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ABSTRACT

Event traces are required to correctly diagnose a number of
performance problems that arise on today’s highly parallel
systems. Unfortunately, the collection of event traces can
produce a large volume of data that is difficult, or even
impossible, to store and analyze. One approach for compressing
a trace is to identify repeating trace patterns and retain only one
representative of each pattern. However, determining the
similarity of sections of traces, i.e., identifying patterns, is not
straightforward. In this paper, we investigate pattern-based
methods for reducing traces that will be used for performance
analysis. We evaluate the different methods against several
criteria, including size reduction, introduced error, and retention
of performance trends, using both benchmarks with carefully
chosen performance behaviors, and a real application.

1. INTRODUCTION

Today’s high-end architectures contain tens to hundreds of
thousands of processors, pushing application scalability
challenges to new heights. Performance analysis is a necessary
step to adapt codes to utilize a target high end machine. Correct
diagnosis of certain complex performance problems that arise on
high end systems requires detailed event traces. An “event” is a
runtime occurrence of a program activity, such as a machine
instruction or basic block execution, memory reference, function
call, or a message send or receive. Generating event traces
involves writing a time stamped record for each event, into a
buffer or file for later analysis. Unfortunately, the collection of
event traces presents scalability challenges: the act of
measurement perturbs the target application; and the large
volume of collected data increases the perturbation, and results
in data files that are difficult, or even impossible, to store and
analyze [24]. Several documented cases describe performance
problems that appear only when the application is run at a large
scale [18, 27], driving the need to be able to collect event traces
for large runs. We have a conundrum: we need traces to
correctly diagnose important performance problems, but the
sheer volume of data collected makes collecting full traces at the
very least prohibitive, and in the worst case impossible. For this
reason, solving the scaling challenges of event tracing is an
important problem for high end computing.

Given the challenges of tracing at the high end, one might be
tempted to avoid it entirely. Profiling, for example, provides
summary information and therefore exhibits better scaling
behavior. However, the types of information provided by
profiling are, in many cases, too limited for correct diagnosis of
certain performance problems [7, 36]. An example of such a
performance problem is “Late Sender” in a message-passing
program. This is the situation where the receiving process waits
at a blocking receive call waiting because the sending process
hasn’t yet reached the matching send call. While a profile could

indeed show that excessive time was being spent in receive
operations, the data is not sufficient to distinguish between a late
sender or some other root cause, such as network contention that
caused the message to be received late. In contrast, an event
trace captures the relative timing of events, and would show that
the send operations started late and caused the receive
operations to block. Tracing is also useful for showing the
causality of events [31, 12]; the interactions between program
elements, that can be difficult or impossible to understand from
static analysis [22, 20]; and event patterns that reveal properties
of programs, such as performance problems and locations of
possible optimization [21].

One promising approach to highly scalable tracing is to filter or
reduce the trace in some manner, either during or after the
collection of trace records. Users who need to collect trace data
currently resort to ad-hoc measures to reduce the amount of data
collected; for example, tracing a reduced number of iterations of
a loop. These measures have the potential to miss the
performance problem altogether, e.g. if the problem doesn’t
occur during the measured iterations. One method for reducing
the size of traces is to identify similar sections of a trace and
retain only one representative of each pattern. However,
determining the similarity between traces or sections of traces is
not straightforward. The probability that any two trace sections
will have exactly the same measurements is very small, so any
similarity method will allow some amount of differences
between similar traces. Despite this, it is critical that any
differences allowed do not mask information needed for correct
performance diagnosis.

Requirements for the accuracy and types of information in a
trace vary based on the intended use: correctness testing and
debugging, simulation, or performance analysis. Correctness
testing and debugging generally only require that the trace retain
the relative ordering of events that have the potential to affect
each other: events within a single process or thread and
synchronization events across processes or threads. For
example, inspecting a trace of a parallel program could indicate
the reason for a deadlock situation by showing the ordering of
synchronization operations; a parallel program might hang
because a process is waiting for a message that was never sent.
Simulation requires traces that retain the order of events and
possibly some timing information. Traces for simulation can be
used to predict application performance on new or theoretical
hardware. The events in the trace can be replayed using either
averaged or predicted timing information for the new hardware.
Generally, a single time value is used for all event occurrences
instead of individual timing measurements for each event
occurrence. For example, the average time to execute a send
operation could be used as the time for all send operations in the
trace. This tradeoff allows acceptable accuracy with faster time
to simulated results and smaller trace files. Performance



analysis requires not only the relative ordering of events, but the
timing information for individual events. Performance problems
do not necessarily occur with a high degree of regularity, e.g. in
every iteration of a loop, so individual event timings are needed
to show the root causes of problems. For example, trace data can
show a time-varying load imbalance in a parallel job, which
causes some ranks to be late to a synchronization operation at
varying times during the program execution. The individual
event timings can show what events are taking more time in the
slower ranks and in what iterations the slowness occurs.

In this work, our goal is to determine a similarity metric that
yields adequate trace reduction and also retains the information
needed for correct performance analysis. Achieving our goal
required that we answer several key questions:

¢ What metrics can we use to evaluate and compare trace
difference methods? In addition to file size reduction, we
developed and used metrics for error, greatest possible file
size reduction (i.e. potential for repeated patterns), and
consistency of performance diagnosis.

*  How much error should be allowed? Values that will likely
never be exactly equal need to be compared. We had to
decide how much each measurement can vary, and weigh
the consequences of the amount of error. If we are
matching traces for the purpose of trace compression, then
a larger allowed error between traces would mean larger
number of matches, and thus a smaller trace file. However,
the larger error might prevent the correct performance
diagnosis from being made.

*  How can we measure the “goodness” of each approach?
Most trace compression studies report the reduction of file
size achieved; but no matter how much compression is
achieved, if the reduced trace no longer contains the data
needed for accurate performance diagnosis, the method is
not useful for our purpose. We evaluate each approach not
just on amount of compression, but also on amount of error
and consistency of diagnosis, and discuss the tradeoffs in
weighting the different metrics.

In this study, we perform a comparative evaluation of similarity
metrics in current or proposed use for trace reduction. To
evaluate the effectiveness of the similarity metrics, we apply the
same trace reduction technique to full execution traces, varying
the similarity method used to determine repeating patterns
within the trace. Then we compare the results using three
metrics: file size reduction, trace error, and retention of
performance trends.

2. RELATED WORK

Previously proposed methods for reducing the sizes of traces for
the purpose of performance analysis include deletion of similar
trace sections; trace sampling; statistical clustering; and signal
processing.

Kniipfer and Spooner define two sections of traces as similar if
the call graph context and measurements of the events are equal.
Kniipfer defines equality using both relative and absolute
differences [19]; Spooner et al. use the relative difference in
instruction counts [30]. Another approach defines similarity by
event names. Chung et al. use a filter that detects repeated
communication patterns [6]; they keep performance data for
only one instance of each pattern. Freitag et al. use a periodicity
detector to notice repeating sequences of events and keep a
reduced number of iterations of each sequence [8]. Similarly,

Yan and Schmidt detect repeating sequences of events and store
the average measurements of those events [36]. Noeth and
Mueller also detect repeated sequences of message-passing
events and store one copy of each sequence; they optionally
store summary information about the events, such as average
measurements [26]. In later work, they include the ability to
store more detailed timing information: statistical “delta” times,
histograms, or histograms by call sequence [28].

Other efforts use trace sampling to reduce trace size. Carrington
et al. use trace sampling to reduce the amount of time it takes to
gather memory reference traces for the purpose of performance
modeling [3]. They collect data for a reduced number of
executions of the basic blocks in a program. Vetter presents a
method for statistically sampling MPI events [32]. Each time an
MPI event is encountered, it is either sampled or not. For each
sampled event, the tool can record statistics, log the event to a
trace file, or ignore the data. Gamblin et al. use statistical
sampling with a user-specified confidence interval and metric.
[10].

Aguilera et al. [2], Nickolayev et al.[25], and Lee et al. [23]
apply statistical clustering to traces and select a representative
trace for each cluster of processes. Nickolayev and Lee use the
Euclidean distance for clustering, while Aguilera uses a metric
based on the amount of communication between two processes.

Several groups apply methods from signal processing to traces.
Casas et al. and Huffmire et al. use the Haar wavelet transform
to automatically determine the phases of a program [4, 16].
Gamblin et al. use the CDF 9/7 wavelet transform to compress
traces collected for the purposes of detecting load imbalance [9].
Hauswirth et al. use dynamic time warping to decide when two
traces are similar for aligning multiple traces [14].

Researchers have evaluated several methods for deciding the
goodness of a particular trace similarity metric. To our
knowledge, ours is the only comparative study of the methods to
see what is most appropriate for the purposes of performance
analysis. Ratn et al. use aggregate statistical measures, such as
total time spent in a function, to evaluate their method [28].
Gamblin et al. compute a trace confidence measure to evaluate
their trace sampling results, which is tells the percentage of time
the mean trace of sampled processes is within an specified error
bound of the mean trace of the full trace [10]. In their wavelet
transform method, Gamblin et al. use a root mean square
measure to estimate the error in reduced traces [9]. They also
present qualitative results, showing a visualization based on a
reduced trace compared with one from a complete trace. Yan et
al. compare the measurements in their reduced trace against the
real trace time stamp by time stamp and produce both a relative
and absolute measure of the overall differences [35]. In addition,
they also present whole program statistical measurements and
visualizations for qualitative comparison.

3. TRACE REDUCTION

In this section we describe our approach for trace reduction.
Section 3.1 details our trace segmentation technique, and
Section 3.2 describes the different similarity metrics we use to
compare segments. This paper focuses exclusively on intra-
process reduction, that is, reducing the size of each individual
per-task trace. In practice these individual traces are first
collected separately, then merged into a single trace file
representing the entire application run. Therefore, reducing each



int main(){
start_segment (“init”);
MPI Init();
end_segment (“init”);
for(i=0; i < 100; ++i){
start_segment (“main.1”);
do_work();
MPI_Allgather();
end_segment (“main.1”);
}
for (j=0; j < 10; ++3j){
start_segment (“main.2”);
do_other_work();
end_segment (“main.2");
while(k < otherRanks){
start_segment (“main.2.1");
MPI_Sendrecv();
end_segment (“main.2.17);
}
}
start_segment (“final”);
MPI_Finalize();
end_segment (“final”);

¥
Figure 1: Segment Context Marking. We show a single
function, main() with the instructions added to mark the segment
contexts. We mark initialization, finalization, and all loops.
The segment context names are hierarchical: the second loop is
marked "main.2" and its subloop is marked "main.2.1".
Segment marking is automated using a dynamic instrumentation
library.

per-task trace prior to merging will reduce the application trace
accordingly.

3.1 Trace Collection and Segments

We collected full traces of time stamped function entries and
exits for the benchmarks and application as follows. First we
insert segment markers into the source code that are repeated in
the trace during execution. We define segments as follows: the
initial segment starts at entry to main; for each program loop
containing at least one measured event, we stop the current
segment before the loop starts, start a new segment at the top of
each loop iteration, stop the segment at the bottom of the loop
iteration, and start a new segment after the last iteration of the
loop completes; and end the final segment at program
termination. The segment context is the section of code, for
example, the main.1 loop in Figure 1. We used the dynamic
instrumentation library Dyninst [15] to instrument the full
application for both function entry and exit tracing as well as
inserting segment begin and end markers. The simple
benchmarks were marked manually.

We compare the segments for each context pair wise to
determine if they are similar. If they are, we say that the
segments match and retain a single representative segment. Each
segment s; contains an ordered list of events E; = {e, ¢;, ..., €,,}.
We maintain a list storedSegments, which contains the segments
that represent the performance behaviors in the execution, and a
list segmentExecs that holds the starting times and identifier of
each representative segment so that we can later recreate a full
trace. Given an equivalence operator = for some similarity
metric, and a segment s, that has events E,,, the algorithm
comparing segments is as follows:

For i =0 to len(E,,,,):
E,..li].start = E,, [i].start — s,,,.start
E,..lil.end = E,.[i].end — s,,,.start
Spew-€Nd = Sp.€Nd — Sy, Start
match = False
For i =0 to len(storedSegments):
Ssiored = StoredSegments|i]
match = compareSegments(S, ey, Ssiored)
If match = True:
segmentExecs = segmentExecs U (Sipreq-id S per-Start)
break
If not match:
Spew-id = getNewld()
segmentExecs = segmentExecs U (S,o,-1d,S,,0,p-Start)
Spew-Start =0
storedSegments = storedSegments U s,,,,,.

Boolean compareSegments(S,ey, Ssiored):
If $,,0,p-cONtEXt = Sy,.q.context: return False
If len(E,,,,) = len(E,,,.q): return False
For i =0 to len(E,,,,):
If E,,,[il.id = E,eq 1) .id: return False
If S0 = Ssroreq: TEtUN TruE
Else: return False

Note that a segments match requires that segments have the
same context and the same number of events occurring in the
same order. We give examples of segment matching in Figure 2.

3.2 Similarity Metrics

We used several methods to decide the similarity of segments.
Each of these is described below. Our choices were inspired by
methods used by other researchers to reduce traces (See Section
2.). They fell into two categories: distance methods and
iteration-based methods.

3.2.1 Distance Methods

The distance methods produce a difference measure, which is
then compared against a user-supplied threshold to determine
the presence or absence of a match. Several of the difference
methods are standard methods for computing distances between
values and sets of values. We use the relative difference
(relDiff), absolute difference (absDiff), and three variations on
the Minkowski distance (Manhattan, Euclidean, Chebyshev),
and wavelet transforms (avgWave, haarWave).

relDiff. We compare the relative differences between each event
measurement against a user-defined threshold; if greater, the
events are not equal:

relDif f(xy, x,) = —a=%el

max (x4,%5)

To see how relDiff matches segments, we consider our example
in Figure 2. We compute the relative differences between each
of the paired measurements in the segments. If any are above
our chosen threshold, say 0.5, then the match fails. Comparing
s2 with s1, we first compare the start times of the do_work
event: x;=1 and x,=1, with relative difference 0. Since the
relative difference is less than 0.5, we continue on computing
relative differences. Next we check the end times for the
do_work event. Here we compute a relative difference: x,=17
and x,=40, giving a relative difference of 0.58. This is above our
threshold, so the segments do not match. When we compare s2



Time 24 74 125 174
0 25 45 75 115 126 . 175
1 ‘ 75 ‘ a6 76 116 ‘127 ‘ 144
| | | | | | |
| =[] [+ ~
b= MPI_Init |- MPI_Allgather £ do_work MPI_Allgather £ £ do_work MPI_Allgather g
i ot o b
w o c|m ==
o S i
25 20 49 75 40 50 126 17 48
1 21 50 1 a1 51 1 18 43
| \ | | \
name: s context: main.1l name: sl context: main.1 name: s2 context: main.1
do_work MPI_Allgather do_work MPI_Allgather do_work MPI_Allgather
SegmentExecutions: [0,25) (0,75) (0,126) Segment Executions: (0,25) (1,75) {0,126)
- 4] 40 50 4] 20 49
i G ‘1950 1 a1 51 |1 21 50
| | | \ | |
id:0 merged:s0,sL,s2 context main.l id:l merged: sl context: main.l id:0 merged: 0,52 context: main.l
do work MPI_Allgathar do_woerk MPL_Allgather do_work IPI_Allgather

Figure 2: Trace and Segments Example. Here we show a portion of an example trace and three segments to illustrate segment matching.
The top bar represents a portion of a trace for the program in Figure 1. Time increases from left to right, and time values are indicated
above the bar. Segments markers are shown as light gray rectangles with vertical text that indicates the context of the segment. Events are
shown in white boxes. Below the trace, we show the result of segmentation. In each of the three segments, the time stamps for the events
and ending time of segments are adjusted relative to the start time of the segment. We name the segments s0, s1, and s2. In the bottom row,

we show two examples of segment matching (See Section 3.2.).

with s0, we find that no differences are greater than 0.15 (x;=17,
x,=20), so the segments match. The new segment is discarded
since its behavior is reflected in the measurements in s0.

The relative difference function compares each measurement
with its paired counterpart in isolation. The computed difference
is proportional to the magnitude of the paired measurements,
meaning that larger differences between larger measurements
don't overshadow differences in smaller measurements. Because
the difference between each measurement pair will be judged in
isolation, the relative difference should be one of the strictest
difference criteria in our set. The choice of threshold used will
have a large bearing on the degree of matching, and hence on
the reduction in file size.

One problem with relDiff appears when comparing time stamps
in a series. For example, assume the threshold for comparing
time stamps is 0.25. When we compare events that start at times

1 and 2, the relative difference is % = 0.5. This would result in

a failure to match the events even though there is a difference of
only one time unit between the events. In contrast, if we
compare events that start at 100 and 125, the relative difference
is 0.2, which is a match even though there is a difference of 25
time units. We expect relDiff to produce reduced traces with a
low amount of error, but with less file size reduction.

absDiff. As with the relDiff, each measurement is compared
with its counterpart. A fixed size difference, determined by a
threshold, is allowed for each measurement pair. Using our
example segments in Figure 2, and a threshold of 20, we see that
s2 will not match s1, because the end times of do_work are 23
time units apart. However, there are no differences larger than 3

between s2 and s0, so those two segments match. The threshold
choice has an impact on file size and accuracy. We expect this
method to produce fairly accurate results, especially with respect
to the timing of events across processes, because unlike relDiff it
will not have an unfair bias towards events that occur later in the
trace.

Manhattan, Euclidean, and Chebyshev. We compute the
Minkowski distance between segments using the formula in Eq.
1. If the distance is greater than a user-specified threshold
multiplied by the maximum value in the event measurements,
then the events are not equal. The Manhattan, Euclidean, and
Chebyshev distances are special cases of the Minkowski
distance, with m equal to 1, 2, and lim,,_,, respectively [13].
The Chebyshev distance is defined to be the largest difference
between two measurements.

Eq.1

n Ym

Ly = lei —ym

i=1

Using our example in Figure 2, to compare s2 and sl, we create
a vector of the measurements for s2, (49, 1, 17, 18, 48), and one
for sl, (51, 1, 40, 41, 50). The Manhattan, Euclidean, and
Chebyshev distances between these vectors are 50, 32.6, and 23,
respectively. The largest measurement in the pair of vectors is
51. If we choose a threshold of 0.2, then the highest the
computed distance can be for a match is 10.2, so s2 and s1 will
not match using any of the Minkowski distances. When we
compare s0, (50, 1,20,21,49), with s2, we get distances of 8,
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Figure 3: Wavelet Transform Example. Here we show two example average wavelet transforms. We iteratively compute averages
(shown in boxes) and differences (shown between edges) for pairs of numbers, starting with the original vector. To compare the two
transforms of sO and s2, we compute the Euclidean distance between them and compare it against a threshold (0.2) multiplied by the largest

element in the vectors (17.625).

4.5, and 3. The maximum value in the two vectors is 50, so the
highest the distances can be for a match is 10. This means that
s2 would match sO for each of these distance metrics.

There are several issues to consider for the Minkowski

distances:

*  As m increases in the Minkowski distance (See Eq. 1.), the
influence of the larger differences increases, and the
influence of the smaller differences decreases. In the
extreme case of the Chebyshev distance, only the
maximum difference has any bearing on the distance value.
As the number of measurements being compared increases,
the values of the Manhattan and Euclidean distances
increase. Given vectors of constant differences greater than
1, the Manhattan distance increases quite rapidly linearly,
and the Euclidean distance increases in the manner of /x.
If the differences are all between O and 1, the computed
distances increase more slowly.

*  When time stamp values are being compared, e.g. start time
and end time for events, the values are always increasing
within a segment. This means that longer segments are
judged less critically than shorter segments, because the
maximum values that are compared with the distance
measurement are larger.

Based on these trends, we expect that the Manhattan distance
would give the most accurate results, because it gives larger
weight to the smaller differences. The Euclidean distance would
give slightly less accurate results, given the bias towards larger
differences. The Chebyshev distance would be least accurate,
because it only accounts for the largest difference measure.

Wavelet transform. The discrete wavelet transform iteratively
decomposes a signal of size L into two subsignals of size L/2.
The first L/2 values give the trends in the original signal, and the
second L/2 values give the fluctuations. Intuitively, it computes
the averages and differences between pairs of numbers [17]. We
give examples of transformations in Figure 3.

We use two wavelet transforms in our experiments: the average
transform described in Figure 3 (avgWave), and the Haar
transform (haarWave). The Haar transform is very similar to the
average transform, with the only difference being that the
averages and differences are multiplied by V2 [33]. For

example, the trends computed in step 3 in Figure 3 would be
(92, 2425/ 2). For our implementation, we construct a vector
for each of the segments to be compared. The first element of
each vector is the relative start time of the segment, which is 0 in
all cases. This is followed by the event entry and exit time
stamps for all events in the segment. The last element is the exit
time of the segment. Both transforms require an input vector
with a length that is a power of two. We allocate space for the
vector so that its length is the next power of two after the
number of time stamps in the vector. We zero-pad the vector
after the last time stamp element to the end. To compare
transformed vectors, we compute the Euclidean distance
between them [5] and compare it against a threshold multiplied
by the largest value in the pair of transformed vectors. In Figure
3, we show an example comparison of the segments sO and s2
from Figure 2. Because the computed Euclidean distance, 1.9, is
less than the maximum allowed, 3.5, sO and s2 match.

For both transforms, the values in the transformed vectors will
be smaller than the values in the original vectors. The Haar
transform has several properties that the average transform does
not, including preservation of the Euclidean distance [5].
However, its values will be larger than those of the average
transform since all values are multiplied by v'2. For the Haar
transform, we expect more accurate results than from the
Euclidean distance because the maximum value in the
transformed vector will be smaller than the maximum value in
the original vector, so the threshold test will be stricter. The
values in the vector from the average transform will be smaller
still; however, the Euclidean distance is not preserved, so the
potential exists for a less strict test than the Euclidean distance.

3.2.2 Iteration-based Methods

We chose two iteration-based methods: iter_k and iter_avg.

iter_k. Only keep a fixed number of each traced segment of
code. We expect this method to produce small data files. For our
example in Figure 2, if we chose k=3, we would keep all three
copies of the main.l segment in the list of stored segments.
However, if k=2, then we would keep s0 and s1 and discard s2.

iter_avg. Keep the average measurements for each traced
section of code. We expect this method to produce the smallest
data sizes, since segments with the same context and same



events will always match. To illustrate this method, we use the
segments in Figure 2 and the stored segments scenario on the
left. For this method, we never have more than one copy of the
main.1 segment, and end up with a single copy of the main.1
segment that contains averages of the values of s0, s1, and s2.

We expect that these methods will produce fairly accurate data
for applications that have little behavior variability, but poorly
for applications that do have performance variabilities.

4. EVALUATION METHODOLOGY

In this section we detail our framework for the evaluation of
similarity metrics. We investigate traces collected for a set of
benchmarks with known behaviors, and for a full application,
running on a Linux cluster. Our evaluation focuses on three
metrics: file size reduction, amount of error in the trace, and
retention of performance trends. For file size reduction we
simply compare the sizes of the reduced traces to the full-sized
traces from which they were derived. We calculate the trace
error by recreating an approximated full-sized trace from the
reduced version, then comparing it to the actual full trace. We
evaluate retention of performance trends by feeding the actual
and approximated full traces into a performance analysis tool
and examining any differences in the results.

4.1 Benchmarks

We crafted our benchmarks to represent classes of performance
behaviors that occur in parallel programs on high end systems.
These performance behaviors can appear with a high degree of
regularity, sporadically, or progressively change over the
iterations in the execution. To reflect this, we created a set of
regularly behaving benchmarks, a set of irregularly behaving
benchmarks, and a benchmark that simulates dynamic load
balancing. Because we know the behavior patterns in each
benchmark, we can evaluate how well each of the methods
retains the performance behaviors.

We used the APART Test Suite (ATS) to create our
benchmarks. The ATS a collection of utilities designed to create
programs with known behavior for testing parallel performance
tools [11]. We chose behavior patterns from the ATS that
represent performance problems that require trace data for
correct diagnosis. For parallel programs, these performance
behaviors fall into four categories based on the communication
pattern being used. We describe these communication patterns
here using MPI functions as examples.

e N 1. N processes send data to 1 process. If any of the
sending processes are late, then the receiving process
blocks, waiting for them to execute the send operation.
Example MPI functions for this pattern are MPI_Reduce
and MPI Gather, with corresponding performance
behavior problems early_reduce and early_gather.

* 1 >N. [ process sends data to N processes. If the sending
process is late, then all N receiving processes will block
until the send is executed. Example functions are
MPI_Bcast and MPI_Scatter. The corresponding
performance problems are late_broadcast and late_scatter.

e 1 ->1. I process sends to 1 process. There are two cases.
In the case of a non-blocking send and a blocking receive,
if the sending process is late, the receiving process will
block. In the case of a synchronous send, the sending
process will block if the receiving process is late. Example
communication routines are MPT_Ssend and MPI_Recv,

with corresponding performance problems late_receiver
and late_sender.

* N >N. N processes send to N processes. Here, all N
processes depend on all other processes involved in the
communication to proceed. If any of the N are late, then the
rest of the processes block until all have reached the
communication routine. An example is MPI Barrier
with corresponding performance problem
imbalance_at_barrier.

Benchmarks with Regular Behavior. We chose five example
benchmarks provided with ATS with regular behavior:
early_gather, imbalance_at_mpi_barrier, late_receiver,
late_sender, and late_broadcast. Each of the benchmarks
simulates a program with the given behavior problem with the
same severity in each iteration. In other words, all iterations of
each program will exhibit the performance problem and all
iterations should be very similar. All runs had 8 processes.

We expect the similarity methods to do relatively well on this
set of benchmarks since the iterations have regular behavior.
They should be able to find a large number of segments matches
and still retain the correct performance behaviors.

Benchmarks with Irregular Behavior. For this category, we
used ATS to create new benchmarks with irregular behavior.
The benchmarks simulate the system interference identified by
Petrini et al. when they ran an application on ASCI Q [27]. The
system interference prevented the application from scaling as
predicted. The benchmarks contain iterations with work periods
that last approximately 1 ms followed by a communication step,
using the communication patterns described previously. The
load for each process is constant in each iteration and across
processes: the only performance problem comes from the
interference. We simulated the system noise using timers to
interrupt the processes as described by Petrini et al. We used two
simulation scenarios. The first was a 32-process run, with each
of the 32 processes simulating the interrupts specific to the 32
nodes in an ASCI Q cluster. The second was also a 32-process
run, but with the simulated amount of system interruptions that
would occur if there were 1024 processes in the run. When we
refer to the benchmarks in the first category, we use the
communication pattern and either a _32 or a _/024, to indicate
whether 32 or 1024 processes were simulated, respectively.

For these benchmarks, we expect the methods to find a high
number of matches, since most iterations are very similar.
However, it will be important that they don’t falsely match
undisturbed and disturbed iterations, as this has the potential to
mask or amplify the periodic behavior changes due to the
simulated interruptions.

Dynamic Load Balancing. Here, we used ATS to create a
program that simulates an application that does dynamic load
balancing. For this benchmark, the performance of the iterations
starts at about 1 ms and gets progressively worse, with one-half
of the processes doing more work each iteration and the other
half doing less work in each iteration, until the "load balancer" is
triggered. The "load balancer" readjusts the amount of work on
each processor to be equal. The performance problem exhibited
by this program is imbalance at mpi all to all, which falls in the
N-to-N communication category. This benchmark is referred to
as dyn_load_balance and was run with 8 processes.

For this benchmark, we expect less overall matching since
behavior changes with each iteration and very close performance



behaviors reoccur only after each simulated load balance. Here it
will be important that the similarity methods do not match
segments with larger differences because the load imbalance
may no longer be apparent in the reduced trace.

4.2 Application

We chose Sweep3D 2.2b, a structured mesh application that
computes a 1-group time-independent discrete ordinates three-
dimensional Cartesian geometry neutron transport problem [1].
Structured mesh applications have a regular partitioning of the
data, where all interior data blocks have equal numbers of
neighbors. It is likely that the performance will be very regular
over the course of the program, which means that the reduction
methods should be able to find a large number of segment
matches without introducing a large amount of error. We
collected traces for two runs of this application: an 8-process run
with input file input.50, sweep3d_8p; and a 32-process run with
input input.150, sweep3d_32p.

4.3 Evaluation Criteria

We chose four criteria to evaluate the metrics: percentage of full
trace file size, degree of matching, approximation distance, and
retention of correct performance trends.

4.3.1 Percentage of Full Trace File Size

We present the savings in file size as a percentage of the
full, non-reduced trace file, as a relative measure of size
reduction.

4.3.2 Degree of Matching

The degree of matching metric is a measure of how many
segment matches occurred. We define it to be the ratio of the
number of matches to the number of possible matches. The
number of possible matches is limited by the structure of the
program. For example, some portions of the code may only
execute one time, e.g. an initialization step, and will not match
any other event sequence in the trace. A possible match between
segments exists if: the segments represent the same code
location; they contain the same events in the same order; and all
message passing calls and parameters are the same.

4.3.3 Approximation Distance

We estimate the error in the trace by recreating a full trace
from the reduced trace and comparing each time stamp with its
counterpart in the original full trace. The approximation distance
metric tells what absolute difference 90% of time stamps had
compared to the originals."

4.34 Retains Correct Performance Trends

Arguably, the most important criterion for evaluating a trace
matching metric for the purposes of performance analysis is
deciding whether or not the reduced trace still indicates the same
performance problems as the full trace. For example, if an
analyst inspecting a full trace detects a late sender performance
problem, the same problem should be detected in the reduced
trace with approximately the same severity. The KOJAK tool set

! When recreating full traces for the iter_k method, we used the
last segment that executed of each pattern to fill in the
segment executions that were not collected. Alternatives
include using the average measurements from the k collected
segments, or using the centroid of those k segments as
determined by a clustering algorithm.

was developed to aid parallel performance analysts in the
challenging task of performance diagnosis [34]. KOJAK's
EXPERT tool reads in a trace file and produces a data file
containing performance diagnoses. Each diagnosis consists of a
metric, a code location, and a severity for each thread in the run
[29]. KOJAK's CUBE tool reads in the analysis data and
presents a visualization to the user, indicating the most
important performance trends in the trace in a hierarchical
manner.

We use the CUBE visualization tool to compare the
performance diagnoses for the recreated traces against the
diagnoses for the full trace (See Figure 4.). We determine
whether a performance analyst would come to the same
conclusions about the reduced trace as the full trace. If not, then
the reduced trace is not adequate for performance analysis. We
admit that this is a subjective test; however, we followed a set of
guidelines when deciding if the diagnoses were sufficiently
similar, so all the methods were subjected to the same criteria.

5. EVALUATION STUDIES

In this section, we present the results of two studies evaluating
the similarity methods using the criteria and programs described
in Section 4. We first present a threshold study for the similarity
methods from the distance metric category. From this study, we
choose a threshold for each of these methods that represents the
best tradeoff in terms of file size reduction, measurement error,
and retention of performance trends. In the second study, we
present the results of a comparative study of the similarity
methods, using the thresholds found to be best for each method
in the threshold study.

5.1 Threshold Study

We investigated the behavior of the methods in reducing the
traces of the benchmarks while varying the thresholds that
determine whether two given segments should match or not
match. The thresholds for relDiff, Minkowski distances, and the
wavelet transforms were 0.1, 0.2, 04, 0.6, 0.8, and 1.0. The
thresholds for iter_k were 1, 10, 50, 100, 500, and 1000, and for
absDiff were powers of 10 from 10" to 10°. Since no thresholds
are used with the iter_avg method, it was not included in this
study. The criteria we used to evaluate the methods were file
size, approximation distance, and retention of performance
trends (For file size reduction and approximation distance, see
Figures 10-16 in the Appendix for the benchmarks and Figures
17-19 for sweep3d. For retention of performance trends, see
Tables 1-18 in the Appendix.). For each method, we chose a
representative threshold to be used when comparing the methods
against each other.

relDiff. The file size for each benchmark and the sweep3d runs
decreased relatively steadily with increasing threshold. The
approximation distance remained small until the 0.8 threshold,
after which there was a large jump for many of the benchmarks
and sweep3d_32p. Performance trends were correctly retained
for most programs up to a threshold of 0.8. Based on the jump in
approximation distance and loss of performance trends after
threshold 0.8, we chose 0.8 as the best threshold for relDiff.

absDiff. Here the file sizes for the benchmarks and sweep3d
dropped off fairly quickly at a threshold of 100 and continued to
decrease slightly with increasing threshold. The approximation
distance stayed relatively low up to a threshold of 10, after
which there was a sharp increase for several of the benchmarks
and sweep3d_32p. Performance trends were retained for most
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programs at a threshold of less than 10°. Because the file sizes
were relatively low and performance trends were retained at 107,
we chose 10 as the representative threshold for absDiff.

Manhattan, Euclidean, and Chebyshev. When observing file
sizes changes, the Manhattan and Euclidean methods behaved
quite similarly; the Chebyshev method showed some
differences. For the Manhattan and Euclidean methods with the
regular benchmarks, the 1-to-1 irregular benchmarks, and
sweep3d, file sizes decreased relatively steadily with increasing
threshold; with the other irregular benchmarks, the file size
decreased only slightly with increasing threshold, because a
matching that was close to optimal was reached early, at a
threshold of 0.1. For Chebyshev with the 1-to-1 irregular
benchmarks and sweep3d, file size decreased with increasing
threshold; with the regular benchmarks and remaining irregular
benchmarks, file size was relatively constant with increasing
threshold. For all three methods, we observed the following
behavior in approximation distance: with the regular
benchmarks, approximation distance was relatively constant
with increasing threshold; with the 1-to-1 irregular benchmarks,
approximation distance increased with increasing threshold;
with the remaining benchmarks, the approximation distance
remained low until after the threshold of 0.8, after which there
was a large jump. For sweep3d and Manhattan and Euclidean,
approximation distance increased with increasing threshold; for
Chebyshev, the approximation distance was small and relatively

constant until after the 0.8 threshold. For retention of
performance trends, the Manhattan distance did well up to a
threshold of 0.4, and the Euclidean and Chebyshev distances did
well up to 0.2. We based our selection of best thresholds for
these methods on the retention of performance trends metric,
because we consider this metric to be the most important. We
chose 0.4 as the best threshold for the Manhattan distance and
0.2 for the Euclidean and Chebyshev distances.

Wavelet Transforms. For all evaluation criteria, avgWave and
haarWave performed similarly. For all programs, file sizes
decreased with increasing threshold, up to the point of perfect
matching, after which no further decrease in size is possible. The
best threshold in this category appears to be 0.4 for both
methods, because file size decrease levels off after this
threshold. The approximation distance for both methods
remained steady with increasing threshold for the regular
benchmarks and the irregular N-tol, N-to-N, and 1-to-N
benchmarks. The approximation distance increased with
increasing thresholds for the irregular 1-to-1 benchmarks and
sweep3d. The threshold 0.2 is best for approximation distance,
because of the relatively higher values for the dyn_load_balance
benchmark and sweep3d after this threshold. For the majority of
programs, performance trends were retained for both methods at
thresholds below 0.2. For these reasons, we chose 0.2 as the best
threshold for the wavelet transform methods.
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Figure 5: Percentage File Sizes and Degree of Matching.

iter_k. Generally speaking, there was an increase in file size and
decrease in approximation distance with increasing k.
Performance trends were retained for must programs up to
threshold 10. The choice for the best k wasn’t clear, but we
chose k=10 as the best because the performance trends were
retained for most programs at this threshold.

5.2 COMPARATIVE STUDY

In this section, we present comparative results for the different
methods using size and degree of matching; approximation
distance; and retention of performance trends as the evaluation
criteria. Based on the results of the threshold study in Section

5.1, we present results for the best performing threshold for each
method: 0.8 for relDiff, 1000 for absDiff, 0.4 for Manhattan, 0.2
for Euclidean and Chebyshev, 10 iterations for iter_k, and 0.2
for avgWave and haarWave.

5.2.1 Size and Degree of Matching

We present the data for reduction of traces for each method in
Figure 5. The iter_avg method gives the best case values for this
category, since exactly one segment is retained per loop with
this method.
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Figure 6: Approximation Distance Results for All Methods at Default Thresholds.

The benchmark data shows that for the most part, the degree of
matching for each of the methods is greater than 0.9, meaning
that greater than 90% of the segments were matched. Exceptions
occur with relDiff, which had degree of matching scores as low
as 0.74. RelDiff had the highest file sizes and lowest degree of
matching scores. The next largest file sizes are generated with
the iter_k method; however, they are not much higher than those
for the other methods. The Minkowski distances, avgWave, and
haarWave all have nearly identical results, with Chebyshev
having a very slight advantage over the others. AbsDiff had only
slightly larger file sizes than the Minkowski distances.

For sweep3d, the results are somewhat different. Because this
application has very regular behavior, we expected the results to
be similar to those of the benchmarks. However, because of the
program structure, there are more segments, as well as
differences within the segments, e.g. message passing
parameters, that cause segments not to match. We see that iter_k
performed the worst, with the highest file sizes and lowest
degree of matching scores. This is because iter_k needed to keep
10 copies of each individual segment, regardless of how similar
in performance they actually were, whereas the high degree of
matching often results in fewer than 10 copies. The next worst
performing were the Minkowski distances, again with
Chebyshev having the smallest file sizes. The wavelet methods
performed best, followed by absDiff and relDiff, each with very
close to perfect matching and lowest possible file sizes.

The obvious best method in this category is iter_avg, since all
segments match by definition. A comparison of the average file
sizes for each of the other methods yields the following ranking:
avgWave, haarWave, Chebyshev, absDiff, Manhattan,
Euclidean, iter_k, relDiff.

5.2.2 Approximation Distance
Figure 6 shows the approximation distance results for each of
the methods. High values for iter_k and iter_avg mean that

there is irregularity in the execution that is not being captured in
the iterations that are retained. High values for absDiff give a
rough indication of the absolute difference of time stamps from
the true values in the full trace. High values for the Minkowski
and wavelet methods mean that there are high maximum values
in the set of values being compared, relative to the distance
between those values.

The methods show similar trends across the benchmarks with
regular behavior. The relDiff, absDiff, iter_k, and iter_avg
methods have consistently low values. The Minkowski
distances, avgWave, and haarWave transform behave similarly,
and have the highest values overall. The results for the
dyn_load_balance benchmark show a different set of behavior,
with absDiff having the lowest value, followed by avgWave,
Euclidean, Manhattan, and haarWave. The interference
benchmarks had lower overall approximation distance values
than the other benchmarks, with similar results across the
benchmarks. The worst performing methods in this case were
iter_avg and iter_k. However, the approximation distance values
are low in comparison to those for the other set of benchmarks.

The results for sweep3d show iter_avg performing the worst for
the 8-process run, and iter_k and iter_avg the worst for the 32-
process run, indicating that there are performance behaviors not
being captured by those two methods.

The methods that performed the best in this category are relDiff,
followed by absDiff, and then iter_avg. The rest of the methods
allowed significant error into at least one of the reduced traces.

5.2.3 Retention of Performance Trends

We present summaries of the performance diagnoses given by
KOJAK for selected benchmarks in Figures 7 and 8. We show
how we derive the performance diagnoses charts and
abbreviations for metric names in Figure 4. For the benchmarks
with regular behavior, nearly all the methods performed quite
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each reduction method in the MPI_Alltoall and do_work functions. The first row shows the diagnoses for the full trace. Each box in a row
shows a performance diagnosis for a single combination of metric and code location.

well. For late_receiver, all methods except iter_avg performed
equally well, with all performance trends retained. The results
for iter_avg with late_receiver showed differences significant
enough that they may lead to an inaccurate performance
assessment. For early_gather, all but the Minkowski distances,
avgWave, and haarWave retained the correct performance
trends. The results for imbalance_at_barrier showed that the
Minkowski distances, absDiff, iter_avg, avgWave, and
haarWave retained the performance trends, while relDiff and
iter_k both showed a negative value for the major performance
diagnosis. The amount of error introduced into the reduced
traces caused time stamps to be skewed enough that the
performance diagnoses resulted in negative values.

We show the major performance trends for dyn_load_balance in
MPI_Alltoall and do_work as reported by the KOJAK
tools for the full trace and all methods in Figure 7. The results
for the no loss trace clearly indicate that the lower ranks are
spending more time in MPI_Alltoall, because the upper
ranks are spending more time in do_work. None of the
methods gave perfect results for the dyn_load_balance
benchmark; however, absDiff, Manhattan, Euclidean, avgWave,
and haarWave gave the closest performance diagnoses because
for the most part they maintained the performance differences
due to load imbalance between the upper and lower ranks.
Although Manhattan, Euclidean, avgWave, and haarWave lost
the disparity in do_work, the diagnosis “Wait at NxN” is non-
negative and maintains the disparity in behavior. AbsDiff
maintained the disparity in performance in do_ work, but
reported that “Wait at NxXN” was negative. All other methods
lose the expected disparity in do_work.

For the interference benchmarks, all methods did pretty well on
the N-to-1 and 1-to-N benchmarks, with the exception of
iter_avg, which failed on three benchmarks, and Chebyshev,
which failed on Ntol_1024. AbsDiff did less well on the 1-to-1
and N-to-N benchmarks. We show the data for 1tolr_1024 in
Figure 8. AbsDiff picked up on the variations in the iterations
due interference, which caused some performance diagnoses to
be skewed in a positive or negative direction. The best
performers for these benchmarks were Manhattan, Euclidean,
and avgWave, followed by relDiff, and haarWave. AbsDiff and

iter_avg both only showed correct diagnoses for one benchmark,
1tolr_32 and 1tols_32, respectively.

For sweep3d_8p and sweep3d_32p, all methods but iter_avg
and iter_k produced correct data. Iter_k showed a non-existent
disparity in rank performance in pmpi_recv in sweep3d_8p
and a greatly inflated severity in pmpi_recv in sweep3d_32p.
Iter_avg showed a much lower severity in sweep_ than did the
no-loss trace for both sweep3d_8p and sweep3d_32p.

The best methods in this category were Manhattan, Euclidean,
and avgWave which correctly diagnosed 17 out of the 18
execution traces. HarrWave did second best, correctly
diagnosing 16. The rest of the methods in order were: relDiff
(14); absDiff and Chebyshev (13); iter_k (12); and iter_avg (6).
The relatively poor performance of iter_k in this category could
be due to our choices in implementing this method'. It is
possible that the first iterations are more subject to variabilities
in execution, before the processes synchronize into their regular
behavior patterns, and that the last segment is not the best choice
as a fill in for missing segments. AbsDiff seemed to amplify
differences in the traces with interference, while iter_avg
seemed to smooth out behavior patterns.

5.24 Discussion

For relDiff, we expected low error and relatively large files,
which is exactly what we found to be true. For absDiff, we
expected low error. We did find that absDiff had lower error
when compared to most methods. We expected the Minkowski
distances would favor long segments and error would be lowest
for Manhattan, followed by Euclidean, and highest for
Chebyshev. While we did definitely see more error in the traces
produced by the Chebyshev method, the differences in the
results for the Manhattan and Euclidean methods were largely
undistinguishable. We expected iter_k and iter_avg to produce
low error traces for programs with regular behavior and for
iter_avg to have the lowest overall file sizes. We indeed found
that iter_k did well for regularly behaving programs and less
well for programs with varying behavior patterns. lter_avg
produced better results for the regular benchmarks than the
irregular ones; the averaging of measurements tended to cause
loss of information needed for diagnosis. For avgWave and
haarWave, we expected stricter comparisons than Euclidean.

11
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Figure 8: KOJAK Performance Trends for 1tolr_1024 for Each Method at Default Thresholds.

Indeed, the wavelet transforms produced slightly larger files for
the benchmark traces; however, the reduced traces of sweep3d
were smaller than those produced by Euclidean.

To determine best method for comparing traces, we take the
highest ranking methods from each category and weigh the
importance of each of the categories. The best methods from the
size category were iter_avg, followed by avgWave, haarWave,
and Chebyshev. Those from the approximation distance
category were relDiff and absDiff, followed by iter_avg. Finally,
the methods that best retained performance trends were
avgWave, Manhattan, Euclidean, and haarWave. One could
argue that the absolute most important criteria for judging these
methods is whether or not they retain the correct performance
trends, because that is the point of collecting the traces in the
first place. However, almost equally important is the ability to
collect, store, and analyze the trace data at all. Given that
avgWave performed well in both the size and retention of
performance trends categories, we choose avgWave as the best
method of the ones studied for comparing traces.

6. CONCLUSIONS

We have developed a new methodology for evaluating
definitions for similarity between event traces for the purpose of
performance analysis. We identified criteria for comparing the
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Figure 15: File Size and Approximation Distance for Varying Threshold and Average Wavelet Transform
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Figure 16: File Size and Approximation Distance for Varying Threshold and Haar Wavelet Transform
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Figure 17: File Size and Approximation Distance for Varying Thresholds for Sweep3d and relDiff, absDiff, Manhattan
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Figure 18: File Size and Approximation Distance for Varying Thresholds for Sweep3d and Euclidean, Chebyshev, iter_k
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Figure 19: File Size and Approximation Distance for Varying Thresholds for Sweep3d and Wavelet Transforms
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Table 2: Retention of Performance Trends with Varying Thresholds for early_gather
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Table 3: Retention of Performance Trends with Varying Threshold for imbalance_at_mpi_barrier
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Table 5: Retention and Performance Trends with Varying Thresholds for late_receiver
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Table 6: Retention of Performance Trends with Varying Thresholds for late_sender
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Table 7: Retention of Performance Trends with Varying Thresholds for Nto1_32
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Table 9: Retention of Performance Trends with Varying Thresholds for 1toN_32
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Table 12: Retention of Performance Trends with Varying Thresholds for Ntol_1024
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Table 14: Retention of Performance Trends with Varying Thresholds for 1toN_1024
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Table 15: Retention of Performance Trends with Varying Thresholds for 1to1r_1024
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Table 16: Retention of Performance Trends with Varying Thresholds for 1tols_1024
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Table 17: Retention of Performance Trends with Varying Thresholds for sweep3d_8p
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Table 18: Retention of Performance Trends with Varying Thresholds for sweep3d_32p
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