the execution of the PCS algorithm, we have designed
an effective compression as discussed in Section 4.3. Figure 15
compares the storage cost with and without using this compression
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Figure 15: Efficient Storage ofk-subsets.
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Figure 16: Effect of Verification.
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Figure 17: LB vs. UB.
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Figure 18: Time Analysis (with T=0.1)
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Figure 19: Time Analysis (with k=6).

0 0.1 0.5 0.9
100

200

300

400

500

600

700

800

900

T

re
s
p
o
n
s
e
 t
im

e
 (

m
s
)

 

 

Figure 20: Various T on Gaussian Distribution

method (in log scale). We observe that under a wide range of val-
ues ofk, after compression, we only need one-third of the storage
that is used to store the rawk-subsets. Therefore, our compression
method can greatly reduce the amount of storage required to record
k-subsets for further processing.

4. Verification and Refinement. Next, we investigate the advan-
tage of verification and refinement over direct computation of quali-
fication probabilities. Figure 16 shows that the use of this technique
yields significant improvement over different values ofk. For ex-
ample, atk = 6, verification and refinement reduces the query
response time by about 90%.

We further examine the effectiveness of lower- and upper-bound
verification. The lower (upper) bound verification method attempts
to determine whether ak-subset should be accepted (rejected). Fig-
ure 17 shows that the number ofk-subsets classified by UB is much
larger than that classified by LB. The reason is that in the dataset
we have tested, manyk-subsets have small qualification probabili-
ties. Thus, they are more likely to be rejected through upper-bound
verification. Due to this reason, we have also arranged theUB sub-
routine to be executed beforeLB in the verification algorithm, as
shown in Algorithm 4.

5. Time Analysis. To get a clearer picture about the performance
of each part of our solution, we measure the time costs ofk-bound
filtering (shown as “Index” in Figures 18 and 19),k-subset gen-
eration (with PCS), verification, as well as refinement. Figures 18
show the result under different values ofk. In general, most of the
time is spent on refinement. This is hardly surprising, because re-
finement, which performs numerical integration on Equation1, is
an expensive process. However, this is already better than doing
numerical integration alone (c.f. Figure 16). The price to pay for
this time drop is to verify thek-subsets before their probabilities
are actually evaluated. Although the time spent on verification also

increases withk, the time spent is still less than pure numerical in-
tegration (c.f. Figure 16). We also notice that thatk-bound filtering
and PCS require the least amount of the time. These two steps add
little overhead to the overall query performance. However,their
gain, as reflected by Figures 9 and 11, is significant.

Figure. 19 shows the time breakdown of the components for differ-
ent values ofT . Again, the time costs required byk-bound filtering
and PCS are the least. For all the methods, their performanceim-
proves with an increase ofT . This shows that our methods can
effectively exploit the query probability threshold.

6. Gaussian Distribution. In the final experiment, we use a Gaus-
sian distribution as the uncertainty pdf for the dataset. For each
object, the uncertainty pdf has a mean equal to the center of the un-
certainty region, and a variance set to be the square of one-sixth of
the edge length, in bothx andy dimensions. Each uncertainty pdf
is represented by10× 10 = 100 histogram bars, and the probabil-
ity of each bar is the integration of the pdf over the area covered.
Figure 20 illustrates the result of the GVR method for various val-
ues ofT . We observe that GVR shows a similar trend as that of the
uniform pdf (c.f. Figure 10). More time is spent on Gaussian pdf,
because more histograms are used to model the pdf, which subse-
quently increases the time for verification and refinement. We have
also performed other experiments for Gaussian pdf, and theyalso
reflect similar trends. We thus omit them in the paper. From these
experiments, we can see that our solution is robust with respect to
different types of uncertainty pdfs.

7. CONCLUSIONS
Due to the popular usage of uncertain data in many real appli-
cations, uncertainty management has become an important topic
in the database community. We studied a useful query, namely,
the probability threshold k-NN Query (T -k-PNN) for uncertain
databases. Different from the exact database, evaluatingT -k-PNN



requires probability information, and performs expensivenumer-
ical integration. Thus, we proposed various pruning techniques
with consideration of both distance and probability constraints. As
shown by our experimental results, with thek-bound filtering tech-
nique, a lot of unqualified objects can be pruned. The number of
k-subsets can be significantly reduced by the PCS algorithm. We
further demonstrated the efficient computation of lower andupper
bounds of probabilities with the aid of partition information. We
will study how these techniques can be extended to support other
queries, e.g., reverse-neighbor and skyline queries.

8. ACKNOWLEDGMENT
This work was partially supported by NSFC/RGC Joint Research
Scheme N_HKUST602/08 and National Natural Science Founda-
tion of China (NSFC) under Grant No. 60763001. Reynold Cheng
was supported by the Research Grants Council of Hong Kong (Projects
HKU 5138/06E, HKU 513508, HKBU 1/05C), and the Seed Fund-
ing Programme of the University of Hong Kong (grant no.
200808159002). We also thank the reviewers for their insightful
comments.

9. REFERENCES
[1] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao,

“Querying the uncertain position of moving objects,” in
Temporal Databases: Research and Practice, 1998.

[2] D.Pfoser and C. Jensen, “Capturing the uncertainty of
moving-objects representations,” inProc. SSDBM, 1999.

[3] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor
networks,” inProc. VLDB, 2004.

[4] C. Böhm, A. Pryakhin, and M. Schubert, “The gauss-tree:
Efficient object identification in databases of probabilistic
feature vectors,” inProc. ICDE, 2006.

[5] V. Ljosa and A. K. Singh, “APLA: Indexing arbitrary
probability distributions,” inProc. ICDE, 2007.

[6] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating
probabilistic queries over imprecise data,” inProc. ACM
SIGMOD, 2003.

[7] J. Chen and R. Cheng, “Efficient evaluation of imprecise
location-dependent queries,” inProc. ICDE, 2007.

[8] M. Mokbel, C. Chow, and W. G. Aref, “The new casper:
Query processing for location services without
compromising privacy,” inVLDB, 2006.

[9] D. Barbara, H. Garcia-Molina, and D. Porter, “The
management of probabilistic data,”TKDE, vol. 4, no. 5,
1992.

[10] N. Dalvi and D. Suciu, “Efficient query evaluation on
probabilistic databases,” inVLDB, 2004.

[11] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom, “Trio: A system for
data, uncertainty, and lineage,” inVLDB, 2006.

[12] G. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest
neighbor queries for continuously moving points with
updates,” inProc. VLDB, 2003.

[13] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani,
“Streaming algorithms for robust, real-time detection of ddos
attacks,” inICDCS, 2007.

[14] U. Fayyad, G. Piatesky-Shapiro, P. Smyth, and
R. Uthurusamy,Advances in Knowledge Discovery and Data
Mining. AAAI Press/MIT Press, 1996.

[15] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate NN

queries on streams with guaranteed error/performance
bounds,” inProc. VLDB, 2004.

[16] G. Beskales, M. Soliman, and I. Ilyas, “Efficient searchfor
the top-k probable nearest neighbors in uncertain databases,”
in VLDB, 2008.

[17] N. Dalvi and D. Suciu, “Efficient query evaluation on
probabilistic databases,” inProc. VLDB, 2004.

[18] O. Mar, A. Sarma, A. Halevy, and J. Widom, “ULDBs:
databases with uncertainty and lineage,” inVLDB, 2006.

[19] L. Antova, C. Koch, and D. Olteanu, “Query language
support for incomplete information in the maybms system,”
in Prof. VLDB, 2007.

[20] S. Singh et al, “Orion 2.0: Native support for uncertaindata,”
in Prof. ACM SIGMOD, 2008.

[21] Singh et al, “Database support for pdf attributes,” inProc.
ICDE, 2008.

[22] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying
imprecise data in moving object environments,”IEEE TKDE,
vol. 16, no. 9, Sept. 2004.

[23] H. Kriegel, P. Kunath, and M. Renz, “Probabilistic
nearest-neighbor query on uncertain objects,” inDASFAA,
2007.

[24] Y. Qi, S. Singh, R. Shah, and S. Prabhakar, “Indexing
probabilistic nearest-neighbor threshold queries,” inProc.
Workshop on Management of Uncertain Data, 2008.

[25] X. Lian and L. Chen, “Probabilistic group nearest neighbor
queries in uncertain databases,”IEEE Trans. On Knowledge
and Data Engineering, vol. 20, no. 6, 2008.

[26] R. Cheng, J. Chen, M. Mokbel, and C. Chow, “Probabilistic
verifiers: Evaluating constrained nearest-neighbor queries
over uncertain data,” inProc. ICDE, 2008.

[27] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar, “Indexing multi-dimensional uncertain data
with arbitrary probability density functions,” inProc. VLDB,
2005.

[28] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines
on uncertain data,” inProc. VLDB, 2007.

[29] X. Lian and L. Chen, “Monochromatic and bichromatic
reverse skyline search over uncertain databases,” inProc.
SIGMOD, 2008.

[30] M. Soliman, I. Ilyas, and K. Chang, “Top-k query processing
in uncertain databases,” inProc. ICDE, 2007.

[31] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on
uncertain data: A probabilistic threshold approach,” inProc.
SIGMOD, 2008.

[32] V. Rastogi, D. Suciu, and E. Welbourne, “Access control
over uncertain data,” inProc. VLDB, 2008.

[33] C. Koch and D. Olteanu, “Conditioning probabilistic
databases,” inProc. VLDB, 2008.

[34] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data
with quality guarantees,” inProc. VLDB, 2008.

[35] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,”Proc. of the ACM SIGMOD Int’l. Conf., 1984.


