
Evaluating Symbolic Execution-based Test Tools
Lajos Cseppentő and Zoltán Micskei

Budapest University of Technology and Economics
Email: lajos.cseppento@inf.mit.bme.hu, micskeiz@mit.bme.hu

Abstract—In recent years several symbolic execution-based
tools have been developed to automatically select relevant test
inputs from the source code of the system under test. However,
each of these tools has different advantages, and there is no
detailed feedback available on the actual capabilities of the
various tools. In order to evaluate test input generators we
collected a representative set of programming language concepts
that should be handled by the tools, mapped them to 300 code
snippets that would serve as inputs for the tools, created an
automated framework to execute and evaluate these snippets, and
performed experiments on four Java and one .NET test generator
tools. The results highlight the strengths and weaknesses of each
tool, and identify hard code parts that are difficult to tackle
for most of the tools. We hope that our research could serve
as actionable feedback to tool developers and help practitioners
assess the readiness of test input generation.

978-1-4799-7125-1/15/$31.00 c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.
In Proc. of IEEE Int. Conf. on Software Testing, Verification and Validation (ICST) 2015. DOI: 10.1109/ICST.2015.7102587
An extended version of this paper appeared in: “Evaluating code-based test input generator tools”, STVR. 2017. DOI: 10.1002/stvr.1627

I. INTRODUCTION

Testing is one of the most commonly used techniques to
check and improve the quality of software systems, where
the system is executed under specified conditions defined by
test cases. A test case should include “test inputs, execution
conditions, and expected results developed for a particular
objective” [1]. However, creating efficient and effective tests
is a challenging and resource consuming task. That is why
extensive research has been performed in the last decades to
automatically derive the various test artifacts. For example
model-based testing methods generate test cases from behavi-
oral models. Code-based methods start from the source code
of the system under test and select test inputs that maximize
the achieved code coverage. Code-based methods primarily
generate only test inputs without expected outputs and rely on
assertions, exceptions to detect issues.

One of the active research topics in test input generation is
the use of symbolic execution (SE) [2]. Although the idea of
symbolic execution was born in the 1970s, it has been used
for test generation in practice only recently because of its
high computational need [3]. Tools have been developed for
several platforms, such as C, .NET, Java or x86 machine code.
However, the majority of these tools are academic or research
prototypes, and the method is not used widely in industry.

As the problem at the heart of SE-based test generation
is undecidable in general, the development of such tools
faces several theoretical challenges. Additionally, as modern
programming languages and platforms offer a wide variety of
complex language constructs and features, supporting all of
them is a significant development task. Thus the available test
generators have varying capabilities.

Typically the publication of a new tool includes also ex-
perimental results to assess the tool’s capabilities. However,
some of the developers use their own sample programs, while
others conduct case studies on open source software. The used
third-party software are usually different, thus comparing the
abilities of the tools is not trivial. The tool papers always
describe the benefits of the new tool and the innovation
carried out during development. Nonetheless, only some of
them mention all limits of the tool. Moreover, several reviews
and surveys have been published in which tools were applied
to complex software [4], [5]. These surveys communicate
aggregated quantitative results (such as average code coverage)
in the first place and point out how the tools perform and
handle the challenges in real situations. However, we only
found one general survey [6] containing fine-grained feedback
on what pieces of code can or cannot be handled by a certain
tool. Thus the initial question that motivated our work was:

How can the different test input generator tools
be compared and evaluated?

Designing a common evaluation method and framework
would help to identify general challenges, would provide tool
developers with actionable, reproducible feedback, and would
help practitioners assess the readiness of the tools and test
input generation more precisely.

We applied the following method in our research. First, we
collected and organized the programming language concepts
that should be handled by a test input generator (e.g. recursion,
complex structures). Then, we defined code snippets that target
these features and serve as inputs for the test input generators.
Next, the tools were executed with the above snippets, and
based on the results of the test generation, it was possible
to conclude whether the given tool handles a certain feature
properly or not. Using all the snippets, detailed feedback could
be obtained, which makes possible to compare the tools.

Thus contributions of this paper include (i) collecting the
relevant and challenging features of imperative programming
languages w.r.t. test input generation, (ii) mapping these fea-
tures to the Java and .NET platforms and implementing them
in 300 code snippets, (iii) creating the Symbolic Execution-
based Test Tool Evaluator (SETTE) framework for automa-
tically evaluating the snippets, and (iv) experimental results
of comparing four Java and one .NET tools, which highlight
the significant differences and the ‘hard code parts’, i.e. the
features which are difficult to tackle for most of the tools.

http://dx.doi.org/10.1109/ICST.2015.7102587
http://dx.doi.org/10.1002/stvr.1627

TABLE I
LIST OF TEST INPUT GENERATOR TOOLS

Name Platform Evaluated Access Published Updated Input Output
CATG Java • open source 2012 2014 source code input values
CAUT C closed source 2010 2014 source code input values

CodePro AnalytiX Java closed source 2001 2010 source code test code
EvoSuite Java • closed source 2008 2014 bytecode test code
CREST C open source 2008 2014 source code input values
Jalangi JavaScript open source 2013 2014 source code input values
KLEE C open source 2008 2014 LLVM bytecode input values
LCT Java open source 2010 2012 bytecode input values
Palus Java open source 2010 2012 bytecode test code

PET/jPET Java • open source 2009 2011 source code input values
Pex .NET • closed source 2008 2010 IL code test code
SPF Java • open source 2012 2014 bytecode input values

II. OVERVIEW

Symbolic execution (SE) is a program analysis technique
where symbolic variables are used instead of concrete inputs
and an execution path in the program is represented with
an expression over the symbolic variables (called a path
condition or path constraint) [7]. The possible execution paths
are collected and the respective path constraints are solved by
usually an SMT solver yielding a set of concrete input values
activating the given path in the program. Thus, theoretically
all the reachable paths and the inputs activating them can be
discovered. The goal of test input generation using symbolic
execution is to produce a set of test inputs, which achieve
maximal possible code coverage (statement, branch, etc.).

However, like other hard problems, the practical application
of symbolic execution faces also several challenges [2], [8],
[9], [10]. Currently the most important ones to deal with
include path explosion (exponentially increasing number of
possible execution paths), complex and external arithmetic
functions (due to the limitations of SMT solvers), floating-
point calculations, pointer operations, interaction with the
environment and multi-threading.

Tools In the last decade several SE-based test input genera-
tor tools have been published, Table I lists some of them1.
Some tools are open source, some tools are still actively
developed while others are not available any more. The tools
also vary in their input language and platform (C, Java and
.NET). In our experiments we concentrated on tools for Java
(see later in Section V), we evaluated the following tools
(marked in the evaluated column): CATG [11], PET [12],
and Symbolic PathFinder (SPF) [13] and included additional
results for Pex [14] and EvoSuite [15].

Approach Our goal was to compare test input generators.
The overview of our approach is illustrated on Fig. 1.

1) We have collected the common language elements and
program organizational structures for C/C++, Java and
.NET languages ranging from basic data types and

1For a more complete list of code-based test input generator tools see e.g.
http://mit.bme.hu/˜micskeiz/pages/cbtg.html

operators to complex concepts like handling string ma-
nipulations or class inheritance. We would refer to these
collectively as “features”. We paid attention to include
the ones responsible for the challenges above.

2) These features are later mapped to a specific program-
ming language by creating code snippets targeting a
feature. A code snippet is an executable program code,
like a general main function. Several code snippets could
be defined for a feature depending on its complexity. The
majority of the code snippets contain 10–20 lines.

3) The tools under evaluation are ordered to generate inputs
for these snippets separately. The generated inputs and
code coverage achieved by these inputs on the code
snippet are collected. An ideal tool should generate
such a set of inputs for each snippet, which reaches the
maximal possible coverage.

4) Using these results a detailed feedback can be given on
one tool and several tools can be compared.

The next sections detail the features (Section III), the code
snippets (Section IV), the experiments executing the snippets
(Section V) and the discussion of the results (Section VI).

Fig. 1. Approach for comparing test input generators

Features

Code Snippets

Achieved

Coverage

Language

Reference

Generated Test

Inputs

SE Challenges

Derive

Test Input

Generation

Select

Test Generator

Tool

http://mit.bme.hu/~micskeiz/pages/cbtg.html

III. FEATURES TO COMPARE

The goal of one feature is to check whether a tool supports a
certain language construct or program organizational structure
(e.g. recursion). These features are grouped into categories and
focus on imperative programming languages. Our guidelines
during the selection of the features were the following:

• Coverage: in order to get basic and detailed feedback on
the tools, the most important language elements shall be
covered at least once. It must be noted that because of the
large number of elements and combinations full coverage
cannot be a reasonable objective.

• Clarity: the methodology should be clear for each pro-
gramming language since sometimes the common con-
cept in two different programming languages can have
different meanings.

• Well-organized structure: it not only increases clarity and
helps maintenance, but all the partial and final results will
have the same structure, which makes evaluation easier.

• Compactness: the number of code snippets should not
be unnecessarily large, otherwise the maintenance, the
test execution and the evaluation would require more
resource.

• Minimizing the dependencies: inevitably there will be
dependencies between the features. For example, to use
a conditional statement, support for the used type is
essential. Care must be taken about that dependencies
should be only present in one direction between two
criteria and there should be no circular dependencies. In
addition, the number of dependencies should be small.

Before discussing the concrete features, some notions must
be clarified, as the differences between C/C++, Java and C#
can be significant:

• Function: a program code which can be called several
times, but does not belong to any high-level constructs,
i.e. functions in C/C++, static methods in Java and C#.

• Structure: a complex type which can contain other types
(even another structure), but does not have methods and
all parts of it are accessible, i.e. structs and classes
without methods and with only public fields.

Table II lists the selected features, whose details will be
discussed in the next subsections.

Primitive Types and Operators (B)

As our former experiences showed, it is not obvious that
a SE tool is capable of handling all the primitive types and
constructs of a programming language, thus the support for
these features should be checked first. This category also
includes operators, control flow statements and both simple
and complex mathematical problems. Arrays2 are checked
with safe and unsafe snippets: safe snippets handle illegal
indices and null references, while unsafe snippets do not. The
ability of the tool to detect common exceptions is also checked

2In Java, arrays are also objects, however, they are discussed here because
of their special function.

TABLE II
FEATURES OF COMPARISON

B Basic language constructs, operations and control flow statements
B1 Primitive types, constants and operators
B2 Conditional statements, linear and non-linear expressions
B3 Looping statements
B4 Arrays
B5 Function calls and recursion
B6 Exceptions

S Structures
S1 Basic structure usage
S2 Structure usage with conditional statements
S3 Structure usage with looping statements
S4 Structures containing other structures

O Objects and their relations
O1 Basic object usage
O2 Class delegation
O3 Inheritance and interfaces
O4 Method overriding

G Generics
G1 Generic functions
G2 Generic objects

L Built-in class library
L1 Complex arithmetic functions
L2 Strings
L3 Wrapper classes
L4 Collections
LO Other built-in library features

Others Other features

in this category. The main questions were whether a tool is
able to
B1 handle all the basic language elements,
B2 solve simple and complex arithmetic problems,
B3 generate inputs for simple loops, loops with inner state,

complex loops and embedded loops,
B4 use arrays and generate arrays as input values,
B5 dispatch function calls, cover called functions and handle

recursion and
B6 detect exceptions and handle exception-specific language

constructs.

Structures (S)

The following step is to check support for complex (data)
types. The goal is to determine whether a certain tool is able to
handle types containing other types, even in combination with
conditional statements and loops. The main questions were
whether a tool is able to
S1 use data fields of structures,
S2 use structures with conditional statements
S3 use structures with looping statements and
S4 generate complex structures as input values.

Objects and Their Relations (O)

A major part of modern programming languages support
object-oriented programming and these language concepts are
commonly used by software. Objects are not only structures

with functions, but they can have states and it is common that
an object cannot have certain field values. In addition, other
OO concepts should be supported by an ideal tool such as
delegation, inheritance, interfaces, abstract classes and method
overriding. Latter is not trivial since for example in C++ and
C#.NET not all the methods are implicitly virtual.

An ideal tool should be able to i) handle objects, ii) create
instances of objects, iii) guess the concrete type or create
dummy classes when using interfaces, and iv) it should never
produce an object which cannot be created with the available
methods. The last requirement describes that e.g. given an
object whose integer field is ensured to be positive, a test input
generator should never create an instance of the object, which
has a negative field value. The main questions were whether
a tool is able to
O1 use objects, generate objects for different criteria as input

values,
O2 handle class delegation,
O3 handle inheritance and interfaces and
O4 handle method overriding.

Generics (G)

Generics became widespread and commonly used in the
last decade, therefore a test input generator should not fail
when it encounters generic function or objects. When desig-
ning concrete snippets for generics the features of the target
platform should be seriously taken into account since the
implementation and behavior of generics is different for all the
three major platforms mentioned before. The main questions
were whether a tool is able to
G1 handle and generate inputs for generic functions and
G2 use and create generic objects as input values.

The Built-in Class Library (L)

Modern programming languages are shipped with a built-in
class library, whose components receive calls quite frequently.
Since today’s class libraries are huge (the Java 7 SE platform
API specification3 contains 4024 classes), our target was only
a little part of it focusing on commonly used classes. The parts
of the class library whose support was under investigation can
be seen in Table II.

Others

The majority of programming languages have several unique
concepts and language constructs, like anonymous classes in
Java or delegates and events in C#.NET. In addition, the
support for other common practices should also be checked.
One of them is the usage of a third party library for which
only the binary is available. The goal is that a tool should be
able to perform symbolic execution even in this code to reach
the maximal coverage. This case is not trivial for source code-
based test input generators or for languages which compile to
machine code. Code snippets have been implemented for the
following subset:

3http://docs.oracle.com/javase/7/docs/api/

• anonymous classes,
• enumerations,
• third party library (no source code, only binary),
• variable number of arguments.

Evaluating the Selection of Features

The selection of the features was a systematic approach
based on language references and the SE challenges reported
in related work. The code snippets use 84% of the Java
keywords, the omitted ones are the following:

• assert: assertions which should be never triggered in
production code, not turned on by default

• const, goto: not used reserved words
• native: used when the bytecode has attached native

implementations
• transient: used to prevent the serialization of certain

fields
• strictfp: ensures that floating-point precision is the

same on any platform
• synchronized, volatile: used in connection with

multi-threading
The features cover the following challenges from Section II:
• Path explosion: loops (B3) and recursion (B5)
• Complex and extern arithmetic functions: mathematical

expressions (B2) and arithmetical functions (L1)
• Floating-point calculations: conditions using floats (B2)
• Pointer operations: pointers can be evaluated in B1, S

and O (however as our targets were managed languages
we have not covered them)

• Interaction with the environment: was not covered
• Multi-threading: was not covered
We aimed for a set of features and code snippets that

is able to check SE tool support for not only basic, but
more complex language concepts and program organizational
structures. On the other hand we wanted to keep the number of
features and snippets manageable, thus we had to find the right
balance (similarly to other testing activities). Nevertheless as
our experiments showed the selected features could provide
useful insights and are able to identify issues in tools. Once
the tools will handle all the selected features, new ones could
be easily added to extend the scope of our work.

IV. IMPLEMENTATION

We mapped the features defined in Section III to the Java
language, and created 300 code snippets implementing them.
The numbers of snippets in each category are shown on
Table III. For each code snippet meta-data (goal, maximum
reachable coverage etc.) and sample inputs (with which the
maximal reachable coverage can be achieved) were defined.
As it can be seen, the majority of the code snippets focuses on
the basic features. The reason for this is because the majority
of the basic features should be individually checked, including
all the types and operators.

The execution of 300 snippets for several different tools
by hand is extremely expensive and error-prone. First, the

http://docs.oracle.com/javase/7/docs/api/

TABLE III
NUMBER OF CODE SNIPPETS BY CATEGORIES

Category # of code snippets Total

Basic 62+31+27+18+10+21 169

Structures 4+4+6+3 17

Objects 21+2+8+4 35

Generics 4+6 10

Library 20+13+3+11+10 57

Others 1+4+3+4 12

tools require different configuration files and test-drivers.
Secondly, the format of the output is different for each tool
and a tool can have several output channels, e.g. standard
output, standard error output or an XML file containing the
generated test inputs. In addition, each execution has to be
performed separately to guarantee the isolation between test
input generations for different code snippets. Some tools report
on the achieved coverage, but as there exists several different
coverage measurement techniques (e.g. source or bytecode
level), this information cannot be reliably used for comparison.

To overcome these problems we have developed the SETTE
(Symbolic Execution-based Test Tool Evaluator) framework,
with which (i) code snippets can be defined and categorized,
(ii) sample inputs for the code snippets can be specified, (iii)
the test input generators can be executed automatically on the
code snippets, (iv) the results can be collected into a common
XML format, and (v) the reached coverage can be measured
uniformly using the JaCoCo [16] code coverage library. With
SETTE not only SE tools can be evaluated but other test
generators too.

Listing 1. Sample code snippet
public final class BasicControlFlow {

public static int ifWithElse(int x) {
if (x > 0) {

return 1;
} else if (x < 0) {

return -1;
} else {

return 0;
}

}
}

A sample code snippet can be seen in Listing 1. Since
in Java a sequence of statements can only be defined inside
classes, all code snippets are defined in a final class which
is called a snippet container. One or more snippets can be
defined in a snippet container. All the code snippets must
be directly callable (i.e. they must be public static methods)
and they can require an arbitrary number of parameters. The
usage of annotations and modifiers are strict and validation is
performed by SETTE. In addition, sample inputs (i.e. inputs
for a snippet reaching the desired coverage for demonstration
and validation purposes) and included method coverage (i.e.
methods whose coverages should be also taken in account
during evaluation) can be defined.

The SETTE framework and the code snippets are publicly
available from the tool’s website4. The SETTE workflow is
shown in Fig. 2.

Fig. 2. Workflow of the SETTE framework

Code snippets
Generate Runner

Project for a Tool

Tool-specific Files

(e.g. test-drivers)

Execute Code

Snippets on a Tool
Raw Results

Parse Results Results in XML

Analyse Coverage
Evaluation

for a Tool

Working Phase Artifact

JUnit Test CasesGenerate Test Suite

V. EXPERIMENTS AND RESULTS

To validate our approach we performed experiments on
several test input generator tools.

Research Questions

The main objective of our research was to create a method
and framework for comparing and evaluating test input gene-
rators. The experiments were designed to answer the following
research questions:

RQ1 Is the approach able to produce fine-grained feedback on
a tool’s capabilities?

RQ2 Which are the ‘hard code parts’, i.e. the cases which were
solved by only one or none of the tools correctly?

Method

The tools under study were executed to perform test gene-
ration for each of the code snippets separately. The detailed
results (generated test input, log files, achieved code coverage
and possible errors raised) were collected, and each snippet
was assigned exactly one flag from the followings:

N/A The tool was not able to perform test generation since
the tool’s input could not have been specified for the
execution or the tool signaled that it cannot deal with
the certain code snippet.

EX Test input generation was terminated by an excep-
tion, which was thrown by the code of the tool or
the tool did not caught an exception thrown from the
code snippet and stopped.

T/M The tool reached the specified external time-out
and it was stopped by force without result or the
execution was terminated by an out of memory error.

4SETTE website: http://sette-testing.github.io

http://sette-testing.github.io

TABLE IV
CONFIGURATIONS OF TEST INPUT GENERATORS USED IN THE EXPERIMENTS

Tool Version Configuration

CATG v1.03 (Yices 2.2.2 64-bit) ./concolic 100 CODE-SNIPPET

jPET 0.4 -c bck 10 -td num -d -100000 100000 -l ff -v 2 -w -tr statements -cc yes

SPF rev. 64083a81f440
(JPF rev. 36f3e39fcb4c)

Constraint solver: CORAL
Listener: gov.nasa.jpf.symbc.SymbolicListener

EvoSuite evosuite-20141014.jar -generateTests -Dassertions=false -Dsearch_budget=SECONDS
SECONDS: Basic: 10000; Structures, Generics, Others: 600; Objects: 1200; Library: 1800

Pex 0.94.51006.1 pexwizard /NoMoles /TestFramework:nunit CODE-SNIPPET
pex /TimeOut:30 CODE-SNIPPET-TEST

Note that if a tool stopped the execution itself, the
result is categorized as NC or C instead.

NC The tool has finished test input generation before
time-out, however, the generated inputs have not
reached the maximal possible coverage.

C The tool has finished test input generation before
time-out and the generated inputs have reached the
maximal possible coverage. If an execution is clas-
sified into this category it means that the tool has
generated appropriate inputs for the code snippet.

It can be easily decided whether a result of an execution
should be categorized into the first three or last two categories.
However, to determine whether it goes to NC or C, the snippet
must be executed with the generated inputs and coverage
should be measured. The evaluation is automatic and is
performed by SETTE. The method of coverage measurement
is based on JaCoCo [16] and it is uniform for all the tools.
Currently SETTE measures statement coverage.

Subjects of the Experiments

Three tools have been chosen for tool evaluation, which
have been fully integrated into SETTE, thus the execution and
coverage measurement is automatic for them.

• CATG [11] performs instrumentation and symbolic exe-
cution on Java bytecode.

• jPET [12] translates Java bytecode to Prolog and per-
forms symbolic execution on that.

• SPF [13] does not translate nor instrument the bytecode,
but uses a custom Java Virtual Machine, Java PathFinder
(JPF) for execution.

To extend the findings of our experiments two significantly
different tools have been included and evaluated manually.

• EvoSuite [15] uses genetic algorithms and mutation to
evolve and reduce test suites.

• Pex [14] is a SE-based test input generator for .NET.

To support Pex all the code snippets have been manually
translated to C#.NET code and differences between the Java
and C# were taken into account (e.g. wildcard generic types).

General information about the subjects of the experiments
was collected in Table I. The used tool versions and configu-
rations are shown in Table IV.

Experimental Setup
The test execution for CATG, jPET and SPF was performed

on an Ubuntu 14.04 64-bit virtual machine by SETTE, since
it was the only platform which supported all the test input
generators. The virtual machine was given 4 GB memory
and 2 processor cores of 3.3 GHz (Intel). For execution we
used Oracle’s Java 7 implementation. EvoSuite and Pex were
executed on the Windows 8.1 64-bit host OS using Oracle
Java 7 and Microsoft .NET 4.0.

The chosen external time limit for the execution of one code
snippet was 30 seconds except for EvoSuite. Our experiences
have shown that in the given environment the first three test
generators usually finish in 10 seconds and if a test generator
uses more than 20 seconds of runtime, it will run out of
memory sooner or later without finishing test input generation.
However, it is advised to use a time limit greater than 10
seconds because heavyweight tools like SPF might need a
couple seconds to initialize (in case of SPF the JPF JVM has
to be started on each execution). For EvoSuite we have run
test generation separately for the main six categories, but not
separately for each code snippet. Our experiences have shown
that a number of code snippets times 30 seconds is a good
choice for search budget time limit, but it should be at least
10 minutes.

The executions were performed three times for each tool
and the reached coverage was the same in all of the cases.
In case of EvoSuite, which uses randomization, the generated
outputs differed in terms of input values but not in achieved
statement coverage (even if we tried to increase the available
time by giving a 5 minute time frame for one code snippet).

Results
The summary of the results of the experiments can be

seen in Table V. For each tool and each feature category the
numbers of the code snippets classified as C, NC, T/M, EX and
N/A are displayed. The categorization of the results were the
same among three executions of the experiments. The detailed
experimental results can be downloaded from the SETTE
website: we uploaded for each tool the tool’s configuration,
the tool’s full output, the generated test inputs and codes and
coverage colored snippet codes to help to validate our results.

Note that the total percentage numbers should not serve
as global indicators for tool quality. For example, if a tool

TABLE V
DETAILED RESULTS OF THE EXPERIMENTS

Basic Structures Objects Generics Library Others Total
B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO

Total 62 31 27 18 10 21 4 4 6 3 21 2 8 4 4 6 20 13 3 11 10 12 300 (100%)
C

AT
G

C 56 13 6 5 8 2 2 1 3 1 1 1 1 2 3 1 105 (35%)
NC 3 2 1 2 1 2 4 9 1 6 31 (10.3%)

T/M 21 1 1 5 28 (9.3%)
EX 3 1 19 2 1 2 29 (9.7%)

N/A 6 12 10 2 2 4 2 13 1 7 2 4 6 15 1 1 6 2 11 107 (35.7%)

jP
E

T

C 42 17 20 14 9 9 4 4 2 3 19 2 1 1 2 2 1 5 156 (52%)
NC 7 4 1 1 3 3 1 2 1 24 (8%)

T/M 3 4 2 9 (3%)
EX 3 3 (1%)

N/A 20 11 11 4 2 3 18 13 3 11 9 3 108 (36%)

SP
F

C 60 26 9 4 6 19 2 2 1 4 1 1 2 16 3 2 4 161 (53.7%)
NC 4 14 2 2 4 2 13 1 7 2 4 6 3 13 3 5 5 8 99 (33%)

T/M 9 2 4 15 (5%)
EX 1 3 3 7 (2.3%)

N/A 2 9 2 2 2 1 18 (6%)

E
vo

Su
ite

C 62 23 6 15 8 19 4 4 6 1 21 2 8 4 4 6 20 9 3 11 6 12 254 (84.7%)
NC 8 21 3 2 2 2 4 4 46 (15.3%)

T/M 0
EX 0

N/A 0

Pe
x

C 62 29 27 18 10 21 4 4 6 3 20 2 8 4 4 18 10 3 7 4 11 275 (91.7%)
NC 2 1 2 2 2 3 4 6 1 23 (7.7%)

T/M 0
EX 0

N/A 2 2 (0.6%)

Fig. 3. Visualization of the results
Basic Structures Objects Generics Library O

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

 C
AT

G
 jP

E
T

 S

P
F

E

vo
S

ui
te

P

ex

B1 B2 B3 B4 B5 B6 S1 S2 S3 S4 O1 O2 O3 O4 G1 G2 L1 L2 L3 L4 LO Others

Legend
C
NC
T/M
EX
N/A

generates only trivial inputs (like zeros) and another only
misses one branch, both are classified as NC. Moreover, some
code snippets represent corner cases that are not frequently
seen. Instead, the table should serve as a high-level overview
to identify possible issues and then the details should be
consulted. Fig. 3 presents a visualization of the results that
highlights the data with colors.

Our detailed observations is presented in Section VI.

Threats to Validity

Reliability of the experiments: For the first three subjects
the SETTE framework automated the whole experiment to
eliminate human errors. To reduce the risk of having errors in
the framework itself, the results were checked also manually
(e.g. if an exception was produced then it was not because of
the framework). In case of EvoSuite and Pex the output was
checked and categorized independently by the two authors.

Knowledge of the tools: These tools are fairly complex and
configurable software (e.g. EvoSuite has 257 parameters, Pex
has 118 command-line parameters and many other options),
and neither tool was developed by the authors. Care was taken
to examine the possible options and encountered errors of
each tool, but it is likely that some of the otherwise reported
code snippets can be handled by the tool with advanced
parametrization. However, our results are a good indicator of
what results could be produced by a tool user.

Selection of subjects: As listed in Table I there are several
other test generator tools. Initially we selected Java-based
tools because Java was the platform for which the most tools
are available. Later we extended our selection to a tool with
different platform (Pex), and a tool using different underlying
technique for test generation (EvoSuite).

VI. DISCUSSION

This section discusses the results in the context of the two
research questions.

RQ1: Feedback on the tools’ capabilities

CATG has no problem with basic features except that
the tool does not support floating-point numbers. Regarding
conditional statements and loops CATG is able to handle
simple cases such as linear statements and loops with smaller
state space, however, it cannot cover fully more complex code
parts. CATG cannot generate arrays as input and cannot solve
constraints for array indices. In addition, the tool does not
catch all the exceptions coming from the code and this usually
results in tool shutdown.

In case of structures and objects, CATG is able to handle
the fields but cannot generate objects as input. However, when
more complex constraint solving is needed, then in most of the
cases CATG exceeds the time limit. Generics and the majority
of the arithmetic functions are not supported by the tool. CATG
is able to generate strings as input, but constraint solving is
only supported for the equals() method.

jPET does not support the majority of the built-in Java
objects. Although the tool supports floating-point numbers, it

does not support complex conditions, some primitive types,
bitwise operators and floating point number literals. Regarding
conditional statements jPET underachieves the other tools, but
it has the best support for loops. Because of the incompleteness
of the Prolog translation, jPET is only able to handle half of
the exception code snippets.

However, in comparison with CATG and SPF, jPET has the
best support for arrays, structures and objects. The mechanism
of jPET is the following: the tool builds up a heap with
constraints and solves the heap during test input generation.
This method seemed quite effective, however, input generation
can result in invalid inputs, like an array with less elements
than its length, an array having elements from different (not
compatible) types or an object whose state cannot be reached
by using its methods. Support for generics and calls to the
Java SE library is limited.

SPF supports all the basic types and operators except the
modulo operator and only has issues with the hardest conditi-
onal statements and loops. SPF was unable to generate arrays
as inputs and solve constraints for array indices. Exceptions
are handled well by the tool.

Similarly to CATG, SPF has limited support for structures
and objects. While CATG produces compile time errors when
using objects as input, SPF generates null values and does
not create any meaningful object. In addition, SPF has better
constraint-solving capabilities. The tool is also able to handle
the majority of the arithmetical functions, however lacks
generics, string and other library support.

EvoSuite generates test cases directly instead of just listing
test input values. The tool handles all the bytecode instructions
and terminates when the time limit has expired, resulting in no
generations categorized as N/A, EX or T/M. EvoSuite reaches
high coverage on the majority of the code snippets and it is the
only tool who is completely able to cover all the snippets for
objects and generics. The not covered library cases focused on
special features, such as not common string methods, date and
UUID guessing. However, EvoSuite’s limit is solving complex
constraints and mathematical problems and covering codes
with looping statements.

Pex handled all the instructions, the tool detects exceptions
and shuts itself down after the time limit has expired. Thus,
no generations were classified as EX and T/M. Pex was able to
satisfy statement coverage requirements in most of the cases,
however, we also found some cases when it failed to cover all
the statements.

Two executions were marked as N/A because Pex was unable
to guess a valid generic type when there is a condition for the
base class. Two NC snippets focused on float precision (the
tool was able to handle all the snippets using double), 1 on
object guessing (see later), 4 on generics, 15 on built-in library
features and 1 on enumerations.

Summary: RQ1 focused on tool-specific feedback. As it
can be seen the selected features and code snippets were able
to detect issues with the subjects. For example, some tools
terminate on certain code snippets due to uncaught exceptions.
Another common problem is that a tool is not prepared for

some cases, like floating-point numbers, cannot handle certain
literals, other language elements or bytecode instructions. The
experimental results give a detailed list of these issues and
provide short code snippets that reproduce them.

RQ2: Hard code parts

For CATG, jPET and SPF there were 114 code snippets
which were perfectly supported by only one of them and
68 which were supported by none of them. Considering all
the five tools, 5 cases were not handled by any of them and
20 by only one of them. We have chosen and categorized the
most important cases in this subsection.

Loops: the basic cases were supported by all the tools
except EvoSuite, however, complex loops forced CATG and
SPF into timeout. Only Pex was able to handle all the loops,
however, it has sometimes reached its time limit. It must
be mentioned that we intentionally implemented loops with
infinite state space. CATG and SPF did not recognize infinite
loops and exceeded the timeout during exploration.

Arrays: the usage of arrays is supported by all the tools,
however, only jPET, EvoSuite and Pex are able to create
arrays as inputs. In addition, there are several cases which
are challenging to solve. One example is when a tool has to
guess the index for a certain array element, like in Listing 2.
Only EvoSuite and Pex were able to cover this snippet.

Listing 2. Code snippet for guessing array index
@SetteRequiredStatementCoverage(value = 100)
public static int indexParam(int index) {
int[] numbers = new int[] { 1, 2, 3, 4, 5, ... };

if (numbers[index] == 5) {
return 1;

} else {
return 0;

}
}

Structures and objects: all the tools support structures
and objects, but only jPET, EvoSuite and Pex are able to
create them as inputs. The basic code snippets focusing
on structures and objects were formulated in two different
ways: one accepted a structure/object as a parameter, while
the other accepted the fields of the object and created the
structure/object. A tricky code snippet can be seen in Lis-
ting 3. The SimpleObject object is a dependency, whose
addAbs(int) method always adds the absolute value of the
parameter to an internal field. In this code snippet the test input
generator has to guess that number, which is when added 5
times results 10. CATG and SPF exceeds the time limit and
Pex cannot reach maximal coverage. jPET is able to satisfy the
condition and EvoSuite can generate an appropriate test suite.
However, jPET fails on the other version of the method, which
takes a SimpleObject instance instead of creating it.

Listing 3. Code snippet for complex method calls
@SetteRequiredStatementCoverage(value = 100)
@SetteIncludeCoverage(

classes = {
SimpleObject.class, SimpleObject.class },

methods = {

"getResult()", "getOperationCount()" })
public static int guessResultAndOperationCountParams

(int x, int oc) {
SimpleObject obj = new SimpleObject();

for (int i = 0; i < oc; i++) {
obj.addAbs(x);

}

if (obj.getResult() == 10
&& obj.getOperationCount() == 5) {

return 1;
} else {
return 0;

}
}

Generics was only fully supported in EvoSuite.
Complex arithmetic functions: SPF was able to handle

many of the complex arithmetic functions. The constraint
solver of CATG was unable to solve constraints in most of
the cases. jPET could not initiate calls to arithmetic functions
since they were not implemented in Prolog. EvoSuite was not
able to solve some conditions and Pex only failed on the square
root and cubic root snippets.

Strings have limited support in the first three tools (only
CATG supports strings and this tool only supports the
String.equal(String) method), and even EvoSuite and
Pex cannot solve all the cases.

Advanced library features: 4 of the 5 snippets which were
not covered by any of the tools above focus on advanced
library features, such as guessing a date satisfying a format
or an UUID.

3rd party library was only handled well by SPF, EvoSuite
and Pex.

Summary: RQ2 was concerned with the code snippets for
which one or none of the SE-based tools were able to generate
inputs which produce maximum coverage. Using the Table V it
is easy to identify those snippets that are hard to handle. In our
results more than the half of the code snippets belonged to this
group for pure SE-based Java tools (however, these cases can
be probably traced back to a smaller number of faults). The
collection of these problems could highlight the challenges,
which are still active for most of the available tools.

VII. RELATED WORK

There are several recent survey papers about using symbolic
execution for testing purposes. Anand et al. [2] performed an
orchestrated survey about different methods for test generation,
Păsăreanu and Visser [10] summarized actual research directi-
ons, Cadar et al. [9] collected experiences from tool developers
and Chen et al. [8] listed current challenges. These papers give
an excellent overview of the topic, but they provide general
and not tool-specific observations. Galler and Aichernig [6]
presented a survey on the capabilities of 7 test data generator
tools. Their goal was similar to ours but the benchmark suite
is not available.

The experiments of tool papers usually use their own set of
code samples, thus their results are not directly comparable

across tools. To overcome this Fraser and Arcuri recommen-
ded the SF100 benchmark [17], a representative selection
of 100 open source projects from SourceForge. Lakhotia et
al. [4] investigated the coverage of CUTE and AUSTIN (a
search-based tool) on five real-life open source components.
Braione et al. [18] performed an experiment on an industrial
control software using CREST, Pex and AUSTIN. Qu and
Robinson [5] measured the coverage of CREST and KLEE on
a 3.9M LOC realtime embedded system. These papers provide
a general feedback about the capabilities and limitations of
the tools on real code. However, as they experimented on a
large code base, it is harder to trace back their findings. Our
approach complements these results by providing a small-scale
but directed code base.

A related problem is comparing static analysis tools. The
Juliet test suite [19] employed a similar approach to the one
used in this paper: 181 security weaknesses were collected
(e.g. improper buffer handling) and synthetic C/C++ and Java
programs were created for them. The test suite consists of
“good” and “bad” program versions, the “bad” ones containing
exactly one flaw representing a weakness. The static analysis
tools can be then compared based on how many or what
types of flaws they can detect. Another related problem is
testing and comparing code compilers, although in that case
research focused on generating test programs from syntactic
and semantic definition rules [20].

Our approach used the code coverage obtained by the
generated test inputs as one of the success factors for a given
tool. However, recent research [21], [22], [23] suggested that
high code coverage is not necessarily correlated with the
effectiveness of the tests. Yet as the tool developers reported
coverage in their experiments we also used this metric.

VIII. CONCLUSION

The goal of this paper was to compare and evaluate test
input generator tools. Based on the current challenges for
symbolic execution and the language constructs of imperative
C-like languages we identified a set of features that these tools
should cover, and designed 300 code snippets representing
these features. Initially we created these snippets for the Java
platform, but later they were easily translated to .NET. We im-
plemented a framework called SETTE that can automatically
perform experiments and evaluations on test generators using
these snippets. We performed experiments on five different
tools. The results show that the evaluation can identify both
strengths and weaknesses in the tools. Although some of the
features have specifically targeted symbolic execution, the
experiments with the EvoSuite tool showed that they could
provide feedback on tools with different underlying techni-
ques. Currently we are working on including other tools in the
analysis and extending our evaluation method by measuring
the ability of the tools to detect injected faults.

We made all source code and experimental results available
online. Both new tools or code snippets can be easily added
to extend our work. We hope that our results would provide
useful insights both for tool developers and users.

ACKNOWLEDGMENT

The authors would like to thank Ágnes Salánki for the help
with the visualization of the results. This work was partially
supported by the ARTEMIS JU and the Hungarian National
Research, Development and Innovation Fund in the frame of
the R5-COP project.

REFERENCES

[1] Institute of Electrical and Electronics Engineers, Systems and software
engineering – Vocabulary, 12 2010, standard 24765:2010.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Gries-
kamp, M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated
survey of methodologies for automated software test case generation,”
J. Syst. Software, vol. 86, no. 8, pp. 1978 – 2001, 2013.

[3] P. Godefroid, “Test Generation Using Symbolic Execution,” in Annual
Conf. on FSTTCS, 2012, pp. 24–33.

[4] K. Lakhotia, P. McMinn, and M. Harman, “An empirical investigation
into branch coverage for C programs using CUTE and AUSTIN,” J.
Syst. Softw., vol. 83, no. 12, pp. 2379–2391, Dec. 2010.

[5] X. Qu and B. Robinson, “A case study of concolic testing tools and
their limitations,” in Int. Symp. on Empirical Software Engineering and
Measurement, ser. ESEM’11, 2011, pp. 117–126.

[6] S. J. Galler and B. K. Aichernig, “Survey on test data generation tools,”
STTT, vol. 16, no. 6, pp. 727–751, 2014.

[7] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[8] T. Chen, X.-s. Zhang, S.-z. Guo, H.-y. Li, and Y. Wu, “State of the
art: Dynamic symbolic execution for automated test generation,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1758 – 1773, 2013.

[9] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Til-
lmann, and W. Visser, “Symbolic execution for software testing in
practice: preliminary assessment,” in Proc. of the 33rd Int. Conf. on
Software Engineering, ser. ICSE ’11. ACM, 2011, pp. 1066–1071.

[10] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. Journal on Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 339–353, 2009.

[11] K. Sen, “CATG web page,” https://github.com/ksen007/janala2, 2013,
last accessed on 24/10/2014.

[12] E. Albert, M. Gómez-Zamalloa, and G. Puebla, “PET: a partial
evaluation-based test case generation tool for java bytecode,” in Proc.
of workshop on Partial evaluation and program manipulation, ser.
PEPM’10. ACM, 2010, pp. 25–28.

[13] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta, “Symbolic PathFinder: integrating symbolic execution
with model checking for Java bytecode analysis,” Automated Software
Engineering, vol. 20, no. 3, pp. 391–425, 2013.

[14] N. Tillmann and J. Halleux, “Pex – white box test generation for .NET,”
in Tests and Proofs, ser. LNCS. Springer, 2008, vol. 4966, pp. 134–153.

[15] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transacti-
ons on Software Engineering, vol. 39, no. 2, pp. 276 –291, 2013.

[16] M. R. Hoffmann, “Jacoco Java code coverage library,” http://www.
eclemma.org/jacoco/, 2014, last accessed on 24/10/2014.

[17] G. Fraser and A. Arcuri, “Sound empirical evidence in software testing,”
in Int. Conf. on Software Engineering, ICSE’12, 2012, pp. 178–188.

[18] P. Braione, G. Denaro, A. Mattavelli, M. Vivanti, and A. Muhammad,
“Software testing with code-based test generators: data and lessons
learned from a case study with an industrial software component,”
Software Qual J, vol. 22, no. 2, pp. 311–333, 2014.

[19] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” Computer,
vol. 45, no. 10, pp. 88–90, Oct 2012.

[20] A. Kossatchev and M. Posypkin, “Survey of compiler testing methods,”
Programming and Computer Software, vol. 31, no. 1, pp. 10–19, 2005.

[21] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Int. Conf. on Software Engineering, ser.
ICSE’14. ACM, 2014, pp. 435–445.

[22] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar, “A generic
fault model for quality assurance,” in Model-Driven Engineering Lan-
guages and Systems, ser. LNCS. Springer, 2013, vol. 8107, pp. 87–103.

[23] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? a controlled
empirical study,” ACM Trans. Softw. Eng. Methodol, 2014, to appear.

https://github.com/ksen007/janala2
http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/

	Introduction
	Overview
	Features to Compare
	Implementation
	Experiments and Results
	Discussion
	Related Work
	Conclusion
	References

