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Abstract. Plant phenology regulates ecosystem services at

local and global scales and is a sensitive indicator of global

change. Estimates of phenophase transition dates, such as the

start of spring or end of fall, can be derived from sensor-

based time series, but must be interpreted in terms of bio-

logically relevant events. We use the PhenoCam archive of

digital repeat photography to implement a consistent proto-

col for visual assessment of canopy phenology at 13 temper-

ate deciduous forest sites throughout eastern North America,

and to perform digital image analysis for time-series-based

estimation of phenophase transition dates. We then compare

these results to remote sensing metrics of phenophase tran-

sition dates derived from the Moderate Resolution Imaging

Spectroradiometer (MODIS) and Advanced Very High Reso-

lution Radiometer (AVHRR) sensors. We present a new type

of curve fit that uses a generalized sigmoid function to es-

timate phenology dates, and we quantify the statistical un-

certainty of phenophase transition dates estimated using this

method. Results show that the generalized sigmoid provides

estimates of dates with less statistical uncertainty than other

curve-fitting methods. Additionally, we find that dates de-

rived from analysis of high-frequency PhenoCam imagery

have smaller uncertainties than satellite remote sensing met-

rics of phenology, and that dates derived from the remotely

sensed enhanced vegetation index (EVI) have smaller uncer-

tainty than those derived from the normalized difference veg-

etation index (NDVI). Near-surface time-series estimates for

the start of spring are found to closely match estimates de-

rived from visual assessment of leaf-out, as well as satel-

lite remote-sensing-derived estimates of the start of spring.

However late spring and fall phenology metrics exhibit larger

differences between near-surface and remote scales. Differ-

ences in late spring phenology between near-surface and re-

mote scales are found to correlate with a landscape metric

of deciduous forest cover. These results quantify the effect

of landscape heterogeneity when aggregating to the coarser

spatial scales of remote sensing, and demonstrate the impor-

tance of accurate curve fitting and vegetation index selection

when analyzing and interpreting phenology time series.

1 Introduction

Plant phenology plays a central role in how climate change

interacts with the biosphere and affects ecosystem services,

trophic interactions and species ranges (Richardson et al.,

2013a; Morisette et al., 2009). Analysis of phenological dy-

namics through past decades and centuries therefore provides

a valuable record of how plants have responded to a chang-

ing world (Aono and Kazui, 2008; Menzel, 2000; Sparks and

Carey, 1995). While direct visual assessment of the pheno-

logical status of plants has provided long-term records of
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specific phenophases such as budburst and leaf-out, sensors

such as radiometers and digital cameras are now being used

to create automated, high-frequency, phenological time se-

ries (Richardson et al., 2013b). Sensor-based data provide

measurements that range from the local scale of site based

observations to the global extent of satellite missions (Gar-

rity et al., 2011; Huemmrich et al., 1999; Jenkins et al., 2007;

Soudani et al., 2012). A key challenge in the interpretation

of phenology derived from sensor time series is determin-

ing how they relate to plant biological events that an ob-

server would recognize. Digital repeat photography of terres-

trial ecosystems serves two purposes in this regard, supplying

both a visually interpretable record, and, through image pro-

cessing techniques, time-series data similar to those available

from radiometers (Richardson et al., 2007; Sonnentag et al.,

2012). Digital repeat photography can therefore serve as a

bridge between the traditional practice of direct visual obser-

vation of organisms, and sensor-based estimates of phenol-

ogy from near-surface and remote sensing data.

Digital repeat photography also makes consistent visual

assessment of phenology possible over broad geographic

ranges, as a single set of observers can view many sites with

relative ease via digital image archives. In previous compar-

isons of local- to landscape-scale phenology, investigators

were limited by the ground area a group of observers could

feasibly cover on foot (Liang et al., 2011). At the continen-

tal scale, comparison of ground-based phenology indicators

to remote sensing is limited by the geographic extent of any

given mode of ground observation (White et al., 2009). Con-

sequently, there is a knowledge gap in how time series of

sensor data relate to the biological events of canopy phenol-

ogy over a wide geographic range of sites.

This study applied quantitative analysis and visual as-

sessment to a collection of digital repeat photography from

a range of deciduous forests across eastern North Amer-

ica. The study sites exhibit diverse landscape characteristics,

from a nearly pure deciduous broadleaf forest in Arkansas,

to an urban stand of trees in Washington, DC. We compared

an ensemble of previously presented and new methods for

extracting dates from phenological time series, and quanti-

fied the statistical uncertainty of estimated dates. Building

on an earlier comparison study by Hufkens et al. (2012),

we also analyzed time-series data from the Moderate Res-

olution Imaging Spectroradiometer (MODIS), as well as the

MODIS and Making Earth System Data Records for Use in

Research Environments (MEASURES) phenology products,

for comparison to near-surface estimates. This study aims to

evaluate how visually assessed biological events correspond

to sensor-based estimates of phenological dates. A comple-

mentary goal is to explore how near-surface metrics of de-

ciduous canopy phenology in the spring and fall are related

to landscape-scale metrics of remote sensing across diverse

forest ecosystems.

Figure 1. Study sites.

2 Methods

2.1 Study sites

To characterize leaf phenology of temperate deciduous

forests over a broad geographic area, we chose 13 sites in the

eastern US and Canada, based on availability of near-surface

camera observations (Fig. 1). A total of 81 site years of near-

surface and satellite remote sensing imagery were analyzed

across all sites in spring, and 83 site years were analyzed in

fall.

To characterize land cover at the study sites, 30 m resolu-

tion National Land Cover Database (NLCD) data were used

for sites in the US, and Earth Observation for Sustainable

Development of Forests (EOSD) data were used for sites in

Canada (Table 1) (Vogelmann et al., 2001; Wulder et al.,

2008). The MODIS Collection 5 Land Cover Type product

classification at 500 m resolution was also used to character-

ize land cover (Friedl et al., 2010).

2.2 Near-surface imagery: visual assessment

of phenological transitions

The PhenoCam network is a continental-scale phenological

observatory, spanning a wide range of biogeoclimatic zones
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Table 1. Study sites with land cover characterization. Fractional coverage of each land cover type was calculated from the NLCD (National

Land Cover Database) for study sites located in the US, and EOSD (Earth Observation for Sustainable Development of Forests) for sites

located in Canada. “Other” includes shrub/scrub, developed; low intensity, developed; medium intensity, developed; high intensity, grass-

land/herbaceous, emergent herbaceous wetlands, pasture/hay, and barren land (rock/sand/clay). MODIS land cover product classification: D

– deciduous forest, M – mixed forest, and U – urban.

Site MODIS Deciduous Mixed Evergreen Woody Developed; Open Other

land forest forest forest wetlands open space water

cover

Acadia M 0.11 0.32 0.21 0.02 0.06 0.12 0.17

Arbutus Lake D 0.41 0.07 0.13 0.12 0.01 0.23 0.01

Bartlett M 0.37 0.48 0.08 0.00 0.05 0.00 0.02

Boundary Waters M 0.10 0.24 0.21 0.22 0.04 0.04 0.14

Dolly Sods D 0.56 0.04 0.21 0.11 0.06 0.00 0.03

Groundhog M 0.16 0.55 0.19 0.02 0.00 0.03 0.05

Harvard Forest M 0.41 0.22 0.20 0.12 0.04 0.00 0.00

Mammoth Cave D 0.67 0.01 0.23 0.05 0.00 0.02 0.02

Queens M 0.05 0.43 0.18 0.00 0.00 0.32 0.02

Smoky Look D 0.72 0.05 0.08 0.00 0.09 0.00 0.06

U. of Michigan D 0.68 0.06 0.03 0.04 0.05 0.01 0.13

Biological Station

Upper Buffalo D 0.97 0.00 0.00 0.00 0.03 0.00 0.00

Washington DC U 0.01 0.00 0.00 0.05 0.25 0.24 0.43

Figure 2. ROI shown on canopy image for Arbutus Lake in New

York.

and vegetation types, primarily in the United States. In addi-

tion to retrieving imagery from publicly available webcams

with either hourly or half-hourly temporal resolution, the

network consists of 85 cameras deployed following a stan-

dardized protocol, which upload half-hourly imagery to the

PhenoCam server from 4 a.m. to 10 p.m. each day. Imagery

and data products are available at the PhenoCam web page:

http://phenocam.sr.unh.edu/webcam/.

PhenoCam imagery was used to visually identify decid-

uous canopy transition dates for this study. Six observers

looked through daily images and used a common protocol

to identify the following dates for each site year of data:

1. when the majority of trees started leafing out

2. when the canopy reached full maturity

3. when the canopy first started to change color in the fall

4. when the canopy exhibited the brightest fall colors

5. when the majority of trees had lost all leaves.

To reduce inter-observer variability in visually assessed

dates, the earliest and latest estimates of each date were dis-

carded, and the remaining dates were averaged to provide a

single date for each event. Using the median observation (not

reported here) gave similar results to the mean.

2.3 Near-surface imagery: time-series estimates

of phenological transitions

To automatically extract phenology transition dates from

near-surface images, we defined regions of interest (ROIs)

representing the deciduous canopy in the foreground at each

site (shown in Fig. 2), and analyzed them using software

written in Matlab (R2013a, The Mathworks, Nattick, MA),

available at https://github.com/klostest/PhenoCamAnalysis.

ROIs contained approximately 10–100 trees depending on

the site. To quantify phenological status of the forest canopy

over time, we calculated the green chromatic coordinate

(GCC) for each image from average red (R), green (G), and
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blue (B) pixel digital numbers (DNs) over the ROI, where

GCC is defined as

GCC =
G

R + G + B
. (1)

We recorded images at some sites from before sunrise until

after sunset. As shown by Sonnentag et al. (2012), images

recorded at dawn and dusk, under very low levels of diffuse

illumination and with no direct solar beam, tended to have

much lower GCC values than those recorded at midday. We

therefore excluded extremely dark images (low average val-

ues of R, G, or B DNs in the ROI) from further considera-

tion. Because camera characteristics varied from site to site

(e.g., color balance, maximum exposure time, automatic gain

control, and internal image processing), it was necessary to

manually determine the DN threshold used to discard im-

agery across sites. Final processing consisted of selecting the

90th percentile value from a 3-day moving window (Sonnen-

tag et al., 2012). To quantify dynamics in canopy redness in

fall, the red chromatic coordinate (RCC) was calculated in

the same way:

RCC =
R

R + G + B
. (2)

2.4 Remote sensing data

We downloaded MODIS data for the 13 study sites through

the MODIS web service (http://daac.ornl.gov/MODIS/

MODIS-menu/modis_webservice.html) for comparison to

near-surface observations. Nadir bidirectional reflectance

distribution function (BRDF) adjusted surface reflectances

(NBAR) from the MCD43A4 product in the red, near-

infrared (NIR), and blue bands were used to characterize

vegetation dynamics at 500 m spatial resolution (Schaaf et

al., 2002, 2011). NBAR measurements are based on surface

reflectances taken from 16-day moving windows of MODIS

data, and produced every 8 days. NBAR measurements were

associated with the middle day of the 16-day composit-

ing period from which the measurements were drawn (Zhu-

osen Wang and Crystal Schaaf, personal communication).

The NBAR data were filtered to remove observations over

urban areas, ice, or water using the MODIS MCD12Q1

Land Cover Type product, and remaining data were fil-

tered to remove interference from snow using the MODIS

BRDF albedo quality product (MCD43A2). Filtered NBAR

reflectances were used to compute the enhanced vegetation

index (NBAR-EVI), and the normalized difference vegeta-

tion index (NBAR-NDVI), which provide metrics of canopy

greenness (Huete et al., 2002; Rouse et al., 1973):

NBAR−EVI =
2.5(NIR − R)

(NIR + 6R − 7.5B + 1)
(3)

NBAR−NDVI =
(NIR − R)

(NIR + R)
. (4)

To account for inherent noise in MODIS data due to

cloud cover, atmospheric interference, and uncertainty in the

ground area measured by the MODIS sensor (Xin et al.,

2013), we used median NBAR values taken over 3 × 3 win-

dows of 500 m pixels centered on PhenoCam locations. The

resulting time series were then smoothed using the median of

a three-point moving window to remove spikes due to snow-

fall and other sources of noise that were not captured using

the MCD43A2 product.

We also analyzed GCC time series from MODIS NBAR,

calculated according to Eq. (1). MODIS GCC time series suf-

fered from lower quality than EVI and NDVI, with more

noise and outliers, even after applying the quality control

procedures used on those time series. Unfortunately, the

lower quality of MODIS GCC time series caused relatively

high statistical uncertainty in estimated phenophase transi-

tion dates. For example, the average statistical uncertainty

(95 % confidence interval) for phenophase transition dates

identified from MODIS GCC time series using the general-

ized sigmoid method (described below) was 17 days, twice

as large as that for EVI time series. Because of this uncer-

tainty, we do not report MODIS GCC results here. However,

we note that Hufkens et al. (2012) used remote sensing data

to calculate phenology dates with the excess greenness index,

a spectral index similar to GCC, and obtained similar results

to NDVI, an index used in this study.

In addition to the MODIS time-series data, we examined

two operational phenology products derived from satellite

remote sensing. The MODIS Land Cover Dynamics Prod-

uct (MCD12Q2) provides annual phenophase transition dates

and related growing season metrics at 500 m spatial res-

olution. To do this, the MCD12Q2 algorithm fits logistic

functions (Eq. 5, below) to smooth and gap-fill time se-

ries of NBAR-EVI data, and reports the timing of local

maxima and minima in the rate of change of curvature as

phenophase transition dates (Ganguly et al., 2010; Zhang et

al., 2003). In addition, we also used data from a 30-year

archive of multi-sensor harmonized vegetation indices cre-

ated as part of the National Aeronautics and Space Admin-

istration (NASA) MEASURES project (http://vip.arizona.

edu). The MEASURES phenology product reports similar

metrics to the MCD12Q2 algorithm, but has the advantage of

nearly 20 additional years of historical data, using measure-

ments from the Advanced Very High Resolution Radiometer

(AVHRR). The MEASURES phenology data are produced

at a spatial resolution of 0.05 degrees, or approximately 5 km

for the region studied here.

2.5 Estimating dates from time-series data

We used three sigmoid-based methods and a data smoothing

and interpolation method to explore different approaches for

extracting dates from phenological time-series data. The sim-

plest sigmoid-based method, hereafter called the simple sig-

moid, has been widely used in the remote sensing community
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(Hufkens et al., 2012; Liang et al., 2011; Zhang et al., 2003):

f (t) =
c

1 + exp(a + bt)
+ d. (5)

In Eq. (5), f (t) represents the modeled value of a vegetation

index such as GCC, at time t . d defines the dormant season

baseline value of greenness, c is the amplitude of increase or

decrease in greenness, a controls the timing of increase or de-

crease, and b controls the rate of increase or decrease. Equa-

tion (5) was separately fit to spring and fall data for each site

year to account for independent green-up and green-down

dynamics, using the Matlab function lsqnonlin.

To account for the decreasing summer time greenness that

is widely observed in vegetation indices prior to leaf senes-

cence, Elmore et al. (2012) presented a modified double sig-

moid model that adds a new parameter (m7), thereby provid-

ing more accurate model representation of seasonal vegeta-

tion time-series data in many forest canopies:

f (t) = m1 + (m2 − m7t) (6)
[

1

1 + exp((m3 − t)/m4)
−

1

1 + exp((m5 − t)/m6)

]

,

where the double sigmoid model in Eq. (6) is fit to entire

years of vegetation index time series.

In addition we also tested a more flexible approach, using

a generalized sigmoid formula which introduced two addi-

tional parameters (qi and vi), to allow different rates of in-

crease near the lower and upper asymptotes of the sigmoid

(Richards, 1959). Our implementation of this generalized

sigmoid also accounts for nonlinear decrease in summertime

greenness, as observed in many site years of data (parameters

a2 and b2), as well as a changes in the dormant season value

via parameter a1:

f (t) = (a1t + b1)

+
(

a2t
2 + b2t + c

)

[

1

[1+q1 exp(−h1(t−n1))]
v1 −

1

[1+q2 exp(−h2(t−n2))]
v2

]
. (7)

Equation (6), hereafter referred to as the generalized sigmoid,

was also fit to entire years of data.

For each of the sigmoid models, phenological transition

dates were estimated using local extrema in the rate of

change of curvature k (Kline, 1998):

k =
f ′′ (t)

(

1 + (f ′ (t))2
)

3
2

. (8)

Points where the curvature changes most rapidly occur at

the beginning, middle, and end of seasonal transitions. In the

simple and green-down sigmoids (Eqs. 5, 6), extrema in the

curvature change rate were used to identify the start, mid-

dle, and end of spring (SOS, MOS, and EOS), following the
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Figure 3. Example comparison of the simple sigmoid, green-down

sigmoid, generalized sigmoid, and smoothing and interpolation ap-

proaches for 1 year of GCC and NBAR-EVI data. Phenology date

estimates represent start of spring, middle of spring, and end of

spring (SOS, MOS, and EOS, as shown in panel b). The simple sig-

moid, green-down sigmoid, and generalized sigmoid models also

have start of fall, middle of fall, and end of fall (SOF, MOF, and

EOF, as shown in panel b). A single fall phenology date is identi-

fied from RCC using the smoothing and interpolation model (RCC

max, as shown in panel g).

method proposed by Zhang et al. (2003). These points ap-

proximately correspond to 10, 50, and 90 % of amplitude in

springtime greenness. A similar technique was used for the

start, middle, and end of fall (SOF, MOF, and EOF). For the

generalized sigmoid (Eq. 7), the third extreme in the cur-

vature change rate was used to identify the end of spring.

However, because this model allows asymmetric growth of

the sigmoid function, the first two extrema were frequently

found to occur significantly later than 10 and 50 % of am-

plitude in springtime greenness. Consequently, the start and

middle of spring were identified as the times corresponding

to 10 and 50 % amplitude between the dormant season and

the end of spring values of greenness for the generalized sig-

moid, with a similar approach used in fall.
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To quantify uncertainty in estimates of transition dates

from the sigmoid-based methods, we used the Jacobian ma-

trix of parameter sensitivities (provided by the Matlab rou-

tine lsqnonlin) to calculate the parameter covariance matrix.

The covariance matrix was then used in a Monte Carlo pro-

cedure to generate 100 samples of the parameter space, each

of which was used to produce a new set of phenology dates.

Monte Carlo ensembles were used to construct confidence in-

tervals using the inner 95 % range for each phenology date,

which we use here to quantify the statistical uncertainty of

estimated dates.

Finally, in the smoothing and interpolation approach, time-

series data were first smoothed using the loess algorithm in

Matlab, which reduces noise by estimating a local regression

to a second-order polynomial at each point in the time series.

The fraction of annual data used for the local regression was

set to 0.1 for near-surface data and 0.2 for remote sensing

data, to account for the different temporal resolutions of 3

and 8 days, respectively. After smoothing, cubic spline inter-

polation was applied to obtain a sub-daily resolution time se-

ries for estimating phenological transitions. Spring transition

dates were identified as the times when greenness crossed

10, 50, and 90 % thresholds of the springtime amplitude in

greenness. The smoothing and interpolation method was also

applied to RCC time series in fall, where a single phenology

date was identified as the fall maximum of the processed time

series. To illustrate each of the date estimation methods, an

example year of data from Arbutus Lake in 2009 is shown for

both near-surface and satellite remote sensing data (Fig. 3),

with model fits and date estimates for each approach.

To compare phenology transition dates derived from vi-

sual assessment, near-surface, and satellite remote sensing

time series, the root mean square deviation (RMSD), bias,

and r2 statistic were computed for each phenological transi-

tion across all site years of data. These statistics quantify the

magnitude of differences between corresponding dates from

different methods, the average signed difference, and the de-

gree of correlation, respectively.

2.6 Geographical and environmental patterns

in phenology

To characterize geographical patterns and environmental

drivers of phenology, we estimated linear regressions of phe-

nology dates using two predictors: a location predictor con-

sisting of site latitude and elevation, and a climate predic-

tor consisting of average daily temperature and cumulative

precipitation during the periods April–May for spring tran-

sitions, and September–November for fall transitions, using

the DAYMET data set (http://daymet.ornl.gov).

3 Results

3.1 Statistical uncertainty in date estimates

We used inter-observer variability from visual assessments

and parameter uncertainty from curve fitting methods to cal-

culate measures of the statistical uncertainty in phenology

date estimates derived from near-surface digital photography.

The average range of dates estimated from visual assessment

was larger than the average 95 % confidence interval from

curve fitting of GCC data for both spring phenology dates,

particularly at the end of spring (Table 2). However in fall,

inter-observer variability was smaller than the statistical un-

certainty of curve fits for the middle and end of fall. These

results suggest that dates derived from curve fitting analysis

of greenness time series generally have less statistical uncer-

tainty than visual assessment in the spring, although this is

less pronounced in fall.

Near-surface GCC data from PhenoCam provided esti-

mates of phenology dates with less uncertainty (average 6-

day confidence interval, across methods and dates reported

in Table 2) than NBAR-EVI and NBAR-NDVI data from

satellite remote sensing (average 12- and 19-day confidence

intervals, respectively). This may be due to the higher tem-

poral resolution of near-surface data, which more effectively

constrains parameter estimates. Since NBAR-EVI data were

found to result in less uncertainty for remote sensing esti-

mates of phenology than NBAR-NDVI, we focus on the use

of NBAR-EVI in the following analysis.

Of the three sigmoid methods that we tested, the gener-

alized sigmoid curve fit the time-series data with the low-

est RMSD and produced the least uncertain date estimates in

most cases, particularly using the near-surface data (Table 2).

Using NBAR-EVI data, the simple sigmoid function identi-

fied the middle of spring transition with the lowest uncer-

tainty. However the green-down sigmoid and the generalized

sigmoid curves resulted in more certain estimates for dates

corresponding to the beginning and end of spring, respec-

tively. The generalized sigmoid appears to provide the best

overall functional representation of vegetation dynamics for

NBAR-EVI in terms of certainty from the beginning to end

of spring, likely because of its flexibility. Results presented

hereafter therefore consider all of the time-series approaches

described above, but emphasize the generalized sigmoid.

3.2 Comparison of visual assessment to estimates from

near-surface time-series data

Phenological dates derived from visual assessment exhibited

varying degrees of correspondence to dates identified using

time-series data, depending on the date estimation method

and seasonal transition (Table 3). The start of spring was

most closely associated with visual assessments for the date

when the majority of trees started to leaf out (Fig. 4a). For

this date, all time-series methods matched visual assessment

Biogeosciences, 11, 4305–4320, 2014 www.biogeosciences.net/11/4305/2014/
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Figure 4. Scatterplots of the comparison between visually assessed dates (y axis) and dates identified from near-surface GCC (x axis) using

the generalized sigmoid method.

Table 2. Statistical uncertainty in estimated phenology dates. Statistical uncertainty in sigmoid-based methods is calculated as the average

width of inner 95 % confidence intervals for each phenology date. SOS, MOS, and EOS are start, middle, and end of spring. SOF, MOF, and

EOF are start, middle and end of fall. Statistical uncertainty in visual assessment is calculated as the average length of time between earliest

and latest assessments, after removing the minimum and maximum estimates from the raw data. All units are in days.

Time-series

Index method SOS MOS EOS SOF MOF EOF

GCC simple sigmoid 7 3 7 13 7 16

green-down sigmoid 4 2 6 14 7 11

generalized sigmoid 1 1 0 3 5 7

EVI simple sigmoid 9 4 9 24 13 28

green-down sigmoid 8 5 15 24 14 18

generalized sigmoid 8 6 8 8 9 12

NDVI simple sigmoid 16 8 16 24 15 27

green-down sigmoid 16 11 38 42 30 37

generalized sigmoid 10 6 10 11 14 18

Visual assessment 7 22 19 4 6

with an RMSD of less than 10 days, with the generalized sig-

moid yielding the lowest bias of 0 days. The visually assessed

date of canopy maturity was less consistent with time-series

estimates than the date of leaf-out. While correlations were

generally good, with r2 ranging from 0.45 to 0.73 across

methods, all time-series estimates for this date were biased

by about 10 days early with respect to visual assessment. For

the generalized sigmoid method, the end of spring was less

biased with respect to visual assessment for spring transitions

that ended later in the year (Fig. 4b).

Greenness-derived estimates for the beginning and end of

fall generally showed less agreement with dates derived from

visual assessment than for spring phenology; fall estimates

derived from greenness time series had larger average RMSD

(23 and 16 days, respectively; Table 3) across methods than

either of the spring dates (8 days for the start of spring and

13 days for the end of spring). Fall dates derived using the
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Table 3. Statistics comparing visual assessment to phenology de-

rived from near-surface image processing. Visually assessed dates

were compared to time-series methods as follows: the date when the

majority of trees started leafing out was compared to SOS, the date

of canopy maturity to EOS, the date of first color change to SOF,

the date of brightest fall colors to MOF, and the date of leaf loss to

EOF. Near-surface imagery dates were estimated from greenness,

except for SOF, MOF, and EOF dates in the smoothing and inter-

polation approach, which were estimated from redness. Statistics

include RMSD and bias in units of days, and r2 for the comparison

of corresponding dates and methods across all site years. Bias is

calculated relative to time-series estimates, so a negative bias indi-

cates that the corresponding visual assessment is later. 73 site years

of data were used in this analysis.

Time-series

method Statistic SOS EOS SOF MOF EOF

simple RMSD 8 16 17 9 16

sigmoid Bias 3 −14 5 −6 −11

r2 0.79 0.69 0.45 0.80 0.64

green-down RMSD 7 13 22 9 16

sigmoid Bias 3 −11 16 −2 −14

r2 0.81 0.73 0.60 0.77 0.70

generalized RMSD 7 11 16 9 12

sigmoid Bias 0 −9 3 −6 −8

r2 0.80 0.70 0.52 0.80 0.68

smoothing RMSD 9 13 35 7 19

and Bias 3 −8 31 3 −18

interpolation r2 0.73 0.45 0.36 0.78 0.84

generalized sigmoid had comparable or lower RMSD than

visually assessed dates from other curve fitting approaches,

and indicated that estimates for end of fall were generally less

biased with respect to visual assessment for timing of abscis-

sion when this occurred later in the calendar year (Fig. 4e).

While the visually assessed start of color change in fall and

the end of abscission were closer to greenness-derived met-

rics, timing of the brightest fall colors had similar RMSD

with respect to date estimates from time series of both red-

ness and greenness (Table 3).

3.3 Climate and geographical analysis of

phenophase transitions

Phenology dates were moderately correlated with latitude

(Fig. 4), although for deciduous forests in eastern North

America this relationship is confounded by site elevation ac-

cording to Hopkins’ law (Hopkins, 1919), as well as local

weather (Richardson et al., 2006), both of which affect leaf

phenology. We compared the effects of site location and local

weather on phenology by calculating linear regression mod-

els of phenophase transition dates on site latitude and ele-

vation, along with a separate regression model on average

temperature and cumulative precipitation during the periods

April–May for spring transitions, and September–November

for fall transitions.

In spring, we found that SOS was delayed 1.9 ± 0.3 (re-

gression slope ± standard error) days per degree latitude and

1.6 ± 0.5 days per 100 m in elevation, each about half of what

Hopkins’ law predicts, and similar to the delay of leaf un-

folding of 1.1 to 3.4 days per 100 m elevation that was previ-

ously observed in a study of beech and oak trees in southern

France (Vitasse et al., 2009), as well as 2.7 days per 100 m

elevation in a study of a hardwood forest in New Hampshire

(Richardson et al., 2006). In fall, the effect of latitude was

more pronounced as EOF advanced 2.9 ± 0.3 days for each

degree of latitude, but elevation was not significantly differ-

ent from zero with an advance of 0.3 ± 0.5 days for each

100 m increase in elevation.

From the weather analysis, we found that SOS for decid-

uous trees advanced 3.5 ± 0.3 days for each 1.0 ◦C change

in mean April–May temperature, which is within the range

observed in experimental warming studies of deciduous tree

leaf phenology of 1–7 days per 1 ◦C (Morin et al., 2010;

Norby et al., 2003). SOS was relatively insensitive to pre-

cipitation, with a delay of 0.02 ± 0.01 days for each 1 mm

change in cumulative precipitation. In fall, MOF was delayed

3.6 ± 0.4 days for each 1 ◦C change in average September–

November temperature, but precipitation effects were again

not significantly different from zero. These findings are con-

sistent with studies indicating that eastern deciduous forest

phenology is generally insensitive to observed variation in

precipitation (Dragoni and Rahman, 2012); however, the ef-

fects of precipitation may influence fall phenology through

soil water balance (Archetti et al., 2013). From the climate

analysis we conclude that temperature has significant effects

on deciduous forest phenology in the spring and fall, while

precipitation does not. From geographical analysis we find

that the timing of both spring and fall phenology correlates

with latitude, but that only spring phenology correlates with

elevation.

3.4 Comparison of near-surface and remote

sensing phenology

The generalized sigmoid model, the time-series method with

the least uncertainty, and the smoothing and interpolation ap-

proach, with the most flexibility, each produced an average

RMSD of about 9 days between remote sensing and near-

surface imagery across the beginning, middle, and end of

spring dates (Table 4, Figs. 5a–c). The magnitude (absolute

value) of bias was low across all methods for the beginning

and middle of spring, less than 1 week in nearly all cases

(Table 4). As spring progressed however, the signed bias be-

tween satellite remote sensing and near-surface phenology

became more negative, indicating satellite remote sensing

was later in comparison to near-surface phenology. The trend

of a more negative bias for later spring phenology dates was

not isolated to one particular method; across all methods and
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Figure 5. Scatterplots of the comparison between near-surface GCC analysis and remote sensing of NBAR-EVI using the generalized

sigmoid method.

indices, dates derived from satellite remote sensing were 2

and 8 days later, on average, than near-surface metrics for

the middle and end of spring, respectively (Table 4).

To examine whether landscape characteristics at individual

sites played a role in the late spring bias, we calculated the

fractional coverage of deciduous forest and mixed forest land

cover types from NLCD data (Table 1). The bias between

results from near-surface GCC and satellite remote sensing

NBAR-EVI with the generalized sigmoid method (Fig. 6)

showed a significant pattern (r2 = 0.73, p < 0.001) of less

bias for sites that had greater fractions of deciduous or mixed

forest coverage.

Time-series estimates of fall phenology from near-surface

and satellite remote sensing generally differed more than

spring dates; the average RMSD for fall dates was higher

than spring in all methods and indices used for date esti-

mation (Table 4). This is likely due to larger statistical un-

certainty in estimated fall dates; GCC-, NBAR-EVI- and

NBAR-NDVI-derived dates were roughly twice as uncertain

as those in fall (Table 2). GCC-derived near-surface fall dates

from the generalized sigmoid method were biased roughly

a week earlier than dates from NBAR indices, which was

characteristic of a negative bias for fall dates observed across

most greenness time-series results, particularly for the mid-

dle and end of fall. In contrast, near-surface dates derived

from redness, which best corresponded to the middle of fall

date extracted from satellite remote sensing (Table 5), were

consistently biased positively. Both greenness- and redness-

derived near-surface dates had the lowest magnitude of bias

at the MOF date, with several methods producing bias of less

than a week.

3.5 Comparison of near-surface phenology to

MCD12Q2 and MEASURES

phenology products

The MCD12Q2 and MEASURES phenology products pro-

vide remotely sensed phenology estimates at different spa-

tial scales than the analysis of NBAR data presented above.

The NBAR analysis conducted for this study used MODIS

data at an effective resolution of 1.5 km due to spatial win-

dowing. In contrast, the MCD12Q2 phenology product is

produced at 500 m resolution, and the MEASURES is pro-

duced at approximately 5 km resolution. In comparison to

the MODIS NBAR data analyzed here, both of these phe-

nology products exhibited similar signs in bias, but differ-

ent magnitudes, relative to date estimates from near-surface

time series. The coarse-resolution MEASURES spring dates

exhibited a low average bias of less than 2 days at the be-

ginning of spring, while the middle and end of spring dates

were progressively biased later by an average of −9 and

−17 days, respectively (Table 6), similar to the late spring

bias presented above, but larger in magnitude. RMSDs be-

tween MEASURES and near-surface dates were also larger

(by over a week for most transition dates) relative to dates

from NBAR data. The MCD12Q2 product, encompassing

the smallest land area of the three remote sensing analyses

used here, showed qualitatively similar characteristics to the
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Table 4. Statistics comparing remote-sensing-derived to greenness-derived near-surface phenology. Statistics are computed as in Table 3.

The time-series method indicated in the table was used for both near-surface and remote sensing date estimates. Bias is calculated relative to

near-surface estimates, so a negative bias indicates that the corresponding remote sensing estimate is later. 81 site years of data were used in

this analysis.

Remote Time-series

sensing index method Statistic SOS MOS EOS SOF MOF EOF

EVI simple RMSD 10 6 14 28 10 24

sigmoid Bias 4 −4 −12 20 −1 −22

r2 0.74 0.91 0.76 0.11 0.51 0.74

green-down RMSD 9 7 17 21 11 18

sigmoid Bias 4 −5 −14 10 −3 −15

r2 0.76 0.91 0.73 0.20 0.58 0.65

generalized RMSD 9 6 12 14 10 11

sigmoid Bias 1 −3 −9 −6 −7 −8

r2 0.67 0.88 0.68 0.32 0.72 0.77

smoothing RMSD 8 6 13

and Bias 0 −4 −10

interpolation r2 0.72 0.90 0.65

NDVI simple RMSD 18 7 12 21 17 27

sigmoid Bias 9 1 −6 −3 −3 −3

r2 0.41 0.82 0.71 0.18 0.27 0.11

green-down RMSD 7 6 15 19 10 19

sigmoid Bias 1 0 −2 3 −6 −15

r2 0.81 0.83 0.47 0.23 0.76 0.67

generalized RMSD 13 10 13 15 11 12

sigmoid Bias 0 −1 −3 −7 −7 −6

r2 0.31 0.54 0.43 0.30 0.70 0.67

smoothing RMSD 12 6 12

and Bias 5 0 −7

interpolation r2 0.49 0.81 0.56

coarse-scale MEASURES results, but with larger biases (Ta-

ble 7). In consideration of the analysis presented above, re-

sults from MEASURES and MCD12Q2 indicate that satellite

remote sensing results based on data with spatial resolutions

that are intermediate between these two products, processed

with the methods presented here, may result in better agree-

ment with near-surface data.

4 Discussion

Phenological data available from near-surface and satellite

remote sensing measurements present a large and grow-

ing resource for monitoring the interaction between global

change and the biosphere, but involve significant challenges

for analysis. For example, lack of standard protocols compli-

cates determination of which biological events correspond

to data-driven estimates of phenophase transitions in di-

verse and geographically dispersed ecosystems (White et al.,

2009). Furthermore, while several methods exist for estimat-

ing transition dates from time-series data, few studies pro-

vide concrete guidance regarding how to distinguish between

these approaches (but see Cong et al., 2012), or quantify

the uncertainty associated with various methods. This study

compared an ensemble of date estimation methods to as-

sess how near-surface metrics of deciduous forest phenol-

ogy, here derived from high-frequency digital camera im-

agery, relate to both visual assessment of canopy status, and

to landscape-scale estimates from satellite remote sensing

platforms, across a range of temperate deciduous forests. Our

results show that the choice of analysis method affects the

certainty with which dates can be estimated at both near-

surface and remote scales. The choice of analysis method can

also affect the RMSD, magnitude of bias, and in some cases

the direction of bias when comparing near-surface phenol-

ogy metrics to metrics derived from visual assessment and

satellite remote sensing.
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Table 5. Statistics comparing remote-sensing-derived to redness-

derived near-surface phenology. Statistics are reported as in Table 4.

Smoothing and interpolation was used to estimate dates from near-

surface redness time series, while the time-series method indicated

in the table refers to analysis of remote sensing indices.

Remote Time-series

sensing index method Statistic SOF MOF EOF

EVI simple RMSD 50 13 23

sigmoid Bias 48 10 −22

r2 0.03 0.69 0.60

green-down RMSD 31 9 18

sigmoid Bias 28 5 −16

r2 0.29 0.70 0.57

generalized RMSD 23 7 17

sigmoid Bias 21 2 −15

r2 0.50 0.74 0.61

NDVI simple RMSD 27 10 13

sigmoid Bias 23 6 −9

r2 0.23 0.66 0.51

green-down RMSD 25 7 20

sigmoid Bias 21 1 −15

r2 0.37 0.72 0.33

generalized RMSD 25 7 16

sigmoid Bias 22 3 −12

r2 0.42 0.77 0.53

4.1 Comparison of PhenoCam curve fitting to visual

assessment and remote sensing in spring

Time-series estimates of the start of spring at the near-surface

scale are generally well correlated with visual assessments

for the first appearance of leaves (Fig. 4a), the stage of leaf

phenology which immediately follows budburst. This indi-

cates that the SOS metric represents the release of ecodor-

mancy in buds on deciduous trees, the stage of bud devel-

opment at which limitations of environmental factors are re-

moved (Basler and Korner, 2014). A significant outlier oc-

curred, however, in the spring of 2007 at the Upper Buf-

falo Wilderness. Observers consistently identified the start

of leaf-out as DOY 90, earlier than other years for this site.

However after this early leaf-out, a spring frost delayed fur-

ther leaf development (Gu et al., 2008), likely resulting in

the later start of spring (DOY 120) identified by curve fitting

analysis.

Consistent with previous studies, estimates for the start

of spring were also highly correlated for metrics derived

from satellite remote sensing and near-surface remote sens-

ing. Liang et al. (2011) noted that start of spring estimated

from MODIS EVI time series matched the date of bud-

burst directly observed on trees to within 2 days in a mixed

deciduous–coniferous forest in Wisconsin, and Soudani et

al. (2008) found a similar result for deciduous forests located
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Figure 6. Scatterplot of bias in the end of spring (EOS) between

near-surface GCC date estimates and remote sensing NBAR-EVI

estimates using the generalized sigmoid method. Fractional forest

cover is defined as the fraction of 30 m resolution pixels in the de-

ciduous forest land cover class plus half of the fraction of pixels in

the mixed forest class at each study site.

throughout France. A recent study by Hmimina et al. (2013)

also found good agreement between near-surface and satel-

lite remote-sensing-derived estimates for the beginning of

spring. However we found that data-driven estimates of later

spring phenology from near-surface imagery, intended to

represent the final stages of springtime leaf development, ex-

hibited less correspondence to estimates derived from both

visual assessments and satellite remote sensing.

The visually assessed date of leaf maturity was later than

the end of spring date derived from near-surface GCC. At

visually assessed maturity, leaves were dark green, whereas,

at the GCC-derived end of spring date, leaves were bright

yellow-green. The shift from brighter to darker green was as-

sociated with an increase in the relative brightness of the blue

channel. Recent studies explored possible reasons for this,

finding that GCC from tower-mounted cameras reached its

springtime maximum 2 to 3 weeks before a suite of leaf and

canopy physiological traits, including chlorophyll fluores-

cence, total chlorophyll concentration, leaf area and mass, ni-

trogen, carbon, and water content, and leaf area index (LAI;

Keenan et al., 2014; Yang et al., 2014). Keenan et al. (2014)

concluded that GCC reaches its peak as the effective LAI

viewed from tower-mounted cameras saturates, and GCC be-

comes insensitive to further increases in LAI, but begins to

decrease due to changes in leaf color.

Comparison of near-surface GCC and MODIS NBAR in-

dices for late spring phenology shows that, across all date

estimation approaches, metrics derived from MODIS were

biased later by an average of 8 days (Table 4). Different spec-

tral indices exhibit different temporal trajectories (Yang et

al., 2014), and have been reported to correlate with different
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Table 6. Statistics comparing the MEASURES phenology product to near-surface imagery. Statistics computed as in Table 4.

Time-series

method Statistic SOS MOS EOS SOF MOF EOF

simple RMSD 19 16 25 32 19 20

sigmoid Bias 1 −9 −19 16 5 −5

r2 0.29 0.36 0.20 0.01 0.05 0.18

green-down RMSD 19 16 24 39 20 21

sigmoid Bias 1 −8 −18 27 10 −8

r2 0.28 0.36 0.21 0.00 0.06 0.24

generalized RMSD 19 17 23 31 19 20

sigmoid Bias −2 −9 −15 17 8 −3

r2 0.26 0.30 0.11 0.00 0.07 0.23

Table 7. Statistics comparing the MODIS phenology product to

near-surface imagery. Statistics computed as in Table 4.

Time-series

method Statistic SOS EOS SOF EOF

simple RMSD 17 28 55 16

sigmoid Bias 11 −22 50 −10

r2 0.37 0.30 0.01 0.53

green-down RMSD 17 25 65 16

sigmoid Bias 12 −19 60 −12

r2 0.39 0.33 0.00 0.52

generalized RMSD 16 25 52 13

sigmoid Bias 8 −18 48 −6

r2 0.23 0.22 0.02 0.57

plant traits. Hufkens et al. (2012) noted that both the ex-

cess green index (a color index similar to the GCC used in

this study) and NDVI from MODIS tended to saturate be-

fore EVI, and were insensitive to later changes in LAI. How-

ever, recent results have shown that EVI from satellite re-

mote sensing has a 2- to 3-week temporal bias, similar to

GCC from tower-mounted cameras, with respect to the suite

of leaf physiology measurements mentioned above (Keenan

et al., 2014). Further, recent work indicates that bias between

end of spring phenology at the near-surface and landscape

scales may not be caused by differences in vegetation index;

Hmimina et al. (2013) found a similar late spring bias using

NDVI from remote sensing and near-surface NDVI sensors.

Camera fields of view are smaller than ground areas as-

sociated with satellite pixels. Consequently, GCC from cam-

eras can only be expected to agree with satellite vegetation

indices to the extent that the camera field of view represents

the vegetation and land cover in the satellite pixel. To explore

this, we conducted a land cover analysis, focusing on the

source of bias found in this study (Fig. 6). Results from this

analysis show that landscape composition affects the mag-

nitude of the bias, where sites with a smaller proportion of

deciduous and mixed forests tended to have estimates of end

of spring phenology from satellite remote sensing that were

systematically later than near-surface estimates. For the other

phenological transitions (SOS, MOS, SOF, MOF, and EOF),

the statistical relationship between this bias and fractional

forest cover was not significant (p > 0.05).

Other researchers have explored the effect of vegetation

heterogeneity on measurements of albedo across multiple

sites (Cescatti et al., 2012), finding that more homogeneous

sites produced better agreement between scales. However

this study appears to be the first to document a linear corre-

lation between forest coverage and temporal bias in canopy

phenology between the organism and pixel scales, indicat-

ing a way that landscape characteristics may determine the

fidelity of satellite remote sensing measurements.

4.2 Comparison of PhenoCam curve fitting to visual

assessment and remote sensing in fall

In fall, variability between observers was smaller for the

dates of brightest fall colors and leaf abscission than for the

first signs of senescence (Table 2), indicating that fall colors

associated with the middle of senescence, and the eventual

loss of leaves, give the clearest visual indicators of fall phe-

nology. Estimates using peak RCC from near-surface images

matched visual assessments of the timing of leaf coloration

with similar RMSD to GCC-based estimates of the middle of

fall (Table 3), with peak RCC biased 3 days later and GCC

biased 2–6 days earlier.

We found that the statistical uncertainty in curve fit esti-

mates of fall dates was larger than that of spring dates (Ta-

ble 2). This may be caused by within-canopy heterogeneity,

with some trees senescing before others. This is exemplified

in Fig. 2 where some trees are in advanced stages of senes-

cence while others still have many green leaves. Integrating

all of these trees into a single region of interest tends to cause
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a longer, more drawn out transition in fall than in spring

(Fig. 3). This more gradual change leads to less well-defined

extrema in the curvature change rate in Eq. (7) of GCC

time series and greater statistical uncertainty in estimated

fall dates than spring dates. Based on this alone, we would

expect larger RMSD between camera- and satellite-derived

dates in fall than spring. On a larger scale, variation in species

composition and land cover type below the spatial resolu-

tion of MODIS also complicates the interpretation of NBAR-

EVI and NBAR-NDVI measurements in fall (Cescatti et al.,

2012; Dragoni and Rahman, 2012), similar to effects on near-

surface GCC and RCC (Richardson et al., 2009).

To more accurately study spatial variation in fall phenol-

ogy, and to further study the late spring bias in heterogeneous

forested landscapes reported above, digital photography from

cameras with larger fields of view, with ROIs that include

more plants and plant functional types, should be obtained

(Hufkens et al., 2012). Similarly, the use of multiple cameras

at a single site or multiple regions of interest in individual im-

ages (Richardson et al., 2009) could be used in combination

with mixture models that combine phenological information

from diverse plant functional types. In parallel, direct visual

assessments of organisms are needed to complement these

measurements, thereby supporting biological interpretation

of metrics derived from digital cameras and other sources of

time-series data.

4.3 Remote sensing phenology products

While the simple sigmoid approach used here with NBAR

data is identical to that used for the MCD12Q2 and MEA-

SURES products, each of these products is based on data

with different spatial resolution, leading to divergent results.

The MCD12Q2 algorithm does not use the spatial averag-

ing approach employed here, and therefore represents remote

sensing measurements associated with individual 500 m pix-

els. Consequently, the MCD12Q2 data are more suscepti-

ble to gridding artifacts of remote sensing measurements and

other sources of noise (see Fig. 1 in Xin et al., 2013). Spa-

tial averaging, which accounts for the values in neighboring

pixels, appears to improve the remote sensing representa-

tion of deciduous canopy phenology in comparison to near-

surface measurements: the simple sigmoid method applied to

MODIS NBAR data here yielded results with generally lower

RMSD and bias with respect to ground measurements, rela-

tive to the MCD12Q2 product (Tables 4 and 7). The larger

land area of measurements used to derive the MEASURES

phenology product also resulted in smaller biases with re-

spect to near-surface phenology dates than MCD12Q2, al-

though RMSDs were similar for spring and late fall phenol-

ogy (Table 6).

5 Conclusions

This study used near-surface digital repeat photography to

derive both visual assessment- and time-series-based esti-

mates of leaf phenology, over a broad geographic range

of temperate deciduous forests. To evaluate landscape-scale

phenology metrics from both satellite remote sensing and

near-surface metrics, a common framework of curve fitting

methods was applied to estimate phenophase transition dates

from both data sources. Results indicate that visual assess-

ment of the start of leaf-out in spring was very similar to es-

timates of the start of spring from curve fitting, and across the

jump in scale from near-surface to satellite remote sensing.

However in later spring, study sites with more heterogeneous

land cover exhibited greater differences between estimates of

phenology from near-surface and satellite remote sensing. In

particular, estimates of late spring phenology from satellite

remote sensing were biased later relative to near-surface es-

timates, with progressively larger bias for ecosystems with

lower fractional forest cover.

These results have broad implications for methods and

models that simulate or estimate ecosystem services that de-

pend on accurate monitoring of phenological events. For ex-

ample, remote sensing data are used to infer the phenology

of deciduous trees in ecosystem and earth system models

(Lawrence et al., 2011; Medvigy et al., 2009). If an artifi-

cially late end of spring is detected in regions with smaller

fractions of forest cover, this may lead to later attainment of

full photosynthetic capacity in the modeled canopy, resulting

in lower estimates of annual sums of net productivity in forest

ecosystems (Goulden et al., 1996; Richardson et al., 2012).

Near-surface imagery could be used in such ecosystems to

separate phenological signals of diverse land cover types, for

more accurate quantification of ecosystem services.

In addition to site heterogeneity, this study found that both

the analysis methods and data sources for phenological time

series affect the uncertainty associated with derived phenol-

ogy dates. Dates derived from NBAR-EVI had less statistical

uncertainty than dates calculated using NBAR-NDVI. Anal-

ysis methods with more flexibility for describing seasonal

variation in vegetation greenness, particularly a generalized

sigmoid method, resulted in lower uncertainty in estimated

dates and better agreement with visual assessment of canopy

phenology, demonstrating the importance of accurate func-

tional representation of phenological time series for identifi-

cation of phenophase transition dates.
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