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Abstract

Analysis of clinical trial specimens such as formalin-fixed
paraffin-embedded (FFPE) tissue for molecular mechanisms of
disease progression or drug response is often challenging and
limited to a few markers at a time. This has led to the increasing
importance of highly multiplexed assays that enable profiling of
many biomarkers within a single assay. Methods for gene expres-
sion analysis have undergone major advances in biomedical
research, but obtaining a robust dataset from low-quality RNA
samples, such as those isolated from FFPE tissue, remains a chal-
lenge. Here, we provide a detailed evaluation of the NanoString
Technologies nCounter platform, which provides a direct digital

readout of up to 800 mRNA targets simultaneously. We tested
this system by examining a broad set of human clinical tissues
for a range of technical variables, including sensitivity and
limit of detection to varying RNA quantity and quality, reagent
performance over time, variability between instruments, the
impact of the number of fields of view sampled, and differences
between probe sequence locations and overlapping genes
across CodeSets. This study demonstrates that Nanostring
offers several key advantages, including sensitivity, reproduc-
ibility, technical robustness, and utility for clinical application.
Cancer Res; 75(13); 2587–93. �2015 AACR.

Introduction
A key constraint of translational research within a clinical trial

setting is that there is often a limited amount of tissue fromwhich
to carry out biomarker analyses. Further, this tissue is frequently
archival and stored in formalin-fixed paraffin embedded (FFPE)
blocks. Traditional methods of gene expression analysis have
limitations for clinical application. For example, RT-PCR mea-
sures the expression of one gene at a time, whereas multiplex
expression profiling techniques such as microarrays, covering
many thousands of transcripts, are often expensive and lack
flexibility and reproducibility when evaluating low-quality RNA
samples such as those from FFPE (1–4). Platforms that enable
multiplexed analysis of biomarkers from limited amounts of
poor-quality material are therefore very attractive.

The Nanostring Technologies nCounter platform is a relatively
new technology and has been used within various clinical and
research applications (2–13). The automated nCounter platform
hybridizes fluorescent barcodes directly to specific nucleic acid
sequences, allowing for the nonamplified measurement of up to
800 targets within one sample (1, 14). A number of papers have
shown that the Nanostring platform is comparable with other
technologies (11, 12, 14); however, these studies have not
assessed the limit of detection (LOD) and the robustness of the
platform,which is essential when evaluating precious clinical trial
samples.

We present a comprehensive evaluation of the nCounter plat-
formanalyzing all technical variables to establish the utility of this
platform for multiplexed gene expression analysis of clinical
tumor samples. We investigated platform robustness with a range
of clinical test samples, assessed a number of protocol variables,
and evaluated the sensitivity and specificity of the platform when
using low input and/or quality RNA test samples. We analyzed a
wide range of tumor tissue types, including diffuse large B-cell
lymphoma (DLBCL), gastric, lung, breast, pancreas, melanoma,
xenograft, and blood with similar observations. We find the
nCounter platform favorable over other techniques based upon
sensitivity, technical reproducibility, robustness, ease of use,
hands-on analysis time, and utility for clinical application.

Materials and Methods
nCounter specifics

Probe sequences were custom designed and manufactured
by NanoString, unless otherwise specified. Gene names were
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anonymized due to confidentiality restraints and lack of rele-
vance to the purpose of this article. Each CodeSet includes a
number of housekeeping genes to correct for RNA input
amount and/or quality differences. Housekeeping genes were
selected from publicly available databases based on stability
and detectable expression levels across the tissue type of inter-
est. Generated data went through an internal QC process and
choice of housekeeping genes refined if necessary. While one
CodeSet contained four housekeeping genes, all others con-
tained a minimum of eight.

Protocol was followed according to standard nCounter instruc-
tions, with the exception of the creation of a master-mix contain-
ing hybridization buffer, Reporter ProbeSet andCapture ProbeSet
(volume:volume ratio of 1:1:0.5), of which 25 mL was added to
5 mL target RNA. A pre-prepared master-mix resulted in a more
efficient workflow when setting up multiple cartridges. No det-
rimental effect was observed on the data using this amendment in
the protocol instructions as assessed over a large number of
CodeSets and sample numbers (data not shown).

GEN2 Prep Station incubation time was set at the higher
sensitivity setting (3 hours) and 280 fields of view (FOV) were
routinely captured, unless otherwise noted.

All assays described in this article are currently identified as
research use only.

Cell lines and reference RNA
The DLBCL cell line SU-DHL-10 was purchased from Cam-

bridge Enterprise (DSMZ) in 2010, andHBL-1 was obtained from
ProfessorMasafumi Abe (FukushimaMedical University, Fukush-
ima, Japan), under license from Tokyo Medical and Dental
University, Tokyo, Japan. NCI-H520 cells were obtained from
the ATCC. All cell lines were tested for authenticity by genotyping
prior to use. Cells were maintained in 5% CO2 at 37�C and
cultured in RPMI supplemented with 10% to 15% FBS and 1%
L-glutamine. Universal Human Reference RNA (UHR) was pur-
chased from Stratagene (catalog #75000-41).

Clinical samples
Commercially available DLBCL tissue samples were purchased

fromOriGene. A number ofmatching samples were included and
designated as Fresh (RNA extracted fresh by OriGene), frozen
(tissue snap frozen in liquid nitrogen) and FFPE (tissue fixed in
formalin).

Other clinical samples (prostate, gastric, and lung FFPE) were
purchased from Avaden Biosciences, Asterand, acquired through
our alliance with Manchester Cancer Research Centre, UK, or
procured through our local UK BioBank.

All required consents for these exploratory analyses were
obtained for all clinical material samples. Prior to processing,
each sample was reviewed by an internal certified pathologist to
confirm disease diagnoses and to verify tumor content. Macro-
dissection of FFPE tissues ensured that only tumor regions were
analyzed in downstream applications.

RNA extraction
Cell lines and frozen tissues were extracted using the RNeasy kit

(Qiagen), and tissues were homogenized using the Tissue Lyser II
system (Qiagen). FFPE tissues were extracted using the RNeasy
FFPE extraction kit (Qiagen). RNA quantity and quality were
assessed by Nanodrop 2000 and RNA 6000 Nano Kit (Agilent),

respectively. Protocols were followed according to the manufac-
turer's instructions. Choice of extraction kit was extensively eval-
uated separately (data not shown).

Analysis
nCounter data were normalized through an internally

developed Pipeline Pilot Tool (NAPPA, publicly available on
the Comprehensive R Archive Network, CRAN, Harbron &
Wappett (2014) R package: NAPPA http://CRAN.R-project.org/
package¼NAPPA).

In brief, data were log2 transformed after being normalized in
two steps: raw NanoString counts were first background adjusted
with a Truncated Poisson correction using internal negative con-
trols followedby a technical normalization using internal positive
controls. Data were then corrected for input amount variation
through a Sigmoid shrunken slope normalization step using the
mean expression of housekeeping genes. A transcript was desig-
nated as not detected if the raw countwas below the average of the
8 internal negative control raw counts plus 2 SDs reflecting
approximately a 95% confidence interval. Transcripts below the
LOD were not adjusted to background but kept their original
values. We included data points below the LOD in most of our
plots but omitted them from the analysis where appropriate,
because we see merit in using these data points for certain data
analyses (e.g., gene signature scores).

Results
Evaluation of platform-associated variables

The nCounter platform consists of two instruments, the Prep
Station, a liquid handling robot that performs the purification of
the hybridized complexes and their immobilization onto the
surface of a cartridge, and the Digital Analyzer (DA), a scanner
that identifies and counts the barcodes captured for each sample.
The Prep Station processes 12 samples per run and loads them
into a 12-lane cartridge. The DA can hold 6 cartridges and
measures the number of FOV at four settings: 25, 100, 280, and
555. The total hands-on time for 12 reaction samples is approx-
imately 15 minutes, and the remainder of the protocol is a fully
automated process. In order to apply optimal settings in evalu-
ating test sample variables, we started with testing variability
inherent to the platform.

FOV settings. First, we investigated which one of the four FOV
settings generates themost reproducible data. Supplementary Fig.
S1A shows the mean SD calculated across three, independent,
fresh clinical DLBCL samples. Genes were grouped arbitrarily
according to their expression level into three categories containing
equal numbers of high, medium, or low expressing genes. The
same cartridge was rescanned at 25, 100, 280, and 555 FOVs on
the DA. As expected, variability is highest for the lowest expressed
genes (<1 SD) and reduced systematically with an increasing
number of FOVs captured. Only a minimal improvement was
observed when reading samples at the highest setting of 555 FOV
compared with 280 FOV. Therefore, 280 FOV was chosen as the
optimal setting for subsequent experiments due to the added
benefit of reduced scanning time compared with 555 FOV.

Cartridge lanes and digital analyzer slots. Fading of signal due to
scanning at 280 FOV reduced raw data counts on average by
26.8% per gene after 10 scans. The internal top positive control
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top also reflected this with a decreased raw count of 2.5% on
average per scan (Supplementary Fig. S1B). Although the nor-
malized log2 values were minimally affected, we wanted to avoid
any impact of this small but significant variable on the outcomeof
the data. Therefore, cartridge lane-to-lane variability and DA
slot-to-slot variability were determined at the lowest FOV setting
of 25. Supplementary Fig. S1C shows the variability of a repre-
sentative high and low expressing gene from a Universal Human
Reference RNA (UHR) sample replicated across the 12 lanes of a
cartridge and read in the 6 slots of the DA. The variability of a
high expressed gene was extremely low, and although vari-
ability increased with a lower expressed gene, it remained low
(log2 SD < 0.5) between cartridge lanes and DA slots. It was
concluded that using different lanes on a cartridge and different
slots on the DA does not introduce significant bias to the data.

Prep station. In order to meet clinical trial throughput demand,
we investigated whether prepping cartridges across two differ-
ent GEN2 Prep stations would add variability to the data. Based
on independent replicates of a UHR sample across two GEN2
Prep stations, the coefficient of variation (CoV) was determined
to be lower between Prep stations (4.67%) than within Prep
stations (10.01%). There was also no evidence of a systematic
trend when calculating the mean SD between all replicates
(Supplementary Table S1). Taken together, these data suggest
that no significant variability is introduced by using two dif-
ferent GEN2 Prep stations within the same laboratory, and
daily throughput can therefore be increased by using both Prep
stations simultaneously. However, random sample distribution
across cartridges is the best practice to reduce any sources of
systematic variability.

Technical reproducibility was also compared between a GEN1
(FOV setting 600) and GEN2 (FOV setting 280) Prep Station
based in two different laboratories and showed good correlation
of results (Supplementary Fig. S1D).

Evaluation of sample-associated variables
Having established the robustness of the nCounter and iden-

tified optimal conditions, we investigated data reproducibility
and platform sensitivity in a range of tumor samples.

Technical and biologic replicates. Technical variability between
identical samples was assessed on two main variables: hybridiza-
tion timing (replicates processed on the same day on the same
cartridge vs. different days) and sample quality (FFPE tissue, poor;
fresh-frozen tissue, good). Matched DLBCL samples were ran-
domized on cartridges across the two variables. Figure 1A illus-
trates that no difference in technical reproducibility could be
detected between hybridization timing or samples of different
quality as measured by the absolute difference between replicate
samples (hybridization timings grouped together, no difference
seen). On average, the R2 score was greater than 0.98 for all
variables tested (not shown).

Biologic sample replicates were assessed using a gastric tissue
sample set. RNA was extracted from two sections that were 5 to
10 mm apart within the tumor block, and NanoString gene
expression profiles were generated. Overall, good correlation
was seen between sections from the same tumor with a mean
intrasample CoV of 6.47%, which was lower than the mean
intersample CoV of 12.09%. R2 scores ranged from 0.33 to 0.70
for intersample correlations and 0.59 to 0.93 for intrasample

correlations (Table 1), demonstrating the ability of NanoString
to discern differences in gene expression between different
tumor samples, beyond those arising from biologic variability
within a sample.

As expected, these results show that, in general, biologic var-
iability between samples is far greater than technical variability.

Sample quality. One of the key advantages of the NanoString
technology is the absence of an amplification step and direct
measurement of target molecules, thus avoiding any bias. This
makes it an attractive platform to evaluate degraded mRNA such
as that extracted from FFPE samples, which are often obtained
from clinical trial investigations. Therefore, mRNA expression
levels between matching fresh, frozen, and FFPE sample types
were compared.

Five matching DLBCL tissue samples were analyzed, and
only a minimal difference was observed between matching
fresh and frozen samples compared with matching fresh and
FFPE samples based on the absolute difference of the replicates
(Fig. 1B). Clustering analysis confirmed that fresh and frozen
tissues correlated better than fresh and FFPE tissues for 4 of 5
matching samples. All matching tissues clustered together as
expected (Supplementary Fig. S2). Encouragingly, the differ-
ence in matching fresh and frozen replicates was comparable
with that seen with technical replicates. The quantitative cor-
relation was also very robust (11), demonstrating that the
nCounter platform can generate high-quality data on FFPE
material to enable clinically relevant mRNA gene expression
studies. Numerous other publications have independently
confirmed this conclusion (1–4).

Sample quantity.Next, we compared the optimal input amount
of fresh versus FFPE tissue in a titration experiment and showed
that equivalent data could be generated from 100-ng good-
quality mRNA (RIN >8.6) versus 400-ng poor quality RNA
(RIN < 2.4) based on the detection level (Fig. 2A). Following on
from this, we determined the minimum input amount of FFPE
material required to get the most data from clinical samples.
Based on the previous observation, RNA input was started at
the more practical amount of 100 ng titrating down in 2-fold
steps. As shown in Fig. 2A, this starting amount is only mar-
ginally compromised for genes at the lowest expression level
compared with a fresh sample (on average 5% increase in genes
below the LOD). Figure 2B (top) illustrates the number of
genes that fall below the LOD relative to the 100-ng input
sample. Although genes at the lowest expression level were
most affected, it was surprising to see that even at an input RNA
amount of 6.25 ng, the more highly expressed genes remained
unaffected and correlations were still good (Fig. 2B, bottom).
Depending on the expression level of the genes of interest
present in the CodeSet, the acceptable amount of input RNA
for a FFPE sample can be much lower than 100 ng based on
these results.

Another way of improving results for samples with a com-
promised quantity and/or quality is to concentrate them (e.g.,
with vacuum, precipitation, or column technology) in order to
increase the input amount. However, this process often results
in a total yield reduction without improving the final concen-
tration (data not shown), which is not acceptable when dealing
with precious clinical trial samples. We investigated whether we
could increase the fixed input volume of 5 mL up to 15 mL using
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1 mL increments (30 mL up to 45 mL final hybridization volume)
in order to increase the input amount and showed no detri-
mental effect on correlation (Supplementary Fig. S3). Having
repeated this result with another CodeSet (consisting of 770
genes), we feel confident the input volume can be increased
from 5 mL up to 10 mL, thus allowing a 2-fold increase in the
input RNA amount potentially increasing the number of genes
above the LOD.

Other parameters evaluated
Cartridge stability. To determine the length of time a prepped
cartridge can be stored at 4�C, we rescanned a cartridge four
times over a 9-month period at 280 FOV. The largest effect on
raw endogenous gene counts (down 67%) and captured FOVs
(down 38%) occurred in the first 4 months of storage (Sup-
plementary Fig. S4A), caused most likely by damaged reporters
and slight warping of the cartridge. The effect stabilized over the

next 5 months tested. The NAPPA normalization tool corrects
for the number of FOV captured, and although the effect
seemed significant on the raw data counts, normalization all
but erased this effect with an R2 score of 0.965 between data
obtained on the first read (month 0) versus the last read
(month 9; Supplementary Fig. S4B). Although good-quality
data can be obtained from a cartridge stored for at least 9
months at 4�C, optimal data with minimal loss of low abun-
dance genes are obtained in the first 3 months after cartridge
preparation.

CodeSet stability. CodeSet stability beyond its expiry date was
investigated next. Supplementary Fig. S5A shows the correlation
plot of 6 independent fresh DLBCL clinical tissue samples tested
with a 30 gene CodeSet 3.5 years after its manufacture. Some
variability was noted with genes under or close to the LOD
(addressed in more detail in "Technical and biologic replicates").

© 2015 American Association for Cancer Research
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Figure 1.
A, box plots showing technical
replicate difference for samples of
low quality (FFPE) and high quality
(FRESH). A total of 287 genes were
ranked on expression level and
divided in equal groups of low,
medium, or high expression for both
sample categories. Input RNA FFPE,
400 ng; fresh, 100 ng clinical DLBCL
matching samples. Maximum
absolute difference (of normalized
log2 count) between four technical
replicates calculated; summary of
three samples shown for each
expression level category. Gene
designated below LOD if 3 or 4
samples out of four replicates were
not detected. Data were normalized
against 33 housekeeping genes.
Expression, expression level of genes;
count, number of genes; mean, mean
absolute log2 difference. B, box plots
showing comparison of matching
clinical DLBCL fresh vs. frozen and
fresh vs FFPE tissues. A total of 287
genes were ranked on expression
level and divided in equal groups of
low, medium, or high expression for
both categories. Input RNA FFPE,
400 ng; fresh and frozen, 100 ng. The
absolute difference (of normalized
log2 count) between matching
samples was calculated; summary of
5 samples is shown for each
expression level category. Gene
designated below LOD if one or both
replicates were not detected. Data
were normalized against 33
housekeeping genes. Expression,
expression level of genes; count,
number of genes; mean, mean
absolute log2 difference.
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This limited dataset suggests that aCodeSet is stable for at least 1.5
years after its stated expiry date.

Freeze–thawing of CodeSet. The number of freeze/thaw cycles a
CodeSet could undergo before data were adversely affected was
also assessed. An identical UHR sample was used in triplicate
(from aliquots) for each freeze/thaw cycle. A CodeSet consisting
of 463 genes was allowed to thaw to room temperature for 20
minutes, used, and refrozen at �80�C for 1 hour before com-
mencing the next freeze/thaw cycle. Defrosting the original Code-
Set aliquot was designated the first freeze/thaw cycle. The total
difference in hybridization time between the first and fourth
freeze/thaw cycles was 5 hours (range, 22–27 hours). Although

the effect of a difference in total hybridization time has not been
formally assessed, it is not likely tohave a significant impact on the
data as shown earlier when assessing variability between identical
technical replicate samples. The results showed that, on average, a
reduction of just under 10% in rawdata gene countswas seen after
4 freeze/thaw cycles (increasing from 1.2% to 2.9% to 9.3% after
each freeze/thaw cycle). Low abundance genes are most affected
and as a consequence some fall below the LOD after four freeze/
thaw cycles, but no impact on overall correlation was seen after
normalization with an R2 score of 0.99 (Supplementary Fig. S5B).
After repeating the experiment using a different codeset, we
concluded that at least one freeze/thaw cycle of a CodeSet is
acceptable.

Table 1. Biologic replicate R2 scores for two adjacent samples for each of 6 gastric FFPE samples with a CodeSet consisting of 498 genes

R2 S1 (A) S2 (A) S3 (A) S4 (A) S5 (A) S6 (A)

S1 (B) 0.93 0.42 0.44 0.67 0.60 0.61
S2 (B) 0.35 0.93 0.35 0.46 0.36 0.44
S3 (B) 0.55 0.54 0.59 0.61 0.46 0.53
S4 (B) 0.69 0.41 0.46 0.84 0.70 0.47
S5 (B) 0.55 0.33 0.34 0.67 0.70 0.36
S6 (B) 0.60 0.52 0.45 0.51 0.41 0.88

NOTE: Input RNA amount was 100 ng; genes below LOD were omitted from analysis. Values in black box indicate intrapatient correlation; other values indicate
interpatient correlation.
Abbreviations: S1 (A), sample 1 block A; S1 (B), sample 1 block B, etc.

© 2015 American Association for Cancer Research
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A, titration of RNA input amount using two matching pairs of FFPE (top) and fresh (bottom) DLBCL tissues. The percentage of genes above the LOD versus below
the LOD is illustrated from a CodeSet consisting of 320 genes, including 33 housekeeping genes. B, titration of RNA input amount down in 2-fold steps from
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Overlapping genes in different CodeSets. When data were com-
pared from identical samples across differentCodeSets (regardless
of whether these were identical or not) containing overlapping
target genes, we noticed a systematic shift of data in the same
direction and some loss in correlation for the majority of genes.
Not surprisingly, variability was greatest for genes below the LOD
and for geneswith nonidentical probe sequences (Supplementary
Fig. S6). Unusually one gene with identical probe sequences was
also identified as an outlier in the majority of samples investi-
gated. This latter observation may warrant designing multiple
probes to genes of high interest, although the shift in data and loss
in correlation can be minimized by calibrating using one or more
reference samples replicated against both CodeSets and directly
comparing fold changes rather than absolute expression values.

Discussion
Anumber of studies performed to test nCounter platform– and

test sample–associated variables have shown excellent robustness
and reproducibility. The sensitivity of target detection remained
impressive even at very low input RNA amounts and without the
need for an amplification step. In instances where technical
variables affected raw counts, these were negated by the NAPPA
normalization tool. The main consequence of compromised
sample quality, quantity, or processes was that lower expressed
genes fell below the LOD, but even this was very minor in most
cases.

We found the practical aspect of using the nCounter platform
favorable over any other technique used (11) with minimal time
needed and reduced margin for user error due to few handling
steps during the preparation of reactions. The processing of
cartridges with a maximum of 36 samples processed per Prep
Station in one (10 hours) working day, improved to 72 samples a
day when using two Prep Stations concurrently, is still a bottle-
neck. A method for increasing throughput utilizing a new sample
plexing CodeSet configuration currently in development atNano-
String is expected to improve this.

Careful CodeSet calibration consideration is necessary when
test samples demand the use of more than one batch of CodeSet.

Although we have shown that CodeSet batch effects are minimal,
when directly comparing absolute gene expression values, the
choice of your calibration sample(s) and calculation method for
determining gene correction factors can influence the outcome of
the data.

Designing probe sequences demands careful consideration in
order to obtain the most accurate data. NanoString's default
probes are designed to regions that favor hybridization efficiency
rates, but it is important to confirm that the target region is
expressed in the tissue, disease (preclinical and clinical), and
isoform of interest, avoiding highly variable untranslated regions
(often not expressed in cancer) and pseudogenes.

Other applications of the nCounter technology not covered
here that warrant further evaluation are gene fusions (3, 12),
miRNA (15), CNV (16), and protein analysis (17). Overall, this
study demonstrates that nCounter technology offers several key
advantages, including sensitivity, technical reproducibility, and
robustness for analysis of FFPE samples and strong evidence of
utility of the nCounter for mRNA gene expression analysis in
clinical tissue.
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