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ABSTRACT

In emerging applications such as location-based servissssor
monitoring and biological management systems, the valtigseo
database items are naturally imprecise. For these uncedtabases,
an important query is the ProbabilisticNearest-Neighbor Query
(k-PNN), which computes the probabilities of setskafbjects for
being the closest to a given query point. The evaluation if th
guery can be both computationally- and 1/0- expensive esihere

is an exponentially large number bbbject-sets, and numerical in-
tegration is required. Often a user may not be concernedt dheu
exact probability values. For example, he may only need arsw
that have sufficiently high confidence. We thus propose tod-Pr
abilistic Thresholdk-Nearest-Neighbor Querytk-PNN), which
returns sets ok objects that satisfy the query with probabilities
higher than some threshold. Three steps are proposed to handle
this query efficiently. In the first stage, objects that carcan-
stitute an answer ariltered with the aid of a spatial index. The
second step, callegrobabilistic candidate selectigrsignificantly

devices, the data obtained are often noisy [3]. In biometrid
biological databases, the attribute values of the extdafstature
vectors are again not perfect [4, 5] due to the limitationxifaec-
tion methods. Recent works also propose to introduce aatedr
amount of uncertainty to a user’s location data, as a means- of
ducing resource utilization [1, 6] or improving the usedsdtion
privacy [7, 8]. To deal with the increasing needs of managiat
uncertainty and providing high-quality services, reskars have
recently proposed the use of “uncertain databases”, whezeru
tainty is treated as a “first-class citizen”. In particuldrese un-
certain data are evaluated pgobabilistic querieswhich produces
answers with probabilistic and statistical guarantee§,[20, 11].

A widely-used data model assumed by uncertain databashs is t
attribute uncertaintywhere the actual attribute value is located in-
side a closed area, or thiacertainty region A non-zero probabil-
ity density function pdf) is associated with the uncertainty region,
such that the integration of pdf inside the region equalsy@ &ig-

prunes a number of candidate sets to be examined. The remain-ure 1(a) shows that in a location-based service, the urcsriaf

ing sets are sent farerification which derives the lower and up-
per bounds of answer probabilities, so that a candidateasebe
quickly decided on whether it should be included in the ams\ie
also examine spatially-efficient data structures that stipihese
methods. Our solution can be applied to uncertain data with a
trary probability density functions. We have also perfodnegten-
sive experiments to examine the effectiveness of our method

1. INTRODUCTION

Uncertainty is inherent in many emerging applicationshin®lobal-
Positioning System (GPS), for example, the location vakas

lected from the mobile devices have measurement errorstand i

is difficult to remove them due to the lacking of domain knowl-
edge [1, 2]. As another example, consider a habitat mongori
system where data like temperature, humidity, and ligherisity
are acquired from sensors. Due to the impreciseness ofngensi
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a moving object’s location can be treated as a normalizedSian
distribution [1, 2]. The uncertainty region is a circulaeay with
a radius called the “distance threshold”. The newest lonas re-
ported to the system when it deviates from the old one by ninane t
this threshold (Figure 1(a)). Gaussian distributions ése ased to
model values of a feature vector in biometric databases f4j-
ure 1(b) shows the histogram of temperature values recdrged
sensor network deployed in a geographical area observedeela
The pdf, as a histogram, depicts an arbitrary distributietwieen
30°F and40°F.
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Figure 1: Location and sensor uncertainty.
In this paper, we study therobabilistick-Nearest Neighbor Query

(k-PNN) for databases with attribute uncertainty. This query
turns the non-zero probability (callepialification probability of



each set of: objects for being the nearest neighbor of a given point
g. Given an uncertain databage of n uncertain objects, where
D = {oy, ..., 0, }, thek-PNN query can be defined as follows:

DEFINITION 1.1. A Probabilistic k-NN Query (k-PNN) re-
turns a list of answerq (S, p(S))}, whereS is a subset ofD of
cardinality k£, andp(S) is the non-zero probability tha® consists
of thek nearest neighbors af.

Figure 2 shows an example bfPNN, evaluated over eight uncer-
tain objects ¢1, ..., 0s). If £ = 3, then the query returns a set of
3-ary tuples, together with their chances for satisfyirggghery. In
this example{o1, 02, 05} and{o1, 02, 03} have qualification prob-
abilities of 0.05 and 0.3 respectively. Notice in this defom, the
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Figure 2: Probabilistic k-NN Query (k-PNN) with k& = 3.

number ofk-subsets that satisfy the query may be exponential, and 1.1 Solution Overview

it may be necessary to have additional constraints (e fgureb-
jects whose probabilities are higher than some thresholdyder
to limit the size of the answer set.

The k-PNN can be considered as a version of theearest neigh-
bor query &£-NN) evaluated on uncertain data. TheNN query
has been widely used in different applications, includiocption-
based services [12], natural habitat monitoring [3], nekntoaf-

fic analysis [13], knowledge discovery [14], and CAD/CAM sys
tems [15]. For example, in mobile e-commerce, a driver is sup
plied with the location information of the nearest gas stati A
CAM system use%-NN queries to discover similar patterns over
multi-dimensional data obtained from sensors installeproduc-
tion lines [15]. Ak-NN query can also be used to answer other

We observe that a user may not always be interested in géiting
precise probability values. He may only require answerh ain-
fidence that meets some predefined condition. For exampkgra u
may only require answers with confidence higher than somd fixe
value. In Figure 2, for instance, if an answer with at lea8200b-
ability is needed, then the seffs1, 02, 03} and{o1, 02, 04} would

be the only answers. We term the varianke®NN with a probabil-

ity threshold constrainf]” (e.g.,20%), as theProbability Threshold
k-Nearest-Neighbor Querfor T-k-PNN in short). The threshold
constraint allows the user to control the desired confideageired

in a query answer. In Figure 2, for example).a-3-PNN returns
{01, 02,03} and{o1, 02, 04} as the query answer. Such a query an-
swer also allows a user to extract some useful informatian,@
ando» appear in bott3-subsets in this example). Notice that with

ranking queries, such @smin andk-max queries. For one-dimensionah moderate value df’, the number ofk-subsets returned is quite

data, a-min (k-max) query can be considered ak-BIN query by
settingq to —oo (respectively+oo). Such queries can be used in
scientific monitoring applications to answer questions:likVhat
are thek bird nests that yield the highest temperature?” [3].

Most works abouk-NN queries assume that the data being queried
is precise. However, as we can see from the applicationsiomext
before, data on which-NN is evaluated (e.g., locations of moving
objects and sensor values) are often imprecise. To our bestlk
edge, few researches (e.g., [16, 5]) have studied the diaiuaf
k-NN queries over uncertain data. Therefore, our goal is o0 in
vestigate efficient methods for evaluatihgNN queries for these
databases.

Computing a&-PNN is usually more complex than its precise coun-
terpart. Consider, for example, the computation of the phdly
that {01, 02,05} are the three closest neighborsgtin Figure 2.
Since each object’s value is not exactly known, we need te con
sider the values in its uncertainty region. Moreover, thalifjoa-
tion probability of {01, 02,05} depends not just on the three ob-
jects’ values, but also on the relative values of other dbjée.g.,

small in practice. For instance, in our experiments]'at 0.1,
two k-subsets are returned on average.

Moreover, we present three methods to efficiently procefska
PNN query. The first method, callédbound filtering effectively
removes all objects that have no chance to be a query anseer. L
us consider Figure 2 again, which shows tikebbund” (as a dot-
ted circle centered ajf) that completely encloses the three objects
o1, o2 andos. The radius of the-bound is defined as the third
minimum of the maximal distances of the objects frortin this
example, the maximum distance @f from ¢). With the k-bound,
objectso; andos can be pruned immediately, since they have no
chance to overtake any of the objeets o2 or o3 to become part

of the answer to the 3-PNN query. Generally, with thbound,

a lot of objects can be removed, and as we show in the paper, its
usage can be easily leveraged to a spatial index (e.g.eR-tFer
convenience, we call the objects that are not pruned by-theund
filtering (i.e., those that overlap tikebound) thecandidate objects

After k-bound filtering, we still need to consider thesubsets of
the candidate objects. In Figure 2, for instan€§, = 20 of sets

03). If there is a chance that two objects have the same distanceof cardinality 3 may need to be considered. To further reduce

from ¢ (e.g.,02 andos), then their pdfs must be considered in or-
der to derive the probabilities. The problem is further aggted
by the large number of combinations of objects. For exanfple,

the search space, we propose the second method, n&rodg-
bilistic Candidate Selectiofor PCS), which can efficiently detect
k-subsets (i.e., subsets of databd3ewith cardinality k) whose

a 3-PNN evaluated over eight objects in Figure 2, we may have qualification probabilities are less thdh also calledunqualified

to compute the probabilities fafs = 56 possible answers. The
number of answers that satisfy the query can also be expgahent
Clearly, we need better semantics and methods to handiguérs.

k-subsets While k-bound filtering utilizes distance information
for pruning, the PCS makes use of the probability informratid
uncertain data to remove unqualifigesubsets. The rationale be-
hind PCS is that given the probability of a candidate objbet t
lies within the k-bound (calledcutoff probability, the qualifica-
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Figure 3: Solution Framework of T-k-PNN.

tion probability of ak-subset must be lower than the product of the
cutoff probabilities of its subsets. In Figure 2, for examhe cut-

off probabilities ofos, 05, andog are 0.5, 0.2 and 0.1 respectively
(shown as the shaded area). The qualification probabilitthef
3-subset{o2, 04, 05} must be lower than the product of the cutoff
probabilities of{o4,05}, or 0.5 x 0.2 = 0.1. If T = 0.2, then
{02, 04, 05} can be pruned. Based on this useful fact, the PCS al-
gorithm constructg:-subsets by growing the list of thiesubsets
with respect toi (wherei = 1,2,..,k). At each iteration, the
product of the cutoff probabilities of eagksubset are checked on
whether it is less thaf’, and thei-subset is pruned if that is true.
In addtion, we also design a technique, called “seed-pginito
further improve the performance of PCS by removing the uhqua
ified k-subsets with the “seeds” — objects that are located within

the k-bound. Moreover, an efficient data compression method that

suppresses the amount of intermediate storage overheauleq

cation probability ofk-subsets directly.

To summarize, we propose a computationally- and 1/O- efficie
solution for evaluating &-k-PNN query. Our solution reduces
1/0 overhead by using a spatial index (e.g., R-tree) to paway

a large number of objects. To alleviate the large computatio
overhead, we propose PCS for reducing the numbérsafbsets to
be examined, as well as verification/refinement for avoidixact
probability computation. We propose a framework to contieete
techniques in order to provide an efficient solution. WeHartin-
vestigate storage-efficient data structures to supporsolution.
Our experiments show that our approach can significantlyore
the performance of query evaluation. For exampld; at 0.1 and

k = 5 the time required by our method is only 1.6% of the time
needed by calculating qualification probabilities dirgctl

The rest of this paper is organized as follows. We discussethged
work in Section 2. In Section 3, we present the formal sernanti
of the T-k-PNN, and our solution framework. Section 4 explains
the filtering and the probabilistic candidate selectioncpss. The
details of verification and refinement are developed in 8ad5i
We present the experimental results in Section 6. The papen-
cluded in Section 7.

2. RELATED WORK

Recently, a few uncertain database prototypes (e.g., B 2,9, 20,
3]) have been developed. In these systems, two major clagses
uncertainty models are assumed: tuple- and attributertaioty.
Tuple-uncertainty records the probability that a giveridup part

of a relation [17]. Attribute-uncertainty represents thexactness
of an attribute value as an uncertainty region and a pdf bedii
the region [1, 2, 6, 5, 4]. A formal database model for comigini
tuple and attribute uncertainty has also been proposed [21his
paper, we use the attribute uncertainty model.

A number of studies have been focused on the evaluation &FPro

by PCS is presented. Our experiments show that PCS reduces abilistic Nearest-neighbor (PNN) queries on attributeantainty.

significant portion ofk-subsets to be examined.

The third method, callederification is useful for handling:-subsets
that are not filtered by the previous two methods. This teghi
determines whether B-subset is a query answer, by making use
of the uncertainty pdf of objects returned kybound filtering. We
propose two kinds of verificationlower-boundand upper-bound
verification, which quickly computes the lower and upper risi

of qualification probabilities ok-subsets. These bounds can then
be used to determine how tthesubset should be handled. For ex-
ample, ak-subset can be removed if its upper bound probability
is smaller tharil"; it should be included in the query answer if its
lower bound probability is higher thafi. We will show the de-
tailed design, complexity analysis, as well as correctpessfs for
these methods.

Figure 3 depicts the framework of our solution, which corssaf
four steps. First, thé&-bound filtering removes objects that must
not be part of thé-nearest neighbor af. All candidate objects are
then passed to the PCS, which derivesubsets based on the cut-
off probability information. Next, the lower (upper) boundf the
gualification probabilities of thé-subsets are used to accept (re-

A PNN, which can be regarded as a 1-PNN (in Definition 1.1), re-
turns the probability of a single object for being the clagesa
given query poing. In [22], an R-tree-based indexing solution for
PNN has been presented. In this paper, we develop an indexing
solution (calledk-bound filtering) fork-PNN. In [6, 22], qualifica-
tion probabilities of objects for satisfying a PNN are obtad by
transforming the uncertainty of each object into two fuoies: pdf
and cdf of an object’s distance from the query point. Theyasho
how this conversion can be done for 1D uncertainty (intesjvahd

2D uncertainty (circle and line). The qualification probiieis are
then derived by evaluating an integral of an expressionithiatves
distance pdfs and cdfs of multiple objects. We show how tme-co
putation ofk-PNN can be performed using distance pdfs and cdfs.
Another method for evaluating a PNN is proposed in [23], wher
each object is represented as a set of points sampled froobthe
ject’s continuous pdf. More recently, the probability thatobject
exists in the database (calledistential probabilityis used to de-
rive lower and upper bounds and pruning for nearest-neigii6,
24]. In [25], the authors address how to efficiently retridega ob-
jects that have the minimum aggregate distance from a setasf/q
points.

ject) thek-subsets. Those that still cannot be determined are sentIn order to improve the evaluation of qualification probéiai$ for

for refinementwhose exact probabilities are computed. While re-
finement is expensive, it can utilize the information getestalur-
ing verification. Thus this is still faster than computing tualifi-

1-PNN, [26] has proposed a variant of 1-PNN that uses proba-
bility threshold as an answering criterion, and has deesogffi-
cient verification methods for deriving lower and upper kagiof



an object’s qualification probabilities. These methodsnateead-

ily used by ak-PNN (with & > 1) for three reasons. First, the
evaluation ofk-PNN faces the additional problem of examining a
large number ofc-subsets. To handle this problem, we develop
new methods to significantly reduce the number of candidate
subsets Secondly, the probability bound verification isgessl for
1-PNN queries only. We develop new lower/upper bound compu-
tation methods fok-PNN queries. Thirdly, the solution of [26] can
only be used to handle distance pdfs of the candidate objguts-
sented as arbitrary histograms. Our techniques, on the bémel,
are not restricted to histogram pdfs.

To our best knowledge, few work has addreskddN queries over
uncertain data. Soliman et al. [16] proposed a query thétsrdre
probability each object is the nearest neighborgpfind returns
the k objects with the highest probabilities. Notice that thekran
ing criterion is based solely on each object’s probabilitypeing
the nearest-neighbor @f This is not the probability that all ob-
jects returned in the query answer are thaearest neighbors of
q (by considering all the possible worlds). In other words Ah
object answer returned by [16] may not appear in the sama-poss
ble world. On the other hand, the query studied in this paper i
“true” k-nearest-neighbor query, where we consider the probabilit
that a set of objects are tikenearest neighbors @f In [5], Ljosa

et al. proposed an efficient index structure, called APLgetrfor

evaluatingk-NN queries. They used the expected distance (under

L1-norm) of an object’s uncertainty pdf frogmas a ranking crite-
rion. Thus, theik-NN query is based on the expected distance, and
does not have probabilities in their answers.

The evaluation and indexing methods for other probalzligtieries
on attribute uncertainty have been studied. This includege
gueries [27], location-dependent queries [7], skylinerepse[28,
29], and top-k queries [30, 31]. The issue of uncertaintyeteiso
been considered in the domain of biometric databases [4hand
cess control [32]. More recently, the issues of conditignamd
cleaning a probabilistic database have been studied [33, 34

3. PRELIMINARIES

We now present the semantics of thiek-PNN query (Section 3.1).
Then we explain a simple solution for this query (Section.3.2

3.1 Definition of 7-x-PNN

Letp(S) € [0, 1] be the probability that the elements ofasubset
S are thek nearest neighbors of query poigft(i.e., qualification
probability). Then, &-k-PNN can be defined as follows.

DEFINITION 3.1. A Probability Threshold k-NN Query (T-
k-PNN) returns a setS, such that{S|S C D A |S| = k} and
p(S) > T, whereT € (0, 1].

We call T the thresholdparameter. Ac-subsetS is allowed to be
returned as an answer if its qualification probability is less than
T. Compared withk-PNN (Definition 1.1), this query does not
return the actual qualification probability ¢f to the user. Also,
we can further use other constraints (e.g., the maximum eumb
of answers) to limit the number d@f-subsets returned to the user.
Table 1 summarizes the symbols used in the definitich-éfPNN.

3.2 Basic Evaluation ofr-x-PNN

Symbol | Meaning
D Uncertain database
04 Uncertain objeci of D (i = 1,...,|D]|)
i lo; —q|
d;i(r) pdf of r; (distance pdf
D;(r) cdf of r; (distance cdf
q Query point
T Probability Threshold
S {oi|o; € D}
p(S) Qualification prob. ofS
Table 1: Symbols forT-k-PNN.
di(nk A Di(r)
2 1
A pdr u—1 /
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Figure 4: Distance pdf and cdf

Let us now present a simple solution for answeringZhg-PNN,
which forms the basis for further discussions. This methdzes
the probability distribution of each object’s distancenfrg. For-
mally, letr; € R be the absolute distance of an uncertain object
fromq. Thatis,r; = |o; — ¢|. We assume that; takes on a value
r € . Then, the distance pdf and cdf ef are defined below [6,
22].

DEFINITION 3.2. Given an uncertain objecb;, its distance
pdf, denoted byi;(r), is a pdf of R;; its distance cdf denoted
by D;(r), is a cdf ofR;.

We use an example to illustrate these two functions. Fig(ag 4
shows a one-dimensional uncertain objeg¢t,which has a uniform
pdf of valueﬁ in uncertainty regiorjl, u]. A query point,qo,

is also shown. In Figure 4(b), the distance pdf (shaded), of

|o1 — qol|, ranging from zero ta — qo, is illustrated. The distance
pdfin [0, go — I] is the sum of the pdf on both sides@f, which is
equal to-2. In [go — I, u — o], the distance pdf of, is —L. The
distance cdf of, drawn as a solid line, is found by integrating the
distance pdf.

For the detailed procedures of deriving distance pdf andredfd-
ers are referred to [26] (for 1D arbitrary histogram undetiapdf)
and [22] (for 2D circle and line segment uncertainty regiaiith
uniform pdf).

Based on the uncertainty pdf and cdf of each object, the fipeli
tion probability of ak-subsetS (i.e., p(S)) can be computed. The
probability, p(S), is then used to compare agaifistif p(S) > T,
then.S becomes an answer. Now let us take a look at po)) is
computed:

+oo
w$)= Y [Tae) I 5] 0= Duear @

0;€S 0;€SNo;#0; opeED—-S



To understand Equation 1, observe that foto be a query an-
swer, the distance of any objeet (whereo, ¢ S) from ¢ must
be greater than that of (whereo; € S). Now, at distance:, the
pdf that objecio; € S has thek-th shortest distance fromis the
product of the following factors:

e the pdf that; has a distance offrom ¢, i.e.,d;(r);

o the probability that all objects iff other tharp; have shorter
distances than, i.e., ][, csno,0, Pi(7); @nd

e the probability that objects i — S have longer distances
thanr,i.e.[],, cp_s(1 — Dn(r)).

The integration function in Equation 1 is essentially thedurct of
the above three factors. By integrating this function d@eroo),
we obtain the probability tha$' contains thek nearest neighbors
with o; as thek-th nearest neighbor. Finally, by summing up this
probability value for all objects; € S, Equation 1 is obtained.

Equation 1 is inefficient to evaluate. First, the distanclegodi cdf

of each object has to be computed. Secondly, Equation 1viesol
costly numerical integration, and has to be performed ovarge
range. Thirdly, the probability of eadtrsubsetS has to be com-
puted, and the number of thekesubsets is exponential. However,
we found thatT'-k-PNN can be handled in a better way. Specifi-
cally, later, in Section 4, we exploit the extent of the objéancer-
tainty regions and probability threshold to significantlype the
number ofk-subsets to be examined. Then, in Section 5, we derive
the lower and upper bounds éfsubsets’ qualification probabili-
ties, so that the decision of whethekaubset should be accepted
as a query answer can be made without computing its actulad pro
ability.

4. GENERATING k-SUBSETS

In this section, we examine two efficient methods for geregat
k-subsets that can potentially satisfy thek-PNN queries. Sec-
tion 4.1 discusses the design and implementatidaiobund filter-
ing. We then present the Probabilistic Candidate Sele¢B@s)
process in Section 4.2. We investigate a spatially-efftctam-
pression method for supporting PCS in Section 4.3.

4.1 k-bound Filtering

Given a query point, a naive solution is to enumerate all iptess
combinations of sets of sizefrom the uncertain databade and
compute their probabilities according to Equation 1. If fneba-
bility is greater tharil’, the set will be returned as a result. Clearly,
this is an inefficient approach with respect to computatiod O
costs. In fact, given &-k-PNN, we can first utilize the distance
information of the objects to prune those that are not qedlifor
the answers. Specifically, we propose an efficient filter dhage
the k-th minimum of maximal distancgy, calledk-bound filter,
to remove objects that have zero probability to be the arswkr
T-k-PNN. The rationale behind thie-bound filter is stated in the
following Lemma.

LEMMA 4.1. Given anobjecb; € D, a query poing, if min(r;) >
fx, theno; will not appear in any answer data set, whefigis the
E*® minimum of maximal distance:{pound) among all;'s for
(j =1,...,n), andr; is the distance betweenando;.

PROOF If min(r;) > fi holds,o; cannot belong to th near-
est neighbors of since there always exist at ledsbbjects with
distances smaller than or equal fp. Therefore, no answer set
S contain such am; according to thel-k-PNN definition. In
other words, the fact thaf is thek nearest neighbors gfimplies
min(r;) < fr(Vo; € 5). O

Lemma 4.1 offers a filtering method by that uéebound as illus-
trated in Figure 2. In particular, with-bound filtering, objects-
andos’s minimum distances tg are larger than the bound, and so
they can be excluded for further consideration. The rest@fb-
jects that overlap with or are contained in thdound are used to
generatd:-subsets. Another advantagekebound filtering is, after
filtering, probability computation is easier (compared tpBtion
1), since the integration rand@, oo is reduced td0, fx] for nu-
merical integration.

The performance of-bound filtering can be sped up with the help
of a spatial index structure. In this work we index the ureiett
region of each data object in the R-tree [35], on whichikHeund
filtering can be conducted. The reason we choose R-tree is due
to its popularity. However other spatial index structuras also
be used. The R-tree recursively groups uncertain datatshjéth
minimum bounding rectangld®1BRs) until one final node (root)
is obtained. The process of filtering over R-tree is detaielgo-
rithm 1 (k-bound_Processing). The algorithm maintains a mini-
mum heaH which contains the entry of fortfv, key), wherekey

is themin(dist(q,v)). H is firstinitialized (line 1). The candidate
object set is emptied anfl. is set as infinity (lines 2 and 3). Then,
the root node is loaded and storedHn(line 4). Each time we pop
out an entry(v, key) from heapH (line 6), and check whethéfey

is smaller thanf, (line 7). If the answer is negative, this entry is
discarded (Lemma 4.1). Otherwise, we then check whether=
leaf node (line 8). If the answer is yes, we insert this fouhdan-
didate object inta” (line 9). If v is an intermediate node, for each
entry v; in v, we compute its minimum distance frog(lines 11
and 12). If this minimum distance is also smaller thfanwe insert
v; into the heap and updatefy, if necessary (lines 13 to 15). This
process repeats until the queue is empty.

4.2 Probabilistic Candidate Selection

After k-bound filtering, assume we obtain € [k, n] objects, i.e.
C = {o1,...,om}, there could still be”}* possiblek-subset an-
swers. Directly computing these answer sets will resulbdpoe
nential cost in both memory and computation. In fact, it ismex-
essary to generate all thesubsets. In this section, we propose a
candidate set generation method based on the probabiiiynia-
tion, namelyprobabilistic candidate selectiofiPCS). Specifically,
we make use of the probability of an object that lies withia th
bound, calledcutoff probability (CP) (shown in Figure 5(a)) and
the fact that the qualification probability ofkasubset must be less
than the product of the cutoff probabilities of its membeiihe
following lemma states this fact.

LEMMA 4.2. p(S) < UBProb(S'),vS" C S,

whereU BProb(S’) =[] Pr(ri < fr)

0,€8/

PrROOF According to Lemma 4.1, the fact“containgk nearest
neighbors” requires that all member objectsSofo have distances
from ¢ not larger thary;,. That meang(S) must not be larger than



input : R-treeZ constructed oveD
input : ¢: the query point

input : k&

output: the candidate object sét and f,

=

initialize min-heapH accepting entries in the form
(v, key);
C 0
fr — +o0;
insert(root(Z), 0) into heapH,
while H is not emptydo
(v, key) < de-heaf#H;
if key < fr then
if v is an uncertain objecthen
| insertvinto C;

else
for each entryv; contained inv do
computekey «— min(dist(q,vs));
if key < fr then
inser(v;, key) toH;
L updatef, according takey;
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16 return C, fx;

Algorithm 1: k-bound_Processing

Ho,iESPT(Ti < fx), i.e. the product of the cutoff probabilities
of its member objects. Since the cutoff probabilities argagk
smaller than or equal to ] BProb(S") gives an upper bound of
[I,,es Pr(ri < fi). Thus Lemma 4.2 is proved.

O

Based on the cutoff probability of each candidate objedbiwithe
k-bound, the PCS algorithm construéts subsets by growing the
list of i-subsets with respect tqwherei = 1to k — 1). The steps
of PCS are listed in Algorithm 2. First, the algorithm geriesa
1-subsets based on the candidate(s¢line 1). Then, thei + 1)-
subsets are generated by unionirgubsets and’ (lines 2 to 13).
The value ofU BProb(S’) could be obtained by Lemma 4.2 (line
10). All those subsets witll BProb(S’) smaller than the thresh-
old will be pruned (line 11). Therefore, many intermediaibsets
are pruned, and the number bfsubsets will be greatly reduced.
When we extends to S’ by addingo,, and find thatS” should be
pruned, then it is no need to check the extensions with, ..., o,
(line 13), since the data objects are sorted in descenditer af
their cutoff probabilities.

Figures 5(a)-5(c) show an example of generating candidateibsets
based on the cutoff probability of each candidate objedtiwithe
k-bound. Figure 5(a) lists the cutoff probability (CP) of baub-
ject. We can safely remove candidate objecsince its CP is less
than the threshold™ = 0.2. Then, in the second round, as shown
in Figure 5(b), the subsdtos, 05} can be removed. Similarly, in
the third round (Figure 5(c)) the candidate substs, o4, o5},
{02, 04, 05} and{os, 04, 05 } can be safely removed.

In the previous discussions, in each rounde have used CP and
T to determine whether the generatiesubset should be kept for
further extension. Here we propose an enhancement thegestil
thed-th minimum maximum distance (i.ef;) to further remove the

input : C = {o1,...,om} ¢k, T
output: Cy: the set of candidate object sets

Cr— {{oi}, o {om}};

fori— 1tok—1do
Ciy1 « 0;
for eachS € C; do
z < mazo,es(i) ;
for j«— z+1tocdo
if o; ¢ Sthen
S — SuU{oj}
if Sl g Ci+1 then
if UBProb(.S’) > T then
L C¢+1.add(5")

else
L break;
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14 return C
Algorithm 2: Prob_Cand_Sel

unqualified subsets generated in each round. We can obésefth
values by slightly changing the Algorithitbound_Processing

to return all thef; values. Next, we suppose all candidate objects
have been sorted in ascending order of their maximum distanc
from ¢q. We put the objects with thé lowest values of maxi-
mum distance into an array callededs, and derive the following
lemma.

LEMMA 4.3. If the lower bound of; of data objecb; is larger
than f; (i-th minimum maximum distancesefeds[i]), anyk-subset
S containingo; cannot be the answer to tHE-k-PNN if 3o, €
{seedsl[1], ..., seedsi]} ando; ¢ S.

PROOF. The fact that “the lower bound of; is larger than the
fi” implies that all objects in{seeds[1], ..., seeds[i]} must have
shorter distances thary. Therefore, ifo; happens to be inside a
probabilistic k-nearest neighbors answer set, Sagll objects in
{seedsl1], ..., seeds[i]} must also be contained . [

Lemma 4.3 indicates that a qualifigesubset should contain some
specific seeds to become a valid result. This rule can helpwep
many unqualified subsets without estimating their qualificeprob-
abilities. The detailed steps are listed in Algorithn&&éd_Pruning).

In order to use seed pruning method to remove unqualified-inte
mediate subsets generated in each round of PCS, we can invoke
Algorithm Seed_Pruning immediately after line 4 of Algorithm
Prob_Can_Sel.

4.3 A Storage-Efficient Compression Method
The PCS algorithm can be quite expensive in terms of memary co
sumption, since in each rouridwe have to store all thesubsets
whose CPs are greater thdh and the number of suchsubsets
could be exponentially large.

To reduce the memory cost we propose a simple but effective co
pression method. We first present our observations ofr$bsets
generated by the PCS algorithm which forms the basis of aur di
cussions. As shown in Figures 5(a)-5(c), the elements ai¢her-
ated subsets in each round using AlgorithmP2-¢b_Cand_Set)



2-subset | CP 3-subset CP
{01702} 1 {01702703} 1
1-subset| CP {01,03} 1 {01,02,04} 0.5
{01} 1 {01,04} 0.5 {01,02,05} 0.2
{02} 1 {01705 0.2 {01703704} 0.5
{03} 1 {02703 1 01703705} 0.2
{04} 0.5 {02,04} 0.5 01,04,05} 0.1
{05} 0.2 {02,05 0.2 02,03,04} 0.5
{06} 0.1 {03704 0.5 02703705} 0.2
{os,05} | 0.2 02,04, 05 0.1
(a) Round 1 {04,05} | 0.1 03,04, 05 0.1
(b) Round 2 (C) Round 3
Figure 5: Step-by-step generating candidate subsets based CP
Size-1 Set] CP
{o1} 1 Size-2 Set| CP Size-3Set | CP
{o2} 1 01,05 1 01,02,05} | 1
{03} 1 02, 05 1 01,03, 05 1
{04} 0.5 03,05 1 02,03, 05 1
{05} 0.2
(b) Round 2 (¢) Round 3
(a) Round 1

Figure 6: Compressed candidate subsets based on CP

input : seeds, Sandf;, ..., fx.
output: A boolean value indicating whethéris a possible
result.
for eacho; € S do
if min(r;) < fi1 then
L 7«0
else
L ~ « the largest satisfyingmin(r;) > fi;
if v > 0then
if not {seeds[1],...
| return False
re_turn True

Algorithm 3: Seed_Pruning

, seeds[y]} C S then

are sorted in the descending order of their CPs. In additiergan
also find that many subsets of the same size share a common prefi
For example, in Figures 5(b), the first four 2-subsets sleredm-
mon prefix{o1 }. Similarly, in Figure 5(c), the first three 3-subsets
share the common preffo,, 02 }. Based on these observations, we
propose to compress the subsets of the same size that share a ¢
mon prefix. Specifically, for the subsets of the same size tore s
the common prefix of the subsets and the last element of treesub
that has the minimum product of cutoff probability greateartT".

We also call this elementlaoundary element~or example, given
the first four 2-subsets in Figures 5(b), after compressianonly
store {01, 05} as shown in the first entry of compressed storage
in Figure 6(b). In this entryo: } is the common prefix ands is

the last element of subséb, o5 }, whose subset has the minimum
product probability among first four 2-subsets in Figure)5(@s
shown in Figure 6(b), in addition to the compressed ifem os },

we also store the product probability of the common prefixetie

is {o1}'s CP, which is1. Thus, in our compression scheme, for
each compressed entry, we store the common prefix, the bgunda
element, and the product probability of the prefix. As anothe
ample, the first three 3-subsets in Figure 5(c) are comptaase
{01, 02,05}, as shown in Figure 6(c). The whole compressed en-
try is {{o1, 02,05}, 1}, wherel is the product probability of prefix
{o1,02}. Figures 6(a)-6(c) show the whole compressed results of
subsets in Figures 5(a)-5(c). Note that entries in boldsfofit-ig-
ures 5(a)-5(c) are unqualified entries.

Whenever it is necessary to decompress an compressed \eatry,
can generate the uncompressed subsets by appending alistfie p
ble elements starting from thiemmediate successof the last ele-
ment in the prefix to the bounding element. Let us use Figurg 6(
as an example. Given the compressed ef{py, o5}, 1}, the pre-

fix is {01}, the bounding element iss, the immediate successor
element ob; is o2, as all the candidate objects are sorted in the de-
scending order according to their CPs. Then the decompreste

is {o01,02}, {o1,03}, {01,04}, and{o1,05}. The corresponding
CP of each decomposed subset is the product of the compressed
entry’'s CP (now is 1) and the appended element’s CP. Sitpifar

the compressed enttfy{o1, 02, 05}, 1} shown in Figure 6(c)es is

the immediate successor of last element in prééix, o2}, so we

can generat€os, 02, 03}, {01, 02,04}, and{o1, 02, 05 }, the corre-
sponding CPs for these decompressed entried arg:1 0.5, and

1 % 0.2 respectively. Our experiments show that this compression
scheme reduces the storage required in this phase sigtlifican

5. VERIFICATION AND REFINEMENT

Based on thé&-subsets generated by PCS, we now present efficent
techniques for handling thie-subsets. We discuss techniques for
deriving lower and upper bounds of the qualification prolitds

of k-subsets in Section 5.1. We then study how these techniques
facilitate probability computation (in Section 5.2).



Symbol Meaning
C candidate set
Q Set ofk-subsets yielded by PCS
[p(S).1,p(S).u] Lower & upper prob. bounds gf(.S)
m(S) max({r;|o; € S})
€; The j-th end point
P; The j-th partition, whereP; = [e;, e;41]
M Total no. of partitions
v;(S) Prol(m(S) € Pj)
p;(S) Qualification prob. ofS, givenm(S) € P;
[p;(S).l,p;(S).u] | Lower & upper bounds gb;(.S)

Table 2: Symbols used by verification.

5.1 Lower and Upper Bound Verification
Partitions. Let us first sort the set of objects retained after the
k-bound filtering in ascending order of their shortest disesrfrom
the query poing. For convenience, let us assume hatoz, . . . , oy
are sorted in this order. Figure 7(a) illustrates threeadist pdfs
with respect tay, wherek = 2. As illustrated, the range between
e1 (i.e., the closest distance of all objects frgijnand the pointfs
obtained fromk-bound filtering (i.e.es) is subdivided into non-
overlapping fragments callgghrtitions We call each fragmen;,
whereP; is embraced by two end-points, namely,ande; 1, cir-
cled in the figure. In this example, there are four partitjiong.,
P1 = [61,62], PQ = [62,63].

The partitions can have variable sizes. Thus, the systerfldas
ibility in deciding the number of partitions to be used. Therm
partitions are defined, the more accurate will be the lower g
per verification, with the need of more overhead for storing t
partition information and prolonging the verification pess. We
found that the verification performs well when the boundaoné
the objects’ distance pdfs are used as end-points.

The number above each range indicates the probability thaha
certain object has that range of distance from the querytpbior
each partitionP; of an objecto;, we evaluate the distance cdf of
P;’s upper end-point (i.e.D;(e;+1)). In general, the distance cdf
of P;’s lower end-point is the same as that Bf—1's upper end
point. For partitionP;, its lower end-point has a distance pdf of
zero. Figure 7(b) illustrates the distance cdf values etedfrom
(a). For example, fory in P3, D1(e4) = 0.8. We store the values
of D;(e;j+1) in a two-dimensional array of dimensiof§| x M,

where M is the number of partitions, so that they can be accessed

in O(1) times. The time for sorting and initializing this array is
O(|C|log |C| + M|C|). Table 2 lists the symbols used by verifi-
cation.

Verification Process. We now demonstrate how partitions can be
used to efficiently derive lower and upper bounds of dashbset’s
qualification probability (i.e.p(S)). Let [p(S).l,p(S).u] be the
lower and upper bounds @fS). Let X be the data structure that
stores the partition information, ard@l be the set ok-subsets gen-
erated from the PCS algorithm. Given these inputs, the wgerifi
tion algorithm (Algorithm 4 judges whetherkasubsetS should be
considered as a query answer. It produces an answer @at., k-
subsets that satisfy the query) and a refinemerif §ee., k-subsets
that need to be further investigated).

In Algorithm 4, Step 1 initializes the two setd,andU, to empty
sets. For every-subsetS € @, Step 3 uses subroutiégB to find
the upper bound of’s qualification probability (i.e.p(S).u). If

input : Partition info. X, set@ of k-subsets
output: setA of answers, sdl/ of k-subsets to be refined

A=, U <0
foreach S € @ do
if UB(X,S) > T then
if LB (X,S)> T then
| insertSinto A;

else
L insertS into U;

~No b~ WN PP

8 return A, U
Algorithm 4 : Verification.

p(S).u is smaller tharil’, thenS cannot satisfy the query and is
pruned. Next, subroutineB is invoked to findp(.S).I. If this value

is not less tharT’, then S is inserted to the answer set (Steps 4,5).
Otherwise,S is put into the set/ for further processing (Step 7).
Step 8 returns the setsandU.

It is worth mention that in Step 3, we puB beforeLB. This is
because in our experiments, a large numbek-glibsets can be
pruned byUB (in Step 3). By testing thé-subsets withUB first,
we avoid applying thé.B test to thek-subsets, which have to be
pruned anyway. We will revisit this issue in Section 6.

We now explain the design dfB and UB, which returnsp(S).l
andp(S).u. Supposen(S) is the maximum distance between all
objects inS andg, i.e.,max({r:|o; € S}). Lety;(m(S)) be the
probability thatm (.S) is within the partitionP; = [e;, e;41]. Let
p;(S) be the qualification probability of(.S), given thatm(S)
liesinP;. Let[p;(S).l, p; (S).u] be the lower and upper bounds of
p;(S). If there areM partitions, we have:

M

Z,Zp] )Ly (m(S)) @)
U—Zpg - y;(m(S)) @)

Moreover,
) = [ Diej+1) = [ Diles) 4)

0,€S 0,€S

This is because the terf{, _¢ Di(ej+1) is the probability that
all objects inS have dlstance frorq not larger than the end-point
ej+1. By subtracting[ [, . 5 Di(e;) from it, we obtain the proba-
bility that at least one object is located insile = [e;, e;+1]. This
is also the chance that the maximum distance of all objects in
(i.e.,m(S)) is within P;, as shown in Equation 4. The following
describes the formulas fer; (S).l andp;(.S).u.

LEMMA 5.1. Given thatm(S) € P;, the lower and upper
bounds of qualification probabilities @fsubset,S, are:

)-0> T (1= Dilejr) )
0;€C—-S

S)u < H (6)
0;€C—-S
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Figure 8: Correctness proofs forp;(S).l and p;(S).u.

PROOF Equation 5: Since the maximum distance of all objects
in S from q is less thare; 1, S must be the answer if all other
objects inC' — S have distances more than,,. For example,
Figure 8 shows thaf, a 5-subset, has a maximum distancg §))
not more thare;4:. If the remaining objects({ — S) are on the
right of e;+1 (circled), thenS must constitute a query answer. The
probability that this event happend[ig, ., _s(1—Di(e;+1)) (the
right side of Equation 5), which is also the lower bounghofS).

Equation 6: If any object inC' — S has distance frong shorter
thane;, thenS could not be the set df closest neighbors af. In
Figure 8, for example, since an object (colored black) ishenléft

of e;, it is certainly closer tg; then at least one object ifl. So,

S cannot be a query answer for= 5. The event that all objects

in C' — S have distance from more thare; is thus a precondition
for S to be the query answer. The probability that this event hap-
pens,i.e.]], co_s(1 — Di(e;)) (the right side of Equation 6), is
therefore the upper bound pf(S). O

With Equation 4 and Lemma 5.1, the lower and upper bounds of
p(S) (i.e., Equations 2 and 3) can be estimated. If the partitaia d
structure presented earlier is used, retrievihge; ) (given: andy)
needsO(1) times. Evaluating Equation 4 thus needék) times.
Computation of Equations 5 and 6 both requi@§C/|) times.
Thus theLB and UB functions have a complexity ab(kM|C1).

The total complexity of the verification algorithmd kM |C||Q))).

5.2 Incremental Refinement

After verification, objects stored in the g6t(Step 3 of Figure 4)
require further processing, whose exact qualification abdties
need to be computed. This can be expensive, since numarical i
tegration may be needed (see Equation 1). Interestinglycame
speed up this process with the information obtained duréerdiva-
tion. This main idea is to treat the probability of an objexasum

of qualification probabilities inside partitions. By usittge bound
information of probabilities in each partition, the ansygeobabil-
ities can be gradually computed.

Specifically, observe that the probability bounds of eagubset
S in each partitionp; (i.e., [p;(S)., p;(S).u]) have been obtained
during verification. For eacR;, once we get the value pf (S) (by
Equation 1), we can collapse; (S).., p; (S).u] intop;(S), update
the probability bound op(S) (i.e., [p(S).l, p(S).ul]), and test this
new bound against the threshdld This process is repeated for the
next partition until we can decide wheth&rshould be included
in the answer. As shown in our experiments, “incrementaheefi
ment” is usually faster than computing probabilities dilecince
performing numerical integration on a partition is fasteart on
[0, fx], which has a larger area of integration.

6. RESULTS

We have performed extensive experiments on a real data egt to
amine the effectiveness of our solution. We first describesttper-
imental setup in Section 6.1. Then we present the resultsdtich
6.2.

6.1 Experimental Setup

We use thd_ong Beachdatasetwhich includes 53,144 rectangles,
distributed in the two-dimension spaceldfK x 10K units. Each
rectangle is treated as an uncertainty region, with a umifodf as
the default. We also perform experiments on Gaussian ppfdgse
nted as a histogram). For ea€hk-PNN query, the default values
of probability thresholdT) andk are0.1 and6 respectively. The
guery pointis randomly chosen from the 2D space. Each datéa po

Available at http://www.census.gov/geo/wwwitiger/.
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is an average of results for 50 runs. Under these settin@ska
PNN query produces twk-subsets as answers on average.

The experiments, written in Java, are executed on a PC with-an
tel 2.66GHz CPU and 2GB of main memory. We have also imple-
mented the:-bound filtering with the R-tree library in the Spatial
Index Library?.

6.2 Results

1. k-bound Filtering. In the first experiment, we examine the
effectiveness of thé-bound filtering in pruning away unqualified
objects. Fig. 9 illustrates the number of loaded data objest
turned byk-bound filtering with anR-tree. As we can see, when
k varies from one to nine, the size of the candidate objectrset i
creases smoothly. This is because the size oftheund increases
with k. Consequently, th&-bound has overlap with more objects,
and so more candidates need to be investigated. Anothervabse
tion is that the number of candidate objects is small. In, fees
average fraction of the total database size to be examinke$ss
than0.04%. Thus, the pruning power df-bound filtering is quite
impressive.

On the other hand, although only a small fraction of objects a
returned byk-bound filtering, the number df-subsets generated
by the candidate object set can still be very large.kAt 9, for
instance, 22 objects are left. Out of these objects, a tdtalZd
(around 375K)-subsets need to be examined. This renders a huge
computational effort. To alleviate this problem, we ndedubset
Generation (with PCS)Yerification, andRefinement techniques.
Let us call these techniques collectively as @¢R method, and
examine its effectiveness.

2. Performance of GVR.Here we compare the performance of

2http://u-foria.org/marioh/spatialindex/index.html

6 7 8 9

ng (# k-Subsets). Figure 14: Seed Pruning (Response Time).

GVR with that of Basic evaluation (described in Section 3.2).
We assume that-bound filtering has been applied first for both
methods. As shown in Figure 10, the time requiredBagicrises
sharply withk, since the increase ihmakes Equation 1 more ex-
pensive to compute. On the other hand, the query responsge tim
of GVR is an order of magnitude less thBasic For example,
whenk = 5, GVR spends only 1.6% of the time required Bg-

sic. We can thus see that GVR is important for improving the query
performance. Next, let us investigate individual methddSdR.

3. k-subset Generation. In this experiment, we study the per-
formance of the PCS algorithm in generatirgubsets. Figure 11
shows the number df-subsets produced by different techniques, in
log scale. Compared with the “brute-force” method (i.eyraerat-

ing all possiblek-subsets from the candidate objects), PCS consis-
tently generates led¢ssubsets under a wide rangefalues. The
savings are significant; &= 9, for example, the improvement of
PCS over the brute-force method¥8% (for T = 0.05) and99%

(for T = 0.5). Figure 12 shows that whéhiincreases, the number
of candidaté:-subsets decreases sharply. Thus, the effectiveness of
PCS improves with a higher value &t It also shows that PCS can
exploit the probability threshold to provide better penfiance.

To further enhance PCS, we have proposeed pruning(in Sec-
tion 4.3). As shown in Figure 13, this technique reduces tima-n
ber of k-subsets produced over a wide range:of-or example, at

k =9, the improvement is abo&0%. Figure 14 shows the corre-
sponding effect on query response time, which addressedraysa
of 69% atk = 9. Thus, seed pruning improves the performance of
PCS significantly.

In view of the potentially large number éfsubsets generated dur-
ing and after the execution of the PCS algorithm, we havegdesi
an effective compression as discussed in Section 4.3. & igjr
compares the storage cost with and without using this cossje
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method (in log scale). We observe that under a wide rangelof va
ues ofk, after compression, we only need one-third of the storage
that is used to store the rawsubsets. Therefore, our compression
method can greatly reduce the amount of storage requireattod
k-subsets for further processing.

4. \ferification and Refinement. Next, we investigate the advan-
tage of verification and refinement over direct computatiaquali-
fication probabilities. Figure 16 shows that the use of #idihique
yields significant improvement over different valueskofFor ex-
ample, atk = 6, verification and refinement reduces the query
response time by about 90%.

We further examine the effectiveness of lower- and uppento
verification. The lower (upper) bound verification methoaipts

to determine whether/asubset should be accepted (rejected). Fig-
ure 17 shows that the numberiekubsets classified by UB is much
larger than that classified by LB. The reason is that in thast
we have tested, manysubsets have small qualification probabili-
ties. Thus, they are more likely to be rejected through wboeind
verification. Due to this reason, we have also arrangetlBisub-
routine to be executed befoteB in the verification algorithm, as
shown in Algorithm 4.

5. Time Analysis. To get a clearer picture about the performance
of each part of our solution, we measure the time coststwdund
filtering (shown as “Index” in Figures 18 and 1%}subset gen-
eration (with PCS), verification, as well as refinement. Fégul8
show the result under different valuesiofin general, most of the
time is spent on refinement. This is hardly surprising, bseae-
finement, which performs numerical integration on Equafipis
an expensive process. However, this is already better thang d
numerical integration alone (c.f. Figure 16). The price &y [or
this time drop is to verify thé-subsets before their probabilities
are actually evaluated. Although the time spent on verifoadlso

Figure 19: Time Analysis (with k=6).
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increases wittk, the time spent is still less than pure numerical in-
tegration (c.f. Figure 16). We also notice that thdiound filtering
and PCS require the least amount of the time. These two stighs a
little overhead to the overall query performance. Howetleejr
gain, as reflected by Figures 9 and 11, is significant.

Figure. 19 shows the time breakdown of the components fterdif
ent values off". Again, the time costs required ybound filtering
and PCS are the least. For all the methods, their performiamce
proves with an increase @. This shows that our methods can
effectively exploit the query probability threshold.

6. Gaussian Distribution. In the final experiment, we use a Gaus-
sian distribution as the uncertainty pdf for the datasetr dach
object, the uncertainty pdf has a mean equal to the centbeaftt-
certainty region, and a variance set to be the square ofiatrees

the edge length, in both andy dimensions. Each uncertainty pdf
is represented by0 x 10 = 100 histogram bars, and the probabil-
ity of each bar is the integration of the pdf over the area /e
Figure 20 illustrates the result of the GVR method for vasival-
ues ofT". We observe that GVR shows a similar trend as that of the
uniform pdf (c.f. Figure 10). More time is spent on Gaussidf) p
because more histograms are used to model the pdf, whicle-subs
quently increases the time for verification and refinemerd.have
also performed other experiments for Gaussian pdf, andafsey
reflect similar trends. We thus omit them in the paper. Froes¢h
experiments, we can see that our solution is robust withedp
different types of uncertainty pdfs.

7. CONCLUSIONS

Due to the popular usage of uncertain data in many real appli-
cations, uncertainty management has become an importaict to
in the database community. We studied a useful query, namely
the probability threshold k-NN QueryTtk-PNN) for uncertain
databases. Different from the exact database, evaluatihg®NN



requires probability information, and performs expensivener-
ical integration. Thus, we proposed various pruning temhes
with consideration of both distance and probability comistis. As
shown by our experimental results, with thdound filtering tech-

nique, a lot of unqualified objects can be pruned. The number o

queries on streams with guaranteed error/performance
bounds,” inProc. VLDB 2004.

[16] G. Beskales, M. Soliman, and I. llyas, “Efficient seafch
the top-k probable nearest neighbors in uncertain datafjase
in VLDB, 2008.

k-subsets can be significantly reduced by the PCS algorithe. W [17] N. Dalvi and D. Suciu, “Efficient query evaluation on

further demonstrated the efficient computation of lower apger
bounds of probabilities with the aid of partition infornaii We

will study how these techniques can be extended to suppoet ot

queries, e.g., reverse-neighbor and skyline queries.
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