
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

2009

Evaluating Similarity-based Trace Reduction Evaluating Similarity-based Trace Reduction

Techniques for Scalable Performance Analysis Techniques for Scalable Performance Analysis

Kathryn Marie Mohror
Portland State University

Karen L. Karavanic
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details

Mohror, Kathryn Marie and Karavanic, Karen L., "Evaluating Similarity-based Trace Reduction Techniques

for Scalable Performance Analysis" (2009). Computer Science Faculty Publications and Presentations.

220.

https://pdxscholar.library.pdx.edu/compsci_fac/220

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if
we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/220
https://pdxscholar.library.pdx.edu/compsci_fac/220?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

 1

Evaluating Similarity-based Trace Reduction Techniques
for Scalable Performance Analysis

Kathryn Mohror and Karen L. Karavanic
Portland State University

{kathryn,karavan}@cs.pdx.edu

ABSTRACT

Event traces are required to correctly diagnose a number of

performance problems that arise on today’s highly parallel

systems. Unfortunately, the collection of event traces can

produce a large volume of data that is difficult, or even

impossible, to store and analyze. One approach for compressing

a trace is to identify repeating trace patterns and retain only one

representative of each pattern. However, determining the

similarity of sections of traces, i.e., identifying patterns, is not

straightforward. In this paper, we investigate pattern-based

methods for reducing traces that will be used for performance

analysis. We evaluate the different methods against several

criteria, including size reduction, introduced error, and retention

of performance trends, using both benchmarks with carefully

chosen performance behaviors, and a real application.

1. INTRODUCTION
Today’s high-end architectures contain tens to hundreds of

thousands of processors, pushing application scalability

challenges to new heights. Performance analysis is a necessary

step to adapt codes to utilize a target high end machine. Correct

diagnosis of certain complex performance problems that arise on

high end systems requires detailed event traces. An “event” is a

runtime occurrence of a program activity, such as a machine

instruction or basic block execution, memory reference, function

call, or a message send or receive. Generating event traces

involves writing a time stamped record for each event, into a

buffer or file for later analysis. Unfortunately, the collection of

event traces presents scalability challenges: the act of

measurement perturbs the target application; and the large

volume of collected data increases the perturbation, and results

in data files that are difficult, or even impossible, to store and

analyze [24]. Several documented cases describe performance

problems that appear only when the application is run at a large

scale [18, 27], driving the need to be able to collect event traces

for large runs. We have a conundrum: we need traces to

correctly diagnose important performance problems, but the

sheer volume of data collected makes collecting full traces at the

very least prohibitive, and in the worst case impossible. For this

reason, solving the scaling challenges of event tracing is an

important problem for high end computing.

Given the challenges of tracing at the high end, one might be

tempted to avoid it entirely. Profiling, for example, provides

summary information and therefore exhibits better scaling

behavior. However, the types of information provided by

profiling are, in many cases, too limited for correct diagnosis of

certain performance problems [7, 36]. An example of such a

performance problem is “Late Sender” in a message-passing

program. This is the situation where the receiving process waits

at a blocking receive call waiting because the sending process

hasn’t yet reached the matching send call. While a profile could

indeed show that excessive time was being spent in receive

operations, the data is not sufficient to distinguish between a late

sender or some other root cause, such as network contention that

caused the message to be received late. In contrast, an event

trace captures the relative timing of events, and would show that

the send operations started late and caused the receive

operations to block. Tracing is also useful for showing the

causality of events [31, 12]; the interactions between program

elements, that can be difficult or impossible to understand from

static analysis [22, 20]; and event patterns that reveal properties

of programs, such as performance problems and locations of

possible optimization [21].

One promising approach to highly scalable tracing is to filter or

reduce the trace in some manner, either during or after the

collection of trace records. Users who need to collect trace data

currently resort to ad-hoc measures to reduce the amount of data

collected; for example, tracing a reduced number of iterations of

a loop. These measures have the potential to miss the

performance problem altogether, e.g. if the problem doesn’t

occur during the measured iterations. One method for reducing

the size of traces is to identify similar sections of a trace and

retain only one representative of each pattern. However,

determining the similarity between traces or sections of traces is

not straightforward. The probability that any two trace sections

will have exactly the same measurements is very small, so any

similarity method will allow some amount of differences

between similar traces. Despite this, it is critical that any

differences allowed do not mask information needed for correct

performance diagnosis.

Requirements for the accuracy and types of information in a

trace vary based on the intended use: correctness testing and

debugging, simulation, or performance analysis. Correctness

testing and debugging generally only require that the trace retain

the relative ordering of events that have the potential to affect

each other: events within a single process or thread and

synchronization events across processes or threads. For

example, inspecting a trace of a parallel program could indicate

the reason for a deadlock situation by showing the ordering of

synchronization operations; a parallel program might hang

because a process is waiting for a message that was never sent.

Simulation requires traces that retain the order of events and

possibly some timing information. Traces for simulation can be

used to predict application performance on new or theoretical

hardware. The events in the trace can be replayed using either

averaged or predicted timing information for the new hardware.

Generally, a single time value is used for all event occurrences

instead of individual timing measurements for each event

occurrence. For example, the average time to execute a send

operation could be used as the time for all send operations in the

trace. This tradeoff allows acceptable accuracy with faster time

to simulated results and smaller trace files. Performance

 2

analysis requires not only the relative ordering of events, but the

timing information for individual events. Performance problems

do not necessarily occur with a high degree of regularity, e.g. in

every iteration of a loop, so individual event timings are needed

to show the root causes of problems. For example, trace data can

show a time-varying load imbalance in a parallel job, which

causes some ranks to be late to a synchronization operation at

varying times during the program execution. The individual

event timings can show what events are taking more time in the

slower ranks and in what iterations the slowness occurs.

In this work, our goal is to determine a similarity metric that

yields adequate trace reduction and also retains the information

needed for correct performance analysis. Achieving our goal

required that we answer several key questions:

• What metrics can we use to evaluate and compare trace

difference methods? In addition to file size reduction, we

developed and used metrics for error, greatest possible file

size reduction (i.e. potential for repeated patterns), and

consistency of performance diagnosis.

• How much error should be allowed? Values that will likely

never be exactly equal need to be compared. We had to

decide how much each measurement can vary, and weigh

the consequences of the amount of error. If we are

matching traces for the purpose of trace compression, then

a larger allowed error between traces would mean larger

number of matches, and thus a smaller trace file. However,

the larger error might prevent the correct performance

diagnosis from being made.

• How can we measure the “goodness” of each approach?

Most trace compression studies report the reduction of file

size achieved; but no matter how much compression is

achieved, if the reduced trace no longer contains the data

needed for accurate performance diagnosis, the method is

not useful for our purpose. We evaluate each approach not

just on amount of compression, but also on amount of error

and consistency of diagnosis, and discuss the tradeoffs in

weighting the different metrics.

In this study, we perform a comparative evaluation of similarity

metrics in current or proposed use for trace reduction. To

evaluate the effectiveness of the similarity metrics, we apply the

same trace reduction technique to full execution traces, varying

the similarity method used to determine repeating patterns

within the trace. Then we compare the results using three

metrics: file size reduction, trace error, and retention of

performance trends.

2. RELATED WORK
Previously proposed methods for reducing the sizes of traces for

the purpose of performance analysis include deletion of similar

trace sections; trace sampling; statistical clustering; and signal

processing.

Knüpfer and Spooner define two sections of traces as similar if

the call graph context and measurements of the events are equal.

Knüpfer defines equality using both relative and absolute

differences [19]; Spooner et al. use the relative difference in

instruction counts [30]. Another approach defines similarity by

event names. Chung et al. use a filter that detects repeated

communication patterns [6]; they keep performance data for

only one instance of each pattern. Freitag et al. use a periodicity

detector to notice repeating sequences of events and keep a

reduced number of iterations of each sequence [8]. Similarly,

Yan and Schmidt detect repeating sequences of events and store

the average measurements of those events [36]. Noeth and

Mueller also detect repeated sequences of message-passing

events and store one copy of each sequence; they optionally

store summary information about the events, such as average

measurements [26]. In later work, they include the ability to

store more detailed timing information: statistical “delta” times,

histograms, or histograms by call sequence [28].

Other efforts use trace sampling to reduce trace size. Carrington

et al. use trace sampling to reduce the amount of time it takes to

gather memory reference traces for the purpose of performance

modeling [3]. They collect data for a reduced number of

executions of the basic blocks in a program. Vetter presents a

method for statistically sampling MPI events [32]. Each time an

MPI event is encountered, it is either sampled or not. For each

sampled event, the tool can record statistics, log the event to a

trace file, or ignore the data. Gamblin et al. use statistical

sampling with a user-specified confidence interval and metric.

[10].

Aguilera et al. [2], Nickolayev et al.[25], and Lee et al. [23]

apply statistical clustering to traces and select a representative

trace for each cluster of processes. Nickolayev and Lee use the

Euclidean distance for clustering, while Aguilera uses a metric

based on the amount of communication between two processes.

Several groups apply methods from signal processing to traces.

Casas et al. and Huffmire et al. use the Haar wavelet transform

to automatically determine the phases of a program [4, 16].

Gamblin et al. use the CDF 9/7 wavelet transform to compress

traces collected for the purposes of detecting load imbalance [9].

Hauswirth et al. use dynamic time warping to decide when two

traces are similar for aligning multiple traces [14].

Researchers have evaluated several methods for deciding the

goodness of a particular trace similarity metric. To our

knowledge, ours is the only comparative study of the methods to

see what is most appropriate for the purposes of performance

analysis. Ratn et al. use aggregate statistical measures, such as

total time spent in a function, to evaluate their method [28].

Gamblin et al. compute a trace confidence measure to evaluate

their trace sampling results, which is tells the percentage of time

the mean trace of sampled processes is within an specified error

bound of the mean trace of the full trace [10]. In their wavelet

transform method, Gamblin et al. use a root mean square

measure to estimate the error in reduced traces [9]. They also

present qualitative results, showing a visualization based on a

reduced trace compared with one from a complete trace. Yan et

al. compare the measurements in their reduced trace against the

real trace time stamp by time stamp and produce both a relative

and absolute measure of the overall differences [35]. In addition,

they also present whole program statistical measurements and

visualizations for qualitative comparison.

3. TRACE REDUCTION
In this section we describe our approach for trace reduction.

Section 3.1 details our trace segmentation technique, and

Section 3.2 describes the different similarity metrics we use to

compare segments. This paper focuses exclusively on intra-

process reduction, that is, reducing the size of each individual

per-task trace. In practice these individual traces are first

collected separately, then merged into a single trace file

representing the entire application run. Therefore, reducing each

 3

int main(){
 start_segment(“init”);
 MPI_Init();
 end_segment(“init”);
 for(i=0; i < 100; ++i){
 start_segment(“main.1”);
 do_work();
 MPI_Allgather();
 end_segment(“main.1”);
 }
 for (j=0; j < 10; ++j){
 start_segment(“main.2”);
 do_other_work();
 end_segment(“main.2”);
 while(k < otherRanks){
 start_segment(“main.2.1”);
 MPI_Sendrecv();
 end_segment(“main.2.1”);
 }
 }
 start_segment(“final”);
 MPI_Finalize();
 end_segment(“final”);

 }

Figure 1: Segment Context Marking. We show a single

function, main() with the instructions added to mark the segment

contexts. We mark initialization, finalization, and all loops.

The segment context names are hierarchical: the second loop is

marked "main.2" and its subloop is marked "main.2.1".

Segment marking is automated using a dynamic instrumentation

library.

per-task trace prior to merging will reduce the application trace

accordingly.

3.1 Trace Collection and Segments
We collected full traces of time stamped function entries and

exits for the benchmarks and application as follows. First we

insert segment markers into the source code that are repeated in

the trace during execution. We define segments as follows: the

initial segment starts at entry to main; for each program loop

containing at least one measured event, we stop the current

segment before the loop starts, start a new segment at the top of

each loop iteration, stop the segment at the bottom of the loop

iteration, and start a new segment after the last iteration of the

loop completes; and end the final segment at program

termination. The segment context is the section of code, for

example, the main.1 loop in Figure 1. We used the dynamic

instrumentation library Dyninst [15] to instrument the full

application for both function entry and exit tracing as well as

inserting segment begin and end markers. The simple

benchmarks were marked manually.

We compare the segments for each context pair wise to

determine if they are similar. If they are, we say that the

segments match and retain a single representative segment. Each

segment si contains an ordered list of events Ei = {e0, e1, …, em}.

We maintain a list storedSegments, which contains the segments

that represent the performance behaviors in the execution, and a

list segmentExecs that holds the starting times and identifier of

each representative segment so that we can later recreate a full

trace. Given an equivalence operator ≈ for some similarity

metric, and a segment snew that has events Enew the algorithm

comparing segments is as follows:

For i = 0 to len(Enew):

Enew[i].start = Enew[i].start – snew.start

Enew[i].end = Enew[i].end – snew.start

snew.end = snew.end – snew.start

match = False

For i = 0 to len(storedSegments):

sstored = storedSegments[i]

match = compareSegments(snew, sstored)

If match = True:

segmentExecs = segmentExecs ∪ (sstored.id,snew.start)

break

If not match:

snew.id = getNewId()

segmentExecs = segmentExecs ∪ (snew.id,snew.start)

snew.start = 0

storedSegments = storedSegments ∪ snew.

Boolean compareSegments(snew, sstored):

If snew.context ≠ sstored.context: return False

If len(Enew) ≠ len(Estored): return False

For i = 0 to len(Enew):

If Enew[i].id ≠ Estored[i].id: return False

If snew ≈ sstored: return True

Else: return False

Note that a segments match requires that segments have the

same context and the same number of events occurring in the

same order. We give examples of segment matching in Figure 2.

3.2 Similarity Metrics
We used several methods to decide the similarity of segments.

Each of these is described below. Our choices were inspired by

methods used by other researchers to reduce traces (See Section

2.). They fell into two categories: distance methods and

iteration-based methods.

3.2.1 Distance Methods
The distance methods produce a difference measure, which is

then compared against a user-supplied threshold to determine

the presence or absence of a match. Several of the difference

methods are standard methods for computing distances between

values and sets of values. We use the relative difference

(relDiff), absolute difference (absDiff), and three variations on

the Minkowski distance (Manhattan, Euclidean, Chebyshev),

and wavelet transforms (avgWave, haarWave).

relDiff. We compare the relative differences between each event

measurement against a user-defined threshold; if greater, the

events are not equal:

   .

To see how relDiff matches segments, we consider our example

in Figure 2. We compute the relative differences between each

of the paired measurements in the segments. If any are above

our chosen threshold, say 0.5, then the match fails. Comparing

s2 with s1, we first compare the start times of the do_work

event: x1=1 and x2=1, with relative difference 0. Since the

relative difference is less than 0.5, we continue on computing

relative differences. Next we check the end times for the

do_work event. Here we compute a relative difference: x1=17

and x2=40, giving a relative difference of 0.58. This is above our

threshold, so the segments do not match. When we compare s2

Figure 2: Trace and Segments Example. H

The top bar represents a portion of a trace f

above the bar. Segments markers are shown

shown in white boxes. Below the trace, we s

and ending time of segments are adjusted rela

we show two examples of segment matching

with s0, we find that no differences are great

x2=20), so the segments match. The new se

since its behavior is reflected in the measurem

The relative difference function compares

with its paired counterpart in isolation. The c

is proportional to the magnitude of the pa

meaning that larger differences between la

don't overshadow differences in smaller mea

the difference between each measurement pa

isolation, the relative difference should be

difference criteria in our set. The choice of

have a large bearing on the degree of matc

the reduction in file size.

One problem with relDiff appears when com

in a series. For example, assume the thresh

time stamps is 0.25. When we compare even

1 and 2, the relative difference is

  . T

a failure to match the events even though the

only one time unit between the events.

compare events that start at 100 and 125, the

is 0.2, which is a match even though there i

time units. We expect relDiff to produce red

low amount of error, but with less file size re

absDiff. As with the relDiff, each measure

with its counterpart. A fixed size differenc

threshold, is allowed for each measureme

example segments in Figure 2, and a threshol

s2 will not match s1, because the end times o

time units apart. However, there are no diffe

Here we show a portion of an example trace and three segme

e for the program in Figure 1. Time increases from left to ri

n as light gray rectangles with vertical text that indicates the

e show the result of segmentation. In each of the three segme

elative to the start time of the segment. We name the segment

g (See Section 3.2.).

ater than 0.15 (x1=17,

 segment is discarded

rements in s0.

es each measurement

e computed difference

paired measurements,

 larger measurements

easurements. Because

pair will be judged in

e one of the strictest

of threshold used will

tching, and hence on

omparing time stamps

eshold for comparing

ents that start at times

. This would result in

here is a difference of

. In contrast, if we

the relative difference

 is a difference of 25

reduced traces with a

 reduction.

urement is compared

nce, determined by a

ent pair. Using our

old of 20, we see that

s of do_work are 23

ferences larger than 3

between s2 and s0, so those t

choice has an impact on file

method to produce fairly accu

to the timing of events across

will not have an unfair bias to

trace.

Manhattan, Euclidean, and

Minkowski distance between

1. If the distance is greate

multiplied by the maximum

then the events are not equa

Chebyshev distances are s

distance, with m equal to 1,

The Chebyshev distance is d

between two measurements.

Eq. 1

  


Using our example in Figure

a vector of the measurements

for s1, (51, 1, 40, 41, 50).

Chebyshev distances between

respectively. The largest mea

51. If we choose a thresho

computed distance can be for

not match using any of the

compare s0, (50, 1, 20, 21, 49

4

ments to illustrate segment matching.

 right, and time values are indicated

e context of the segment. Events are

ments, the time stamps for the events

nts s0, s1, and s2. In the bottom row,

e two segments match. The threshold

le size and accuracy. We expect this

curate results, especially with respect

ss processes, because unlike relDiff it

 towards events that occur later in the

nd Chebyshev. We compute the

n segments using the formula in Eq.

ter than a user-specified threshold

 value in the event measurements,

ual. The Manhattan, Euclidean, and

special cases of the Minkowski

1, 2, and  respectively [13].

 defined to be the largest difference

  

 

re 2, to compare s2 and s1, we create

ts for s2, (49, 1, 17, 18, 48), and one

0). The Manhattan, Euclidean, and

en these vectors are 50, 32.6, and 23,

easurement in the pair of vectors is

hold of 0.2, then the highest the

or a match is 10.2, so s2 and s1 will

he Minkowski distances. When we

49), with s2, we get distances of 8,

Figure 3: Wavelet Transform Example.

(shown in boxes) and differences (shown b

transforms of s0 and s2, we compute the Euc

element in the vectors (17.625).

4.5, and 3. The maximum value in the two v

highest the distances can be for a match is 1

s2 would match s0 for each of these distance

There are several issues to consider fo

distances:

• As m increases in the Minkowski distan

influence of the larger differences

influence of the smaller differences

extreme case of the Chebyshev d

maximum difference has any bearing on

As the number of measurements being c

the values of the Manhattan and E

increase. Given vectors of constant diff

1, the Manhattan distance increases qu

and the Euclidean distance increases in

If the differences are all between 0 an

distances increase more slowly.

• When time stamp values are being comp

and end time for events, the values are

within a segment. This means that lo

judged less critically than shorter seg

maximum values that are compared

measurement are larger.

Based on these trends, we expect that the

would give the most accurate results, beca

weight to the smaller differences. The Euclid

give slightly less accurate results, given the

differences. The Chebyshev distance would

because it only accounts for the largest differ

Wavelet transform. The discrete wavelet tr

decomposes a signal of size L into two sub

The first L/2 values give the trends in the orig

second L/2 values give the fluctuations. Intu

the averages and differences between pairs of

give examples of transformations in Figure 3

We use two wavelet transforms in our exper

transform described in Figure 3 (avgWav

transform (haarWave). The Haar transform i

average transform, with the only differen

averages and differences are multiplied

. Here we show two example average wavelet transforms.

 between edges) for pairs of numbers, starting with the orig

uclidean distance between them and compare it against a thres

o vectors is 50, so the

s 10. This means that

ce metrics.

for the Minkowski

tance (See Eq. 1.), the

 increases, and the

es decreases. In the

distance, only the

on the distance value.

g compared increases,

 Euclidean distances

ifferences greater than

quite rapidly linearly,

 in the manner of .

and 1, the computed

mpared, e.g. start time

are always increasing

 longer segments are

egments, because the

d with the distance

e Manhattan distance

cause it gives larger

lidean distance would

e bias towards larger

uld be least accurate,

erence measure.

 transform iteratively

ubsignals of size L/2.

riginal signal, and the

tuitively, it computes

 of numbers [17]. We

3.

eriments: the average

ave), and the Haar

 is very similar to the

rence being that the

d by  [33]. For

example, the trends compute

(9, 24.25). For our imp

for each of the segments to b

each vector is the relative star

all cases. This is followed

stamps for all events in the se

time of the segment. Both t

with a length that is a power

vector so that its length is

number of time stamps in th

after the last time stamp e

transformed vectors, we c

between them [5] and compa

by the largest value in the pai

3, we show an example com

from Figure 2. Because the co

less than the maximum allowe

For both transforms, the valu

be smaller than the values i

transform has several properti

not, including preservation

However, its values will be

transform since all values ar

transform, we expect more

Euclidean distance because

transformed vector will be sm

the original vector, so the th

values in the vector from the

still; however, the Euclidean

potential exists for a less strict

3.2.2 Iteration-based M
We chose two iteration-based

iter_k. Only keep a fixed nu

code. We expect this method

example in Figure 2, if we ch

copies of the main.1 segmen

However, if k=2, then we wou

iter_avg. Keep the average

section of code. We expect th

data sizes, since segments w

5

s. We iteratively compute averages

riginal vector. To compare the two

reshold (0.2) multiplied by the largest

ted in step 3 in Figure 3 would be

plementation, we construct a vector

o be compared. The first element of

art time of the segment, which is 0 in

d by the event entry and exit time

 segment. The last element is the exit

 transforms require an input vector

er of two. We allocate space for the

is the next power of two after the

 the vector. We zero-pad the vector

 element to the end. To compare

compute the Euclidean distance

pare it against a threshold multiplied

air of transformed vectors. In Figure

mparison of the segments s0 and s2

 computed Euclidean distance, 1.9, is

wed, 3.5, s0 and s2 match.

lues in the transformed vectors will

s in the original vectors. The Haar

rties that the average transform does

n of the Euclidean distance [5].

be larger than those of the average

are multiplied by . For the Haar

re accurate results than from the

se the maximum value in the

 smaller than the maximum value in

 threshold test will be stricter. The

he average transform will be smaller

an distance is not preserved, so the

ict test than the Euclidean distance.

 Methods
ed methods: iter_k and iter_avg.

number of each traced segment of

d to produce small data files. For our

 chose k=3, we would keep all three

ent in the list of stored segments.

ould keep s0 and s1 and discard s2.

ge measurements for each traced

 this method to produce the smallest

 with the same context and same

 6

events will always match. To illustrate this method, we use the

segments in Figure 2 and the stored segments scenario on the

left. For this method, we never have more than one copy of the

main.1 segment, and end up with a single copy of the main.1

segment that contains averages of the values of s0, s1, and s2.

We expect that these methods will produce fairly accurate data

for applications that have little behavior variability, but poorly

for applications that do have performance variabilities.

4. EVALUATION METHODOLOGY
In this section we detail our framework for the evaluation of

similarity metrics. We investigate traces collected for a set of

benchmarks with known behaviors, and for a full application,

running on a Linux cluster. Our evaluation focuses on three

metrics: file size reduction, amount of error in the trace, and

retention of performance trends. For file size reduction we

simply compare the sizes of the reduced traces to the full-sized

traces from which they were derived. We calculate the trace

error by recreating an approximated full-sized trace from the

reduced version, then comparing it to the actual full trace. We

evaluate retention of performance trends by feeding the actual

and approximated full traces into a performance analysis tool

and examining any differences in the results.

4.1 Benchmarks
We crafted our benchmarks to represent classes of performance

behaviors that occur in parallel programs on high end systems.

These performance behaviors can appear with a high degree of

regularity, sporadically, or progressively change over the

iterations in the execution. To reflect this, we created a set of

regularly behaving benchmarks, a set of irregularly behaving

benchmarks, and a benchmark that simulates dynamic load

balancing. Because we know the behavior patterns in each

benchmark, we can evaluate how well each of the methods

retains the performance behaviors.

We used the APART Test Suite (ATS) to create our

benchmarks. The ATS a collection of utilities designed to create

programs with known behavior for testing parallel performance

tools [11]. We chose behavior patterns from the ATS that

represent performance problems that require trace data for

correct diagnosis. For parallel programs, these performance

behaviors fall into four categories based on the communication

pattern being used. We describe these communication patterns

here using MPI functions as examples.

• N 1. N processes send data to 1 process. If any of the

sending processes are late, then the receiving process

blocks, waiting for them to execute the send operation.

Example MPI functions for this pattern are MPI_Reduce

and MPI_Gather, with corresponding performance

behavior problems early_reduce and early_gather.

• 1 N. 1 process sends data to N processes. If the sending

process is late, then all N receiving processes will block

until the send is executed. Example functions are

MPI_Bcast and MPI_Scatter. The corresponding

performance problems are late_broadcast and late_scatter.

• 1 1. 1 process sends to 1 process. There are two cases.

In the case of a non-blocking send and a blocking receive,

if the sending process is late, the receiving process will

block. In the case of a synchronous send, the sending

process will block if the receiving process is late. Example

communication routines are MPI_Ssend and MPI_Recv,

with corresponding performance problems late_receiver

and late_sender.

• N N. N processes send to N processes. Here, all N

processes depend on all other processes involved in the

communication to proceed. If any of the N are late, then the

rest of the processes block until all have reached the

communication routine. An example is MPI_Barrier

with corresponding performance problem

imbalance_at_barrier.

Benchmarks with Regular Behavior. We chose five example

benchmarks provided with ATS with regular behavior:

early_gather, imbalance_at_mpi_barrier, late_receiver,

late_sender, and late_broadcast. Each of the benchmarks

simulates a program with the given behavior problem with the

same severity in each iteration. In other words, all iterations of

each program will exhibit the performance problem and all

iterations should be very similar. All runs had 8 processes.

We expect the similarity methods to do relatively well on this

set of benchmarks since the iterations have regular behavior.

They should be able to find a large number of segments matches

and still retain the correct performance behaviors.

Benchmarks with Irregular Behavior. For this category, we

used ATS to create new benchmarks with irregular behavior.

The benchmarks simulate the system interference identified by

Petrini et al. when they ran an application on ASCI Q [27]. The

system interference prevented the application from scaling as

predicted. The benchmarks contain iterations with work periods

that last approximately 1 ms followed by a communication step,

using the communication patterns described previously. The

load for each process is constant in each iteration and across

processes: the only performance problem comes from the

interference. We simulated the system noise using timers to

interrupt the processes as described by Petrini et al. We used two

simulation scenarios. The first was a 32-process run, with each

of the 32 processes simulating the interrupts specific to the 32

nodes in an ASCI Q cluster. The second was also a 32-process

run, but with the simulated amount of system interruptions that

would occur if there were 1024 processes in the run. When we

refer to the benchmarks in the first category, we use the

communication pattern and either a _32 or a _1024, to indicate

whether 32 or 1024 processes were simulated, respectively.

For these benchmarks, we expect the methods to find a high

number of matches, since most iterations are very similar.

However, it will be important that they don’t falsely match

undisturbed and disturbed iterations, as this has the potential to

mask or amplify the periodic behavior changes due to the

simulated interruptions.

Dynamic Load Balancing. Here, we used ATS to create a

program that simulates an application that does dynamic load

balancing. For this benchmark, the performance of the iterations

starts at about 1 ms and gets progressively worse, with one-half

of the processes doing more work each iteration and the other

half doing less work in each iteration, until the "load balancer" is

triggered. The "load balancer" readjusts the amount of work on

each processor to be equal. The performance problem exhibited

by this program is imbalance at mpi all to all, which falls in the

N-to-N communication category. This benchmark is referred to

as dyn_load_balance and was run with 8 processes.

For this benchmark, we expect less overall matching since

behavior changes with each iteration and very close performance

 7

behaviors reoccur only after each simulated load balance. Here it

will be important that the similarity methods do not match

segments with larger differences because the load imbalance

may no longer be apparent in the reduced trace.

4.2 Application
We chose Sweep3D 2.2b, a structured mesh application that

computes a 1-group time-independent discrete ordinates three-

dimensional Cartesian geometry neutron transport problem [1].

Structured mesh applications have a regular partitioning of the

data, where all interior data blocks have equal numbers of

neighbors. It is likely that the performance will be very regular

over the course of the program, which means that the reduction

methods should be able to find a large number of segment

matches without introducing a large amount of error. We

collected traces for two runs of this application: an 8-process run

with input file input.50, sweep3d_8p; and a 32-process run with

input input.150, sweep3d_32p.

4.3 Evaluation Criteria
We chose four criteria to evaluate the metrics: percentage of full

trace file size, degree of matching, approximation distance, and

retention of correct performance trends.

4.3.1 Percentage of Full Trace File Size
We present the savings in file size as a percentage of the

full, non-reduced trace file, as a relative measure of size

reduction.

4.3.2 Degree of Matching
The degree of matching metric is a measure of how many

segment matches occurred. We define it to be the ratio of the

number of matches to the number of possible matches. The

number of possible matches is limited by the structure of the

program. For example, some portions of the code may only

execute one time, e.g. an initialization step, and will not match

any other event sequence in the trace. A possible match between

segments exists if: the segments represent the same code

location; they contain the same events in the same order; and all

message passing calls and parameters are the same.

4.3.3 Approximation Distance
We estimate the error in the trace by recreating a full trace

from the reduced trace and comparing each time stamp with its

counterpart in the original full trace. The approximation distance

metric tells what absolute difference 90% of time stamps had

compared to the originals.1

4.3.4 Retains Correct Performance Trends
Arguably, the most important criterion for evaluating a trace

matching metric for the purposes of performance analysis is

deciding whether or not the reduced trace still indicates the same

performance problems as the full trace. For example, if an

analyst inspecting a full trace detects a late sender performance

problem, the same problem should be detected in the reduced

trace with approximately the same severity. The KOJAK tool set

1 When recreating full traces for the iter_k method, we used the

last segment that executed of each pattern to fill in the

segment executions that were not collected. Alternatives

include using the average measurements from the k collected

segments, or using the centroid of those k segments as

determined by a clustering algorithm.

was developed to aid parallel performance analysts in the

challenging task of performance diagnosis [34]. KOJAK's

EXPERT tool reads in a trace file and produces a data file

containing performance diagnoses. Each diagnosis consists of a

metric, a code location, and a severity for each thread in the run

[29]. KOJAK's CUBE tool reads in the analysis data and

presents a visualization to the user, indicating the most

important performance trends in the trace in a hierarchical

manner.

We use the CUBE visualization tool to compare the

performance diagnoses for the recreated traces against the

diagnoses for the full trace (See Figure 4.). We determine

whether a performance analyst would come to the same

conclusions about the reduced trace as the full trace. If not, then

the reduced trace is not adequate for performance analysis. We

admit that this is a subjective test; however, we followed a set of

guidelines when deciding if the diagnoses were sufficiently

similar, so all the methods were subjected to the same criteria.

5. EVALUATION STUDIES
In this section, we present the results of two studies evaluating

the similarity methods using the criteria and programs described

in Section 4. We first present a threshold study for the similarity

methods from the distance metric category. From this study, we

choose a threshold for each of these methods that represents the

best tradeoff in terms of file size reduction, measurement error,

and retention of performance trends. In the second study, we

present the results of a comparative study of the similarity

methods, using the thresholds found to be best for each method

in the threshold study.

5.1 Threshold Study
We investigated the behavior of the methods in reducing the

traces of the benchmarks while varying the thresholds that

determine whether two given segments should match or not

match. The thresholds for relDiff, Minkowski distances, and the

wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. The

thresholds for iter_k were 1, 10, 50, 100, 500, and 1000, and for

absDiff were powers of 10 from 101 to 106. Since no thresholds

are used with the iter_avg method, it was not included in this

study. The criteria we used to evaluate the methods were file

size, approximation distance, and retention of performance

trends (For file size reduction and approximation distance, see

Figures 10-16 in the Appendix for the benchmarks and Figures

17-19 for sweep3d. For retention of performance trends, see

Tables 1-18 in the Appendix.). For each method, we chose a

representative threshold to be used when comparing the methods

against each other.

relDiff. The file size for each benchmark and the sweep3d runs

decreased relatively steadily with increasing threshold. The

approximation distance remained small until the 0.8 threshold,

after which there was a large jump for many of the benchmarks

and sweep3d_32p. Performance trends were correctly retained

for most programs up to a threshold of 0.8. Based on the jump in

approximation distance and loss of performance trends after

threshold 0.8, we chose 0.8 as the best threshold for relDiff.

absDiff. Here the file sizes for the benchmarks and sweep3d

dropped off fairly quickly at a threshold of 100 and continued to

decrease slightly with increasing threshold. The approximation

distance stayed relatively low up to a threshold of 104, after

which there was a sharp increase for several of the benchmarks

and sweep3d_32p. Performance trends were retained for most

Figure 4: KOJAK Performance Analysis a

of KOJAK’s EXPERT tool displaying the p

levels, with blue being low and red high, an

panel shows the code locations; and the righ

show the severity for the selected combinati

combination has green or “medium-low” sev

represent this diagnosis by abbreviating the

severity indicated in the code location pane, a

negative severities. We show the abbreviation

programs at a threshold of less than 103. Be

were relatively low and performance trends w

we chose 103 as the representative threshold f

Manhattan, Euclidean, and Chebyshev. W

sizes changes, the Manhattan and Euclidean

quite similarly; the Chebyshev metho

differences. For the Manhattan and Euclidea

regular benchmarks, the 1-to-1 irregular

sweep3d, file sizes decreased relatively stead

threshold; with the other irregular benchm

decreased only slightly with increasing th

matching that was close to optimal was r

threshold of 0.1. For Chebyshev with th

benchmarks and sweep3d, file size decreas

threshold; with the regular benchmarks and

benchmarks, file size was relatively consta

threshold. For all three methods, we obse

behavior in approximation distance:

benchmarks, approximation distance was

with increasing threshold; with the 1-to-1 irr

approximation distance increased with in

with the remaining benchmarks, the appr

remained low until after the threshold of 0.8

was a large jump. For sweep3d and Manha

approximation distance increased with incre

Chebyshev, the approximation distance was

s and Derivation of Our Performance Diagnosis Represen

 performance diagnosis for dyn_load_balance. The color bar

and gray indicating 0 or close to 0. The left panel shows th

ght panel shows the processes. The color blocks next to each

ation. Above, we have selected the function MPI_Alltoall an

everity and the severity is close to 0 for ranks 4, 6, and 7 and

e metric name, e.g. NN for “Wait at N x N,” coloring the m

e, and coloring squares for each process according to their sev

ions we use for selected KOJAK metrics in white rectangles n

Because the file sizes

s were retained at 103,

d for absDiff.

When observing file

ean methods behaved

hod showed some

ean methods with the

ar benchmarks, and

eadily with increasing

hmarks, the file size

threshold, because a

s reached early, at a

the 1-to-1 irregular

eased with increasing

d remaining irregular

stant with increasing

served the following

with the regular

s relatively constant

irregular benchmarks,

increasing threshold;

proximation distance

.8, after which there

hattan and Euclidean,

reasing threshold; for

s small and relatively

constant until after the 0

performance trends, the Man

threshold of 0.4, and the Eucl

well up to 0.2. We based ou

these methods on the retenti

because we consider this me

chose 0.4 as the best thresho

0.2 for the Euclidean and Che

Wavelet Transforms. For all

haarWave performed simila

decreased with increasing thr

matching, after which no furth

best threshold in this categ

methods, because file size

threshold. The approximati

remained steady with incre

benchmarks and the irregu

benchmarks. The approxim

increasing thresholds for the

sweep3d. The threshold 0.2 i

because of the relatively high

benchmark and sweep3d after

programs, performance trends

thresholds below 0.2. For thes

threshold for the wavelet trans

8

entation. Here we show a screenshot

ar on the bottom shows the severity

the performance metrics; the middle

ch metric, code location, and process

 and the “Wait at NxN” metric. This

d fairly low for ranks 0-3 and 5. We

 metric abbreviation according to the

everity levels. White squares indicate

 next to the metric names.

0.8 threshold. For retention of

anhattan distance did well up to a

clidean and Chebyshev distances did

our selection of best thresholds for

ntion of performance trends metric,

etric to be the most important. We

hold for the Manhattan distance and

hebyshev distances.

ll evaluation criteria, avgWave and

arly. For all programs, file sizes

threshold, up to the point of perfect

rther decrease in size is possible. The

egory appears to be 0.4 for both

ze decrease levels off after this

ation distance for both methods

creasing threshold for the regular

gular N-to1, N-to-N, and 1-to-N

imation distance increased with

he irregular 1-to-1 benchmarks and

 is best for approximation distance,

gher values for the dyn_load_balance

ter this threshold. For the majority of

ds were retained for both methods at

ese reasons, we chose 0.2 as the best

nsform methods.

 9

 


Figure 5: Percentage File Sizes and Degree of Matching.

iter_k. Generally speaking, there was an increase in file size and

decrease in approximation distance with increasing k.

Performance trends were retained for must programs up to

threshold 10. The choice for the best k wasn’t clear, but we

chose k=10 as the best because the performance trends were

retained for most programs at this threshold.

5.2 COMPARATIVE STUDY
In this section, we present comparative results for the different

methods using size and degree of matching; approximation

distance; and retention of performance trends as the evaluation

criteria. Based on the results of the threshold study in Section

5.1, we present results for the best performing threshold for each

method: 0.8 for relDiff, 1000 for absDiff, 0.4 for Manhattan, 0.2

for Euclidean and Chebyshev, 10 iterations for iter_k, and 0.2

for avgWave and haarWave.

5.2.1 Size and Degree of Matching
We present the data for reduction of traces for each method in

Figure 5. The iter_avg method gives the best case values for this

category, since exactly one segment is retained per loop with

this method.

 10

Figure 6: Approximation Distance Results for All Methods at Default Thresholds.

The benchmark data shows that for the most part, the degree of

matching for each of the methods is greater than 0.9, meaning

that greater than 90% of the segments were matched. Exceptions

occur with relDiff, which had degree of matching scores as low

as 0.74. RelDiff had the highest file sizes and lowest degree of

matching scores. The next largest file sizes are generated with

the iter_k method; however, they are not much higher than those

for the other methods. The Minkowski distances, avgWave, and

haarWave all have nearly identical results, with Chebyshev

having a very slight advantage over the others. AbsDiff had only

slightly larger file sizes than the Minkowski distances.

For sweep3d, the results are somewhat different. Because this

application has very regular behavior, we expected the results to

be similar to those of the benchmarks. However, because of the

program structure, there are more segments, as well as

differences within the segments, e.g. message passing

parameters, that cause segments not to match. We see that iter_k

performed the worst, with the highest file sizes and lowest

degree of matching scores. This is because iter_k needed to keep

10 copies of each individual segment, regardless of how similar

in performance they actually were, whereas the high degree of

matching often results in fewer than 10 copies. The next worst

performing were the Minkowski distances, again with

Chebyshev having the smallest file sizes. The wavelet methods

performed best, followed by absDiff and relDiff, each with very

close to perfect matching and lowest possible file sizes.

The obvious best method in this category is iter_avg, since all

segments match by definition. A comparison of the average file

sizes for each of the other methods yields the following ranking:

avgWave, haarWave, Chebyshev, absDiff, Manhattan,

Euclidean, iter_k, relDiff.

5.2.2 Approximation Distance
Figure 6 shows the approximation distance results for each of

the methods. High values for iter_k and iter_avg mean that

there is irregularity in the execution that is not being captured in

the iterations that are retained. High values for absDiff give a

rough indication of the absolute difference of time stamps from

the true values in the full trace. High values for the Minkowski

and wavelet methods mean that there are high maximum values

in the set of values being compared, relative to the distance

between those values.

The methods show similar trends across the benchmarks with

regular behavior. The relDiff, absDiff, iter_k, and iter_avg

methods have consistently low values. The Minkowski

distances, avgWave, and haarWave transform behave similarly,

and have the highest values overall. The results for the

dyn_load_balance benchmark show a different set of behavior,

with absDiff having the lowest value, followed by avgWave,

Euclidean, Manhattan, and haarWave. The interference

benchmarks had lower overall approximation distance values

than the other benchmarks, with similar results across the

benchmarks. The worst performing methods in this case were

iter_avg and iter_k. However, the approximation distance values

are low in comparison to those for the other set of benchmarks.

The results for sweep3d show iter_avg performing the worst for

the 8-process run, and iter_k and iter_avg the worst for the 32-

process run, indicating that there are performance behaviors not

being captured by those two methods.

The methods that performed the best in this category are relDiff,

followed by absDiff, and then iter_avg. The rest of the methods

allowed significant error into at least one of the reduced traces.

5.2.3 Retention of Performance Trends
We present summaries of the performance diagnoses given by

KOJAK for selected benchmarks in Figures 7 and 8. We show

how we derive the performance diagnoses charts and

abbreviations for metric names in Figure 4. For the benchmarks

with regular behavior, nearly all the methods performed quite

 11

MPI_Alltoall do_work


     


     


     


     


     


     


     


     


     


     

Figure 7: KOJAK Performance Trends for dyn_load_balance For Each Method at Default Thresholds. Here we show the results for

each reduction method in the MPI_Alltoall and do_work functions. The first row shows the diagnoses for the full trace. Each box in a row

shows a performance diagnosis for a single combination of metric and code location.

well. For late_receiver, all methods except iter_avg performed

equally well, with all performance trends retained. The results

for iter_avg with late_receiver showed differences significant

enough that they may lead to an inaccurate performance

assessment. For early_gather, all but the Minkowski distances,

avgWave, and haarWave retained the correct performance

trends. The results for imbalance_at_barrier showed that the

Minkowski distances, absDiff, iter_avg, avgWave, and

haarWave retained the performance trends, while relDiff and

iter_k both showed a negative value for the major performance

diagnosis. The amount of error introduced into the reduced

traces caused time stamps to be skewed enough that the

performance diagnoses resulted in negative values.

We show the major performance trends for dyn_load_balance in

MPI_Alltoall and do_work as reported by the KOJAK

tools for the full trace and all methods in Figure 7. The results

for the no loss trace clearly indicate that the lower ranks are

spending more time in MPI_Alltoall, because the upper

ranks are spending more time in do_work. None of the

methods gave perfect results for the dyn_load_balance

benchmark; however, absDiff, Manhattan, Euclidean, avgWave,

and haarWave gave the closest performance diagnoses because

for the most part they maintained the performance differences

due to load imbalance between the upper and lower ranks.

Although Manhattan, Euclidean, avgWave, and haarWave lost

the disparity in do_work, the diagnosis “Wait at NxN” is non-

negative and maintains the disparity in behavior. AbsDiff

maintained the disparity in performance in do_work, but

reported that “Wait at NxN” was negative. All other methods

lose the expected disparity in do_work.

For the interference benchmarks, all methods did pretty well on

the N-to-1 and 1-to-N benchmarks, with the exception of

iter_avg, which failed on three benchmarks, and Chebyshev,

which failed on Nto1_1024. AbsDiff did less well on the 1-to-1

and N-to-N benchmarks. We show the data for 1to1r_1024 in

Figure 8. AbsDiff picked up on the variations in the iterations

due interference, which caused some performance diagnoses to

be skewed in a positive or negative direction. The best

performers for these benchmarks were Manhattan, Euclidean,

and avgWave, followed by relDiff, and haarWave. AbsDiff and

iter_avg both only showed correct diagnoses for one benchmark,

1to1r_32 and 1to1s_32, respectively.

For sweep3d_8p and sweep3d_32p, all methods but iter_avg

and iter_k produced correct data. Iter_k showed a non-existent

disparity in rank performance in pmpi_recv in sweep3d_8p

and a greatly inflated severity in pmpi_recv in sweep3d_32p.

Iter_avg showed a much lower severity in sweep_ than did the

no-loss trace for both sweep3d_8p and sweep3d_32p.

The best methods in this category were Manhattan, Euclidean,

and avgWave which correctly diagnosed 17 out of the 18

execution traces. HarrWave did second best, correctly

diagnosing 16. The rest of the methods in order were: relDiff

(14); absDiff and Chebyshev (13); iter_k (12); and iter_avg (6).

The relatively poor performance of iter_k in this category could

be due to our choices in implementing this method1. It is

possible that the first iterations are more subject to variabilities

in execution, before the processes synchronize into their regular

behavior patterns, and that the last segment is not the best choice

as a fill in for missing segments. AbsDiff seemed to amplify

differences in the traces with interference, while iter_avg

seemed to smooth out behavior patterns.

5.2.4 Discussion
For relDiff, we expected low error and relatively large files,

which is exactly what we found to be true. For absDiff, we

expected low error. We did find that absDiff had lower error

when compared to most methods. We expected the Minkowski

distances would favor long segments and error would be lowest

for Manhattan, followed by Euclidean, and highest for

Chebyshev. While we did definitely see more error in the traces

produced by the Chebyshev method, the differences in the

results for the Manhattan and Euclidean methods were largely

undistinguishable. We expected iter_k and iter_avg to produce

low error traces for programs with regular behavior and for

iter_avg to have the lowest overall file sizes. We indeed found

that iter_k did well for regularly behaving programs and less

well for programs with varying behavior patterns. Iter_avg

produced better results for the regular benchmarks than the

irregular ones; the averaging of measurements tended to cause

loss of information needed for diagnosis. For avgWave and

haarWave, we expected stricter comparisons than Euclidean.

 12

MPI_Ssend MPI_Recv do_work


 




























Figure 8: KOJAK Performance Trends for 1to1r_1024 for Each Method at Default Thresholds.

 Indeed, the wavelet transforms produced slightly larger files for

the benchmark traces; however, the reduced traces of sweep3d

were smaller than those produced by Euclidean.

To determine best method for comparing traces, we take the

highest ranking methods from each category and weigh the

importance of each of the categories. The best methods from the

size category were iter_avg, followed by avgWave, haarWave,

and Chebyshev. Those from the approximation distance

category were relDiff and absDiff, followed by iter_avg. Finally,

the methods that best retained performance trends were

avgWave, Manhattan, Euclidean, and haarWave. One could

argue that the absolute most important criteria for judging these

methods is whether or not they retain the correct performance

trends, because that is the point of collecting the traces in the

first place. However, almost equally important is the ability to

collect, store, and analyze the trace data at all. Given that

avgWave performed well in both the size and retention of

performance trends categories, we choose avgWave as the best

method of the ones studied for comparing traces.

6. CONCLUSIONS
We have developed a new methodology for evaluating

definitions for similarity between event traces for the purpose of

performance analysis. We identified criteria for comparing the

similarity methods: file size reduction, degree of matching,

approximation distance, and retention of correct performance

trends. We applied these criteria, using benchmarks with known

performance behaviors, as well as with the application sweep3d.

Overall, the avgWave method had the best retention of

performance behaviors and good trace file size reduction. The

greatest trace file reductions were achieved with the iter_avg

method; however, the error in those traces led to loss of

important performance trends in the data. Because of this we

found that using the avgWave method was the best trade-off in

terms of error in the reduced trace and file size reduction.

Future directions for this work include investigating additional

difference methods, such as trace sampling; and evaluating the

methods against a richer set of full application traces.

7. ACKNOWLEDGMENTS
We thank our reviewers for their valuable suggestions; and

Bernd Mohr and Felix Wolf for feedback on an earlier draft.

This work was supported in part by the U.S. Department of

Energy’s Office of Science through the SciDAC2 award entitled

Performance Engineering Research Institute, and by a Portland

State University Faculty Enhancement Grant. We thank

Lawrence Livermore National Laboratory for machine cycles

and storage resources.

REFERENCES

[1] The ASCI sweep3D readme file.

http://www.c3.lanl.gov/pal/software/sweep3d/sweep3d_readme.

html, January 2009.

[2] M. G. Aguilera, P. J. Teller, M. Taufer, and F. Wolf. A

systematic multi-step methodology for performance analysis of

communication traces of distributed applications based on

hierarchical clustering. In IPDPS, 2006.

[3] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A

performance prediction framework for scientific applications. In

Workshop on Performance Modeling - ICCS, 2003.

[4] M. Casas, R. M. Badia, and J. Labarta. Automatic phase

detection of MPI applications. In C. H. Bischof, H. M. Bücker,

P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. J. Peters,

editors, PARCO, volume 15 of Advances in Parallel Computing,

pages 129–136. IOS Press, 2007.

[5] K.-P. Chan and A. W.-C. Fu. Efficient time series matching

by wavelets. In Data Engineering, 1999. Proceedings., 15th

International Conference on, pages 126–133, Mar 1999.

[6] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu. MPI

performance analysis tools on Blue Gene/L. In Proceedings of

the 2006 ACM/IEEE conference on Supercomputing (SC'06),

page 123, New York, NY, USA, 2006. ACM.

[7] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and

J. Traff. Knowledge specification for automatic performance

analysis. Technical Report Revised Edition, ESPRIT IV

Working Group on Automatic Performance Analysis: Resources

and Tools (APART), http://www.fz-juelich.de/apart-

1/reports/wp2-asl.ps.gz, January 2001.

 13

[8] F. Freitag, J. Corbalan, and J. Labarta. A dynamic

periodicity detector: Application to speedup computation. In

Proceedings of the 15th International Parallel and Distributed

Processing Symposium (IPDPS'01), San Francisco, CA, USA,

April 23-17 2001.

[9] T. Gamblin, B. de Supinski, M. Schulz, R. Fowler, and

D. Reed. Scalable load-balance measurement for SPMD codes.

In SC '08: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, 2008.

[10] T. Gamblin, R. Fowler, and D. A. Reed. Scalable methods

for monitoring and detecting behavioral equivalence classes in

scientific codes. In Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPS'08), Miami, FL,

April 14-28 2008.

[11] M. Gerndt, B. Mohr, and J. L. Träff. A test suite for parallel

performance analysis tools. Concurrency and Computation:

Practice and Experience, 19(11):1465–1480, August 2007.

[12] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter. Falcon:

on-line monitoring and steering of large-scale parallel programs.

Concurrency: Practice and Experience, 10(9):699–736, Dec

1998.

[13] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, 2005.

[14] M. Hauswirth, A. Diwan, P. F. Sweeny, and M. C. Mozer.

Automating vertical profiling. In Proceedings of the 20th annual

ACM SIGPLAN conference on Object oriented programming,

systems, languages, and applications, pages 281 – 296, October

16-20 2005.

[15] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic

program instrumentation for scalable performance tools. In

Proceedings of Scalable High Performance Computing

Conference, Knoxville, TN, USA, pages 841–850, May 23-25

1994.

[16] T. Huffmire and T. Sherwood. Wavelet-based phase

classification. In PACT '06: Proceedings of the 15th

international conference on Parallel architectures and

compilation techniques, pages 95–104, New York, NY, USA,

2006. ACM.

[17] A. Jensen and A. la Cour-Harbo. Ripples in Mathematics:

The Discrete Wavelet Transform. Springer-Verlag, 2001.

[18] L. V. Kalé, S. Kumar, G. Zheng, and C. W. Lee. Scaling

molecular dynamics to 3000 processors with projections: A

performance analysis case study. In International Conference on

Computational Science (ICCS 2003), Melbourne, Australia and

St. Petersburg, Russia, pages 23–32, June 2-4 2003.

[19] A. Knüpfer. A new data compression technique for event

based program traces. In International Conference on

Computational Science, pages 956–965, 2003.

[20] D. Kranzlmüller, S. Grabner, and J. Volkert. Event graph

visualization for debugging large applications. In SPDT '96:

Proceedings of the SIGMETRICS symposium on Parallel and

distributed tools, Philadelphia, Pennsylvania, USA, pages 108–

117, 1996.

[21] D. Kranzlmüller, A. Knüpfer, and W. E. Nagel. Pattern

matching of collective MPI operations. In Proceedings of the

International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA '04), Las

Vegas, Nevada, USA, June 21-24 2004.

[22] D. B. Lange and Y. Nakamura. Object-oriented program

tracing and visualization. IEEE Computer, 30(5):63–70, May

1997.

[23] C. W. Lee, C. Mendes, and L. V. Kalé. Towards scalable

performance analysis and visualization through data reduction.

In 13th International Workshop on High-Level Parallel

Programming Models and Supportive Environments (HIPS

2008) held in conjunction with IPDPS 2008, 2008.

[24] K. Mohror and K. L. Karavanic. Towards scalable event

tracing for high-end systems. In High Performance Computing

and Communications, Third International Conference (HPCC

2007), Houston, Texas, USA, pages 695–706, September 26-28

2007.

[25] O. Nickolayev, P. Roth, and D. Reed. Real-time statistical

clustering for event trace reduction. International Journal of

High Performance Computing Applications, 11(2):69–80, 1997.

[26] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski.

Scalable compression and replay of communication traces in

massively parallel environments. In 21th International Parallel

and Distributed Processing Symposium (IPDPS'07), March

2007.

[27] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the

missing supercomputer performance: Achieving optimal

performance on the 8,192 processors of ASCI Q. In Proceedings

of the 2003 ACM/IEEE conference on Supercomputing (SC'03),

Phoenix, Arizona, USA, page 55, November 15-21 2003.

[28] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz.

Preserving time in large-scale communication traces. In ICS '08:

Proceedings of the 22nd annual international conference on

Supercomputing, pages 46–55, New York, NY, USA, 2008.

ACM.

[29] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An

algebra for cross-experiment performance analysis. In Proc. of

the International Conference on Parallel Processing (ICPP),

pages 63–72, Montreal, Canada, August 2004. IEEE Society.

[30] D. P. Spooner and D. J. Kerbyson. Performance feature

identification by comparative trace analysis. Future Generation

Comp. Syst., 22(3):369–380, 2006.

[31] E. Thereska, B. Salmon, J. D. Strunk, M. Wachs, M. Abd-

El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking

activity in a distributed storage system. In Proceedings of the

Joint International Conference on Measurement and Modeling

of Computer Systems, SIGMETRICS 2006, Saint Malo, France,

pages 3–14, June 26-30 2006.

[32] J. Vetter. Dynamic statistical profiling of communication

activity in distributed applications. In Proceedings of ACM

SIGMETRICS 2002 International Conference on Measurement

and Modeling of Computer Systems, Marina Del Rey, CA, USA,

pages 240–250, June 15-19 2002.

[33] J. S. Walker. A Primer on Wavelets and Their Scientific

Applications. Chapman & Hall/CRC, 2008.

[34] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Automatic

analysis of inefficiency patterns in parallel applications.

Concurrency and Computation: Practice and Experience,

19:1481–1496, 2007.

 14

[35] J. C. Yan, H. H. Jin, and M. A. Schmidt. Performance data

gathering and representation from fixed-size satistical data.

Technical Report NAS-98-003, NASA Ames Research Center,

1998.

[36] J. C. Yan and M. Schmidt. Constructing space-time views

from fixed size trace files – getting the best of both worlds. In

Parallel Computing: Fundamentals, Applications and New

Directions, Proceedings of the Conference (ParCo'97), Bonn,

Germany, pages 633–640, September 19-22 1997.

 15

APPENDIX

Figure 9: File Size and Approximation Distance for Varying Duration Thresholds and Relative Distance

 16

Figure 10: File Size and Approximation Distance for Varying Threshold and Absolute Distance

 17

Figure 11: File Size and Approximation Distance for Varying Threshold and Manhattan Distance

 18

Figure 12: File Size and Approximation Distance for Varying Threshold and Euclidean Distance

 19

Figure 13: File Size and Approximation Distance for Varying Threshold and Chebyshev Distance

 20

Figure 14: File Size and Approximation Distance for Varying Threshold and Keep k Iterations

 21

 

 

 

Figure 15: File Size and Approximation Distance for Varying Threshold and Average Wavelet Transform

 22

 

 

 

Figure 16: File Size and Approximation Distance for Varying Threshold and Haar Wavelet Transform

 23

Relative Difference

Absolute Difference

Manhattan Distance

Figure 17: File Size and Approximation Distance for Varying Thresholds for Sweep3d and relDiff, absDiff, Manhattan

 24


















Figure 18: File Size and Approximation Distance for Varying Thresholds for Sweep3d and Euclidean, Chebyshev, iter_k

 25













Figure 19: File Size and Approximation Distance for Varying Thresholds for Sweep3d and Wavelet Transforms

 26

Table 1: Retention of Performance Trends with Varying Thresholds for dyn_load_balance




 27

Table 2: Retention of Performance Trends with Varying Thresholds for early_gather




 28

Table 3: Retention of Performance Trends with Varying Threshold for imbalance_at_mpi_barrier




 29

Table 4: Retention of Performance Trends with Varying Threshold for late_broadcast




 30

Table 5: Retention and Performance Trends with Varying Thresholds for late_receiver




 31

Table 6: Retention of Performance Trends with Varying Thresholds for late_sender




 32

Table 7: Retention of Performance Trends with Varying Thresholds for Nto1_32




 33

Table 8: Retention of Performance Trends with Varying Thresholds for NtoN_32




 34

Table 9: Retention of Performance Trends with Varying Thresholds for 1toN_32




 35

Table 10: Retention of Performance Trends with Varying Thresholds for 1to1r_32




 36

Table 11: Retention of Performance Trends with Varying Thresholds for 1to1s_32




 37

Table 12: Retention of Performance Trends with Varying Thresholds for Nto1_1024




 38

Table 13: Retention of Performance Trends with Varying Thresholds for NtoN_1024




 39

Table 14: Retention of Performance Trends with Varying Thresholds for 1toN_1024




 40

Table 15: Retention of Performance Trends with Varying Thresholds for 1to1r_1024




 41

Table 16: Retention of Performance Trends with Varying Thresholds for 1to1s_1024




 42

Table 17: Retention of Performance Trends with Varying Thresholds for sweep3d_8p




 43

Table 18: Retention of Performance Trends with Varying Thresholds for sweep3d_32p



	Evaluating Similarity-based Trace Reduction Techniques for Scalable Performance Analysis
	Let us know how access to this document benefits you.
	Citation Details

	distanceMetricsTechReport_toprintx

