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ABSTRACT 

Event traces are required to correctly diagnose a number of 

performance problems that arise on today’s highly parallel 

systems. Unfortunately, the collection of event traces can 

produce a large volume of data that is difficult, or even 

impossible, to store and analyze. One approach for compressing 

a trace is to identify repeating trace patterns and retain only one 

representative of each pattern. However, determining the 

similarity of sections of traces, i.e., identifying patterns, is not 

straightforward. In this paper, we investigate pattern-based 

methods for reducing traces that will be used for performance 

analysis. We evaluate the different methods against several 

criteria, including size reduction, introduced error, and retention 

of performance trends, using both benchmarks with carefully 

chosen performance behaviors, and a real application.  

1. INTRODUCTION 
Today’s high-end architectures contain tens to hundreds of 

thousands of processors, pushing application scalability 

challenges to new heights. Performance analysis is a necessary 

step to adapt codes to utilize a target high end machine.  Correct 

diagnosis of certain complex performance problems that arise on 

high end systems requires detailed event traces. An “event” is a 

runtime occurrence of a program activity, such as a machine 

instruction or basic block execution, memory reference, function 

call, or a message send or receive. Generating event traces 

involves writing a time stamped record for each event, into a 

buffer or file for later analysis. Unfortunately, the collection of 

event traces presents scalability challenges: the act of 

measurement perturbs the target application; and the large 

volume of collected data increases the perturbation, and results 

in data files that are difficult, or even impossible, to store and 

analyze [24]. Several documented cases describe performance 

problems that appear only when the application is run at a large 

scale [18, 27], driving the need to be able to collect event traces 

for large runs. We have a conundrum: we need traces to 

correctly diagnose important performance problems, but the 

sheer volume of data collected makes collecting full traces at the 

very least prohibitive, and in the worst case impossible. For this 

reason, solving the scaling challenges of event tracing is an 

important problem for high end computing.  

Given the challenges of tracing at the high end, one might be 

tempted to avoid it entirely.  Profiling, for example, provides 

summary information and therefore exhibits better scaling 

behavior.  However, the types of information provided by 

profiling are, in many cases, too limited for correct diagnosis of 

certain performance problems [7, 36]. An example of such a 

performance problem is “Late Sender” in a message-passing 

program. This is the situation where the receiving process waits 

at a blocking receive call waiting because the sending process 

hasn’t yet reached the matching send call. While a profile could 

indeed show that excessive time was being spent in receive 

operations, the data is not sufficient to distinguish between a late 

sender or some other root cause, such as network contention that 

caused the message to be received late. In contrast, an event 

trace captures the relative timing of events, and would show that 

the send operations started late and caused the receive 

operations to block.  Tracing is also useful for showing the 

causality of events [31, 12]; the interactions between program 

elements, that can be difficult or impossible to understand from 

static analysis [22, 20]; and event patterns that reveal properties 

of programs, such as performance problems and locations of 

possible optimization [21].     

One promising approach to highly scalable tracing is to filter or 

reduce the trace in some manner, either during or after the 

collection of trace records. Users who need to collect trace data 

currently resort to ad-hoc measures to reduce the amount of data 

collected; for example, tracing a reduced number of iterations of 

a loop. These measures have the potential to miss the 

performance problem altogether, e.g. if the problem doesn’t 

occur during the measured iterations. One method for reducing 

the size of traces is to identify similar sections of a trace and 

retain only one representative of each pattern. However, 

determining the similarity between traces or sections of traces is 

not straightforward. The probability that any two trace sections 

will have exactly the same measurements is very small, so any 

similarity method will allow some amount of differences 

between similar traces. Despite this, it is critical that any 

differences allowed do not mask information needed for correct 

performance diagnosis.  

Requirements for the accuracy and types of information in a 

trace vary based on the intended use: correctness testing and 

debugging, simulation, or performance analysis. Correctness 

testing and debugging generally only require that the trace retain 

the relative ordering of events that have the potential to affect 

each other:  events within a single process or thread and 

synchronization events across processes or threads. For 

example, inspecting a trace of a parallel program could indicate 

the reason for a deadlock situation by showing the ordering of 

synchronization operations; a parallel program might hang 

because a process is waiting for a message that was never sent.  

Simulation requires traces that retain the order of events and 

possibly some timing information. Traces for simulation can be 

used to predict application performance on new or theoretical 

hardware. The events in the trace can be replayed using either 

averaged or predicted timing information for the new hardware. 

Generally, a single time value is used for all event occurrences 

instead of individual timing measurements for each event 

occurrence. For example, the average time to execute a send 

operation could be used as the time for all send operations in the 

trace. This tradeoff allows acceptable accuracy with faster time 

to simulated results and smaller trace files.  Performance 
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analysis requires not only the relative ordering of events, but the 

timing information for individual events. Performance problems 

do not necessarily occur with a high degree of regularity, e.g. in 

every iteration of a loop, so individual event timings are needed 

to show the root causes of problems. For example, trace data can 

show a time-varying load imbalance in a parallel job, which 

causes some ranks to be late to a synchronization operation at 

varying times during the program execution. The individual 

event timings can show what events are taking more time in the 

slower ranks and in what iterations the slowness occurs.  

In this work, our goal is to determine a similarity metric that 

yields adequate trace reduction and also retains the information 

needed for correct performance analysis. Achieving our goal 

required that we answer several key questions:    

• What metrics can we use to evaluate and compare trace 

difference methods?  In addition to file size reduction, we 

developed and used metrics for error, greatest possible file 

size reduction (i.e. potential for repeated patterns), and 

consistency of performance diagnosis.   

• How much error should be allowed? Values that will likely 

never be exactly equal need to be compared. We had to 

decide how much each measurement can vary, and weigh 

the consequences of the amount of error. If we are 

matching traces for the purpose of trace compression, then 

a larger allowed error between traces would mean larger 

number of matches, and thus a smaller trace file. However, 

the larger error might prevent the correct performance 

diagnosis from being made.  

• How can we measure the “goodness” of each approach?  

Most trace compression studies report the reduction of file 

size achieved; but no matter how much compression is 

achieved, if the reduced trace no longer contains the data 

needed for accurate performance diagnosis, the method is 

not useful for our purpose.  We evaluate each approach not 

just on amount of compression, but also on amount of error 

and consistency of diagnosis, and discuss the tradeoffs in 

weighting the different metrics. 

In this study, we perform a comparative evaluation of similarity 

metrics in current or proposed use for trace reduction.  To 

evaluate the effectiveness of the similarity metrics, we apply the 

same trace reduction technique to full execution traces, varying 

the similarity method used to determine repeating patterns 

within the trace.  Then we compare the results using three 

metrics:  file size reduction, trace error, and retention of 

performance trends. 

2. RELATED WORK 
Previously proposed methods for reducing the sizes of traces for 

the purpose of performance analysis include deletion of similar 

trace sections; trace sampling; statistical clustering; and signal 

processing. 

Knüpfer and Spooner define two sections of traces as similar if 

the call graph context and measurements of the events are equal.  

Knüpfer defines equality using both relative and absolute 

differences [19]; Spooner et al. use the relative difference in 

instruction counts [30].  Another approach defines similarity by 

event names. Chung et al. use a filter that detects repeated 

communication patterns [6]; they keep performance data for 

only one instance of each pattern. Freitag et al. use a periodicity 

detector to notice repeating sequences of events and keep a 

reduced number of iterations of each sequence [8]. Similarly, 

Yan and Schmidt detect repeating sequences of events and store 

the average measurements of those events [36]. Noeth and 

Mueller also detect repeated sequences of message-passing 

events and store one copy of each sequence; they optionally 

store summary information about the events, such as average 

measurements [26]. In later work, they include the ability to 

store more detailed timing information:  statistical “delta” times, 

histograms, or histograms by call sequence [28]. 

Other efforts use trace sampling to reduce trace size. Carrington 

et al. use trace sampling to reduce the amount of time it takes to 

gather memory reference traces for the purpose of performance 

modeling [3]. They collect data for a reduced number of 

executions of the basic blocks in a program.  Vetter presents a 

method for statistically sampling MPI events [32].  Each time an 

MPI event is encountered, it is either sampled or not. For each 

sampled event, the tool can record statistics, log the event to a 

trace file, or ignore the data. Gamblin et al. use statistical 

sampling with a user-specified confidence interval and metric. 

[10].  

Aguilera et al. [2], Nickolayev et al.[25], and Lee et al. [23] 

apply statistical clustering to traces and select a representative 

trace for each cluster of processes. Nickolayev and Lee use the 

Euclidean distance for clustering, while Aguilera uses a metric 

based on the amount of communication between two processes. 

Several groups apply methods from signal processing to traces. 

Casas et al. and Huffmire et al. use the Haar wavelet transform 

to automatically determine the phases of a program [4, 16]. 

Gamblin et al. use the CDF 9/7 wavelet transform to compress 

traces collected for the purposes of detecting load imbalance [9]. 

Hauswirth et al. use dynamic time warping to decide when two 

traces are similar for aligning multiple traces [14].  

Researchers have evaluated several methods for deciding the 

goodness of a particular trace similarity metric. To our 

knowledge, ours is the only comparative study of the methods to 

see what is most appropriate for the purposes of performance 

analysis.  Ratn et al. use aggregate statistical measures, such as 

total time spent in a function, to evaluate their method [28]. 

Gamblin et al. compute a trace confidence measure to evaluate 

their trace sampling results, which is tells the percentage of time 

the mean trace of sampled processes is within an specified error 

bound of the mean trace of the full trace [10]. In their wavelet 

transform method, Gamblin et al. use a root mean square 

measure to estimate the error in reduced traces [9]. They also 

present qualitative results, showing a visualization based on a 

reduced trace compared with one from a complete trace. Yan et 

al. compare the measurements in their reduced trace against the 

real trace time stamp by time stamp and produce both a relative 

and absolute measure of the overall differences [35]. In addition, 

they also present whole program statistical measurements and 

visualizations for qualitative comparison. 

3. TRACE REDUCTION 
In this section we describe our approach for trace reduction.  

Section 3.1 details our trace segmentation technique, and 

Section 3.2 describes the different similarity metrics we use to 

compare segments.  This paper focuses exclusively on intra-

process reduction, that is, reducing the size of each individual 

per-task trace.  In practice these individual traces are first 

collected separately, then merged into a single trace file 

representing the entire application run. Therefore, reducing each  
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int main(){ 
       start_segment(“init”); 
       MPI_Init(); 
       end_segment(“init”); 
       for(i=0; i < 100; ++i){ 
           start_segment(“main.1”); 
           do_work(); 
           MPI_Allgather(); 
           end_segment(“main.1”); 
       } 
       for (j=0; j < 10; ++j){ 
            start_segment(“main.2”); 
            do_other_work(); 
            end_segment(“main.2”); 
            while(k < otherRanks){ 
               start_segment(“main.2.1”); 
               MPI_Sendrecv(); 
               end_segment(“main.2.1”); 
            } 
       } 
       start_segment(“final”); 
       MPI_Finalize(); 
       end_segment(“final”); 

     } 

Figure 1: Segment Context Marking. We show a single 

function, main() with the instructions added to mark the segment 

contexts.  We mark initialization, finalization, and all loops.  

The segment context names are hierarchical:  the second loop is 

marked "main.2" and its subloop is marked "main.2.1".  

Segment marking is automated using a dynamic instrumentation 

library. 

 

per-task trace prior to merging will reduce the application trace 

accordingly. 

3.1 Trace Collection and Segments 
We collected full traces of time stamped function entries and 

exits for the benchmarks and application as follows. First we 

insert segment markers into the source code that are repeated in 

the trace during execution.  We define segments as follows:  the 

initial segment starts at entry to main; for each program loop 

containing at least one measured event, we stop the current 

segment before the loop starts, start a new segment at the top of 

each loop iteration, stop the segment at the bottom of the loop 

iteration, and start a new segment after the last iteration of the 

loop completes; and end the final segment at program 

termination. The segment context is the section of code, for 

example, the main.1 loop in Figure 1.  We  used  the  dynamic 

instrumentation library Dyninst [15] to instrument the full 

application for both function entry and exit tracing as well as 

inserting segment begin and end markers.  The simple 

benchmarks were marked manually. 

We compare the segments for each context pair wise to 

determine if they are similar. If they are, we say that the 

segments match and retain a single representative segment. Each 

segment si contains an ordered list of events Ei = {e0, e1, …, em}. 

We maintain a list storedSegments, which contains the segments 

that represent the performance behaviors in the execution, and a 

list segmentExecs that holds the starting times and identifier of 

each representative segment so that we can later recreate a full 

trace. Given an equivalence operator ≈ for some similarity 

metric, and a segment snew that has events Enew the algorithm 

comparing segments is as follows: 

For i = 0 to len(Enew): 

Enew[i].start = Enew[i].start – snew.start  

Enew[i].end = Enew[i].end – snew.start 

snew.end = snew.end – snew.start  

match = False 

For i = 0 to len(storedSegments): 

sstored = storedSegments[i] 

match = compareSegments(snew, sstored) 

If match = True: 

segmentExecs = segmentExecs ∪ (sstored.id,snew.start) 

break 

If not match: 

snew.id = getNewId() 

segmentExecs = segmentExecs ∪ (snew.id,snew.start) 

snew.start = 0  

storedSegments = storedSegments ∪ snew. 

 

Boolean compareSegments(snew, sstored): 

If snew.context ≠ sstored.context: return False 

If len(Enew) ≠ len(Estored): return False 

For i = 0 to len(Enew): 

If Enew[i].id ≠ Estored[i].id: return False  

If snew ≈ sstored: return True 

Else: return False 

 

Note that a segments match requires that segments have the 

same context and the same number of events occurring in the 

same order. We give examples of segment matching in Figure 2. 

3.2 Similarity Metrics 
We used several methods to decide the similarity of segments. 

Each of these is described below. Our choices were inspired by 

methods used by other researchers to reduce traces (See Section 

2.). They fell into two categories: distance methods and 

iteration-based methods.     

3.2.1 Distance Methods 
The distance methods produce a difference measure, which is 

then compared against a user-supplied threshold to determine 

the presence or absence of a match. Several of the difference 

methods are standard methods for computing distances between 

values and sets of values. We use the relative difference 

(relDiff), absolute difference (absDiff), and three variations on 

the Minkowski distance (Manhattan, Euclidean, Chebyshev), 

and wavelet transforms (avgWave, haarWave). 

relDiff. We compare the relative differences between each event 

measurement against a user-defined threshold; if greater, the 

events are not equal:  

 

   .  

To see how relDiff matches segments, we consider our example  

in Figure 2. We compute the relative differences between each 

of the paired measurements in the segments. If any are above 

our chosen threshold, say 0.5, then the match fails. Comparing 

s2 with s1, we first compare the start times of the do_work 

event: x1=1 and x2=1, with relative difference 0. Since the 

relative difference is less than 0.5, we continue on computing 

relative differences. Next we check the end times for the 

do_work event. Here we compute a relative difference: x1=17 

and x2=40, giving a relative difference of 0.58. This is above our 

threshold, so the segments do not match. When we compare s2  
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events will always match. To illustrate this method, we use the 

segments in Figure 2 and the stored segments scenario on the 

left. For this method, we never have more than one copy of the 

main.1 segment, and end up with a single copy of the main.1 

segment that contains averages of the values of s0, s1, and s2. 

We expect that these methods will produce fairly accurate data 

for applications that have little behavior variability, but poorly 

for applications that do have performance variabilities. 

4. EVALUATION METHODOLOGY 
In this section we detail our framework for the evaluation of 

similarity metrics.  We investigate traces collected for a set of 

benchmarks with known behaviors, and for a full application, 

running on a Linux cluster.  Our evaluation focuses on three 

metrics:  file size reduction, amount of error in the trace, and 

retention of performance trends.  For file size reduction we 

simply compare the sizes of the reduced traces to the full-sized 

traces from which they were derived.  We calculate the trace 

error by recreating an approximated full-sized trace from the 

reduced version, then comparing it to the actual full trace.  We 

evaluate retention of performance trends by feeding the actual 

and approximated full traces into a performance analysis tool 

and examining any differences in the results.  

4.1 Benchmarks 
We crafted our benchmarks to represent classes of performance 

behaviors that occur in parallel programs on high end systems. 

These performance behaviors can appear with a high degree of 

regularity, sporadically, or progressively change over the 

iterations in the execution. To reflect this, we created a set of 

regularly behaving benchmarks, a set of irregularly behaving 

benchmarks, and a benchmark that simulates dynamic load 

balancing. Because we know the behavior patterns in each 

benchmark, we can evaluate how well each of the methods 

retains the performance behaviors.  

We used the APART Test Suite (ATS) to create our 

benchmarks. The ATS a collection of utilities designed to create 

programs with known behavior for testing parallel performance 

tools [11]. We chose behavior patterns from the ATS that 

represent performance problems that require trace data for 

correct diagnosis. For parallel programs, these performance 

behaviors fall into four categories based on the communication 

pattern being used. We describe these communication patterns 

here using MPI functions as examples. 

• N 1.  N processes send data to 1 process.  If any of the 

sending processes are late, then the receiving process 

blocks, waiting for them to execute the send operation. 

Example MPI functions for this pattern are MPI_Reduce 

and MPI_Gather, with corresponding performance 

behavior problems early_reduce and early_gather. 

• 1 N.  1 process sends data to N processes.  If the sending 

process is late, then all N receiving processes will block 

until the send is executed. Example functions are 

MPI_Bcast and MPI_Scatter. The corresponding 

performance problems are late_broadcast and late_scatter. 

• 1 1.  1 process sends to 1 process.  There are two cases. 

In the case of a non-blocking send and a blocking receive, 

if the sending process is late, the receiving process will 

block. In the case of a synchronous send, the sending 

process will block if the receiving process is late. Example 

communication routines are MPI_Ssend and MPI_Recv, 

with corresponding performance problems late_receiver 

and late_sender. 

• N N.  N processes send to N processes.  Here, all N 

processes depend on all other processes involved in the 

communication to proceed. If any of the N are late, then the 

rest of the processes block until all have reached the 

communication routine. An example is MPI_Barrier 

with corresponding performance problem 

imbalance_at_barrier. 

Benchmarks with Regular Behavior. We chose five example 

benchmarks provided with ATS with regular behavior: 

early_gather, imbalance_at_mpi_barrier, late_receiver, 

late_sender, and late_broadcast. Each of the benchmarks 

simulates a program with the given behavior problem with the 

same severity in each iteration. In other words, all iterations of 

each program will exhibit the performance problem and all 

iterations should be very similar. All runs had 8 processes.  

We expect the similarity methods to do relatively well on this 

set of benchmarks since the iterations have regular behavior. 

They should be able to find a large number of segments matches 

and still retain the correct performance behaviors. 

Benchmarks with Irregular Behavior. For this category, we 

used ATS to create new benchmarks with irregular behavior. 

The benchmarks simulate the system interference identified by 

Petrini et al. when they ran an application on ASCI Q [27]. The 

system interference prevented the application from scaling as 

predicted. The benchmarks contain iterations with work periods 

that last approximately 1 ms followed by a communication step, 

using the communication patterns described previously. The 

load for each process is constant in each iteration and across 

processes: the only performance problem comes from the 

interference. We simulated the system noise using timers to 

interrupt the processes as described by Petrini et al. We used two 

simulation scenarios. The first was a 32-process run, with each 

of the 32 processes simulating the interrupts specific to the 32 

nodes in an ASCI Q cluster. The second was also a 32-process 

run, but with the simulated amount of system interruptions that 

would occur if there were 1024 processes in the run. When we 

refer to the benchmarks in the first category, we use the 

communication pattern and either a _32 or a _1024, to indicate 

whether 32 or 1024 processes were simulated, respectively. 

For these benchmarks, we expect the methods to find a high 

number of matches, since most iterations are very similar. 

However, it will be important that they don’t falsely match 

undisturbed and disturbed iterations, as this has the potential to 

mask or amplify the periodic behavior changes due to the 

simulated interruptions. 

Dynamic Load Balancing. Here, we used  ATS to create a 

program that simulates an application that does dynamic load 

balancing. For this benchmark, the performance of the iterations 

starts at about 1 ms and gets progressively worse, with one-half 

of the processes doing more work each iteration and the other 

half doing less work in each iteration, until the "load balancer" is 

triggered. The "load balancer" readjusts the amount of work on 

each processor to be equal. The performance problem exhibited 

by this program is imbalance at mpi all to all, which falls in the 

N-to-N communication category. This benchmark is referred to 

as dyn_load_balance and was run with 8 processes. 

For this benchmark, we expect less overall matching since 

behavior changes with each iteration and very close performance 
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behaviors reoccur only after each simulated load balance. Here it 

will be important that the similarity methods do not match 

segments with larger differences because the load imbalance 

may no longer be apparent in the reduced trace. 

4.2 Application 
We chose Sweep3D 2.2b, a structured mesh application that 

computes a 1-group time-independent discrete ordinates three-

dimensional Cartesian geometry neutron transport problem [1]. 

Structured mesh applications have a regular partitioning of the 

data, where all interior data blocks have equal numbers of 

neighbors. It is likely that the performance will be very regular 

over the course of the program, which means that the reduction 

methods should be able to find a large number of segment 

matches without introducing a large amount of error. We 

collected traces for two runs of this application: an 8-process run 

with input file input.50, sweep3d_8p; and a 32-process run with 

input input.150, sweep3d_32p. 

4.3 Evaluation Criteria 
We chose four criteria to evaluate the metrics: percentage of full 

trace file size, degree of matching, approximation distance, and 

retention of correct performance trends.  

4.3.1 Percentage of Full Trace File Size  
We present the savings in file size as a percentage of the 

full, non-reduced trace file, as a relative measure of size 

reduction.  

4.3.2 Degree of Matching 
The degree of matching metric is a measure of how many 

segment matches occurred. We define it to be the ratio of the 

number of matches to the number of possible matches. The 

number of possible matches is limited by the structure of the 

program. For example, some portions of the code may only 

execute one time, e.g. an initialization step, and will not match 

any other event sequence in the trace. A possible match between 

segments exists if: the segments represent the same code 

location; they contain the same events in the same order; and all 

message passing calls and parameters are the same.  

4.3.3 Approximation Distance 
We estimate the error in the trace by recreating a full trace 

from the reduced trace and comparing each time stamp with its 

counterpart in the original full trace. The approximation distance 

metric tells what absolute difference 90% of time stamps had 

compared to the originals.1 

4.3.4 Retains Correct Performance Trends 
Arguably, the most important criterion for evaluating a trace 

matching metric for the purposes of performance analysis is 

deciding whether or not the reduced trace still indicates the same 

performance problems as the full trace. For example, if an 

analyst inspecting a full trace detects a late sender performance 

problem, the same problem should be detected in the reduced 

trace with approximately the same severity. The KOJAK tool set 

                                                                    

1 When recreating full traces for the iter_k method, we used the 

last segment that executed of each pattern to fill in the 

segment executions that were not collected. Alternatives 

include using the average measurements from the k collected 

segments, or using the centroid of those k segments as 

determined by a clustering algorithm. 

was developed to aid parallel performance analysts in the 

challenging task of performance diagnosis [34]. KOJAK's 

EXPERT tool reads in a trace file and produces a data file 

containing performance diagnoses. Each diagnosis consists of a 

metric, a code location, and a severity for each thread in the run 

[29]. KOJAK's CUBE tool reads in the analysis data and 

presents a visualization to the user, indicating the most 

important performance trends in the trace in a hierarchical 

manner.  

We use the CUBE visualization tool to compare the 

performance diagnoses for the recreated traces against the 

diagnoses for the full trace (See Figure 4.). We determine 

whether a performance analyst would come to the same 

conclusions about the reduced trace as the full trace. If not, then 

the reduced trace is not adequate for performance analysis. We 

admit that this is a subjective test; however, we followed a set of 

guidelines when deciding if the diagnoses were sufficiently 

similar, so all the methods were subjected to the same criteria. 

5. EVALUATION STUDIES 
In this section, we present the results of two studies evaluating 

the similarity methods using the criteria and programs described 

in Section 4. We first present a threshold study for the similarity 

methods from the distance metric category. From this study, we 

choose a threshold for each of these methods that represents the 

best tradeoff in terms of file size reduction, measurement error, 

and retention of performance trends. In the second study, we 

present the results of a comparative study of the similarity 

methods, using the thresholds found to be best for each method 

in the threshold study. 

5.1 Threshold Study 
We investigated the behavior of the methods in reducing the 

traces of the benchmarks while varying the thresholds that 

determine whether two given segments should match or not 

match. The thresholds for relDiff, Minkowski distances, and the 

wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. The 

thresholds for iter_k were 1, 10, 50, 100, 500, and 1000, and for 

absDiff were powers of 10 from 101 to 106. Since no thresholds 

are used with the iter_avg method, it was not included in this 

study. The criteria we used to evaluate the methods were file 

size, approximation distance, and retention of performance 

trends (For file size reduction and approximation distance, see 

Figures 10-16 in the Appendix for the benchmarks and Figures 

17-19 for sweep3d. For retention of performance trends, see 

Tables 1-18 in the Appendix.). For each method, we chose a 

representative threshold to be used when comparing the methods 

against each other.  

relDiff. The file size for each benchmark and the sweep3d runs 

decreased relatively steadily with increasing threshold. The 

approximation distance remained small until the 0.8 threshold, 

after which there was a large jump for many of the benchmarks 

and sweep3d_32p. Performance trends were correctly retained 

for most programs up to a threshold of 0.8. Based on the jump in 

approximation distance and loss of performance trends after 

threshold 0.8, we chose 0.8 as the best threshold for relDiff. 

absDiff. Here the file sizes for the benchmarks and sweep3d 

dropped off fairly quickly at a threshold of 100 and continued to 

decrease slightly with increasing threshold. The approximation 

distance stayed relatively low up to a threshold of 104, after 

which there was a sharp increase for several of the benchmarks 

and sweep3d_32p. Performance trends were retained for most  



 

Figure 4: KOJAK Performance Analysis a

of KOJAK’s EXPERT tool displaying the p

levels, with blue being low and red high, an

panel shows the code locations; and the righ

show the severity for the selected combinati

combination has green or “medium-low” sev

represent this diagnosis by abbreviating the 

severity indicated in the code location pane, a

negative severities. We show the abbreviation

 

programs at a threshold of less than 103. Be

were relatively low and performance trends w

we chose 103 as the representative threshold f

Manhattan, Euclidean, and Chebyshev. W

sizes changes, the Manhattan and Euclidean

quite similarly; the Chebyshev metho

differences. For the Manhattan and Euclidea

regular benchmarks, the 1-to-1 irregular

sweep3d, file sizes decreased relatively stead

threshold; with the other irregular benchm

decreased only slightly with increasing th

matching that was close to optimal was r

threshold of 0.1. For Chebyshev with th

benchmarks and sweep3d, file size decreas

threshold; with the regular benchmarks and 

benchmarks, file size was relatively consta

threshold. For all three methods, we obse

behavior in approximation distance: 

benchmarks, approximation distance was 

with increasing threshold; with the 1-to-1 irr

approximation distance increased with in

with the remaining benchmarks, the appr

remained low until after the threshold of 0.8

was a large jump. For sweep3d and Manha

approximation distance increased with incre

Chebyshev, the approximation distance was 

s and Derivation of Our Performance Diagnosis Represen

 performance diagnosis for dyn_load_balance. The color bar

and gray indicating 0 or close to 0. The left panel shows th

ght panel shows the processes. The color blocks next to each

ation. Above, we have selected the function MPI_Alltoall an

everity and the severity is close to 0 for ranks 4, 6, and 7 and

e metric name, e.g. NN for “Wait at N x N,” coloring the m

e, and coloring squares for each process according to their sev

ions we use for selected KOJAK metrics in white rectangles n

Because the file sizes 

s were retained at 103, 

d for absDiff. 

When observing file 

ean methods behaved 

hod showed some 

ean methods with the 

ar benchmarks, and 

eadily with increasing 

hmarks, the file size 

threshold, because a 

s reached early, at a 

the 1-to-1 irregular 

eased with increasing 

d remaining irregular 

stant with increasing 

served the following 

with the regular 

s relatively constant 

irregular benchmarks, 

increasing threshold; 

proximation distance 

.8, after which there 

hattan and Euclidean, 

reasing threshold; for 

s small and relatively 

constant until after the 0

performance trends, the Man

threshold of 0.4, and the Eucl

well up to 0.2. We based ou

these methods on the retenti

because we consider this me

chose 0.4 as the best thresho

0.2 for the Euclidean and Che

Wavelet Transforms. For all 

haarWave performed simila

decreased with increasing thr

matching, after which no furth

best threshold in this categ

methods, because file size

threshold. The approximati

remained steady with incre

benchmarks and the irregu

benchmarks. The approxim

increasing thresholds for the

sweep3d. The threshold 0.2 i

because of the relatively high

benchmark and sweep3d after

programs, performance trends

thresholds below 0.2. For thes

threshold for the wavelet trans

8

 

entation. Here we show a screenshot 

ar on the bottom shows the severity 

the performance metrics; the middle 

ch metric, code location, and process 

 and the “Wait at NxN” metric. This 

d fairly low for ranks 0-3 and 5. We 

 metric abbreviation according to the 

everity levels. White squares indicate 

 next to the metric names. 

0.8 threshold. For retention of 

anhattan distance did well up to a 

clidean and Chebyshev distances did 

our selection of best thresholds for 

ntion of performance trends metric, 

etric to be the most important. We 

hold for the Manhattan distance and 

hebyshev distances. 

ll evaluation criteria, avgWave and 

arly. For all programs, file sizes 

threshold, up to the point of perfect 

rther decrease in size is possible. The 

egory appears to be 0.4 for both 

ze decrease levels off after this 

ation distance for both methods 

creasing threshold for the regular 

gular N-to1, N-to-N, and 1-to-N 

imation distance increased with 

he irregular 1-to-1 benchmarks and 

 is best for approximation distance, 

gher values for the dyn_load_balance 

ter this threshold. For the majority of 

ds were retained for both methods at 

ese reasons, we chose 0.2 as the best 

nsform methods. 



 9

 

  

    

 

 


Figure 5: Percentage File Sizes and Degree of Matching. 

 

iter_k. Generally speaking, there was an increase in file size and 

decrease in approximation distance with increasing k. 

Performance trends were retained for must programs up to 

threshold 10. The choice for the best k wasn’t clear, but we 

chose k=10 as the best because the performance trends were 

retained for most programs at this threshold.  

5.2 COMPARATIVE STUDY  
In this section, we present comparative results for the different 

methods using size and degree of matching; approximation 

distance; and retention of performance trends as the evaluation 

criteria.  Based on the results of the threshold study in Section 

5.1, we present results for the best performing threshold for each 

method: 0.8 for relDiff, 1000 for absDiff, 0.4 for Manhattan, 0.2 

for Euclidean and Chebyshev, 10 iterations for iter_k, and 0.2 

for avgWave and haarWave. 

5.2.1 Size and Degree of Matching  
We present the data for reduction of traces for each method in 

Figure 5. The iter_avg method gives the best case values for this 

category, since exactly one segment is retained per loop with 

this method.   
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Figure 6: Approximation Distance Results for All Methods at Default Thresholds. 

 

The benchmark data shows that for the most part, the degree of 

matching for each of the methods is greater than 0.9, meaning 

that greater than 90% of the segments were matched. Exceptions 

occur with relDiff, which had degree of matching scores as low 

as 0.74. RelDiff had the highest file sizes and lowest degree of 

matching scores. The next largest file sizes are generated with 

the iter_k method; however, they are not much higher than those 

for the other methods. The Minkowski distances, avgWave, and 

haarWave all have nearly identical results, with Chebyshev 

having a very slight advantage over the others. AbsDiff had only 

slightly larger file sizes than the Minkowski distances. 

For sweep3d, the results are somewhat different. Because this 

application has very regular behavior, we expected the results to 

be similar to those of the benchmarks. However, because of the 

program structure, there are more segments, as well as 

differences within the segments, e.g. message passing 

parameters, that cause segments not to match. We see that iter_k 

performed the worst, with the highest file sizes and lowest 

degree of matching scores. This is because iter_k needed to keep 

10 copies of each individual segment, regardless of how similar 

in performance they actually were, whereas the high degree of 

matching often results in fewer than 10 copies. The next worst 

performing were the Minkowski distances, again with 

Chebyshev having the smallest file sizes. The wavelet methods 

performed best, followed by absDiff and relDiff, each with very 

close to perfect matching and lowest possible file sizes. 

The obvious best method in this category is iter_avg, since all 

segments match by definition. A comparison of the average file 

sizes for each of the other methods yields the following ranking: 

avgWave, haarWave, Chebyshev, absDiff, Manhattan, 

Euclidean, iter_k, relDiff. 

5.2.2 Approximation Distance 
Figure 6 shows the approximation distance results for each of 

the methods. High values for iter_k and iter_avg  mean that 

there is irregularity in the execution that is not being captured in 

the iterations that are retained. High values for absDiff give a 

rough indication of the absolute difference of time stamps from 

the true values in the full trace. High values for the Minkowski 

and wavelet methods mean that there are high maximum values 

in the set of values being compared, relative to the distance 

between those values. 

The methods show similar trends across the benchmarks with 

regular behavior. The relDiff, absDiff, iter_k, and iter_avg 

methods have consistently low values. The Minkowski 

distances, avgWave, and haarWave transform behave similarly, 

and have the highest values overall. The results for the 

dyn_load_balance benchmark show a different set of behavior, 

with absDiff having the lowest value, followed by avgWave, 

Euclidean, Manhattan, and haarWave. The interference 

benchmarks had lower overall approximation distance values 

than the other benchmarks, with similar results across the 

benchmarks. The worst performing methods in this case were 

iter_avg and iter_k. However, the approximation distance values 

are low in comparison to those for the other set of benchmarks. 

The results for sweep3d show iter_avg performing the worst for 

the 8-process run, and iter_k and iter_avg the worst for the 32-

process run, indicating that there are performance behaviors not 

being captured by those two methods.  

The methods that performed the best in this category are relDiff, 

followed by absDiff, and then iter_avg. The rest of the methods 

allowed significant error into at least one of the reduced traces. 

5.2.3 Retention of Performance Trends 
We present summaries of the performance diagnoses given by 

KOJAK for selected benchmarks in Figures 7 and 8. We show 

how we derive the performance diagnoses charts and 

abbreviations for metric names in Figure 4. For the benchmarks 

with regular behavior, nearly all the methods performed quite 
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Figure 7: KOJAK Performance Trends for dyn_load_balance For Each Method at Default Thresholds. Here we show the results for 

each reduction method in the MPI_Alltoall and do_work functions. The first row shows the diagnoses for the full trace. Each box in a row 

shows a performance diagnosis for a single combination of metric and code location. 

 

well. For late_receiver, all methods except iter_avg performed 

equally well, with all performance trends retained. The results 

for iter_avg with late_receiver showed differences significant 

enough that they may lead to an inaccurate performance 

assessment. For early_gather, all but the Minkowski distances, 

avgWave, and haarWave retained the correct performance 

trends. The results for imbalance_at_barrier showed that the 

Minkowski distances, absDiff, iter_avg, avgWave, and 

haarWave retained the performance trends, while relDiff and 

iter_k both showed a negative value for the major performance 

diagnosis. The amount of error introduced into the reduced 

traces caused time stamps to be skewed enough that the 

performance diagnoses resulted in negative values.  

We show the major performance trends for dyn_load_balance in 

MPI_Alltoall and do_work as reported by the KOJAK 

tools for the full trace and all methods in Figure 7. The results 

for the no loss trace clearly indicate that the lower ranks are 

spending more time in MPI_Alltoall, because the upper 

ranks are spending more time in do_work. None of the 

methods gave perfect results for the dyn_load_balance 

benchmark; however, absDiff, Manhattan, Euclidean, avgWave, 

and haarWave gave the closest performance diagnoses because 

for the most part they maintained the performance differences 

due to load imbalance between the upper and lower ranks. 

Although Manhattan, Euclidean, avgWave, and haarWave lost 

the disparity in do_work, the diagnosis “Wait at NxN” is non-

negative and maintains the disparity in behavior. AbsDiff 

maintained the disparity in performance in do_work, but 

reported that “Wait at NxN” was negative. All other methods 

lose the expected disparity in do_work. 

For the interference benchmarks, all methods did pretty well on 

the N-to-1 and 1-to-N benchmarks, with the exception of 

iter_avg, which failed on three benchmarks, and Chebyshev, 

which failed on Nto1_1024. AbsDiff did less well on the 1-to-1 

and N-to-N benchmarks. We show the data for 1to1r_1024 in 

Figure 8. AbsDiff picked up on the variations in the iterations 

due interference, which caused some performance diagnoses to 

be skewed in a positive or negative direction. The best 

performers for these benchmarks were Manhattan, Euclidean, 

and avgWave, followed by relDiff, and haarWave. AbsDiff and 

iter_avg both only showed correct diagnoses for one benchmark, 

1to1r_32 and 1to1s_32, respectively. 

For sweep3d_8p and sweep3d_32p, all methods but iter_avg 

and iter_k produced correct data. Iter_k showed a non-existent 

disparity in rank performance in pmpi_recv in sweep3d_8p 

and a greatly inflated severity in pmpi_recv in sweep3d_32p. 

Iter_avg showed a much lower severity in sweep_ than did the 

no-loss trace for both sweep3d_8p and sweep3d_32p. 

The best methods in this category were Manhattan, Euclidean, 

and avgWave which correctly diagnosed 17 out of the 18 

execution traces. HarrWave did second best, correctly 

diagnosing 16. The rest of the methods in order were: relDiff 

(14); absDiff and Chebyshev (13); iter_k (12); and iter_avg (6). 

The relatively poor performance of iter_k  in this category could 

be due to our choices in implementing this method1. It is 

possible that the first iterations are more subject to variabilities 

in execution, before the processes synchronize into their regular 

behavior patterns, and that the last segment is not the best choice 

as a fill in for missing segments. AbsDiff seemed to amplify 

differences in the traces with interference, while iter_avg 

seemed to smooth out behavior patterns. 

5.2.4 Discussion 
For relDiff, we expected low error and relatively large files, 

which is exactly what we found to be true. For absDiff, we 

expected low error. We did find that absDiff had lower error 

when compared to most methods. We expected the Minkowski 

distances would favor long segments and error would be lowest 

for Manhattan, followed by Euclidean, and highest for 

Chebyshev. While we did definitely see more error in the traces 

produced by the Chebyshev method, the differences in the 

results for the Manhattan and Euclidean methods were largely 

undistinguishable.  We expected iter_k and iter_avg to produce 

low error traces for programs with regular behavior and for 

iter_avg to have the lowest overall file sizes. We indeed found 

that  iter_k did well for regularly behaving programs and less 

well for programs with varying behavior patterns. Iter_avg 

produced better results for the regular benchmarks than the 

irregular ones; the averaging of measurements tended to cause 

loss of information needed for diagnosis. For avgWave and 

haarWave, we expected stricter comparisons than Euclidean.
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Figure 8: KOJAK Performance Trends for 1to1r_1024 for Each Method at Default Thresholds. 

 

 Indeed, the wavelet transforms produced slightly larger files for 

the benchmark traces; however, the reduced traces of sweep3d 

were smaller than those produced by Euclidean.  

To determine best method for comparing traces, we take the 

highest ranking methods from each category and weigh the 

importance of each of the categories. The best methods from the 

size category were iter_avg, followed by avgWave, haarWave, 

and Chebyshev. Those from the approximation distance 

category were relDiff and absDiff, followed by iter_avg. Finally, 

the methods that best retained performance trends were 

avgWave, Manhattan, Euclidean, and haarWave. One could 

argue that the absolute most important criteria for judging these 

methods is whether or not they retain the correct performance 

trends, because that is the point of collecting the traces in the 

first place. However, almost equally important is the ability to 

collect, store, and analyze the trace data at all. Given that 

avgWave performed well in both the size and retention of 

performance trends categories, we choose avgWave as the best 

method of the ones studied for comparing traces. 

6. CONCLUSIONS 
We have developed a new methodology for evaluating 

definitions for similarity between event traces for the purpose of 

performance analysis. We identified criteria for comparing the 

similarity methods: file size reduction, degree of matching, 

approximation distance, and retention of correct performance 

trends. We applied these criteria, using benchmarks with known 

performance behaviors, as well as with the application sweep3d. 

Overall, the avgWave method had the best retention of 

performance behaviors and good trace file size reduction. The 

greatest trace file reductions were achieved with the iter_avg 

method; however, the error in those traces led to loss of 

important performance trends in the data. Because of this we 

found that using the avgWave method was the best trade-off in 

terms of error in the reduced trace and file size reduction. 

Future directions for this work include investigating additional 

difference methods, such as trace sampling; and evaluating the 

methods against a richer set of full application traces.   
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APPENDIX 

  

  

  

Figure 9: File Size and Approximation Distance for Varying Duration Thresholds and Relative Distance 
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Figure 10: File Size and Approximation Distance for Varying Threshold and Absolute Distance 
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Figure 11: File Size and Approximation Distance for Varying Threshold and Manhattan Distance 
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Figure 12: File Size and Approximation Distance for Varying Threshold and Euclidean Distance 
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Figure 13: File Size and Approximation Distance for Varying Threshold and Chebyshev Distance 
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Figure 14: File Size and Approximation Distance for Varying Threshold and Keep k Iterations 
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Figure 15: File Size and Approximation Distance for Varying Threshold and Average Wavelet Transform 
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Figure 16: File Size and Approximation Distance for Varying Threshold and Haar Wavelet Transform 
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Absolute Difference 

 

 

Manhattan Distance 

 

Figure 17: File Size and Approximation Distance for Varying Thresholds for Sweep3d and relDiff, absDiff, Manhattan 
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Figure 18: File Size and Approximation Distance for Varying Thresholds for Sweep3d  and Euclidean, Chebyshev, iter_k 
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Figure 19: File Size and Approximation Distance for Varying Thresholds for Sweep3d  and Wavelet Transforms 
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Table 1: Retention of Performance Trends with Varying Thresholds for dyn_load_balance 
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
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Table 2: Retention of Performance Trends with Varying Thresholds for early_gather 
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
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Table 3: Retention of Performance Trends with Varying Threshold for imbalance_at_mpi_barrier 



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Table 4: Retention of Performance Trends with Varying Threshold for late_broadcast 
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
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Table 5: Retention and Performance Trends with Varying Thresholds for late_receiver 
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
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Table 6: Retention of Performance Trends with Varying Thresholds for late_sender 
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
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Table 7: Retention of Performance Trends with Varying Thresholds for Nto1_32 
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

 



 33

Table 8: Retention of Performance Trends with Varying Thresholds for NtoN_32 
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Table 9: Retention of Performance Trends with Varying Thresholds for 1toN_32 
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Table 10: Retention of Performance Trends with Varying Thresholds for 1to1r_32 
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Table 11: Retention of Performance Trends with Varying Thresholds for 1to1s_32 
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Table 12: Retention of Performance Trends with Varying Thresholds for Nto1_1024 
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Table 13: Retention of Performance Trends with Varying Thresholds for NtoN_1024 
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Table 14: Retention of Performance Trends with Varying Thresholds for 1toN_1024 
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Table 15: Retention of Performance Trends with Varying Thresholds for 1to1r_1024 
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Table 16: Retention of Performance Trends with Varying Thresholds for 1to1s_1024 
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Table 17: Retention of Performance Trends with Varying Thresholds for sweep3d_8p 
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Table 18: Retention of Performance Trends with Varying Thresholds for sweep3d_32p 
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