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Abstract

While deep neural networks have become the go-to ap-

proach in computer vision, the vast majority of these models

fail to properly capture the uncertainty inherent in their pre-

dictions. Estimating this predictive uncertainty can be cru-

cial, for example in automotive applications. In Bayesian

deep learning, predictive uncertainty is commonly decom-

posed into the distinct types of aleatoric and epistemic

uncertainty. The former can be estimated by letting a

neural network output the parameters of a certain prob-

ability distribution. Epistemic uncertainty estimation is

a more challenging problem, and while different scalable

methods recently have emerged, no extensive comparison

has been performed in a real-world setting. We there-

fore accept this task and propose a comprehensive eval-

uation framework for scalable epistemic uncertainty esti-

mation methods in deep learning. Our proposed frame-

work is specifically designed to test the robustness required

in real-world computer vision applications. We also ap-

ply this framework to provide the first properly extensive

and conclusive comparison of the two current state-of-the-

art scalable methods: ensembling and MC-dropout. Our

comparison demonstrates that ensembling consistently pro-

vides more reliable and practically useful uncertainty es-

timates. Code is available at https://github.com/

fregu856/evaluating_bdl.

1. Introduction

Deep Neural Networks (DNNs) have become the stan-

dard paradigm within most computer vision problems due

to their astonishing predictive power compared to previ-

ous alternatives. Current applications include many safety-

critical tasks, such as street-scene semantic segmenta-

tion [10, 6, 51], 3D object detection [42, 28] and depth com-

pletion [45, 32]. Since erroneous predictions can have dis-

astrous consequences, such applications require an accurate

measure of the predictive uncertainty. The vast majority

of these DNN models do however fail to properly capture

the uncertainty inherent in their predictions. They are thus

not fully capable of the type of uncertainty-aware reasoning

that is highly desired e.g. in automotive applications.

The approach of Bayesian deep learning aims to address

this issue in a principled manner. Here, predictive uncer-

tainty is commonly decomposed into two distinct types,

which both should be captured by the learned DNN [12, 25].

Epistemic uncertainty accounts for uncertainty in the DNN

model parameters, while aleatoric uncertainty captures in-

herent and irreducible data noise. Input-dependent aleatoric

uncertainty about the target y arises due to e.g. noise and

ambiguities inherent in the input x. This is present for in-

stance in street-scene semantic segmentation, where image

pixels at object boundaries are inherently ambiguous, and

in 3D object detection where the location of a distant object

is less certain due to noise and limited sensor resolution.

In many computer vision applications, this aleatoric uncer-

tainty can be effectively estimated by letting a DNN directly

output the parameters of a certain probability distribution,

modeling the conditional distribution p(y|x) of the target

given the input. For classification tasks, a predictive cate-

gorical distribution is commonly realized by a softmax out-

put layer, although recent work has also explored Dirichlet

models [14, 41, 34]. For regression, Laplace and Gaussian

models have been employed [23, 9, 25, 27].

Directly predicting the conditional distribution p(y|x)
with a DNN does however not capture epistemic uncer-

tainty, as information about the uncertainty in the model

parameters is disregarded. This often leads to highly con-

fident predictions that are incorrect, especially for inputs

x that are not well-represented by the training distribu-

tion [17, 27]. For instance, a DNN can fail to general-

ize to unfamiliar weather conditions or environments in

automotive applications, but still generate confident pre-

dictions. Reliable estimation of epistemic uncertainty is

thus of great importance. However, this task has proven

to be highly challenging, largely due to the vast dimen-

sionality of the parameter space, which renders standard
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Figure 1: We propose a comprehensive evaluation framework for scalable epistemic uncertainty estimation methods in deep

learning. The proposed framework employs state-of-the-art DNN models on the tasks of depth completion and street-scene

semantic segmentation. All models are trained exclusively on synthetic data (the Virtual KITTI [11] and Synscapes [49]

datasets). We here show the input (left), prediction (center) and estimated predictive uncertainty (right) for ensembling with

M = 8 ensemble members, on both synthetic and real (the KITTI [15, 45] and Cityscapes [10] datasets) example validation

images. Black pixels correspond to minimum predictive uncertainty, white pixels to maximum uncertainty.

Bayesian inference approaches intractable. To tackle this

problem, a wide variety of approximations have been ex-

plored [38, 22, 4, 48, 7, 21, 47], but only a small number

have been demonstrated to be applicable even to the large-

scale DNN models commonly employed in real-world com-

puter vision tasks. Among such scalable methods, MC-

dropout [12, 25, 24, 36] and ensembling [27, 9, 23] are

clearly the most widely employed, due to their demon-

strated effectiveness and simplicity. While scalable tech-

niques for epistemic uncertainty estimation recently have

emerged, the research community however lacks a common

and comprehensive evaluation framework for such meth-

ods. Consequently, both researchers and practitioners are

currently unable to properly assess and compare newly pro-

posed methods. In this work, we therefore accept this task

and set out to design exactly such an evaluation framework,

aiming to benefit and inspire future research in the field.

Previous studies have provided only partial insight into

the performance of different scalable methods for epistemic

uncertainty estimation. Kendall and Gal [25] evaluated MC-

dropout alone on the tasks of semantic segmentation and

monocular depth regression, providing mainly qualitative

results. Lakshminarayanan et al. [27] introduced ensem-

bling as a non-Bayesian alternative and found it to generally

outperform MC-dropout. Their experiments were however

based on relatively small-scale models and datasets, limit-

ing the real-world applicability. Ilg et al. [23] compared en-

sembling and MC-dropout on the task of optical-flow esti-

mation, but only in terms of the AUSE metric which is a rel-

ative measure of the uncertainty estimation quality. While

finding ensembling to be advantageous, their experiments

were also limited to a fixed number (M = 8) of ensemble

members and MC-dropout forward passes, not allowing a

completely fair comparison. Ovadia et al. [43] also fixed

the number of ensemble members, and moreover only con-

sidered classification tasks. We improve upon this previous

work and propose an evaluation framework that actually en-

ables a conclusive ranking of the compared methods.

Contributions We propose a comprehensive evaluation

framework for scalable epistemic uncertainty estimation

methods in deep learning. The proposed framework is

specifically designed to test the robustness required in real-

world computer vision applications, and employs state-of-

the-art DNN models on the tasks of depth completion (re-

gression) and street-scene semantic segmentation (classifi-

cation). It also employs a novel combination of quantitative

evaluation metrics which explicitly measures the reliabil-

ity and practical usefulness of estimated predictive uncer-

tainties. We apply our proposed framework to provide the

first properly extensive and conclusive comparison of the

two current state-of-the-art scalable methods: ensembling

and MC-dropout. This comparison demonstrates that en-

sembling consistently outperforms the highly popular MC-

dropout method. Our work thus suggests that ensembling



should be considered the new go-to approach, and encour-

ages future research to understand and further improve its

efficacy. Figure 1 shows example predictive uncertainty es-

timates generated by ensembling. Our framework can also

directly be applied to compare other scalable methods, and

we encourage external usage with publicly available code.

In our proposed framework, we predict the conditional

distribution p(y|x) in order to estimate input-dependent

aleatoric uncertainty. The methods for epistemic uncer-

tainty estimation are then compared by quantitatively eval-

uating the estimated predictive uncertainty in terms of the

relative AUSE metric and the absolute measure of uncer-

tainty calibration. Our evaluation is the first to include both

these metrics, and furthermore we apply them to both re-

gression and classification tasks. To provide a deeper and

more fair analysis, we also study all metrics as functions

of the number of samples M , enabling a highly informa-

tive comparison of the rate of improvement. Moreover, we

simulate challenging real-world conditions found e.g. in au-

tomotive applications, where robustness to out-of-domain

inputs is required to ensure safety, by training our models

exclusively on synthetic data and evaluating the predictive

uncertainty on real-world data. By analyzing this important

domain shift problem, we significantly increase the prac-

tical applicability of our evaluation. We also complement

our real-world analysis with experiments on illustrative toy

regression and classification problems. Lastly, to demon-

strate the evaluation rigor necessary to achieve a conclusive

comparison, we repeat each experiment multiple times and

report results together with the observed variation.

2. Predictive Uncertainty Estimation using

Bayesian Deep Learning

DNNs have been shown to excel at a wide variety of su-

pervised machine learning problems, where the task is to

predict a target value y ∈ Y given an input x ∈ X . In

computer vision, the input space X often corresponds to

the space of images. For classification problems, the target

space Y consists of a finite set of C classes, while a regres-

sion problem is characterized by a continuous target space,

e.g. Y = R
K . For our purpose, a DNN is defined as a

function fθ : X → U , parameterized by θ ∈ R
P , that maps

an input x ∈ X to an output fθ(x) ∈ U . Next, we cover

alternatives for estimating both the aleatoric and epistemic

uncertainty in the predictions of DNN models.

Aleatoric Uncertainty In classification problems,

aleatoric uncertainty is commonly captured by predicting

a categorical distribution p(y|x, θ). This is implemented by

letting the DNN predict logit scores fθ(x) ∈ R
C , which are

then normalized by a Softmax function,

p(y|x, θ) = Cat(y; sθ(x)),

sθ(x) = Softmax(fθ(x)).
(1)

Given a training set of i.i.d. sample pairs D = {X,Y } =
{(xi, yi)}Ni=1, (xi, yi) ∼ p(x, y), the data likelihood is ob-

tained as p(Y |X, θ) =
∏N

i=1 p(yi|xi, θ). The maximum-

likelihood estimate of the model parameters, θ̂MLE,

is obtained by minimizing the negative log-likelihood

−∑
i log p(yi|xi, θ). For the Categorical model (1), this

is equivalent to minimizing the well-known cross-entropy

loss. At test time, the trained model predicts the distribution

p(y⋆|x⋆, θ̂MLE) over the target class variable y⋆, given a test

input x⋆. These DNN models are thus able to capture input-

dependent aleatoric uncertainty, by outputting less confi-

dent predictions for inherently ambiguous cases.

In regression, the most common approach is to let the

DNN directly predict targets, y⋆ = f
θ̂
(x⋆). The parame-

ters θ̂ are learned by minimizing e.g. the L2 or L1 loss over

the training dataset [42, 28]. However, such direct regres-

sion does not model aleatoric uncertainty. Instead, recent

work [23, 25, 27] has explored predicting the distribution

p(y|x, θ), similar to the classification case above. For in-

stance, p(y|x, θ) can be parameterized by a Gaussian distri-

bution [9, 27], giving the following model in the 1D case,

p(y|x, θ) = N
(
y;µθ(x), σ

2
θ(x)

)
,

fθ(x) = [µθ(x) log σ2
θ(x) ]

T ∈ R
2.

(2)

Here, the DNN predicts the mean µθ(x) and variance σ2
θ(x)

of the target y. The variance is naturally interpreted as

a measure of input-dependent aleatoric uncertainty. As in

classification, the model parameters θ are learned by mini-

mizing the negative log-likelihood −∑
i log p(yi|xi, θ).

Epistemic Uncertainty While the above models can cap-

ture aleatoric uncertainty, stemming from the data, they are

agnostic to the uncertainty in the model parameters θ. A

principled means to estimate this epistemic uncertainty is to

perform Bayesian inference. The aim is to utilize the pos-

terior distribution p(θ|D), which is obtained from the data

likelihood and a chosen prior p(θ) by applying Bayes’ the-

orem. The uncertainty in the parameters θ is then marginal-

ized out to obtain the predictive posterior distribution,

p(y⋆|x⋆,D) =

∫
p(y⋆|x⋆, θ)p(θ|D)dθ

≈ 1

M

M∑

i=1

p(y⋆|x⋆, θ(i)), θ(i) ∼ p(θ|D) .

(3)

Here, the generally intractable integral in (3) is approxi-

mated using M Monte Carlo samples θ(i), ideally drawn

from the posterior. In practice however, obtaining samples

from the true posterior p(θ|D) is virtually impossible, re-

quiring an approximate posterior q(θ) ≈ p(θ|D) to be used.

We thus obtain the approximate predictive posterior as,

p̂(y⋆|x⋆,D) ,
1

M

M∑

i=1

p(y⋆|x⋆, θ(i)), θ(i) ∼ q(θ) , (4)



6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4

(a)

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4

(b)

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4

(c)

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4

(d)

Figure 2: Toy regression problem illustrating the task of predictive uncertainty estimation with DNNs. The true data generator

p(y|x) is a Gaussian, where the mean is given by the solid black line and the variance is represented in shaded gray. The

predictive mean and variance are given by the solid red line and the shaded red area, respectively. (a) Training dataset with

N=1000 examples. (b) A DNN trained to directly predict the target y captures no notion of uncertainty. (c) A corresponding

Gaussian DNN model (2) trained via maximum-likelihood captures aleatoric but not epistemic uncertainty. (d) The Gaussian

model instead trained via approximate Bayesian inference (4) captures both aleatoric and epistemic uncertainty.

which enables us to estimate both aleatoric and epistemic

uncertainty of the prediction. The quality of the approxi-

mation (4) depends on the number of samples M and the

method employed for generating q(θ). Prior work on such

approximate Bayesian inference methods is discussed in

Section 3. For the Categorical model (1), p̂(y⋆|x⋆,D) =

Cat(y⋆; ŝ(x⋆)), ŝ(x⋆) = 1
M

∑M

i=1 sθ(i)(x⋆). For the Gaus-

sian model (2), p̂(y⋆|x⋆,D) is a uniformly weighted mix-

ture of Gaussian distributions. We approximate this mixture

with a single Gaussian, see Appendix A for details.

Illustrative Example To visualize and provide intuition

for the problem of predictive uncertainty estimation with

DNNs, we consider the problem of regressing a sinusoid

corrupted by input-dependent Gaussian noise,

y ∼ N
(
µ(x), σ2(x)

)
,

µ(x) = sin(x), σ(x) = 0.15(1 + e−x)−1.
(5)

Training data {(xi, yi)}1000i=1 is only given in the interval

[−3, 3], see Figure 2a. A DNN trained to directly pre-

dict the target y is able to accurately regress the mean for

x⋆ ∈ [−3, 3], see Figure 2b. However, this model does

not capture any notion of uncertainty. A corresponding

Gaussian DNN model (2) trained via maximum-likelihood

obtains a predictive distribution that closely matches the

ground truth for x⋆ ∈ [−3, 3], see Figure 2c. While cor-

rectly accounting for aleatoric uncertainty, this model gen-

erates overly confident predictions for inputs |x⋆| > 3 not

seen during training. Finally, the Gaussian DNN model

trained via approximate Bayesian inference (4), with a prior

distribution p(θ) = N (0, IP ) and M = 1000 samples

obtained via Hamiltonian Monte Carlo [39], is additionally

able to predict more reasonable uncertainties in the region

with no available training data, see Figure 2d.

3. Related Work

Here, we discuss prior work on approximate Bayesian

inference. We also note that ensembling, which is often

considered a non-Bayesian alternative, in fact can naturally

be viewed as an approximate Bayesian inference method.

Approximate Bayesian Inference The method em-

ployed for approximating the posterior q(θ) ≈ p(θ|D) =
p(Y |X, θ)p(θ)/p(Y |X) is a crucial choice, determining the

quality of the approximate predictive posterior p̂(y⋆|x⋆,D)
in (4). There exists two main paradigms for construct-

ing q(θ), the first one being Markov chain Monte Carlo

(MCMC) methods. Here, samples θ(i) approximately dis-

tributed according to the posterior are obtained by simu-

lating a Markov chain with p(θ|D) as its stationary dis-

tribution. For DNNs, this approach was pioneered by

Neal [38], who employed Hamiltonian Monte Carlo (HMC)

on small feed-forward neural networks. HMC entails per-

forming Metropolis-Hastings [35, 19] updates using Hamil-

tonian dynamics based on the potential energy U(θ) ,

− log p(Y |X, θ)p(θ). To date, it is considered a “gold

standard” method for approximate Bayesian inference, but

does not scale to large DNNs or large-scale datasets. There-

fore, Stochastic Gradient MCMC (SG-MCMC) [33] meth-

ods have been explored, in which stochastic gradients are

utilized in place of their full-data counterparts. SG-MCMC

variants include Stochastic Gradient Langevin Dynamics

(SGLD) [48], where samples θ(i) are collected from the

parameter trajectory given by the update equation θt+1 =

θt−αt∇θŨ(θt)+
√
2αtǫt, where ǫt ∼ N (0, 1) and ∇θŨ(θ)

is the stochastic gradient of U(θ). Save for the noise term√
2αtǫt, this update is identical to the conventional SGD

update when minimizing the maximum-a-posteriori (MAP)

objective − log p(Y |X, θ)p(θ). Similarly, Stochastic Gradi-

ent HMC (SGHMC) [7] corresponds to SGD with momen-

tum injected with properly scaled noise. Given a limited

computational budget, SG-MCMC methods can however

struggle to explore the high-dimensional and highly multi-

modal posteriors of large DNNs. To mitigate this problem,

Zhang et al. [53] proposed to use a cyclical stepsize sched-

ule to help escaping local modes in p(θ|D).
The second paradigm is that of Variational Inference
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Figure 3: Toy binary classification problem. (a) True data generator, red and blue represents the two classes. (b) Training

dataset with N=1040 examples. (c) “Ground truth” predictive distribution, obtained using HMC [39].

(VI) [22, 2, 16, 4]. Here, a distribution qφ(θ) parame-

terized by variational parameters φ is explicitly chosen,

and the best possible approximation is found by minimiz-

ing the Kullback-Leibler (KL) divergence with respect to

the true posterior p(θ|D). While principled, VI methods

generally require sophisticated implementations, especially

for more expressive variational distributions qφ(θ) [30, 31,

52]. A particularly simple and scalable method is MC-

dropout [13]. It entails using dropout [44] also at test time,

which can be interpreted as performing VI with a Bernoulli

variational distribution [13, 24, 36]. The approximate pre-

dictive posterior p̂(y⋆|x⋆,D) in (4) is obtained by perform-

ing M stochastic forward passes on the same input.

Ensembling Lakshminarayanan et al. [27] created a

parametric model p(y|x, θ) of the conditional distribution

using a DNN fθ, and learned multiple point estimates

{θ̂(m)}Mm=1 by repeatedly minimizing the MLE objective

− log p(Y |X, θ) with random initialization. They then av-

eraged over the corresponding parametric models to obtain

the following predictive distribution,

p̂(y⋆|x⋆) ,
1

M

M∑

m=1

p(y⋆|x⋆, θ̂(m)). (6)

The authors considered this a non-Bayesian alternative to

predictive uncertainty estimation. However, since the point

estimates {θ̂(m)}Mm=1 always can be seen as samples from

some distribution q̂(θ), we note that (6) is virtually identical

to the approximate predictive posterior in (4). Ensembling

can thus naturally be viewed as approximate Bayesian in-

ference, where the level of approximation is determined by

how well the implicit sampling distribution q̂(θ) approxi-

mates the posterior p(θ|D). Ideally, {θ̂(m)}Mm=1 should be

distributed exactly according to p(θ|D) ∝ p(Y |X, θ)p(θ).
Since p(Y |X, θ) is highly multi-modal in the parameter

space for DNNs [1, 8], so is p(θ|D). By minimizing

− log p(Y |X, θ) multiple times, starting from randomly

chosen initial points, we are likely to find different local op-

tima. Ensembling can thus generate a compact set of sam-

ples {θ̂(m)}Mm=1 that, even for small values of M , captures

this important aspect of multi-modality in p(θ|D).

4. Experiments

We conduct experiments both on illustrative toy re-

gression and classification problems (Section 4.1), and on

the real-world computer vision tasks of depth completion

(Section 4.2) and street-scene semantic segmentation (Sec-

tion 4.3). Our evaluation is motivated by real-world con-

ditions found e.g. in automotive applications, where ro-

bustness to varying environments and weather conditions

is required to ensure safety. Since images captured in these

different circumstances could all represent distinctly differ-

ent regions of the vast input image space, it is infeasible to

ensure that all encountered inputs will be well-represented

by the training data. Thus, we argue that robustness to out-

of-domain inputs is crucial in such applications. To sim-

ulate these challenging conditions and test the robustness

required for such real-world scenarios, we train all models

on synthetic data and evaluate them on real-world data. To

improve rigour of our evaluation, we repeat each experi-

ment multiple times and report results together with the ob-

served variation. A more detailed description of all results

are found in the Appendix (Appendix B.3, C.2, D.2). All

experiments are implemented in PyTorch [40].

4.1. Illustrative Toy Problems

We first present results on illustrative toy problems to

gain insights into how ensembling and MC-dropout fare

against other approximate Bayesian inference methods. For

regression, we conduct experiments on the 1D problem

defined in (5) and visualized in Figure 2. We use the

Gaussian model (2) with two separate feed-forward neu-

ral networks outputting µθ(x) and log σ2
θ(x). We evaluate

the methods by quantitatively measuring how well the ob-

tained predictive distributions approximate that of the “gold

standard” HMC [39] with M = 1000 samples and prior

p(θ) = N (0, IP ). We thus consider the predictive distri-

bution visualized in Figure 2d ground truth, and take as

our metric the KL divergence DKL(p ‖ pHMC) with re-

spect to this target distribution pHMC. For classification, we

conduct experiments on the binary classification problem

in Figure 3. The true data generator is visualized in Fig-

ure 3a, where red and blue represents the two classes. The
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Figure 4: Illustrative toy problems - example predictive distributions for ensembling and MC-dropout with M=16 samples.
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Figure 5: Illustrative toy problems - quantitative results.

The plots show the KL divergence (↓) between the predic-

tive distribution estimated by each method and the HMC

“ground truth”, for different number of samples M .

training dataset contains 520 examples of each class, and is

visualized in Figure 3b. We use the Categorical model (1)

with a feed-forward neural network. As for regression, we

quantitatively measure how well the obtained predictive dis-

tributions approximate that of HMC, which is visualized in

Figure 3c. Further details are provided in Appendix B.

Results A comparison of ensembling, MC-dropout, SGLD

and SGHMC in terms of DKL(p ‖ pHMC) is found in

Figure 5. The Adam optimizer [26] is here used for both

ensembling and MC-dropout. We observe that ensembling

consistently outperforms the compared methods, and MC-

dropout in particular. Even compared to SG-MCMC vari-

ants such as SGLD and SGHMC, ensembling thus provides

a better approximation to the MCMC method HMC. This

result is qualitatively supported by visualized predictive dis-

tributions found in Appendix B.5. Example predictive dis-

tributions for ensembling and MC-dropout with M=16 are

shown in Figure 4. We observe that ensembling provides

reasonable approximations to HMC even for quite small

values of M , especially compared to MC-dropout.

4.2. Depth Completion

In depth completion, we are given an image ximg ∈
R

h×w×3 from a forward-facing camera and an associated

sparse depth map xsparse ∈ R
h×w. Only non-zero pixels

of xsparse correspond to LiDAR depth measurements, pro-

jected onto the image plane. The goal is to predict a dense

depth map y ∈ R
h×w of the scene. We utilize the KITTI

depth completion [15, 45] and Virtual KITTI [11] datasets.

KITTI depth completion contains more than 80 000 images

ximg, sparse depth maps xsparse and semi-dense target maps

y. There are 1 000 selected validation examples, which we

use for evaluation. Only about 4% of the pixels in xsparse

are non-zero and thus correspond to depth measurements.

The semi-dense target maps are created by merging the Li-

DAR scans from 11 consecutive frames into one, producing

y in which roughly 30% of the pixels are non-zero. Vir-

tual KITTI contains synthetic images ximg and dense depth

maps xdense extracted from 5 driving sequences in a vir-

tual world. It contains 2 126 unique frames, of which there

are 10 different versions corresponding to various simulated

weather and lighting conditions. We take sequence 0002 as

our validation set, leaving a total of 18 930 training exam-

ples. We create targets y for training by setting all pixels

in xdense corresponding to a depth > 80m to 0, and then

also randomly sample 5% of the remaining non-zero pixels

uniformly to create xsparse. We use the DNN model pre-

sented by Ma et al. [32]. The inputs ximg, xsparse are sep-

arately processed by initial convolutional layers, concate-

nated and fed to an encoder-decoder architecture based on

ResNet34 [20]. We employ the Gaussian model (2) by du-

plicating the final layer, outputting both µ ∈ R
h×w and

log σ2 ∈ R
h×w instead of only the predicted depth map

ŷ ∈ R
h×w. We also employ the same basic training pro-

cedure as Ma et al. [32] to train all our models, see Ap-

pendix C.1 for details. For the MC-dropout comparison, we

take inspiration from Kendall et al. [24] and place a dropout

layer with drop probability p = 0.5 after the three last en-

coder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in terms

of the Area Under the Sparsification Error curve (AUSE)

metric, as introduced by Ilg et al. [23]. AUSE is a rel-

ative measure of the uncertainty estimation quality, com-

paring the ordering of predictions induced by the estimated

predictive uncertainty (sorted from least to most uncertain)

with the “oracle” ordering in terms of the true prediction er-

ror. The metric thus reveals how well the estimated uncer-

tainty can be used to sort predictions from worst (large true

prediction error) to best (small prediction error). We com-

pute AUSE in terms of Root Mean Squared Error (RMSE)

and based on all pixels in the entire evaluation dataset. A
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Figure 6: Depth completion - quantitative results. The plots show a comparison of ensembling and MC-dropout in terms of

AUSE, AUCE and RMSE on the KITTI depth completion validation dataset, for different number of samples M .

(a) Ensembling. (b) MC-dropout.

Figure 7: Depth completion - condensed calibration plots

for ensembling and MC-dropout with M = 16.

perfect AUSE score can however be achieved even if the

true predictive uncertainty is consistently underestimated.

As an absolute measure of uncertainty estimation quality,

we therefore also evaluate the methods in terms of cali-

bration [5, 46]. In classification, the Expected Calibration

Error (ECE) [17, 37] is a standard metric used to evalu-

ate calibration. A well-calibrated model should then pro-

duce classification confidences which match the observed

prediction accuracy, meaning that the model is not over-

confident (outputting highly confident predictions which are

incorrect), nor over-conservative. We here employ a metric

that can be considered a natural generalization of ECE to

the regression setting. Since our models output the mean

µ ∈ R and variance σ2 ∈ R of a Gaussian distribution for

each pixel, we can construct pixel-wise prediction intervals

µ ± Φ−1(p+1
2 )σ of confidence level p ∈]0, 1[, where Φ is

the CDF of the standard normal distribution. When comput-

ing the proportion of pixels for which the prediction interval

covers the true target y ∈ R, we expect this value, denoted

p̂, to equal p ∈]0, 1[ for a perfectly calibrated model. We

compute the absolute error with respect to perfect calibra-

tion, |p − p̂|, for 100 values of p ∈]0, 1[ and use the area

under this curve as our metric, which we call Area Under

the Calibration Error curve (AUCE). Lastly, we also evalu-

ate in terms of the standard RMSE metric.

Results A comparison of ensembling and MC-dropout in

terms of AUSE, AUCE and RMSE on the KITTI depth com-

pletion validation dataset is found in Figure 6. We observe

in Figure 6a that ensembling consistently outperforms MC-

dropout in terms of AUSE. However, the curves decrease as

a function of M in a similar manner. Sparsification plots

and sparsification error curves are found in Appendix C.3.

A ranking of the methods can be more readily conducted

based on Figure 6b, where we observe a clearly improving

trend as M increases for ensembling, whereas MC-dropout

gets progressively worse. This result is qualitatively sup-

ported by the calibration plots found in Appendix C.3 and

Figure 7. Note that M = 1 corresponds to the baseline of

only estimating aleatoric uncertainty.

4.3. Street-Scene Semantic Segmentation

In this task, we are given an image x ∈ R
h×w×3 from

a forward-facing camera. The goal is to predict y of size

h × w, in which each pixel is assigned to one of C dif-

ferent class labels (road, sidewalk, car, etc.). We utilize the

popular Cityscapes [10] and recent Synscapes [49] datasets.

Cityscapes contains 5 000 finely annotated images, mainly

collected in various German cities. The annotations in-

cludes 30 class labels, but only C = 19 are used in the

training of models. Its validation set contains 500 exam-

ples, which we use for evaluation. Synscapes contains

25 000 synthetic images, all captured in virtual urban envi-

ronments. To match the size of Cityscapes, we randomly

select 2 975 of these for training and 500 for validation.

The images are annotated with the same class labels as

Cityscapes. We use the DeepLabv3 DNN model presented

by Chen et al. [6]. The input image x is processed by a

ResNet101 [20], outputting a feature map of stride 8. The

feature map is further processed by an ASPP module and

a 1 × 1 convolutional layer, outputting logits at 1/8 of the

original resolution. These are then upsampled to image res-

olution using bilinear interpolation. The conventional Cat-

egorical model (1) is thus used for each pixel. We base our

implementation on the one by Yuan and Wang [51], and also

follow the same basic training procedure, see Appendix D.1

for details. For reference, the model obtains an mIoU [29]

of 76.04% when trained on Cityscapes and evaluated on its

validation set. For the MC-dropout comparison, we take in-

spiration from Mukhoti and Gal [36] and place a dropout

layer with p = 0.5 after the four last ResNet blocks.



1 2 4 8 16

0.20

0.22

0.24

0.26

M

A
U

S
E

Ensembling

MC-dropout

(a) AUSE (↓).

1 2 4 8 16
0.00

2.00

4.00

6.00

·10−2

M

E
C

E

Ensembling

MC-dropout

(b) ECE (↓).

1 2 4 8 16

40

41

42

43

44

M

m
Io

U
[%

]

Ensembling

MC-dropout

(c) mIoU (↑).

Figure 8: Street-scene semantic segmentation - quantitative results. The plots show a comparison of ensembling and MC-

dropout in terms of AUSE, ECE and mIoU on the Cityscapes validation dataset, for different number of samples M .

(a) Ensembling. (b) MC-dropout.

Figure 9: Street-scene semantic segmentation - example re-

liability diagrams for the two methods with M = 16.

Evaluation Metrics As for depth completion, we evaluate

the methods in terms of the AUSE metric. In this classifi-

cation setting, we compare the “oracle” ordering of predic-

tions with the one induced by the predictive entropy. We

compute AUSE in terms of Brier score and based on all

pixels in the evaluation dataset. We also evaluate in terms

of calibration by the ECE metric [17, 37]. All predictions

are here partitioned into L bins based on the maximum as-

signed confidence. For each bin, the difference between the

average predicted confidence and the actual accuracy is then

computed, and ECE is obtained as the weighted average of

these differences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-dropout

in terms of AUSE, ECE and mIoU on the Cityscapes val-

idation dataset is found in Figure 8. We observe that the

metrics clearly improve as functions of M for both ensem-

bling and MC-dropout, demonstrating the importance of

epistemic uncertainty estimation. The rate of improvement

is generally greater for ensembling. For ECE, we observe

in Figure 8b a drastic improvement for ensembling as M is

increased, followed by a distinct plateau. According to the

condensed reliability diagrams in Appendix D.3, this cor-

responds to a transition from clear model over-confidence

to slight over-conservatism. For MC-dropout, the corre-

sponding diagrams suggest a stagnation while the model

still is somewhat over-confident. Example reliability dia-

grams for M = 16 are shown in Figure 9, in which this

over-confidence for MC-dropout can be observed. Note

that the relatively low mIoU scores reported in Figure 8c,

obtained by models trained exclusively on Synscapes, are

expected [49] and caused by the intentionally challenging

domain gap between synthetic and real-world data.

5. Discussion & Conclusion

We proposed a comprehensive evaluation framework for

scalable epistemic uncertainty estimation methods in deep

learning. The proposed framework is specifically designed

to test the robustness required in real-world computer vision

applications. We applied our proposed framework and pro-

vided the first properly extensive and conclusive compar-

ison of ensembling and MC-dropout, the results of which

demonstrates that ensembling consistently provides more

reliable and practically useful uncertainty estimates. We

attribute the success of ensembling to its ability, due to

the random initialization, to capture the important aspect of

multi-modality present in the posterior distribution p(θ|D)
of DNNs. MC-dropout has a large design-space compared

to ensembling, and while careful tuning of MC-dropout

potentially could close the performance gap on individual

tasks, the simplicity and general applicability of ensem-

bling must be considered key strengths. The main draw-

back of both methods is the computational cost at test time

that grows linearly with M , limiting real-time applicability.

Here, future work includes exploring the effect of model

pruning techniques [50, 18] on predictive uncertainty qual-

ity. For ensembling, sharing early stages of the DNN among

ensemble members is also an interesting future direction. A

weakness of ensembling is the additional training required,

which also scales linearly with M . The training of different

ensemble members can however be performed in parallel,

making it less of an issue in practice given appropriate com-

puting infrastructure. In conclusion, our work suggests that

ensembling should be considered the new go-to method for

scalable epistemic uncertainty estimation.
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