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Abstract

Background: Hepatocellular carcinoma (HCC) has limited treatment options in patients with advanced stage disease

and early detection of HCC through surveillance programs is a key component towards reducingmortality. The current

practice guidelines recommend that high-risk cirrhosis patients are screened every six months with ultrasonography

but these are done in local hospitals with variable quality leading to disagreement about the benefit of HCC

surveillance. The well-established diagnostic biomarker α-Fetoprotein (AFP) is used widely in screening but the

reported performance varies widely across studies. We evaluate two biomarker screening approaches, a six-month risk

prediction model and a parametric empirical Bayes (PEB) algorithm, in terms of their ability to improve the likelihood

of early detection of HCC compared to current AFP alone when applied prospectively in a future study.

Methods: We used electronic medical records from the Department of Veterans Affairs Hepatitis C Clinical Case

Registry to construct our analysis cohort, which consists of serial AFP tests in 11,222 cirrhosis control patients and 902

HCC cases prior to their HCC diagnosis. The six-month risk prediction model incorporates routinely measured

laboratory tests, age, the rate of change in AFP over the past year with the current AFP. The PEB algorithm incorporates

prior AFP screening values to identify patients with a significant elevated level of AFP at their current screen. We split

the analysis cohort into independent training and validation datasets. All model fitting and parameter estimation was

performed using the training data and the algorithm performance was assessed by applying each approach to

patients in the validation dataset.

Results: When the screening-level false positive rate was set at 10%, the patient-level true positive rate using current

AFP alone was 53.88% while the patient-level true positive rate for the six-month risk prediction model was 58.09%

(4.21% increase) and PEB approach was 63.64% (9.76% increase). Both screening approaches identify a greater

proportion of HCC cases earlier than using AFP alone.

Conclusions: The two approaches show greater potential to improve early detection of HCC compared to using the

current AFP only and are worthy of further study.
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Background
The incidence of hepatocellular carcinoma (HCC) in the

United States has tripled over the last twenty years; how-

ever, the prognosis of patients diagnosed with HCC has

remained poor with the five-year survival remaining less

than 12% [1]. Patients with advanced stage HCC have few

treatment options, with five-year survival between 0–10%,

while those with early stage HCC have multiple treatment

options (including surgical resection and liver transplan-

tation), with 5-year survival for patients receiving these

treatments > 60% [2]. Early detection of HCC through

surveillance programs is a key component in reducing

mortality.

The majority (80–90%) of HCC cases occur in patients

with cirrhosis. Targeted cancer surveillance programs

focus on those patients at high risk of disease and aim to

increase the likelihood of early detection of cancer, while

maintaining reasonable costs. The American Association

for the Study of Liver Diseases (AASLD) recommends

ultrasonography every six months in patients with cirrho-

sis [3]. The majority of surveillance ultrasounds in the

United States take place in local hospitals with variable

quality because ultrasonography is operator dependent,

not sensitive in detecting early lesions and difficult to

perform in obese patients. While ultrasonography has

greater than 90% specificity, the reported sensitivity varies

between 65–80%. Consequently there is disagreement in

the field about the benefit of surveillance since there has

been little evidence of improved survival in the few ran-

domized clinical trials conducted. Considerable research

has focused on developing highly sensitive standardized

biomarker screening tests to complement (or replace)

ultrasonography and provide motivation for HCC surveil-

lance. A potential approach needs through vetting prior

to being used in a prospective screening trial where the

algorithm is used to trigger additional diagnosis work-ups.

Serum α-Fetoprotein (AFP) is a well established diag-

nostic biomarker for HCC that is widely used in screening

despite the wide variation in its reported performance.

A population-based US cohort study found that among

HCC patients with a prior diagnosis of cirrhosis who

received regular surveillance, 52% received both ultra-

sonography and AFP, 46% received AFP alone and 2%

received ultrasonography alone [4]. A 2017 update of

the AASLD guidelines recommends surveillance using

ultrasonography, with or without AFP, every six months

[5]. The sensitivity for AFP varies between 41–65% and

the specificity between 80–95% in both diagnostic and

screening settings and across a range of study designs

when using a threshold of 20 ng/ml [6]. While other

FDA approved biomarkers exist, it is unlikely that any

other biomarker will be integrated into widespread HCC

surveillance practice in the United States in the near

future. Methods that improve the performance of the AFP,

which can be used independently and in conjunction with

ultrasonography, are critically needed in the short-term.

In this paper, we evaluate two approaches to improve

the performance of AFP screening. The first incorpo-

rates routinely measured laboratory tests for evaluating

the underlying liver disease of patients with cirrhosis and

the rate of change in AFP in a six-month risk prediction

model [7, 8]. The motivation behind this approach was

driven by several studies that have explored the associa-

tion between elevated AFP and other factors [9, 10]. In

particular, Richardson et al. [11] found that in patients

with no HCC, elevated AFP was associated with elevated

alanine aminotransferase (ALT). Adjusting for these fac-

tors could improve the specificity of AFP in HCC surveil-

lance. Since AFP is elevated in early stage HCC in only

a subset of cases, including laboratory tests that monitor

liver function could improve early detection of HCC.

The second approach is a parametric empirical Bayes

(PEB) screening algorithm. The PEB method was first

proposed by McIntosh & Urban [12] for cancer screen-

ing with a longitudinal biomarker. Previous algorithms for

screening with longitudinal biomarkers, such as Skates

et al. [13], required specifying the early pre-clinical behav-

ior of the biomarker after disease onset in cases, which can

be challenging when faced with limited serial data, as well

as the biomarker trajectory in control patients. Patients

whose biomarker trajectory to-date more closely resem-

bles that of a case than a control patient were flagged

as positive screens. In contrast, the PEB algorithm spec-

ifies the biomarker trajectory in control patients only,

for whom there is often a great deal of data, and flags

any significant deviations from the expected behavior

given the model and the patient’s own serial history to

date. The PEB algorithm has been applied to serial AFP

data from the Hepatitis C Antiviral Long-term Treatment

against Cirrhosis (HALT-C) trial [14]. In this random-

ized control trial, the PEB algorithm method improved

the sensitivity of AFP by almost 17% compared to the

standard thresholding approach (77.1% vs 60.4%) when

the false positive rate among all screenings was set

to 10%.

Our goal in this paper is to assess the performance of

both the laboratory-based algorithm and the PEB algo-

rithm for their ability to improve likelihood of early

detection of HCC when applied prospectively in a future

study. We consider (1) the sensitivity at fixed false pos-

itive rates during the entire screening period, within

periods close to diagnosis, and within periods close to

diagnosis while excluding intervals very close to clini-

cal diagnosis where clinically significant earlier detection

is unlikely; (2) the true positive rate, false positive rate,

positive predictive value, and negative predictive value

curves; and (3) the timing of first positive screen for

each approach.
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The most common etiology for cirrhosis in the United

States is hepatitis C virus infection (HCV). The Depart-

ment of Veterans Affairs (VA) is the largest integrated

health-care provider in the United States and the veter-

ans that utilize the VA are at high risk of HCV infection.

The VA HCV Clinical Case Registry includes patient data

for all HCV infected patients at 128 VA facilities and

the detailed patient records and history contained in the

HCV registry is possible as a result of the longstand-

ing use of electronic medical records at VA facilitates.

Current VA good practice guidelines recommend regu-

lar surveillance testing with ultrasonography and AFP at

6–12 month intervals in patients with cirrhosis. The VA

HCV-cirrhosis cohort disease progression, variability of

biomarkers under consideration and adherence to rec-

ommended screening visits more accurately reflects HCC

screening in practice than a randomized control trial. In

this analysis, we examine whether we can improve the

likelihood of earlier detection of HCC in the regular clin-

ical care setting, within the largest health care system in

the United States, either by using routine blood tests in

addition to current AFP levels in the laboratory-based

algorithm or by using longitudinal AFP screening history

via the PEB algorithm.

Methods

VA cohort construction

The VA HCV Clinical Case Registry includes patient

demographic characteristics, laboratory test results, inpa-

tient and outpatient visits, diagnostic and procedure

codes, and date of death for all HCV-infected patients

at VA facilities. All patients in our analysis cohort had

a positive HCV antibody and HCV RNA test between

10/1/1997 and 9/30/2005. We used three ICD-9 diag-

nostic codes to identify patients with cirrhosis from the

HCV cohort. The date of the first appearance of either

571.2, 571.5 or 571.6 in the electronic medical records was

defined to be the cirrhosis diagnosis date. This definition

has been validated and found to have 90% positive pre-

dictive value and 87% negative predictive value [15]. Our

analysis cohort consisted of patients with a cirrhosis diag-

nosis at any time prior to end of study (12/31/2006). All

the available patient information between the HCV index

date (date of HCV diagnosis) and HCC diagnosis or end of

study (12/31/2006) were included in the analysis dataset.

In most patients (∼ 80%), the HCV index date preceded

the cirrhosis diagnosis date and we chose to retain patient

information between the HCV index date and the cirrho-

sis diagnosis date since the cirrhosis diagnosis is often

delayed in these patients. If the HCV index date occurred

after the cirrhosis diagnosis date, then it is likely that the

cirrhosis diagnosis prompted the HCV testing.

The HCC diagnosis date was determined using both the

ICD-9 codes and a subsequent manual structured review

of the electronic medical records. First, we defined all

patients with an ICD-9 code of 155.0 but without 155.1 to

be probable HCC cases. A subset (∼ 82%) of these were

manually reviewed and the date of HCC diagnosis was

defined as the date of the earliest appearance of a liver

mass on ultrasound that was subsequently confirmed by

computed tomography (CT), magnetic resonance imaging

(MRI), and/or biopsy, or in the absence of a mass on ultra-

sound, by the first evidence on CT, MRI and/or biopsy.

We excluded patients who had ICD-9 codes that indicated

an HCC diagnosis but had no confirmation of the HCC

diagnosis in the manual review of the electronic medical

records. The date of the first appearance of ICD-9 codes

was defined to be the HCC diagnosis date in the small

subset of HCC cases that were not manually reviewed.

Additional inclusion criteria used to create the analy-

sis dataset were: at least one valid (> 0 ng/mL) serum

AFP during the study period and HCC diagnosed at least

6 months after HCV index date and prior to the end of the

study (12/31/2006). The analysis dataset at this stage con-

sisted of 12,508 patients, of whom 930 have an HCC diag-

nosis during the study period. The dataset construction

flow diagram is given in Fig. 1.

In order to obtain unbiased estimates of each algo-

rithms performance, we split the analysis cohort into

training and validation datasets. All model fitting and

parameter estimation was performed using the training

data and the algorithm performance was assessed by

independently applying each approach to patients in the

validation dataset. The training and validation cohorts

were constructed by randomly dividing both the HCC

cases and controls into two subgroups of equal sam-

ple size. Then one random sample of HCC cases and

controls formed the training dataset and the other ran-

dom sample of HCC cases and controls formed the

validation dataset.

We used the following notation in the description of

the both screening algorithms. Suppose that there are NT

patients in the training dataset used to fit the model and

NV patients in the validation dataset used to assess the

model performance.Without loss of generality, we assume

all time ismeasured from theHCV index date. In the nota-

tion that follows, the subscript i = 1, . . . ,NT indexes the

training dataset patients and i = NT + 1, . . . ,NT + NV

indexes the validation dataset patients. For those patients

diagnosed with HCC during the study (i.e., cases), let

δi = 1 and di be the months to HCC diagnosis since HCV

index date. For patients not diagnosed with HCC during

the study (i.e., controls), let δi = 0 and di be the months to

the end of study since HCV index date.

Screening algorithms

The standard approach to screening with AFP is to com-

pare the biomarker level at each screening time to a fixed
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Fig. 1 Standards for Reporting of Diagnostic accuracy (STARD) flow diagram for construction of the analysis cohort

threshold. In our paper, we explore two approaches to

screening that incorporate information beyond the cur-

rent AFP level at each screening visit.

Laboratory-based algorithm

The first is based on using a short term risk prediction

model that incorporates AFP, the rate of change in AFP

in the past year (if available), other laboratory tests and

demographic variables to determine which patients are

at high risk of developing HCC in the short term. The

risk score from this model can then be used to determine

which patients should be sent for further imaging because

they could possibly have HCC.

El-Serag et al. [7] considered laboratory tests that

are widely used, standardized, reproducible and clearly

defined in the electronic medical records for inclusion in

their six-month risk prediction model. The final model

included AFP, ALT, platelets (PLT), age and two-way inter-

actions between AFP and ALT and AFP and PLT. Loga-

rithmic transformations and spline functions were used

to model the nonlinear relationship between the included

covariates and six-month probability of HCC. This model

selection was done using the same cohort of patients

that we are using in this study. Therefore, while we have

attempted to reduce the bias from overfitting by splitting

the VA cohort into training and testing dataset, we will

require a new cohort of patients to get truly independent

validation of the performance results for this proposed

laboratory-based algorithm. In White et al. [8], the six-

month risk prediction model was updated to include the

rate of change in AFP in the past year, since it has been

shown that both the current AFP levels and the trajectory

of AFP are predictive of HCC [16]. Since not all patients

will have an AFP measurement in the prior year, we have

adapted their model to include change in AFP in the last

year when it is available.

We use laboratory tests extracted from the electronic

medical record to estimate the model parameters and

assess the performance of the proposed laboratory-based

algorithm. We consider each AFP test date to be a screen-

ing visit. It is unlikely that all the patients will have the

other tests (ALT, PLT) performed on the same day; in

practice these tests will not be re-run if they were recently

performed. We considered any ALT or PLT laboratory

test within 6 months prior to the AFP test to be a valid

concurrent lab test.

A cross-sectional re-sampling approach was used to

estimate the predicted probability of HCC. For each

patient in the training dataset, a random screening visit

was chosen from all possible screenings and the six-month

risk prediction model was fit using a logistic regression

model. This process was repeated 100 times and the

parameter estimates from each iteration were saved. For

each new patient, the predicted probability of HCCwithin

six months is calculated by averaging the 100 estimates of

the predicted probability of HCCwithin six-months based
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on the parameter estimates from each iteration. The full

details of the approach are described below.

Each patient has ni AFP tests performed at screening

visits {tij, j = 1, . . . , ni}. We define an indicator variable

for each screening visit that is 1 if the patient is diagnosed

with HCC within six months of that visit and 0 otherwise.

i.e. At the jth screening visit for the ith patient, Dij = 1 if

di < (tij+6) and δi = 1 and 0 otherwise. For the ith patient

at the jth screening visit, we extract AFPij=AFP level in

ng/ml, ALTij=most recent ALT level in IU/ml measured

within the interval [ tij − 6, tij], PLTij = most recent PLT

level in 1000’s measured within the interval [ tij−6, tij] and

Ageij= age in years at AFP test. Note that AFPij, ALTij and

PLTij are truncated at 1. We define an indicator function

�AFPobsij that is 1 if tij − ti(j−1) ≤ 12, i.e. the previous AFP

measurement was within the last year, and 0 otherwise.

The AFP rate of change in the previous year is defined to

be log2(�AFPij) =[ log2(AFPij) − log2{AFPi(j−1)}] /[ {tij −
ti(j−1)}/12].
The six-month risk prediction model is

log

{

Pr
(

Dij = 1|AFPij,AFPi(j−1),Ageij,ALTij,PLTij

)

Pr
(

Dij = 0|AFPij,AFPi(j−1),Ageij,ALTij,PLTij

)

}

=β1X
T
ij (1)

where β1 is the row vector containing the model

parameters and Xij is defined to be the row vec-

tor [AFPij,ALTij,PLTij,Ageij,AFPij ∗ ALTij,AFPij ∗ PLTij, 1 −
�AFPobsij ,�AFPij] with

AFPij =
[

log2
(

AFPij
)

,
{

log2
(

AFPij
)

− 2
}

∗ I
{

log2
(

AFPij
)

> 2
}

,
{

log2
(

AFPij
)

− 7
}

∗ I
{

log2
(

AFPij
)

> 7
}

,
{

log2
(

AFPij
)

− 9
}

∗ I
{

log2
(

AFPij
)

> 9
}]

ALTij =
[

log2
(

ALTij

)

,
{

log2
(

ALTij

)

− log2(20)
}

∗ I
{

log2
(

ALTij

)

> log2(20)
}

{

log2
(

ALTij

)

− log2(50)
}

∗ I
{

log2
(

ALTij

)

> log2(50)
}

,
{

log2
(

ALTij

)

− log2(100)
}

∗
I
{

log2
(

ALTij

)

> log2(100)
}

,
{

log2
(

ALTij

)

−log2(200)
}

∗I
{

log2
(

ALTij

)

> log2(200)
}]

PLTij =
[

PLTij,
(

PLTij − 35
)

∗ I
(

PLTij > 35
)]

Ageij =
[

Ageij,
(

Ageij − 50
)

∗ I
(

Ageij > 50
)]

�AFPij = �AFPobsij ∗
[

log2
(

�AFPij
)

,
{

log2
(

�AFPij
)

+ 8
}

∗I
{

log2
(

�AFPij
)

> −8
}

,
{

log2
(

�AFPij
)

− 0
}

∗ I
{

log2
(

�AFPij
)

> 0
}

,
{

log2
(

�AFPij
)

− 2
}

∗ I
{

log2
(

�AFPij
)

> 2
}

,
{

log2
(

�AFPij
)

− 9
}

∗ I
{

log2
(

�AFPij
)

> 9
}]

.

Note that I(·) is an indicator function that takes the value
1 when the argument is true and 0 when the argument is

false.

The cross-sectional re-sampling algorithm used to esti-

mate the predicted probability of HCC for a each patient

in the validation cohort is:

Estimation: For each k = 1, . . . , 100,

1. Create kth cross-sectional draw from longitudinal
training data: for each patient draw a random visit
tij from {tij, j = 1, . . . , ni} with replacement,
i = 1, . . . ,NT .

2. Fit logistic regression model (1) to get parameter

estimates β̂1k .

Prediction: The predicted probability of HCC within six-months

at the jth screening visit for the ith patient
(i = NT + 1, . . . ,NT + NV ) is

ηij = 1

100

100
∑

k=1

exp
(

β̂1kX
T
ij

)

1 + exp
(

β̂1kX
T
ij

)

The laboratory-based algorithm will indicate a positive

screen if ηij exceeds a pre-specified threshold c.

Parametric empirical Bayes algorithm

The second approach was proposed by McIntosh and

Urban [12] and incorporates the longitudinal history of

screening biomarker to define subject and screen spe-

cific thresholds. The defining feature of a useful screening

biomarker is that it is predictable or stable in the absence

of disease and exhibits a characteristic change after dis-

ease onset. For these biomarkers, the PEB algorithm

incorporates the known information about the variability

of longitudinal biomarker measurements within a patient

and between patients to detect smaller but significant

increases in the biomarker. In addition, the PEB algo-

rithm may reduce the number of false positive screens in

patients with no disease and a stable biomarker trajectory

that is higher than average since it has the ability to learn

from prior false positive screens.

Let Yij = log2(AFPij) be the transformed AFP level in the

ith patient at the jth screen. The PEB approach assumes the

following hierarchical model to describe the distribution

of the transformed biomarker in the population of control

patients.

Yij|θi ∼ N
(

θi, σ
2
)

θi ∼ N
(

θ̄ , τ 2
)

I.e. given the patient-specific mean θi, the transformed

biomarker levels Yij are independent and identically dis-

tributed with mean θi and variance σ 2 and θi itself is

normally distributed with mean θ̄ and variance τ 2. The

within-subject variance σ 2 and between-subject variance

τ 2 are keymeasures that affect the performance of the PEB

algorithm. Yij can be centered and rescaled to simplify the

derivation. Let Zij = (Yij − θ̄ )/
√

σ 2 + τ 2. Then

Zij|μi ∼ N (μi, 1 − B1)

μi ∼ N(0,B1)

where B1 = τ 2

σ 2 + τ 2
.
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Note that a simple calculation verifies that the marginal

distribution of Zij is the standard normal distribution.

The PEB algorithm can be modified using different dis-

tributional assumptions but we continue with the origi-

nal formulation of the approach for two reasons. Firstly,

screening rules are invariant tomonotonic transformation

so for any continuous marker, a transformation to nor-

mality is assured and secondly, the hierarchical normal

model results in simplified derivations and calculations. In

the implementation of the PEB algorithm, standard tests

of normality can be used to evaluate whether the chosen

transformation is appropriate.

The standard threshold approach ignores prior screen-

ing history of the patient and instead uses the same

threshold for all patients. One possible approach for deter-

mining this threshold is to use the above model, which

describes the transformed biomarker distribution in the

control population, to specify a threshold that controls

the population-wide false positive rate (FPR). Since Zij is

assumed to follow a standard normal distribution, then

Pr(Zij > z1−f0 ) = f0 where z1−f0 is the 100(1 − f0) percentile

of the standard normal distribution. Therefore, using the

standard threshold screening rule, patient i has a positive

screen at the jth screening visit if Zij > z1−f0 .

If the patient’s mean biomarker level (μi) were known,

we could define an individually tailored screening rule that

still ensures the population-wide FPR is not more than f0

since given μi, (Zij − μi)/
√
1 − B1 follows a standard normal

distribution. Therefore Pr{(Zij − μi)/
√
1 − B1 > z1−f0 |μi} = f0

and patient i has a positive screen at the jth screening visit

if Zij > μi + z1−f0

√
1 − B1.

However μi is not known, so instead we use the PEB esti-

mate of this parameter. This estimate, denoted by μ̂ij, is a

weighted average of the population mean (which is 0 in

this case) and the sample average of the patients screening

history. The PEB screening rule then indicates a positive

screen for patient i at the jth screening visit if

Zij > μ̂ij + z1−f0

√

1 − B1Bj, (2)

where μ̂ij = 0 ∗ (1 − Bj) + Z̄ij ∗ Bj, Z̄ij = 1
j−1

∑j−1
j′=1 Zij′ and Bj =

τ 2

σ 2/(j−1)+τ 2
.

To implement the PEB screening algorithm, we require

estimates for the parameters θ̄ , σ 2 and τ 2. These can be

obtained by fitting a linear mixed model with a random

intercept in the control patients from the training cohort.

We then apply the PEB screening rule to all the screenings

conducted in the validation cohort.

Incorporation of an OR rule

In clinical practice, if the current AFP level is very high

(e.g. AFPij ≥ 400ng/ml) then the patient will automatically

be sent for follow-up imaging with CT or MRI and no

additional screening algorithm will be used. To formalize

this practice, we include anOR rule in the implementation

of both the screening algorithms in the validation dataset.

This approach is called an OR rule since patient i has a

positive screen at time tij if AFPij ≥ 400ng/ml or if the

screening algorithm indicates a positive screen. We define

a general variable Pij(·) that is 1 when patient i has a pos-

itive screen at time tij and 0 otherwise and is a function

of the thresholding parameter for each algorithm. For the

laboratory-based algorithm, Pij(·) is defined to be

Pij(c) = I
(

AFPij ≥ 400 or ηij > c
)

and for the PEB algorithm it is

Pij
(

1 − f0
)

= I

{

AFPij ≥ 400 or 


(

Zij − μ̂ij
√

1 − B1Bj

)

> 1 − f0

}

,

where 
 is the standard normal cumulative distribution

function. The threshold of 400 ng/ml for AFP was cho-

sen because it corresponds to a very low false positive rate

(0.006) in our training dataset.

Evaluation of screening algorithms

The standard measures used to evaluate the performance

of biomarker screening approaches are based on screen-

ing at a single time point. For example, sensitivity is

proportion of cases with a positive test and specificity

is proportion of controls with a negative test. We have

extended these definitions to the longitudinal screening

setting. In patients not diagnosed with HCC during the

study period, it is clear that any negative screening result

is a true negative, while any positive screening result is a

false positive screen. However in patients diagnosed with

HCC, we do not know when the cancer started devel-

oping, we only know when it was clinically diagnosed.

Therefore, we consider multiple possible definitions for

sensitivity and specificity in the longitudinal setting that

are all dependent on which screenings in HCC cases are

considered true positive screens and which are considered

false positive screens because its unlikely that additional

imaging with CT or MRI would have resulted in detection

of HCC at that time.

In Fig. 2 we illustrate these definitions where we pro-

gressively increase the time period prior to clinical diag-

nosis during which positive screens in HCC cases were

considered to be true positive screens. In definitions A1-

D1, we considered all screenings prior to clinical diagnosis

of HCC when calculating the patient-level sensitivity. In

definitions A2-D2, we excluded screenings within three

months of clinical diagnosis of HCC when calculating the

patient-level sensitivity since the goal of the screening

algorithms are to increase the earlier detection of HCC

and a positive screen result within three months of the

clinical diagnosis of HCC is unlikely to result in a clinically

significant difference in the prognosis for a patient.
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Fig. 2 Visual illustration of different possible periods during which a positive screening result was considered to be a true positive screen and

periods where a positive screen result was considered to be a false positive screen in HCC cases

We then define patient-level sensitivity or true positive

rate (TPR) as the probability of an HCC case having at

least one positive screen during the specified pre-clinical

detection period indicated in Fig. 2:

TPR (·, τ1, τ2) = Pr
{

at least one Pij(·) = 1, j = 1, . . . , ni|di − τ1 ≤ tij

≤ di − τ2, δi = 1} ,

where τ1 and τ2 define the boundaries within which a

positive screen was considered to be a true positive. For

example, in definition A1, τ1 = 6 months and τ2 = 0

months and in definition A2, τ1 = 6months and τ2 = 3. We

defined sensitivity at the patient-level because the goal is

to assess the future performance of the algorithm in terms

of the number of HCC cases that could be detected prior

to clinical diagnosis. In the future, a single positive screen

that leads to confirmation of HCC via additional imaging

would terminate further screening.

Screening-level FPR (1-specificity), was defined as the

probability of a positive screen among (1) all the screen-

ings conducted in the control patients and (2) the screen-

ings conducted in HCC cases that are considered to be

outside the detection period indicated in Fig. 2:

FPR (·, τ1) = Pr
{

Pij(·) = 1|δi = 1 and tij < di − τ1 or δi = 0
}

.

The FPR was defined at the screening level because each

false positive result would lead to further testing that can

be expensive and may increase the likelihood of complica-

tions and anxiety.

The positive predictive value (PPV) was defined as the

probability of positive screen occurring in an HCC case

within the specified pre-clinical detection period indi-

cated in Fig. 2:

PPV (·, τ1, τ2) = Pr
{

di − τ1 ≤ tij ≤ di − τ2, δi = 1|Pij(·) = 1
}

.

This measure was reported at the screening-level

because the goal is to evaluate the probability of any

positive screen being a true positive.

The negative predictive value (NPV) was defined as

the probability of negative screen occurring in (1) con-

trol patients or (2) in HCC cases that are considered to be

outside the detection period indicated in Fig. 2:

NPV (·, τ1) = Pr
{

δi = 1 and tij < di − τ1 or δi = 0|Pij(·) = 0
}

.

This measure was reported at the screening-level

because the goal is to evaluate the probability of any neg-

ative screen being a true negative. Note that both the

PPV and NPV measures are influenced by the prevalence

of HCC in our analysis cohort as well as the number

of screenings conducted in patients. In Additional file 1:

Appendix A, we provide estimators of the four measures

that we used in our analysis.

Results
Of the 12,508 patients in the analysis cohort, 12,124 had at

least one AFP test with both an ALT and PLT laboratory

test performed within the prior six months. This cohort of

patients was randomly split into the training and valida-

tion cohorts each consisting of 451 HCC cases and 5611

controls. Our goal is to assess the performance of each

of the screening algorithms within the OR rule, i.e. the

patient has a positive screen if either AFP ≥ 400ng/ml or
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the screening algorithm indicates a positive screen. There-

fore the training cohort was further restricted to only

those with AFP < 400ng/ml since the screening algorithms

will only be applied in those patients. We do not restrict

the validation cohort since our goal is to assess the perfor-

mance of the screening algorithms as they would be used

in clinical practice, which includes the OR rule. Note that

in our analysis we have patients with multiple laboratory

tests on the same day. For these patients, the multiple lab-

oratory tests on the same day were summarized (average

of the log2 measurements) and this value was used in the

analysis.

In Table 1 we describe the training and validation

cohorts. Across the cohorts, we observe that age at base-

line (first AFP test), the proportion of white and black

patients, the months between AFP tests and the base-

line AFP, ALT and PLT were all similar within controls

and HCC cases. In control patients, baseline AFP and

ALT were slightly lower and baseline PLT was slightly

higher compared to those patients eventually diagnosed

with HCC. The average screening interval was around 12

months. Approximately 28% of the patients had only a sin-

gle AFP test during the study, while ∼22% had more than

four AFP tests during the study.

In the tables and figures, the “AFP only” approach

is a six-month risk prediction model with AFP only,

the laboratory-based algorithm is referred to as the

“AFP+Lab+�AFP” algorithm and the PEB algorithm

applied to AFP is referred to as the “PEB: AFP” approach.

In the first comparison of the screening algorithms, we

focused on the patient-level TPR when the screening-

level FPR was fixed. In Table 2, the screening-level FPR

was fixed at 10% and in Table A in Additional file 1:

Appendix B, the screening-level FPR was fixed at 5%.

We observe that both the laboratory-based algorithm and

the PEB approach show improved TPR over the stan-

dard thresholding approach with AFP only across all

the definitions of true positive screenings in HCC cases

(A1-D1 and A2-D2). The TPR of the PEB algorithm was

9.75% greater than the standard thresholding approach

with AFP only (63.64% vs 53.88%) and 5.55% greater than

the AFP+Lab+�AFP approach (63.64% vs 58.09%) over

the entire screening period (definition D1) and 5.81%

greater than the standard thresholding approach with

AFP only (60.23% vs 54.42%) and 1.16% greater than

the AFP+Lab+�AFP approach (60.23% vs 59.07%) in the

two-years prior to clinical diagnosis (defintion C1).

When the screening-level FPR is fixed at 5% (Table A

in Additional file 1: Appendix B), we observe that the

PEB algorithm outperforms the other approaches imple-

mented for all the definitions of true positive screen-

ings in HCC cases except when comparing the PEB

approach to the AFP+Lab+�AFP approach in the three

to six and three to twelve months prior to clinical

Table 1 Demographic table for training and validation HCV-related cirrhosis cohorts

Training cohort Validation cohort

Controls HCC cases Controls HCC cases

N 5611 451 5611 451

Age at baseline (years) 52.87 (7.28) 54.67 (7.78) 52.93 (7.39) 54.89 (7.49)

Male 5498 (97.99%) 449 (99.56%) 5501 (98.04%) 447 (99.11%)

Female 113 (2.01%) 2 (0.44%) 110 (1.96%) 4 (0.89%)

Race

White 1954 (34.82%) 173 (38.36%) 2034 (36.25%) 171 (37.92%)

Black 623 (11.10%) 54 (11.97%) 576 (10.27%) 60 (13.30%)

Other/Unknown 3034 (54.07%) 224 (49.67%) 3001 (53.48%) 220 (48.78%)

Number of AFP tests

1 1598 (28.48%) 116 (25.72%) 1598 (28.48%) 138 (30.60%)

2 1297 (23.12%) 119 (26.39%) 1240 (22.10%) 106 (23.50%)

3-4 1480 (26.38%) 119 (26.39%) 1524 (27.16%) 120 (26.61%)

>4 1236 (22.03%) 97 (21.51%) 1249 (22.26%) 87 (19.29%)

Months between AFP tests 11.67 (11.00) 10.30 (10.10) 11.83 (11.26) 10.93 (10.89)

Baseline AFP in log2(ng/ml) 2.92 (1.55) 4.72 (2.78) 2.95 (1.57) 4.57 (2.95)

Baseline ALT in log2(ng/ml) 6.14 (1.03) 6.31 (0.91) 6.16 (1.05) 6.35 (0.88)

Baseline PLT in 1000’s 147.97 (78.88) 123.50 (66.06) 148.51 (78.83) 127.97 (76.08)

For continuous variables we report means and standard deviations in parenthesis and for categorical variables we report the number in each group and percentages in

parenthesis. Baseline was defined to be the date of the first AFP test
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Table 2 Comparison of the patient-level true positive rate (TPR(·, τ1 , τ2)) when the threshold for each screening algorithm was chosen

such that the screening-level false positive rate is 10%, i.e FPR(·, τ1) = 0.1. In each definition, the choice of the parameters τ1 and τ2
varies

Results from validation cohort

Screening algorithm A1 B1 C1 D1 A2 B2 C2 D2

AFP only 0.5753 0.5672 0.5442 0.5388 0.4019 0.4099 0.3564 0.3361

AFP+Lab+�AFP 0.6137 0.6119 0.5907 0.5809 0.4766 0.4820 0.4158 0.3770

PEB: AFP 0.6055 0.6045 0.6023 0.6364 0.4579 0.4955 0.4653 0.4891

Number of HCC cases 365 402 430 451 107 222 303 366

A1: τ1 = 6 months and τ2 = 0, B1: τ1 = 12 months and τ2 = 0, C1: τ1 = 24 months and τ2 = 0, D1: τ1 is the maximum follow-up time and τ2 = 0. A2: τ1 = 6 months and

τ2 = 3 months, B2: τ1 = 12 months and τ2 = 3 months, C2: τ1 = 24 months and τ2 = 3 months, D2: τ1 is the maximum follow-up time and τ2 = 3 months.

AFP+Lab+�AFP: updated laboratory-based algorithm, PEB: AFP: parametric empirical Bayes algorithm applied to AFP

diagnosis (defintion A2 and B2). In the remaining anal-

yses we focus on 10% screening-level FPR because HCC

screening is performed in high-risk cirrhosis patients and

therefore we can allow for a higher number of false posi-

tive screenings. In our validation cohort a 10% screening-

level FPR corresponds to a fixed threshold of 35.7 ng/ml

for AFP in the standard approach based on definition D1.

This was higher than the most commonly used thresh-

old for AFP of 20 ng/ml, which would have a higher

screening-level FPR.

We chose a split-sample approach with training and

validation cohorts to evaluate our HCC screening algo-

rithms since we have a large cohort with 902 HCC cases

and 11,222 controls. In a sensitivity analysis, we utilized

an out-of-bag bootstrap validation approach, where each

bootstrap training cohort consisted of 12,124 patients

drawn with replacement from the full analysis cohort

and each bootstrap validation cohort consisted of all the

patients not included in the bootstrap training cohort.

The model parameters for each of the HCC screening

algorithms were estimated using the training cohort, the

screening algorithms were implemented in the validation

cohort and the patient-level TPR at 10% screening-level

FPR was estimated. This procedure was repeated 300

times and the results were averaged over the bootstrap

iterations. In Table B in Additional file 1: Appendix B,

we observe that the results are mostly consistent; both

the laboratory-based algorithm and the PEB approach

showing improved TPR over the standard thresholding

approach with AFP only across all the definitions of true

positive screenings in HCC cases except one. For defini-

tion A2 with a restrictive time frame (only positive screens

within 3–6 months prior to HCC diagnosis are true pos-

itives) and fewer HCC cases, the PEB algorithm and AFP

only algorithm are approximately equivalent. In the two-

years prior to HCC diagnosis (definition C1), the TPR of

the PEB algorithm was 5.03% greater than the standard

thresholding approach with AFP only (61.26% vs 56.23%)

and 1.57% greater than the AFP+Lab+�AFP approach

(61.26% vs 59.69%).

In Fig. 3, we compared the patient-level TPR, screening-

level FPR, PPV and NPV curves of the screening algo-

rithms when only positive screens within two years of

clinical diagnosis were considered to be true positive

screens (definition C1). We defined the four measures in

“Evaluation of screening algorithms” section, where all

measures are functions of the thresholding parameter for

each screening algorithm (c or 1 − f0). In order to stan-

dardize the curves for each approach, we redefined each

measure to be a function of the risk percentile: the pro-

portion of screens that lie below c or 1 − f0. In addition,

we estimated the risk of HCC within τ1 = 24 months for

each decile. I.e. we estimated the probability of being diag-

nosed with HCC within the next two years, given that a

patient’s current screen places them within the kth decile,

for k = 1, . . . , 10. In Fig. 3, we used a cubic spline to create

the estimated risk curve.

We observed small differences in the PPV and NPV

curves across the screening algorithms (middle panel of

Fig. 3). In the bottom panel of Fig. 3, we observed the

screening-level FPR had a linear relationship with the

risk percentile that was the same for each approach (by

definition) and that there was separation between the

patient-level TPR across the different methods.

The structure of Fig. 3 allows for comparison across the

different methods and conveys a great deal of information.

For example, we illustrate how to extract the results for

Table 2 from these curves in Fig. 3. In the bottom panel,

we fix the screening-level FPR at 0.1 and find the cor-

responding risk percentile. Using vertical dashed lines in

each panel, we can extract the patient-level TPR and PPV

and NPV as well as the corresponding estimate of the risk

of HCCwithin two years for each algorithm. Alternatively,

we could fix any other measure at a pre-specified level

and compare the screening algorithms with respect to the

remaining measures. In Additional file 1: Appendix B, we

include the corresponding figures for definitions A1, B1

and D1 in Figures A, B and C respectively.

Next, we evaluated the screening algorithms at

the individual patient level. When we considered all



Tayob et al. BMCMedical ResearchMethodology  (2018) 18:1 Page 10 of 13

Fig. 3 Comparison of screening algorithms within two years of clinical diagnosis (C1 in Fig. 2). In the top panel, we plot the estimated risk of HCC

within two years for each screening approach against corresponding the risk percentile, which is defined to be the corresponding proportion of

screens that lie below the threshold. The middle panel displays the positive predictive value (PPV(·, τ1 = 24, τ2 = 0), solid line) and the negative

predictive value (NPV(·, τ1 = 24), dashed line) against the risk percentile and the bottom panel displays the patient-level true positive fraction

(TPR(·, τ1 = 24, τ2 = 0), solid line) and the screening-level false positive fraction (FPR(·, τ1 = 24), dashed line) against the risk percentile. The vertical

dashed lines in each plot correspond to the risk percentile associated with 10% screening-level FPR. The figures focus on curves between the 80th

and 100th risk percentile. AFP+Lab+�AFP: updated laboratory-based algorithm, PEB: parametric empirical Bayes algorithm applied to AFP

positive screens more than two years prior to clinical

diagnosis in HCC cases to be false positive screens

(definition C1) and fixed the screening-level FPR at

10%, we observed that 4.15%, 3.93% and 1.79% of

patients have more than two false positive screening

using the AFP only, AFP+Lab+�AFP and PEB approach

respectively. Since we have fixed the number of false

positive screenings allowed in each method, this illus-

trates how each method distributes the number of false

positive screens across the patients and reveals one

of the advantages of the PEB approach— the ability

to learn from prior false positive screens and reduce

the number of false positive screens in an individual

patient.
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Among the 430 HCC cases with screenings in the two

years prior to clinical diagnosis, 282 had at least one pos-

itive screen and 148 had no positive screening for any of

the approaches during this period. In Fig. 4, we compare

the timing of the first positive screens in the 282 HCC

cases that were flagged positive by at least one screen-

ing algorithm. The time of the first positive screen for

any screening algorithm with no positive screens dur-

ing the two-years prior to clinical diagnosis was defined

to be the clinical diagnosis time. In the first panel, we

compared the AFP only approach to the AFP+Lab+�AFP

algorithm and observed that while 69.86% of the HCC

cases were first flagged positive at the same screening

visit, 17.73% were flagged first by the AFP+Lab+�AFP

algorithm compared to the 6.38% that were first flagged

positive by the AFP only approach. In the middle panel,

we observe that while a similar proportion of the HCC

cases were first flagged positive at the same time by

both the AFP only approach and the PEB approach

(70.21%), 20.92% were flagged first by the PEB algo-

rithm while only 3.19% were first flagged positive by the

AFP only approach. The earlier positive screens for

the PEB approach were demonstrated in the third

panel, which compared the PEB approach to the

AFP+Lab+�AFP algorithm.

Discussion
We have evaluated multiple approaches for HCC screen-

ing in a cohort of active HCV-related cirrhosis patients

from the VA patient population between 1997 and 2006.

Each of the approaches under consideration included

information beyond the current AFP level to increase

the number of patients that are flagged with positive

screens. Across all the analyses, we observed that includ-

ing additional widely available and objective information

leads to improvements in HCC screening performance

measures. The goal of HCC screening is to detect HCC

earlier, when there are potentially more curative treatment

options available to the patient, and screening algorithms

that have positive screens in the one to two years prior to

clinical diagnosis of HCC are more likely to lead to earlier

detection of HCC.

The performance of the PEB algorithm is affected

by both the variability of AFP within and between

patients. In the HALT-C Trial, a clinical trial with strict

patient inclusion criteria, the PEB algorithm improved the

Fig. 4 Comparison of first positive screen time between methods in the validation cohort within 2 years of clinical diagnosis (C1 in Fig. 2).

AFP+Lab+�AFP: updated laboratory-based algorithm, PEB: parametric empirical Bayes algorithm applied to AFP
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sensitivity of AFP by 16.7% compared to the stan-

dard thresholding approach (77.1% vs 60.4%) when the

screening-level false positive rate was set to 10% and all

positive screens in HCC cases were considered to be true

positive screens. By comparison, within this VA cohort,

which is a more realistic setting for HCC screening, we

observed a 9.76% improvement in the PEB algorithm

compared to the standard thresholding approach (63.64%

vs 53.88%). The within- and between-subject variability

of AFP across control patients in these study popula-

tions could explain the difference in performance. In the

HALT-C trial, the between-subject variance of log2(AFP)

was 1.77, the within-subject variance was 0.39 and the

resulting intra-class correlation (ratio of between-subject

variance to total variance) was 0.82. In the VA cohort,

the between-subject variance was 1.90, the within-subject

variance was 0.71 and the intra-class correlation was then

0.73. Therefore, in the VA cohort we observed almost

twice the variability in the longitudinal AFP measure-

ments within a patient compared to the HALT-C Trial in

patients that do not develop HCC. In this study we do not

have information regarding the brand of AFP assay kits

used, but this could be a source of the additional variability

observed in the VA cohort that we are unable to quantify.

We explored multiple extensions of the PEB algorithm

in the VA cohort, including using demographic variables

and other liver function markers to explain the variabil-

ity of AFP, however none of these approaches resulted in

clinically significant improvements in the screening per-

formance over the standard PEB algorithm with AFP only

(see Additional file 1: Appendix B). The sensitivity of the

PEB algorithm also depends on the biomarker behav-

ior after HCC onset, as well as the likelihood of having

a screening test soon after HCC onset. In the HALT-C

Trial, patients had AFP tests every three months dur-

ing the first 48 months post-randomization and every six

months thereafter. An exploratory analysis that consid-

ered only those AFP tests from the HALT-C Trial that

were six months apart found that the PEB algorithm

method improved the sensitivity of AFP by 12.6% com-

pared to the standard thresholding approach when the

screening-level false positive rate was set to 10% and all

positive screens in HCC cases were considered to be

true positive screens. In the VA cohort, the average time

between AFP tests was around 12 months. If we restrict

our analysis to only those VA patients with frequent AFP

tests (no more than nine months between AFP tests) then

the improvement of the PEB algorithm with AFP com-

pared to the standard thresholding approach was 4.37%

(57.28% vs 52.91%) when the screening-level false positive

rate was set to 10% and all positive screens in HCC cases

were considered to be true positive screens.

There are several limitation of this study. The current

VA cohort is restricted to those patients with active HCV

related cirrhosis and therefore we do not know how these

screening algorithms will perform in patients with other

etiologies. In addition, the VA patient population in gen-

eral is older, overwhelming male with few Hispanics and

Asians and with high rates of comorbid conditions includ-

ing alcohol abuse; therefore we do not know how well

results generalize to the cirrhosis population in the United

States. We are assembling an updated cohort of cirrho-

sis patients from the VA (2010–2015) that will include

multiple cirrhosis etiologies, including HCV, hepatitis B

infection, alcoholic liver disease and non-alcoholic fatty

liver disease. Patients with non-HCV etiologies have been

shown to have lower risk of progression to HCC [17]

and in this patient population, we can study the per-

formance of the screening approaches in different cir-

rhosis subgroups and tailor the algorithms, if necessary,

to each disease etiology. We will also study the screen-

ing approaches in an external cohort of cirrhosis patients

from the community-based Kaiser Permanente Northern

California health care system. In this cohort, we will have

a more representative sample of the general cirrhosis pop-

ulation in which to further study the screening approaches

that we have developed.

Conclusions
We have evaluated multiple screening algorithms from

different perspectives to better understand the potential

performance in a future prospective study. In addition, we

have extended the definitions of the standard measures

(sensitivity, specificity, positive and negative predictive

value) from those used when a biomarker is measured at a

single time point to the longitudinal screening setting. The

proposedmeasures reflect clinically relevant performance

characteristics of the screening algorithms that allow for a

clearer understanding of potential future performance.
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