
Evaluating Student Participation in Open Source Software Development with an
Annotation Model

Robert Charles1 and Yonglei Tao2

1LORIA, Campus Scientifique, BP 239, 54506, Vandoeuvre Cedex, France
email: abiodun-charles.robert@loria.fr

2Grand Valley State University, Allendale, MI 49401, USA
email: taoy@gvsu.edu

ABSTRACT
While team work is an indispensable experience for
computer science students, evaluating their performance
in a project becomes a great challenge for the instructors.
The basic assumption in a collaborative work is that each
member of the collaboration has something to contribute.
It is assumed that no member of the team is non
functional. But how do we measure the contribution of
each member of the team? An effective documentation
tool is helpful. In this paper, we discuss why we need
such a tool through a case of an open source software-
based project in a computer science course. We then
propose an annotation model AMIESDev (Annotation
Model for Information Exchange Software Development)
to assist in evaluation of students’ contribution in a
collaborative work. The model can also be used to
monitor the progress in the work.

KEY WORDS
Model, evaluation, software project, annotation,
collaboration, open source

1. Introduction

Many efforts are being made these days to benefit from
the propositions of open source software. A primary
objective of open source software is to make
programming experience open and accessible to all who
may be interested. As such, open source software
provides a vast pool of resources to satisfy diverse needs
of computer science instructors.

Open source software offers a great promise to the
computer science education community [23]. Some
computer science instructors use open source software,
for example, Linux and Apache, in support of teaching
[14]. Others focus on the open source philosophy and
development paradigm, such as, cooperating over large
distances to produce professional software and improving
its quality through peer review and rapid evolution of
source code [5]. In addition, attempt to get students
involved in open source software development has been
made so as to gain knowledge and skills which otherwise
would not be possible in conventional project activities.

Academic projects based on open source software give
students unique experience with understanding, using, and
modifying existing programs to meet new requirements.
However, evaluation of students’ participation in such a
collective work becomes a great challenge for the
instructors. We need to measure the contribution of a
team as well as each member of the team in order to
evaluate students’ performance in an adequate fashion.
Obviously, an effective documentation tool is necessary.

In this paper, we discuss why we need such a tool through
a case of an open source software-based project in a
software design course. We then propose an annotation
model AMIESDev (Annotation Model for Information
Exchange Software Development) to assist in evaluation
of students’ contribution in a collaborative work. The
model can also be used to monitor the progress in the
work.

This paper is organized as follows. Section 2 describes an
open source software-based project we created for
students in a software design class. Section 3 discusses
our proposal of an annotation system, AMIESDev.
Section 4 presents its features and architecture. Section 5
discusses using our AMIESDev system in documenting
students’ contribution in a software project. Finally,
section 5 concludes the paper.

2. A Case of Open Source Software-Based

Project

A primary goal for computer science instructors is to
prepare students for the real challenges they will face in
professional software development. In addition to formal
lectures, projects are an indispensable component in
computer science courses.

As technologies evolve, future developers are more likely
to work from existing or partial systems in order to build
new ones. Hence, it is important for students to gain
experience with complex programs they cannot possibly
redevelop from scratch [3] [12].

2.1. Background

We developed a software redesign project based on an
open source product JUnit. Our objective is to have
students learn by doing practical design techniques,
specifically, how to use instances of design patterns as
building blocks and compose them together to build an
object-oriented application.

JUnit is a testing tool that encourages unit testing, a key
component of the test-driven development in eXtreme
Programming (XP) [9]. It is widely used in industry as
well as in the computer science curriculum [22].

As a matter of fact, JUnit is more than a tool. It is worth
studying in its own right. JUnit demonstrates a skillful and
well-motivated use of design patterns by experts [2].

Moreover, JUnit is well-documented. Explanatory articles
on its website provide a helpful insight into key design
decisions, making it possible to reuse and modify the
original design.

2.2. A Design Process

A significant part of a redesign project is the
understanding and analysis of the original design. JUnit is
an exemplary software product. It enables us to teach
design techniques as preparing students for the project.

We use JUnit to show software design via composition of
design patterns. Roughly, such a process begins with
identifying concerns for the intended application. Doing
so allows us to focus on individual concerns separately.
Applicable design patterns are then selected to address
individual concerns. An instance of an applicable pattern
describes collaborating objects as well as their roles in the
system. Finally, instances of selected patterns are
composed into the intended application via key objects
that share common roles.

We adopted many examples from [2] to show decisions
encountered by the original designers and criteria used to
choose among alternatives.

2.3. Project Requirements

In the redesign project, we asked students to explore
alternative solutions to meet slightly different
requirements. New requirements given in the project are
as follows:

a. Organize test cases as a list, rather than a tree.
b. Use the factory method pattern, instead of

reflection, to accommodate user-defined test
classes.

c. Use the observer pattern to handle the one-to-
many relationships between the test result and
the test cases.

Note that the above changes leave certain portions in the
original design intact. Students usually work on a design
project from scratch. In this project, however, they were
asked to redesign particular portions of a product. They
needed to answer a set of new questions, such as which
classes would be affected, which classes could be reused,
and which classes should be modified. Students had to not
only propose a solution but also show how the solution
fits into the given context.

In addition, we asked students to work in teams. We also
asked them to document their solutions in UML (Unified
Modeling Language). Since implementation is not
required in this project, it is crucial to show both the
structural and behavioral aspects to demonstrate a
working solution.

2.4. Issues to Address

Students’ comments on their project experience were
generally positive. Software redesign provides students
with a unique learning opportunity. In addition to basic
considerations, students must deal with additional
constraints imposed by the existing product. Added
complexity created a more realistic, motivating situation
in which students learn design techniques.

On the other hand, however, evaluating the performance
of each team as well as individual student becomes a great
challenge for the instructors. A flexible documentation
tool is certainly helpful. Specifically, we need the
following capabilities from such a tool in order to do
evaluation in an adequate way.

1. Identify elements from the original design.
2. Identify elements resulting from modification to

the existing ones.
3. Identify elements that are new.
4. Identify individual contributions to the final

design.

In addition, we found defects in every team’s solution but
there was little in common among different teams. We
realized it would be beneficial for students to review each
other’s solution due to the complementary nature of those
defects. As a result, students would be able to improve
their solutions via peer review, just like what happens in
actual open source software development. Hence, it is also
desirable for the documentation tool to allow other teams
to express comments.

3. A Model for Evaluating Contribution in a

Collective Work

Annotation systems provide features that are helpful for
the situation discussed above. A desirable documentation

tool for instructional purposes can be built around an
annotation system.

 Figure 1: A generalized web annotation system

Annotation is defined as an act of interpreting or
evaluating a document. Interpretation or evaluation is of a
specific context and is expressed on the document
Annotations normally take a different form and look
compared to the original document. The different in look
may be noticeable in form of character used, font, style,
color or additional signs and images that do not form part
of the original document. A document for annotation can
include various entities like punctuations, words, images,
artifacts terminologies, phrases, sentences, passages,
collection of homogeneous documents, a collection of
heterogeneous documents.

We consider a collection of documents as being
homogeneous. Each document can be treated separately
and each with related uniform properties. A document can
be seen as a collection of heterogeneous documents in the
sense that individual members that form this document
differ in their properties and features.

In a generalized annotation system shown in figure 1 as in
the case in most annotation system, the concerned is the
production of annotation based on the document sent to a
parser (an annotation engine) and then the result [15]. The
question of “why” is usually not addressed. The question
of “how” is the general concern. For example, some
programming languages like Java make available special
routines, plug-in or API to enable the “how” of annotation
[11].

The basic components of most annotation systems are (a)
the document, (b) the annotation parser and (c) the
resulting annotated document. The aspect of storage of
annotation is not even applicable in some of these tools.
In some cases, for example Amaya, provision is made for
storage of annotation in either a local or a remote location
[16].

A research group in France presented a tool called
Dinosys [4] that was meant to apply annotation as a mean
of sharing resources among students. The approach in
Dinosys was more of explorative and there was no
provision made for the evaluation of students’
participation. Vasudevan and Palmer [20] proposed an
annotation framework to be customizable to support
variety of document management function, and to be non-
intrusive to enable easy insertion into enterprise Intranets
or the public Internet. This approach was good but not
good enough for evaluative purpose.

We developed AMIESDev to assist in evaluation of
students’ contribution in a team project. AMIESDev can
be viewed as an instruction-oriented version of the
annotation system described in the work of Robert and
David [18]. We can also use it to assist in monitoring
progress in a project.

4. Architecture of AMIESDev

We in this section discuss key features and the
architecture of AMIESDev. AMIESDev is based on
AMIE (Annotation Model for Information Exchange)
which is a conjunction of annotation characteristic based
on observations and needs in an information retrieval
system. The basic components of AMIE are the user (a
decision maker), document and time in an annotation
system conceived to for decision support [19]. Decisions
are made based on information aggregated from a set of
document and time.

AMIESDev consists of five parts (a) a user is a member in
a collaborative workspace (b) Program repository (c)
annotation database (d) contribution (e) time.

4.1. User

The user is identified with the following parameters:

• Usercode (which can be his official school code)
• SurName
• FirstName
• PostalAddress
• EmailAddress
• City
• Usergroup (programming or academic group he

belongs)

Annotation
database

Parser Document

Document
+

Annotation

Annotation

4.2. Program Repository

Program repository is a database of program. It may also
be a link to program and not the programs themselves.
Program names must be unique. It that can be identified
with the following parameters:

• Programcode
(Program.Attempt.Semester.Version.Status)

Example JUnit.5.F.2006.005.InProgress
JUnit development, Fifth Attempt, Fall Semester,
2006, version 005, Closed/New/ InProgress

• Type (Script, program, class, applet, etc…)
• Domain (operating system, application,

wordprocessor, internet, security, etc…)
• Requirements (Library, OCX, DLL, Includes,

etc...)

4.3. Annotation database

• Date of project initiaton
• AsociatedCreator (same as usercode in 4.1)
• ProgramReferenced (Same as Programcode in

4.2)
• AnnotationCode
• DateandTime of annotation creation
• Objective of annotation (Personal, Assignment,

etc…)
• AnnotationType (Delete, Update, Addition)
• Annotation (Suggested proposition: This is the

full program or function, call, applet, script,
method suggested by user)

• Associated file (URL or path)

• Location (Node to place proposition (Module
name, Calls, Function, Subrouting etc… which
consist of module name, line number in module)

• CallParameters (Calls to the module)
• Returns (Output from the module)

4.4. WorkSpace

• SessionCode
• AnnotationCode (Same as in 4.3)
• UserCode (Same as in 4.1)
• OlderProgramCode (Same as in 4.2)
• NewerProgramCode (Modification to

OlderProgramCode)
• DateandTime

A user in a collaborative workspace will normally have
identification (usercode). He uses the identification code
to request for a particular program from the software
repository. The user is granted that program as a common
task if he is a member of the collaboration. He is free to
edit, modify the program. Instead of sending the modified
program back as a replacement in the repository, we
propose that, what he added or deleted is stored as a
parameter of his contribution. Realize that a newer
version of the modified program is created with a newer
version number while the older version of the modified
program is kept in the repository.

Program
Repository

Annotation
Database

User
Database Users

Common
Task

Contributions

Collaborative
workspace

request

WorkSpace

Figure 2: Architecture of AMIESDev

The newer program is returned to the repository with
newer version code. User’s identity is stored in the
workspace with date and time and the code of the program
he worked on (the older and the newer codes). A code is
created for the proposition he made (in form of
annotation). Annotation database receives the proposition
as “annotation” and the parameters linked to the
proposition.

5. Application to open source initiatives

With this model, it is possible to know the frequency of
participation of students/users (from WorkSpace
database). It is possible for student to decide exactly what
version of program he will want to work with since newer
programs are always created from existing ones. We can
evaluate the methodology of each student/user from the
annotation database. This is because a contribution of
each user is stored separately independent of the global
program. It is possible to monitor the growth of the
program (from the program repository). We can also
study the growth of each user from a set of his
contributions in the annotation database.

From the WorkSpace database, we can see the period that
is most favorable for particular user of the entire
participants. A contribution that is judged “unnecessary”
can be identified and eliminated because there is no
overwrite of program. It is easy to understand the specific
issue(s) learnt by user by comparing his initial
“annotation” with the latest. This can be a way of
rewarding students who made substantial progress in the
joint project. It can be seen also if a user is static in his
learning activity.

If this model is used for successive years, comparison can
be made across years, across groups, across class and
across period of time. We can even have several programs
with different perspectives (eg. JUnit, C++, Fortran, Java,
VB, etc…) in the system, and we can measure the
participation across programs.

6. Conclusion and Perspectives

This study briefly describes the effort of a collaborative
work in a university environment using JUnit. A model
AMIESDev was conceived based on the parameters of the
user, the program, added or modified text (annotation)
which can be included in the pool of work in a
collaborative workspace. We have also demonstrated how
this model can be used to evaluate the participation of
student/user in a collaborative program development. We
did emphasized that performance within group can be
evaluated as well as performance across years. This model
can be well suited for other public domain open source
initiatives like in LINUX. What is now remaining is its
practical implementation.

Bibliographies

[1.] Apple Development Connection, 2006, Open
Source Overview,
http://developer.apple.com/opensource/
overview.html

[2.] Beck Kent and Gamma Erich, 2002, JUnit A
Cook’s Tour,
http://junit.sourceforge.net/doc/cookstour/
cookstour.htm.

[3.] Cohen, J., “Updating Computer Science

Education”, CACM, Vol. 48, No. 6, June 2005,
PP.29-31.

[4.] Desmontils E. , Jacquin C. and Simon L.,

Dinosys : un outil d'annotation pour
l'enseignement à distance sur le Web, Colloque
"Miage et e-mi@ge", Marrakech, Maroc, mars
2004.

[5.] Faber Brenton, “Educational Models and Open

Source: Resisting the Proprietary University”,
Proceedings of SIGDOC ’02, Oct. 20-23, 2002,
Toronto, Canada, pp 31-38.

[6.] Gilbert David, 2002, A user guide for GnuCash,

Simba Management Limited
http://www.object-refinery.com/gnucash/
gnucash-US.pdf (27/06/2006)

[7.] Gonzalez-Barahoma Jesus M., 2000, Free

Software / Open Source: Information Society
opportunities for Europe? Working group on
Libre Software, version 1.2, http://eu.connecta.it

[8.] Gonzalez Guadamuz Andrés, 2005, Legal

challenges to open source licences,

[9.] JUnit Web Page, http://junit.org

[10.] Lemyre Pierre-Paul and Willemant Richard,
2006, The legal issues surrounding free and open
source software: Challenges and solutions for the
government of Québec,
http://www.cirano.qc.ca/pdf/publication/2006RP
-04.pdf

[11.] Martini F., 2005, Les Annotations de Java 5.0,

http://adiguba.ftp-
developpez.com/tutoriels/java/tiger/annotations/a
nnotations.pdf 21/07/2006)

[12.] Meyer Bertrand, “Software Engineering in the

Academy”, IEEE Computer, May 2001, pp 28-
35.

[13.] Michelle Levesque, 2004, Fundamental issues

with open source software dev elopement, Peer-
Reviewed Journal on the Internet,
http://www.firstmonday.org/issues/issue9_4/leve
sque (13/07/2006)

[14.] Nelson Daniel and Ng Yau Man, “Teaching

Computer Networking Using Open Source
Software”, Proceedings of ITiCSE ‘00, July,
2000, Helsinki, Finland, pp 13 – 16.

[15.] Ovsiannikov Illia, Arbib A. Micheal, Mcneil H.

Thomas, 1999, Annotation technology,
International Journal of Human-Computer
Studies, 50, 329 - 362

[16.] Quin Vincent and Vatton Irène, 1997, An

Introduction to Amaya,
http://www.w3.org/TR/NOTE-amaya
(20/07/2006)

[17.] Ragib Hasan, 1999, The History of Linux,

http://www.linux.co.uk/Pages/aboutlinux

[18.] Robert Charles and David Amos, 2006,
Annotation and its application to information
research in economic intelligence, Advances in
Knowledge Organization (10), pages 35-40

[19.] Sidhom, S., Robert, C., David A., 2005, De

l'information primaire a l'information a valeur
ajoutée dans le contexte numerique. Revue
maghrébine de documentation et d’information,
vol 1, pages 95-118, Tunis, 2005, Tunisie

[20.] Vasudevan Venu and Palmer Mark, 1999, On

Web Annotations: Promises and Pitfalls of
Current Web Infrastructure, Proceedings of the
32nd Hawaii International Conference on
System Sciences

[21.] Wheeler A. David, 2005, Why open source

software / Free software (OSS/FS, FLOSS, or
FOSS)? Look at the numbers,
http://www.dwheeler.com/oss_fs_why.html
(27/06/2006)

[22.] Wick Michael, Stevenson Daniel, and Wagner

Paul, “Using Testing and JUnit Across The
Curriculum”, Proceedings of ACM SIGCSE,
Feb. 23-27, 2005, St. Louis, Missouri, pp 236-
239

[23.] Wolf, Marty, J., Bowyer, K., Gotterbarn, D.,

and Miller, K. (2002). "Open source software:
intellectual challenges to the status quo", in
SIGCSE '02: Proceedings of the 33rd SIGCSE
technical symposium on Computer science
education, pp. 317—318, ACM Press, New
York, NY, USA.

