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Evaluating Quality of Compressed 
Medical Images: SNR, Subjective Rating, 
and Diagnostic Accuracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PAMELA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. COSMAN, MEMBER, IEEE, ROBERT M. GRAY, FELLOW, IEEE, 

AND RICHARD A. OLSHEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Invited Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Compressing a digital image can facilitate its transmission, 
storage, and processing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs radiology departments become 
increasingly digital, the quantities of their imaging data are 
forcing consideration of compression in picture archiving and 
communication systems (PACS) and evolving teleradiology 
systems. Significant compression is achievable only by lossy 
algorithms, which do not permit the exact recovery of the original 
image. This loss of information renders compression and other 
image processing algorithms controversial because of the potential 
loss of quality and consequent problems regarding liability, but the 
technology must be considered because the alternative is delay, 
damage, and loss in the communication and recall of the images. 
How does one decide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif an image is good enough for a specific 
application, such as diagnosis, recall, archival, or educational 
use? We describe three approaches to the measurement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof medical 
image quality: signal-to-noise ratio (SNR), subjective rating, and 
diagnostic accuracy. We compare and contrast these measures 
in a particular application, consider in some depth recently 
developed methods for determining diagnostic accuracy of lossy 
compressed medical images, and examine how good the easily 
obtainable distortion measures like SNR are at predicting the 
more expensive subjective and diagnostic ratings. The examples 
are of medical images compressed using predictive pruned 
tree-structured vector quantization, but the methods can be used 
for any digital image processing that produces images different 
from the original for evaluation. 

I. COMPRESSION AND QUALITY MEASUREMENT 

The overall goal of compression is to represent an image 
with the smallest possible number of bits, thereby speeding 
transmission and minimizing storage requirements. Alter- 
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natively, the goal is to achieve the best possible fidelity 
for an available communcation or storage bit rate capacity. 
A compression system typically consists of one or more 
of the following operations, which may be combined with 
each other or with additional signal processing: 

Sampling: The intensity of  an analog image is mea- 
sured on a regular grid of points called picture elements 
or pixels. 
Signal decomposition: The image is decomposed into 
several images for separate processing, typically by 
linear transformation by a Fourier or discrete cosine 
transform or by filtering with a subband or wavelet 
filter bank. The goal is to concentrate energy in a 
few coefficients, to reduce correlation, or to provide 
a useful data structure. 
Quantization: Analog or high-rate digital pixels are 
converted into a relatively small number of bits. This 
operation is nonlinear and noninvertible; it is “lossy.” 
The conversion can operate on individual pixels (scalar 
quantization) or groups of pixels (vector quantization). 
Quantization can include throwing away some of the 
components of the signal decomposition step. 
Lossfess compression: Further compression is achieved 
by an invertible (lossless, entropy) code such as Huff- 
man, Lempel-Ziv, or arithmetic code. The idea here is 
to assign codewords with a few bits to likely symbols 
and codewords with more bits to unlikely symbols so 
that the average number of bits is minimized. 

Decompression reverses the above process to the extent 
possible. Shannon’s data transmission theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11-43] and 
experience argue that a good compression system can be de- 
signed by focusing separately on each individual operation, 
although simpler or better implementations may be obtained 
by combining some operations. The code rate or bit rate of 
the compression system is defined as the average number of 
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bits produced per image pixel. If the original image has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 

bits per pixel (bpp) and the compression algorithm has rate 
R bpp, then the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompression ratio is 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: R. Compression 
ratios must always be taken with a grain of salt, however, as 
they are strongly dependent on the image type, the original 
bit rate, and the sampling density. 

Lossless coding techniques are well understood, readily 
available [4]-[6], and typically yield compression ratios of 
2: 1 to 3: 1 on still-frame medical images. Although scientists 
and physicians prefer to work with uncorrupted data, the 
modest compression offered by lossless coding is often 
inadequate for storage or communication facilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALossy 
coding, though it does not permit perfect reconstruction 
of the original image, can provide excellent quality at 
a fraction of the original bit rate [7], [8]. Lossy cod- 
ing is unavoidable if the original image is analog, as 
is ordinary X-ray film. An advantage of a well-designed 
lossy compression system is that it works to minimize 
information loss or image distortion for a given allotted 
storage space or communication rate. When bits are scarce, 
good compression schemes devote the available bits to 
the information of greatest importance. As a result, lossy 
compression schemes are capable of enhancing specific 
structures of importance to the viewer. 

Utility depends critically on the quality of the processed 
images, but quality is itself an attribute with many possible 
definitions and interpretations, depending on the use to 
which the images will be put. A "good" processed image 
might be one that is perceptually pleasing or useful in a 
specific application. No single approach to quality mea- 
surement has gained universal acceptance, but three general 
approaches have come to dominate: 

Computable objective distortion measures such as 
mean squared error or signal-to-noise ratio (SNR), 

subjective quality as measured by psychophysical tests 
or questionnaires with numerical ratings, and 
simulation and statistical analysis of a specific applica- 
tion of the images, e.g., diagnostic accuracy in medical 
images measured by clinical simulation and statistical 
analysis. 

The intent of this paper is to compare and contrast 
these three types of distortion measures in a particular 
application, lossy compression of medical images. The 
application is a controversial one; the concern is often 
expressed that radiologists will never accept lossy com- 
pressed images because of liability issues or because of 
fear of impaired quality. Many in the medical image 
compression community argue that lossy compression is 
both necessary and helpful in the long run [9]-[16]. It is 
necessary in order to preserve rapid access for follow-up 
and recall studies because the overwhelming quantity of 
medical image data requires the remote storage of hard- 
copy films, which frequently results in loss or damage and 
always requires significant time to locate and transfer. It 
is helpful because it permits efficient storage and rapid 
communication of images among hospitals, clinics, and 
radiologists' offices and homes. Image communication can 
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be within a local-area network or to remote locations using 
satellite, ISDN, or ordinary phone links. The issue is not so 
much whether lossy compression should be used, but rather 
how many bits are needed to ensure sufficient accuracy for a 
particular use. To answer this question one needs acceptable 
quantitative measures of image quality and protocols for 
careful studies of the tradeoffs of quality and bit rate in 
specific applications. 

11. IMAGE DISTORTION AND QUALITY 

A. Average Distortion and SNR 

Suppose that one has a system in which an input pixel 
block or vector X = (XO, XI . . . , Xk-I) is reproduced 
as X = ( X o ,  X I ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k - 1 )  and that one has a measure 
d(X,X)  of distortion or cost resulting when X is repro- 
duced as X .  A natural measure of the quality or fidelity 
(actually the lack of quality or fidelity) is then the average 
distortion D = E[d(X,X)] ,  where the average might be 
with respect to a probability model for the images or, 
more commonly, a sample or time-average distortion. It 
is common to normalize the distortion in some fashion 
to produce a dimensionless quantity DIDO, to form the 
inverse Do/D as a measure of quality rather than distortion, 
and to describe the result in decibels. One way to do this is 
to normalize by the average distortion resulting by the best 
possible 0 bit rate reproduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADO = min,E[D(X,y)]. 
With the usual squared error measure of distortion 

k - 1  

d ( X , Y )  = I(X - Y112 = IXi - y z l 2  (1) 

i=O 

Do = E[llX - E(X)l12] = 05 (2) 

the variance of the input vector, and we have the signal- 
to-noise ratio (SNR) 

A common alternative normalization when the input is 
itself an r-bit discrete variable is to replace the variance or 
energy by the maximum input symbol energy (2' - l)2. 
This is called the peak signal-to-noise ratio (PSNR). For 
the common case of 8-bpp input images this yields 

(4) PSNR = 10 10g,,255~/D. 

A key attribute of useful distortion measures is ease of 
computation, but other properties are also important. We 
would like a distortion measure that reflects perceptual 
quality or usefulness in a particular application. No easily 
computable distortion measure such as squared error is 
generally agreed to have this property. Common faults of 
squared error are that a slight spatial shift of an image 
causes a large numerical distortion but no visual distortion 
and, conversely, a small average distortion can result in a 
damaging visual artifact if all the error is concentrated in a 
small important region. It is because of such shortcomings 
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that many other quality measures have been studied. The pi- 
oneering work of Budrikus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171, Stockham [ 181, and Man- 
nos and Sakrison [ 191 was aimed at developing computable 
distortion measures that emphasized perceptually important 
attributes of an image by incorporating knowledge of hu- 
man vision. Their work and subsequent work has provided a 
bewildering variety of candidate measures of image quality 
or distortion [20]-[44], [56]-[62]. Examples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare general 1, 
norms such as the absolute error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11). the cube root of the 
sum of the cubed errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Es), and maximum error (lm), as 
well as variations on such error measures which incorporate 
linear weighting. A popular form is the linearly weighted 
quadratic distortion measures that attempt to incorporate 
properties of the human visual system such as sensitivity to 
edges, insensitivity to textures, and other masking effects. 
The image and the original can be transformed prior to 
forming the distortion, providing a wide family of spectral 
distortions, which can also incorporate linear weighting 
in the transform domain to reflect perceptual importance. 
Alternatively, one can capture the perceptual aspects by 
linearly filtering the original and reproduction images prior 
to forming a distortion, which is equivalent to weighting 
the distortion in the transform domain. A simple variation 
of SNR that has proved popular in the speech and audio 
field is the segmental SNR which is an average of local 
SNR’s on a log scale [45], [46], effectively replacing the 
arithmetic average of distortion by a geometric average. 

In addition to easing computation and reflecting per- 
ceptual quality, a third desirable property of a distortion 
measure is tractability in analysis. The popularity of squared 
error is partly owed to the wealth of theory and numerical 
methods available for the analysis and synthesis of systems 
which are optimal in the sense of minimizing mean squared 
error. One might design a system to minimize mean squared 
error because it is a straightforward optimization but then 
use a different, more complicated, distortion measure to 
evaluate quality because it does better at predicting subjec- 
tive quality. Ideally, one would like to have a subjectively 
meaningful distortion measure that could be incorporated 
into the system design. There are techniques for incorporat- 
ing subjective criteria into compression system design, but 
these tend to be somewhat indirect. For example, one can 
transform the image and assign bits to transform coefficients 
according to their perceptual importance or use postfiltering 
to emphasize important subbands before compression [ 181, 

1471, 1481. 

B.  Subjective Ratings 

Subjective quality of a reconstructed image can be judged 
in many ways. A suitably randomized set of images can 
be presented to experts or typical users who rate them, 
often on a scale of 1 to 5. Subsequent statistical analysis 
can then highlight averages, variability, and other trends 
in the data. Such formalized subjective testing is common 
in speech and audio compression systems as in the Mean 
Opinion Score (MOS) and the descriptive rating called 
the diagnostic acceptability measure (DAM) [46], [491, 

[50]. These rating systems are common in speech research, 

and some effort has been devoted to developing a rating 
system for entertainment video [51], [52], but there has 
been no standardization for rating still images. Consid- 
erable variation exists in the allowed range of numerical 
responses, in the decision of whether or not to provide a 
corresponding descriptive phrase for each number, in the 
choice of those descriptive phrases, and in the attempt to 
have the subjective rating reflect image utility for a specific 
application. Some ratings were for paired comparisons in 
which a viewer assigns a number to the degree of similarity 
or dissimilarity between two images. 

A useful attribute of an objective quality measure such 
as SNR would be the ability to predict subjective quality. 
This is particularly important in applications such as digital 
audio and entertainment video where subjective quality is of 
paramount importance. For medical images, it may be more 
important that a computable objective measure be able to 
predict diagnostic accuracy rather than subjective quality. 
Many methods have been considered for quantifying the 
degree of correlation between two such quality measures 
or the ability of one to predict another for audio, images, 
and video [26], [46], [53]. Among common methods are 
to plot mean values of SNR against mean values of the 
corresponding subjective quality and then fit a curve to 
the resulting points. Many curves have been considered, 
including polynomial splines, quadratics, and exponentials. 
The residual sum of errors then provides an indication of the 
goodness of the fit. Another popular method is to measure 
the correlation coefficient between the fitted and actual data 
points. 

A potential pitfall in relating objective distortion mea- 
sures to subjective quality is the choice of image distortions 
used in the tests. Some of the literature on the subject has 
considered signal-independent distortions such as additive 
noise and blurring, yet it has been implied that the results 
were relevant for strongly signal-dependent distortions such 
as quantization error. Experiments should imitate closely 
the actual distortions to be encountered. 

C.  Diagnostic Accuracy 

The most common means of measuring diagnostic accu- 
racy for computer-processed medical images is based on 
receiver operating characteristic (ROC) analysis, which has 
its origins in signal detection theory. A filtered version of 
signal plus Gaussian noise is sampled and compared to a 
threshold. If the sample is greater than the threshold, the 
signal is declared to be there; otherwise, it is declared 
absent. As the threshold is varied in one direction, the 
probability of erroneously declaring a signal absent when 
it is there goes down, but the probability of erroneously 
declaring a signal there when it is not (a false alarm) 
goes up. An ROC curve plots the variation of these two 
quantities or, equivalently, of the tradeoffs between true 
positive rate (sensitivity, the complement of the probability 
of Type I error) and false positive rate (the false alarm 
rate, the complement of specificity). A variety of summary 
statistics such as the area under the ROC curve can be 
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computed and interpreted to compare the quality of different 
detection techniques. 

Applications of ROC analysis to other fields require the 
creation of some form of threshold whose variation allows a 
similar tradeoff. For radiological applications, this involves 
asking radiologists to provide a subjective confidence rating 
of their diagnoses (typically on a scale of 1-5) which is then 
used as if it were a threshold to adjust for detection accuracy 
[54], [55]. Radiologists can be trained to use the rating scale 
and the results can be combined with assumptions on the 
nature of the data to produce summary statistics reflecting 
the diagnostic accuracy [91-[ 141. 

Although by far the dominant technique for quantifying 
diagnostic accuracy in radiology, ROC analysis possesses 
several shortcomings for this application. By and large, 
the necessity for the radiologists to assign specific values 
to their confidence departs from ordinary clinical prac- 
tice. Further, as image data are non-Gaussian, methods 
that rely on Gaussian assumptions are suspect. Modem 
computer-intensive statistical sample reuse techniques can 
help get around the failures of Gaussian assumptions. 
Many clinical detection tasks are nonbinary, in which 
case specificity does not make sense because it has no 
natural or sensible denominator, as it is not possible to 
say how many abnormalities are absent. This can be done 
for a truly binary diagnostic task such as detection of a 
pneumothorax, for if the image is normal then exactly one 
abnormality is absent. Previous studies were able to use 
ROC analysis by focusing on detection tasks which were 
either truly binary or could be rendered binary. In these 
studies, the specificity is defined for the entire image set as 
the conditional average of these binary-valued specificities 
that apply for individual images. Genuinely nonbinary 
detection tasks (locating any and all abnormalities that 
are present) are not amenable to ordinary ROC analysis 
techniques. Extensions to ROC to permit consideration of 
multiple abnormalities have been developed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[63], but as 
presented thus far, these require the use of confidence 
ratings as well as Gaussian or Poisson assumptions on the 
data. Finally, ROC analysis has no natural extension to the 
evaluation of measurement accuracy in compressed medical 
images. By means of specific examples we describe an 
approach that closely simulates ordinary clinical practice, 
applies to nonbinary and non-Gaussian data, and extends 
naturally to measurement data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111. COMPRESSION ALGORITHMS 

Almost all of the previously referenced studies of lossy 
compression of medical images performed the compression 
using variations on the standard discrete cosine transform 
(DCT) coding algorithm combined with scalar quantization 
and lossless coding. (For treatments of DCT coding, see 
the tutorial book by Rabbani and Jones [81 or [71, [451, 
[64]-[68].) These are variations of the international stan- 
dard ISOICCITT Joint Photographic Experts Group (JPEG) 
compression algorithm [69]. Some groups used full frame 
transforms and differing algorithms for bit allocation and 
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noiseless coding. These algorithms are well understood 
and have been tuned to provide good performance in 
many applications. Alternative algorithms incorporating 
vector quantization (VQ) can provide advantages in some 
applications in terms of simplicity, speed, performance, 
natural progressive reconstruction, and ease of combining 
with additional signal processing such as enhancement and 
classification. Furthermore, VQ can be used in combination 
with traditional techniques by replacing the scalar quan- 
tizers often used in transform and subband techniques by 
vector quantizers. We emphasize that the clinical simula- 
tion protocols and statistical methods considered here are 
applicable to any compression algorithm. 

Vector quantization is the conversion of vectors (typically 
a block of pixel intensity values in the original image 
such as a 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 square) into binary vectors that tell the 
decompressor which reproduction template (or codeword) 
from a limited set called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcodebook should be used to 
best approximate the original vector. The compression 
or encoding is accomplished by a nearest neighbor or 
minimum distortion matching of the input vector with the 
available codewords, where the distortion or cost function 
can be a simple squared error or a more complicated 
measure which weights perceptual importance. Basic VQ 
decompression is simply table lookup, yielding extremely 
fast image reconstruction. To improve efficiency and per- 
formance, the encoder is usually constrained to perform its 
selection in a computationally efficient way and the decoder 
is allowed to do some simple linear computation. Surveys 
of the general approach and many of its variations may be 
found in [68] and in several tutorial articles [70]-[73] and 
in the IEEE Reprint Collection [74]. 

Stated in this generality, VQ includes the common trans- 
form coding techniques as a special case. More commonly, 
however, the name is associated with a particular family 
of design techniques based on information-theoretic and 
statistical techniques such as clustering and classification 
trees. The codebooks or collections of templates are often 
designed using statistical clustering techniques which at- 
tempt to find a small number of representatives for a large 
data set that do a good job of representing the entire set 
in the sense of minimizing the average distortion between 
the original and the representative. A common example is 
the generalized Lloyd algorithm (also called the Forgey or 
k-means algorithm), which has a variety of forms. (See, 
e.g., [681, WI.) 

In order to make the codebook search low-complexity, 
techniques from the design of statistical classification trees 
can be extended to design codebooks with a tree structure, 
thus codebooks that can be searched by a sequence of sim- 
ple comparisons (hyperplane or correlation tests) instead of 
a large number of distortion computations. The complexity 
of tree-structured codes grows linearly in bit rate instead 
of exponentially, as is the case with unstructured codes. 
This approach combines ideas from the classification and 
regression tree (CARTTM) design technique of Breiman, 
Friedman, Olshen, and Stone [75] with those of Clustering 
to provide a class of compression codes called pruned 
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tree-structured zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVQ (PTSVQ) with several nice properties. 
FTSVQ generally yields lower distortion than fixed-rate 
full search VQ for a given average rate, has a simple 
encoder and a simple design algorithm, has a natural 
successive approximation (progressive) property, is well 
matched to variable-rate environments such as storage or 
packet communications, and can have its tree tailored by an 
input-dependent importance weighting by using weighted 
distortion measures. This latter attribute permits the op- 
tional incorporation of enhancement or highlighting into 
compression by using distortion measures that assign in- 
creased importance to specified features, where the features 
can be automatically classified or marked by a human expert 
in a learning data set. Such enhancement can force the 
compression algorithm to devote its bits and quality to 
features of primary importance and can highlight regions of 
an image that the computer finds suspicious because they 
use codewords that had been usually used for pathologies 
during the codebook design stage. F’TSVQ can be improved 
by incorporating prediction. This technique first performs 
a simple linear prediction of the current pixel block given 
previously coded blocks, subtracts the prediction to form a 
residual error vector, and then applies a tree-structured VQ 

to the residual. 
VQ alone provides a compression technique for sampled 

images, but it can also be used as the quantization step in 
a general compression system by combining it with signal 
decomposition techniques such as transforms or subband 
or wavelet filter banks and with lossless coding. Such 
cascades can provide better performance at the cost of 
added complexity. 

IV. STUDY DESIGN 

We now tum to compressed CT and MR chest scans 
as specific examples for demonstrating the three quality 
measures. Two CT image types were considered: medi- 
astinal and lung images for diagnoses of lymphadenopathy 
and lung nodules, respectively. Abnormally enlarged lymph 
nodes (adenopathy) in the mediastinum (the central portion 
of the chest containing the heart and major blood vessels), 
can be caused by primary or metastatic cancer, tuberculosis, 
and noninfectious inflammatory diseases. Radiologists can 
usually locate lymph nodes in a CT chest scan. The 
detection task is therefore to determine which of the located 
nodes are enlarged. Lung nodules can be caused by fungal 
and bacterial infections, and by malignancy, primary or 
metastatic. The latter can cause multiple nodules in one 
or both lungs. Nodules can be undetectably small or large 
enough to fill an entire segment of the lung. In contrast 
to the mediastinal task, both the presence and size of 
lung nodules must be ascertained, although this study 
has not yet considered size. This was the focus of the 
MR study, in which blood vessel sizes were measured. 
Such measurements are useful for detecting aneurysms and 
assessing cardiovascular physiology. 

Each study (CT lymph nodes, CT lung nodules, MR 
blood vessels) used predictive F‘TSVQ with the prediction 

Fig. 1. Original MR chest scan at 9 bpp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-~ 

Fig. 2. MR chest scan compressed to 0.56 bpp. 

coefficients and residual quantizers designed on training 
sets of representative images. The three training sets con- 
sisted, respectively, of 20 CT mediastinum images, 20 CT 
lung images, and 20 MR chest scans. All sets included 
images containing pathology and normal images. For each 
study, 30 test images were chosen. Patient studies repre- 
sented in the training sets were not used as test images. 
The SNR, subjective quality, and diagnostic results all are 
based on test and not training images. Figure 1 shows an 
original 9-bpp MR chest image. Figure 2 shows that image 
compressed to 0.56 bpp. 

The CT studies used 2 x 2 pixel blocks. The 12- 
bpp original test images were encoded at 6 compression 
levels: 0.57, 1.18, 1.33, 1.79, 2.19, and 2.63 bpp. The 
compressed and original images were viewed by three 
radiologists. For each of the 30 images in a study, each 
radiologist independently viewed the original and 5 of the 
6 compressed levels, so a total of 360 images were seen 
by each judge. Images were seen on hardcopy film on a 
lightbox, with a standard “windows and levels” adjustment 
to the dynamic range applied to each image before filming. 
The viewings were divided into three sessions, which were 
at least two weeks apart. The judges marked abnormalities 
directly on the hardcopy films with a grease pencil. No 
constraints were placed on the viewing time, the viewing 
distance, or the lighting conditions. As the task did not 
differ from those encountered in daily work, the judges 
were given no special training for this experiment. They 
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were, however, constrained to view the 10 pages in the 
predetermined order. At each session, each judge saw each 
image at exactly 2 of the 7 levels of compression (7 levels 
includes the original) with at least 3 pages separating them. 
This was intended to reduce learning effects. 

The MR study used 2 x 4 pixel blocks and 5 compression 
levels: 0.36, 0.55, 0.82, 1.13, and 1.7 bpp. The test images 
were taken at a level in the chest where the four major blood 
vessels (ascending aorta, descending aorta, right pulmonary 
artery (RPA), and superior vena cava (SVC)) appeared. 
In a protocol similar to that of the CT studies, the six 
levels of each test image were presented separately to three 
radiologists. For each image, each radiologist marked the 
axis of measurement and measured each blood vessel at 
its widest diameter to the nearest millimeter using calipers. 
Aortic diameters ranged from 10 to 60 mm and the SVC 
and RPA from 15 to 40 mm. 

5 4  I - -  

- 

- 
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V. IMAGE QUALITY RESULTS 

The traditional manner for comparing the performance 
of different lossy compression systems is to plot distortion 
rate or SNR versus bit rate curves. Figure 3 shows a scatter 
plot of the rate-SNR pairs for the 24 images in the lung 
CT study that had a consensus gold standard (as discussed 
below). It includes a quadratic spline fit with a single knot at 
1.5 bpp [76]. Quadratic spline fits provide good indications 
of the overall distortion-rate performance of the code family 
on the test data. The SNR results for the CT mediastinal 
images (not shown) were very similar to those for the lung 
task. Figure 4 shows a scatter plot of the rate-SNR pairs 
for the 30 images in the MR study. The quadratic spline 
has a single knot at 1.0 bpp. 

The assessment of subjective quality attempted to relate 
subjective image quality to diagnostic utility. For the MR 
study, each radiologist was asked at the time of measuring 
the vessels to “assign a score of 1 (worst) to 5 (best) to each 
image based on its usefulness for the measurement task.” 
The CT subjective assessment was performed separately 
from the diagnostic task by three different radiologists. The 
subjective ratingbit rate pairs for the CT studies and MR 
study are plotted in Figs. 5-7. Images compressed to lower 

924 

bit rate (bpp) 

Fig. 4. SNR for MR images. 

5% 

bit rates received worse quality scores as was expected. The 
data are fit with a quadratic spline with a single knot. 

To measure diagnostic accuracy, we first needed to deter- 
mine a “gold standard” that would represent the diagnostic 
truth of each original image, and could serve as a basis of 
comparison for the diagnoses on all versions of that image. 
There are many possible choices for the gold standard: 
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Fig. 7. Subjective ratings versus bit rate for MR chest study. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsensus gold standard is determined by the con- 
sensus of the three judges on the original. 
A personal gold standard uses each judge's readings on 
an original (uncompressed) image as the gold standard 
for the readings of that same judge on the compressed 
versions of that same image. 
An independent gold standard is formed by the agree- 
ment of the members of an independent panel of 
particularly expert radiologists. 
A separate gold standard is produced by the results 
of autopsy, surgical biopsy, reading of images from a 
different imaging modality, or subsequent clinical or 
imaging studies. 

A separate standard is generally not available, as there 
may be no further procedures or studies of that patient 
made or available; for these studies, we did not have 
records of further procedures. In the CT studies we used 
both the consensus and personal gold standards; in the MR 
study we used both the independent and personal standards. 
In the cases where the initial CT readings disagreed in 
the number or location of abnormalities, the judges were 
asked separately to review their readings of that original. 
If this did not produce agreement, the judges discussed the 
image together. Six images in each CT study could not be 
assigned a consensus gold standard due to irreconcilable 
disagreement. This was a fundamental drawback of the 
consensus gold standard and subsequent studies did not 
use this method. Since the consensus was clearly more 
likely to be attained for those original images where the 
judges were in perfect agreement initially and thus where 
the original images would have perfect accuracy relative 
to that agreed gold standard, the original images have an 
advantage when compared to the others. The consensus 
gold standard for the lung determined that there were, 
respectively, 4 images with 0 nodules, 9 with 1, 4 with 
2, 5 with 3, and 2 with 4 among those images retained. 
For the mediastinum, there were 3 images with 0 abnormal 
nodes, 17 with 1, 2 with 2, and 2 with 3. The personal gold 
standard is even more strongly biased against compression. 
It defines a judge's reading on an original image to be 
perfect, and uses that reading as the basis of comparison 

for the compressed versions of that image. In the presence 
of any random noise in the process of judging, with 
compressed images performance is less good than with the 
originals. Thus the personal and consensus gold standards 
are most useful for comparing the various compressed 
levels among themselves. Comparisons of the original 
images with the compressed ones are conservative. One 
argument for the personal standard is that in some clinical 
settings a fundamental question is how the reports of a 
radiologist whose information is gathered from compressed 
images compare to what they would have been on the 
originals, the assumption being that systematic biases of 
a radiologist are well recognized and corrected for by 
the referring physicians who regularly send cases to that 
radiologist. The personal gold standard thus concentrates 
on consistency of individual judges. The independent gold 
standard has the advantage that it allows the diagnoses of 
the judges on the originals to be compared against those 
on the compressed images in an unbiased way, since in 
both cases errors will be determined by reference to the 
standard created by the independent panel. In the MR study, 
the panel was composed of two senior radiologists who 
first measured the vessels separately and then discussed 
and remeasured in those cases where there was initial 
disagreement. 

A. Detection Accuracy (CT Study) 

Once a gold standard is established, a value can be 
assigned to the sensitivity, the probability that something 
is detected given that it is present in the gold standard. 
Sensitivity makes sense for nonbinary detection tasks, and 
is a crucial statistic that quantifies results. However, a judge 
who labels abnormalities everywhere in an image could 
have perfect sensitivity. Predictive value positive (PVP), 
the chance an abnormality is actually present given that it 
is marked [77], fills the role of specificity in penalizing false 
positive reporting. A judge who is too aggressive in finding 
abnormality could have high sensitivity at the expense of 
low PVP while a judge who is too stringent about what 
defines abnormality could have a high PVP at the expense 
of low sensitivity. As is the case with the ROC parameters 
of true positives and false positives, both true positive and 
PVP will be 1 if the decision is perfect. The plots below 
show sensitivity and PVP relative to the consensus gold 
standard. 

Figures 8 and 9 display all data for lung sensitivity and 
lung PVP for all 24 images, judges, and compressed levels. 
There are 360x's: 360 = 3 judges x 24 images x 5 
compressed levels seen for each image. Figures 10 and 11 
are the corresponding figures for the mediastinum. The 0's 
mark the average of the x 's for each bit rate. The values 
of the sensitivity and PVP are simple fractions such as 1/2 
and 2/3 because there are at most a few abnormalities in 
each image. The curves are least squares quadratic spline 
fits to the data with a single knot at 1.5 bpp, together 
with the two-sided 95% confidence regions. In view of 
the highly non-Gaussian nature of the data, the confidence 
regions were obtained by a bootstrapping procedure [78], 

COSMAN ef  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ : EVALUATING QUALITY OF COMPRESSED MEDICAL IMAGES 925 

- ~ 



Fig, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
03- 

0 2 -  

0 1 -  

I 

0.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

I 
1 1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 25 3 

bit rate (bpp) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Lung sensitivity: rms = 0.177. 

0 5  15 2 s  

bit rate (bpp) 

Fig. 9. Lung PVP rms = 0.215. 

[79]. Since the sensitivity and PVP cannot exceed 1, the 
upper confidence curve was thresholded at 1. The residual 
root mean square (rms) is the square root of the residual 
mean square from an analysis of variance of the spline fits. 
Sensitivity for the lung seems to be nearly as good at low 
rates of compression as at high rates, but sensitivity for 
the mediastinum drops off at the lower bit rates, driven 
primarily by the results for one judge. PVP for the lung is 
roughly constant across the bit rates, and the same for the 
mediastinum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Behrens-Fisher t-Statistic: The comparison of sensitivity 
and PVP at different bit rates was carried out using a 
permutation distribution of a two-sample t-test that is 
sometimes called the Behrens-Fisher test [go], [til]. The 
statistic takes account of the fact that the within group 
variances are different. The test is exact and does not rely 
on Gaussian assumptions that would be patently false for 
this data set. The use of this statistic is illustrated by the 
following example. Suppose Judge 1 has judged N lung 
images at both levels A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. These images can be 
divided into 5 groups, according to whether the consensus 
gold standard for the image contained 0, 1, 2, 3, or 4 
abnormalities. Let Ni be the number of images in the ith 
group. Let A, represent the difference in sensitivities (or 
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Fig. 11. Mediastinum PVP rms = 0.245. 

PVP) for the jth image in the ith group seen at level A and 
at level B. Let Ai be the average difference: 

We define 
1 s; = - C(Aij - A,)2 

N; - 1 3 

and then the Behrens-Fisher t statistic is given by 

tBF = Ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf Sz/Ni. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i \ i i  

Our Aij are fractions with denominators not more than 
4, so are utterly non-Gaussian. Therefore, computations of 
attained significance (p values) are based on the restricted 
permutation distribution of ~ B F .  For each of the N images, 
we can permute the results from the two levels [ A -+ B 
& B + A] or not. There are 2N points possible in the 
full permutation distribution, and we calculate t g ~  for each 
one. The motivation for the permutation distribution is that 
if there were no difference between the bit rates, then in 
computing the differences Ai,, it should not,matter whether 

926 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 6, JUNE 1994 



we compute level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB or vice versa, and we 
would not expect the “real” tgF to be an extreme value 
among the 2N values. If k is the number of permuted 
tgF values that exceed the “real” one, then ( k  + l ) /zN is 
the attained one-sided significance level for the test of the 
null hypothesis that the lower bit rate performs at least as 
well as the higher one. The one-sided test of significance 
is chosen to be conservative and to argue most strongly 
against compression. 

When the judges were evaluated separately, level A (the 
lowest bit rate) was found to be significantly different at 
the 5% level against most of the other levels for two 
of the judges, for both lung and mediastinum sensitivity. 
No differences were found among levels B through G. 
There were no significant differences found between any 
pair of levels for PVP. When judges were pooled, more 
significant differences were found. Level A was generally 
inferior to the other levels for both lung and mediastinal 
sensitivity. Also levels B and C differed from level G 
for lung sensitivity (p = 0.016 for both) and levels B and 
C differed from level G for mediastinal sensitivity (p = 
0.008 and 0.016, respectively). For PVP, no differences 
were found against level A with the exception of A versus 
E and F for the lungs (p = 0.039 and 0.012, respectively), 
but B was somewhat different from C for the lungs (p 
= 0.031), and C was different from E ,  F ,  and G for the 
mediastinum (p = 0.016, 0.048, and 0.027, respectively). 

The results indicate that level A (0.56 bpp) is unaccept- 
able for diagnostic use. Since the blocking and prediction 
artifacts became quite noticeable at level A, the judges 
tended not to attempt to mark any abnormality unless they 
were quite sure it was there. This explains the initially 
surprising result that level A did well for PVP, but very 
poorly for sensitivity. Since no differences were found 
among levels D (1.8 bpp), E (2.2 bpp), F (2.64 bpp), and 
G (original images at 12 bpp), despite the biases against 
compression contained in our analysis methods, these three 
compressed levels are clearly acceptable for diagnostic use 
in our applications. The decision conceming levels B (1.18 
bpp) and C (1.34 bpp) is less clear, and would require 
further tests involving a larger number of detection tasks, 
more judges, and use of an independent gold standard that 
in principle should remove at least one of the biases against 
compression that are present in this study. 

We also compared compression levels using sensitivity 
and PVP defined relative to the personal gold standard, we 
used a Hotelling T2 statistic to compare the judges and the 
images, and we used a McNemar statistic applied to paired 
data (in which the first occurence of a given image in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

session was paired with the second occurence of that same 
image, at a different compression level, in the same session) 
to ascertain that learning effects were not significant at the 
5% level [15], [16]. 

B. Measurement Accuracy (MR Images) 

The measurement error for the MR images can be quan- 
tified in several ways, the first being percent measurement 
error, which is the difference between the gold standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1 2 3 4 5 6 7 8 9  

bit rate (bpp) 
-~ 

Fig. 12. Spline fit to percent measurement error versus bit rate. 
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Fig. 13. Spline fit to absolute percent measurement error versus 
bit rate. 

measurement and that of the judge, scaled by the gold 
standard. Though analyses of variance suggest that for 
this task judges are not the same-indeed, differences 
among them may be the largest source of variability in the 
measurements-we could argue that differences in bit rates 
are not confounded with differences in judges, and that for 
present purposes nothing essential in our comparison of bit 
rates is lost if we pool the judges. Figure 12 is a graph 
of percent error versus bit rate for the independent gold 
standard when all judges and images are pooled. The curve, 
a quadratic spline with a single knot at 1.5 bpp, is nearly 
flat. This could owe to some sort of cancellation, which 
possibility is addressed by Fig. 13, where the outcome is 
absolute percent measurement error. The displayed spline 
fit is nearly flat. The corresponding figures for the personal 
gold standards are similar. From these figures we tentatively 
conclude that for this measurement task, error does not 
seem to vary with bit rate. 

We used two statistical tests of significance on the error 
differences: a paired t test and a Wilcoxon signed rank 
test. As the data are, the conclusions are identical up to 
noise; the Gaussian assumption is close to but not exactly 
confirmed (by a plot of data quantiles against correspond- 
ing Gaussian ones, an empirical Shapiro-Wilk test). With 
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the Wilcoxon, measurement seemed significantly better in 
terms of percentage error at 1.7 bpp than at 0.82 or 1.13 bpp 
for the independent gold standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.05), though in no 
case was measurement at any of our levels of compression 
different from that on the original images. With the personal 
gold standard, images compressed all the way to 0.36 bpp 
definitely seem not as good as the originals, and, further, bit 
rates 0.36, 0.55, and 1.13 bpp seem different from 1.7 bpp. 
Results are qualitatively similar for comparisons with the t 
test. From these arguments and others, we assert confidently 
that compression with our algorithms down to 0.55 bpp is 
possible without significantly affecting the accuracy of this 
vessel measurement task [82]. 

VI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARELATIONSHIPS BETWEEN QUALITY MEASURES 

As image quality can be quantified by diagnostic ac- 
curacy, subjective ratings, or computable measures such 
as SNR, one key question concems the degree to which 
these different measures agree. Verifications of medical 
image quality by perceptual measures require the detailed, 
time-consuming, and expensive efforts of human observers, 
typically highly trained radiologists. Therefore, it is desir- 
able to find computable measures that strongly correlate 
with or predict the perceptual measures. Our work suggests 
that cross-validated fits to the data using generalized linear 
models can be used to examine the usefulness of SNR (or 
other computable measure) as a predictor for subjective 
quality (or other perceptual measure). 

In the classical linear regression model, the "predictor" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x is related to the outcome y by y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPtz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, where p is a 
vector of unknown coefficients, and the error E at least has 
mean zero and constant variance, or may even be normally 
distributed. In the regression problem of using SNR to 
predict subjective quality scores, the response variable y 
takes on integer values between 1 and 5, and so the 
assumption of constant variance is inappropriate because 
the variance of y depends on its mean. Furthermore, y 
takes on values only in a limited range, and the linear 
model does not follow that constraint without additional 
untenable assumptions. We tum to a generalized linear 
model that is designed for modeling binary and, more 
generally, multinomial data [83]. 

A generalized linear model requires two functions: a link 
function that specifies how the mean depends on the linear 
predictors, and a variance function that describes how the 
variance of the response variable depends on its mean. If 
XI, X z ,  + . . , X ,  are independent Poisson variables, then 
conditional upon their sum, their joint distribution is multi- 
nomial. Thus the regression can be carried out with the 
Poisson link and variance functions: Ptz = l n p  and 
var(y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in which case the mean of the response variable 
is p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe@". The results of this approach are shown in Fig. 
14. The predictors are a quadratic spline in SNR. In Fig. 
14, the x symbols denote the raw data pairs (subjective 
score, SNR) for the judges pooled, and the curve is the 
regression fit. The model parameters were estimated using 
the statistical software S, which uses iteratively reweighted 
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Fig. 14. Expected subjective score versus SNR (Permission for 
reprint, courtesy Society for Information Display). 

Fig. 15. Response probabilities versus SNR (Permission for 
reprint, courtesy Society for Information Display). 

least squares to generate a maximum-likelihood estimate. 
The o symbols denote the 95% confidence intervals [84] 
obtained from the bootstrapped BC, method [79]. 

Instead of fitting directly to the expectation of the re- 
sponse, a second way to approach this problem looks for 
the probability pi of obtaining the response i, for each of the 
five possible responses (i = 1, . . . ,5) .  The expectation can 
then be calculated from the probabilities. We can transform 
the responses y into binary outcomes: 

1, if y = i 
Yi = 0, otherwise. 

The binary response variables yi can then each be fitted 
using the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlogit link, for which the mean of the response 
variable is 

which guarantees that p is in the interval [0, 11. The logit 
link together with the binomial variance function p(1 - p) 
defines the logistic regression model. For each yi the 
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Table 1 Comparison of Computable 
Quality Measures 

Block Size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
256 x 256 
128 x 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 4 x 6 4  
32 x 32 
16 x 16 
8 x 8  
4 x 4  
2 x 2  
11 

13 

42.96 
42.29 
34.49 
46.48 
47.72 
48.10 
46.62 
47.21 
38.60 
35.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

analog of the multiple correlation. The results are presented 
in Table 1. 

It appears that segmental SNR at several different block 
sizes outperforms conventional SNR. The best of these (on 
8 x 8 blocks) produced a 48% reduction compared to 
the 43% reduction for SNR. In ongoing research we are 
examining the statistical significance of these differences 
by sampling from the permutation distribution, and com- 
paring SNR against perceptually based computable quality 
measures. 

predictor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 was a quadratic spline in SNR, with the knots 
located in each case at the mean value of the SNR’s which 
produced that response (18.2, 20.12, 22.57, 24.61, 25.56). 

The probabilities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp;  are shown in Fig. 15 with vertical off- 
sets so they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare not superimposed. As the five probabilities 
have been determined from separate regressions, they are 
scaled so that they add to one before calculating E(y)  from 
them. The expectation is almost indistinguishable from the 
curve of Fig. 14, thereby validating the Poisson model. 

Having established the appropriateness of the Poisson 
model, we use it to compare SNR against segmental SNR in 
their ability to predict subjective quality ratings. Segmental 
SNR, often used in speech quality evaluation, compensates 
for the under-emphasis of weak-signal performance in 
conventional SNR. An image is divided into blocks, the 
SNR is calculated for each block on a log scale, thresholded 
below at 0 and above at 45, and the values are averaged. 
By converting component SNR values to decibel values 
prior to averaging, very high SNR values corresponding to 
well-coded large-signal segments do not camouflage coder 
performance with the weak segments, as in conventional 
SNR. We examined block sizes of all powers of 2 between 
2 x 2 and 256 x 256. Since the images are of size 256 

x 256, the segmental SNR for that block size equals the 
conventional SNR. The usefulness of the computable metric 
in predicting subjective quality was examined as follows: 
For n = 20 times, the 30 MR images were put in a different 
random order. Each time, a ten-fold cross validation was 
performed in which 3 images at a time were left out, and 
the other 27 images were used to fit the model. All judges 
and levels corresponding to those 27 images were used. 
The 3 images not involved in determining the parameters 
of the fit comprise 45 data points (3 images x 3 judges 
x 5 compression levels). For these data we compute the 
mean outcome and the sum of squared deviations from this 
overall mean. This value is called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI. Then we calculate 
the fitted values for these data, and take the sum of squared 
deviations of observed and fitted, called Sz. If the model is 
good and the test set of 3 images is not unlike the set of 27 

images used to fit the model, we expect Sa to be smaller 
than SI. The percent reduction in mean-squared error that 
owes to fitting the model (beyond fitting an overall constant) 
is a statistic that summarizes the model’s predictive power: 
M = 100 (1 -(&/SI))%. This statistic is a cross-validated 

VII. DISCUSSION AND CONCLUSION 

There are many different perspectives from which these 
different measures of image quality can be viewed. They 
vary in the extent to which they explicitly consider the 
application for which the images are used. At one extreme 
are the computable measures such as SNR, which in no 
way take account of the medical nature of the images. 
Subjective ratings in which a radiologist is asked to rate 
the medical usefulness of an image begin to address the 
issue. ROC analysis, which includes both a (generally) 
binary diagnostic decision and a subjective confidence 
ranking associated with that diagnosis, are serious attempts 
to capture the medical interest of the images through their 
diagnostic value. Studies such as the CT detection task 
and MR measurement task presented in this paper attempt 
to reproduce very closely some actual clinical diagnostic 
tasks of radiologists, and to ask the fundamental question 
of whether a diagnosis made on a compressed image is as 
good as one made on an original. By this measure, an image 
has high quality if the number and locations of lesions 
one finds there precisely match the number and locations 
one finds on the original (or what the independent panel 
finds on the original). But is that really the fundamental 
question? A diagnosis is made on a patient’s scan in order 
to make a decision about medical care for that patient, so 
perhaps image quality could be defined in terms of medical 
care. That is, an image has high quality if the decision 
on medical care is unchanged from that determined upon 
the original. So if the original image has 6 nodules and 
the compressed one has 9, that may still be an extremely 
high quality image according to this particular measure, 
because the medical care decision may be unaltered in 
the case of many tumors with a few more or less. One 
can step back further to look at patient outcome rather 
than medical care decision. Suppose hypothetically that 
one designs a classification scheme to highlight suspected 
tumors in an image. And perhaps, unbeknownst to the 
designers, precancerous cells which have an overlapping 
intensity distribution with that of cancerous cells also 
tend to get highlighted, causing the surgeon to make a 
wider resection and have lower recurrence rates. Then 
the processed image might rate as poorer quality than an 
original based on the previous measures (because both 
diagnosis and medical care decision would be different 
from those based on the original image), yet the processed 
image would rate as top quality according to the measure 
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of improved patient outcome. No one would seriously 
propose these as measures of image quality. The decision 
on medical care and the patient outcome both depend on 
far too many factors other than just image quality. And 
yet, if one considers the true measure of medical image 
quality to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe simply whether a diagnosis on the processed 
image is unchanged from the diagnosis on the original, 
one denies the possibility that the processing may in fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
enhance the image. This is not a worrisome consideration 
with image compression, although there is some indication 
that in fact slightly vector-quantized images are superior 
to originals, because noise is suppressed by a clustering 
algorithm. However, this may soon be a difficult issue in 
evaluating the quality of digitally processed medical images 
where the processing is, for example, a highlighting based 
on pixel classification, or a pseudo-colored superposition of 
images obtained from different modalities. There is a need 
to develop image evaluation protocols for medical images 
that explicitly recognize the possibility the processed image 
can be better. 

Such issues arise in the area of speech quality measure- 
ment as well. Articulation tests score the percentage of 
correct identification of the sounds, words, or sentences 
in transmitted speech, and intelligibility tests look for 
correct identification of the meaning conveyed by transmit- 
ted speech [851. Although requiring the efforts of human 
subjects, these tests are both objective and quantitative. 
Even the communicability tests, which examine the effort 
and level of attention required for understanding, can be 
conducted in a way that does not involve the subjective 
opinions of the listeners, for example by measuring the 
length of time required for subjects to perform a specified 
task that requires communicating over the system under 
test. Analogous to the objective diagnostic accuracy tests 
for image coding systems, these speech quality measures 
address the fundamental issues of what makes a speech 
communication system acceptable to the user-the ability 
to extract correct meaning from the sounds, and the ease of 
communication. However, the intelligibility and articulation 
tests are only appropriate for systems that produce mod- 
erate to severely degraded speech, since they are useless 
for distinguishing between speech signals that are highly 
intelligible. Communicability tests, while not completely 
useless for good-quality systems, do have low resolving 
power, and would require either a very large number of 
subjects, or unpleasantly difficult tasks. They also suffer 
from lack of reproducibility. All these tests also lack the 
ability to provide insight to the researcher into the speech 
perception process or the causes of unintelligibility. For all 
these reasons, the speech-quality research community has 
tended to prefer subjective measures such as the Diagnostic 
Acceptability Measure and the Mean Opinion Score to 
these intelligibility tests. However, for the reasons outlined 
above, we believe that diagnostic accuracy tests, the “in- 
telligibility” tests for medical images, are more useful for 
evaluating medical image quality than are subjective tests. 

In addition to the advantages which the evaluation proto- 
col confers on the originals, physician training also provides 

a bias for existing techniques. Radiologists are trained in 
medical school and residency to interpret certain kinds 
of images, and when asked to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlook at another type of 
image (e.g., compressed or highlighted) they may not do 
as well just because they were not trained on those. Highly 
compressed images have lower informational content than 
do originals, so even a radiologist carefully trained on those 
could not do as well as a physician looking at original 
images. But with image enhancement techniques or slightly 
compressed images, perhaps a radiologist trained on those 
would do better when reading those than someone trained 
on originals would do reading originals. 

We have presented several different ways of evaluating 
medical image quality. Simple computable measures have 
a role in the design algorithms and in the evaluation 
of quality simply because they are quickly and cheaply 
obtainable, and tractable in analysis. The actual diagnostic 
quality is determined by various statistical protocols which 
can evaluate diagnostic accuracy in the context of specific 
detection and measurement tasks. The analysis of subjective 
quality is of interest mostly for the fact that it shows a 
different trend from actual diagnostic quality, which can 
reassure physicians that diagnostic utility is retained even 
when a compressed image is peceptually distinguishable 
from the original. There is considerable future work to 
be done both in evaluation studies of image quality for 
different types of images and diagnostic tasks, and in 
searching for computable measures of image quality which 
can accurately predict the outcome of such studies, and 
perhaps be incorporated into the code design algorithm to 
yield better quality compression. 
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