
Citation: Rank, J.; Herget, J.; Hein, A.;

Krcmar, H. Evaluating Task-Level

CPU Efficiency for Distributed

Stream Processing Systems. Big Data

Cogn. Comput. 2023, 7, 49. https://

doi.org/10.3390/bdcc7010049

Academic Editors: Ella Pereira,

Rubem Pereira and Geyong Min

Received: 1 January 2023

Revised: 1 March 2023

Accepted: 7 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Evaluating Task-Level CPU Efficiency for Distributed Stream
Processing Systems
Johannes Rank 1,* , Jonas Herget 1 , Andreas Hein 2 and Helmut Krcmar 2

1 Wittges Lab, Technical University of Munich (TUM), Parkring 13, 85748 Garching, Germany
2 Krcmar Lab, Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany
* Correspondence: johannes.rank@tum.de; Tel.: +49-89-289-17645

Abstract: Big Data and primarily distributed stream processing systems (DSPSs) are growing in
complexity and scale. As a result, effective performance management to ensure that these systems
meet the required service level objectives (SLOs) is becoming increasingly difficult. A key factor
to consider when evaluating the performance of a DSPS is CPU efficiency, which is the ratio of
the workload processed by the system to the CPU resources invested. In this paper, we argue that
developing new performance tools for creating DSPSs that can fulfill SLOs while using minimal
resources is crucial. This is especially significant in edge computing situations where resources are
limited and in large cloud deployments where conserving power and reducing computing expenses
are essential. To address this challenge, we present a novel task-level approach for measuring CPU
efficiency in DSPSs. Our approach supports various streaming frameworks, is adaptable, and comes
with minimal overheads. This enables developers to understand the efficiency of different DSPSs at a
granular level and provides insights that were not previously possible.

Keywords: CPU efficiency; big data; distributed stream processing; performance; task-level
measurement; profiling; flink; spark

1. Introduction

In recent years, the complexity of Big Data systems and applications has continued to
increase due to growing data volumes, and the integration of more sophisticated artificial
intelligence (AI) models [1]. This trend is expected to continue with the development of “the
future internet”, which is characterized by the increasing interconnectivity and intelligence
of devices and systems [2]. Especially in the context of distributed stream processing
systems (DSPSs), this growing complexity poses significant challenges for performance
management. DSPSs have been used for many years, and their applications range from
Internet of Things (IoT) predictive maintenance [3] to stock market analysis [4]. However,
the increasing data volumes caused by the IoT combined with the integration of large AI
models and the increasing demand for real-time analysis are placing additional demands
on the CPU resources of stream processing systems, making it more challenging to identify
and address performance issues.

While in the past, latency and throughput were the dominant performance metrics
in the DSPS domain, CPU efficiency is also becoming increasingly important [5]. There
is an increasing need to meet pre-defined performance objectives for the lowest possible
resource input [6]. There are several drivers for this development:

• One reason is the growing popularity of the “edge computing” paradigm. Edge
computing involves the processing of data at the edge of a network and closer to the
actual data sources. This is an important concept because the volume of generated
raw data, usually in the context of IoT, can be too large to be transmitted to a cloud
data center and also because the latency requirements of the business case can be
too strict [7]. However, a challenge of this paradigm is the limited CPU resources

Big Data Cogn. Comput. 2023, 7, 49. https://doi.org/10.3390/bdcc7010049 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7010049
https://doi.org/10.3390/bdcc7010049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-4594-6660
https://orcid.org/0000-0002-1521-0604
https://orcid.org/0000-0001-9565-5840
https://orcid.org/0000-0002-2754-8493
https://doi.org/10.3390/bdcc7010049
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7010049?type=check_update&version=2

Big Data Cogn. Comput. 2023, 7, 49 2 of 31

of many edge devices. These devices are often constrained by factors such as size,
power, and cost, which can limit the computational resources that are available for
stream processing [8]. Therefore, ensuring CPU efficiency is critical because it allows
these systems to make the most effective use of the limited CPU resources that are
available [9].

• In addition, in the context of cloud computing, CPU efficiency becomes increasingly
important [10]. As these systems often operate at scale to process large volumes of
data and are based on a pay-per-use model, the operating cost can be significant.
By ensuring that the CPU is used efficiently, it is possible to reduce the number of
resources required to process a given workload and, in turn, achieve significant cost
savings;

• Finally, improving CPU efficiency also results in reduced power consumption, which
is a key concern nowadays because the production and use of electricity often cause
the emission of greenhouse gases. Hence, optimizing CPU efficiency can help to
mitigate the environmental impact of these systems [10].

To address these challenges, it is necessary to develop new approaches and techniques
that deal with the performance complexity of future DSPS and provide more detailed in-
sights into their CPU behavior. One way to achieve this is by measuring CPU consumption
on the “streaming task” level. We refer to a streaming task as a conceptual and logical unit of
work (LUW) within a streaming application. Hence, a streaming task may contain a series
of operations; for example, the streaming task “read from Kafka” may contain a sequence
of operations that include requesting the data and serializing the payload of the responses.
A user should have the flexibility to customize the level of abstraction by specifying this
LUW. As a streaming task definition is on a logical level, its physical representation may
result in multiple physical operations that are related to this task. Hence, task-level mea-
suring requires the measuring of each instantiation of this operation, which in the context
of DSPSs requires the considering of all nodes of the cluster as well as the parallelization
settings (thread-parallelism vs. process-parallelism). By tracking the CPU consumption of
individual tasks, it is possible to identify bottlenecks and understand how changes to the
system or application affect the internal performance behavior. This “white-box approach”
is in contrast to measuring CPU consumption at the system or process level, which only
provides a broad overview and may not reveal the specific causes of performance issues.
In addition, task-level performance measurement allows for more fine-grained performance
tuning. By understanding the specific tasks that are consuming the most CPU resources,
it is possible to identify opportunities for optimization and make targeted changes to the
system to improve performance. This is particularly important in the context of distributed
stream processing systems, which may consist of complex and interconnected operations
that can be difficult to optimize otherwise. In addition, to evaluate CPU efficiency, the CPU
consumption must be set in relation to the number of processed events to obtain a full
picture of how the DSPS behaves under varying workload conditions.

In this paper, we present an approach and implementation that allows for measuring
of the CPU efficiency of streaming applications at the task level. This approach offers
several advantages compared to previous performance approaches.

• First, it is independent of the actual stream processing engine (SPE) being used, does
not require proprietary APIs, and even supports DSPSs that are based on different
programming languages (e.g., Java/C). Hence, it offers a single approach for multiple
systems;

• Second, the measurement toolchain does not significantly impact performance or
introduce overheads, which is an issue associated with traditional profiling and tracing
approaches. Therefore, our approach is even applicable to production environments;

• Finally, this approach can be adapted and integrated into any DSPS as long as it is
based on a recent Linux kernel (≥V3.18).

In this way, our approach allows developers and performance analysts to optimize the
performance of their systems and ensure that they can meet the performance demands of

Big Data Cogn. Comput. 2023, 7, 49 3 of 31

applications in an increasingly complex and data-driven world. In addition, we provide an
extensive evaluation in which we assess the approach itself and demonstrate its potential
by comparing the task-level CPU efficiency of three popular DSPS frameworks. It is worth
noting that, while our toolchain is also capable of tracking network transmission and
memory consumption at the process level, in this paper, our analysis focuses exclusively
on task-level CPU analysis. While there are a multitude of other important performance
factors, such as state management, scheduling, and reliability, they are beyond the scope of
this paper. In summary, we make the following contributions:

1. We describe the conceptual basis of our approach and demonstrate how it can be
integrated using the Yahoo Streaming Benchmark as an example. (YSB) [11];

2. We provide open-source tool support for this approach;
3. We evaluate the consistency of the yielded measurement results and the performance

overheads of our approach and show that it can be used under high CPU load and in
production environments without significantly distorting the results;

4. We extensively demonstrate the potential of this approach by analyzing the task-
level CPU efficiency of the three popular open source SPEs Apache Spark Structured
Streaming (Spark STR), Apache Spark Continuous Processing (Spark CP), and Apache
Flink (Flink) in various experiments.

The remainder of this paper is structured as follows: Section 2 highlights related work
in the area of performance evaluation and benchmarking of distributed stream processing
systems. Section 3 describes our conceptual approach and the design of our measurement
tool. Section 4 describes the testbed used for the evaluation, as well as our extensions to the
YSB. Section 5 evaluates the quality of the approach itself by measuring its overheads and
consistency. Section 6 provides an extensive performance analysis in which we perform
task-level CPU measurements for three popular SPEs to demonstrate the potential of this
new approach. Section 7 concludes this paper. Finally, Section 8 indicates the limitations of
the work and presents possible future areas of research.

2. Related Work

Existing research in the performance management of DSPS is primarily research into
benchmarking approaches that focuses on latency and maximum sustainable through-
put. Chintapalli et al. [11] were among the first to provide a “click and run” application
benchmark that presented these metrics and supported common open-source frameworks
such as Apache Flink, Spark Streaming, and Storm. The YSB features an extract, trans-
form, and load (ETL) processing pipeline, including setup automation scripts and an
integrated result calculator. In their work, they benchmarked the throughput and latency
of these SPEs by scaling the load from 50k to 170k events per second (e/s). Later, it was
revealed that the link between Kafka and the SPE can become a bottleneck limiting the
total possible throughput [12]. They did not support the measuring of CPU utilization. We
enhanced their implementation and integrated our task-level measurement tool, which
is discussed in more detail in Section 4. Several other approaches built upon the YSB,
including Karakaya et al. [13] and Shahverdi et al. [14]. Both evaluated the performance of
various frameworks based on the YSB. While Ref. [13] focused on scalability benchmarking
by increasing the cluster sizes from 1 to 6 nodes, Ref. [14] extended the benchmark itself by
incorporating additional frameworks such as Spark STR and HazelcastJet. Both evaluations
included CPU utilization, in addition to latency and throughput; however, they did this on
a global basis combined for all worker nodes. Hence, these approaches do not offer insights
into the performance of individual operations.

Karimov et al. [15] benchmarked the latency and sustainable throughput of Spark
Streaming, Flink, and Storm using micro-benchmarks of common streaming operations
such as joins and aggregations. In this way, they could measure the performance of individ-
ual streaming tasks but only when running them in an isolated manner. The approach does
not offer a technique for measuring individual operations. A novel aspect of their work
was an accurate definition of latency measurement for stateful operations. They stated that

Big Data Cogn. Comput. 2023, 7, 49 4 of 31

the latency of a stateful operation should be calculated based on the event time of the last
event considered for the operation. We followed this recommendation and included this
latency calculation in our YSB enhancement while also offering the original YSB latency in
addition to ensuring that our results remain comparable with previous work.

In addition, Van Dongen et al. [16] focused extensively on fine-grained latency mea-
surements. In contrast to [15], their setup measured the latency of individual streaming
tasks. They achieved this by sending every intermediate result back to a single Kafka
broker who served as the timekeeper. This way, they also achieved absolute global time
in a distributed environment. While they did not use the YSB itself, their application was
inspired by it and partially resembled the same pipeline. Their approach is not able to
measure the CPU consumption of individual streaming tasks and induces much overhead
due to additional network transmissions.

In [17], Van Dongen et al. presented the open stream processing benchmark (OSP-
bench). They applied different workload scenarios (stable load, periodic bursts, and over-
load situation during start-up) and analyzed their effect on different streaming pipelines
while collecting CPU utilization and memory consumption. The work focused on deter-
mining optimal configuration settings and the maximum sustainable throughput. They
extended their work in [18] to focus on cluster scalability for both horizontal and vertical
scaling while looking at throughput and latency. This work is closest to our experiments
presented in Section 6.2. We complement their results by looking at the task-level perfor-
mance and more nuanced CPU metrics to explain the observed scalability effects. It should
be noted that the OSPbench differs from the YSB implementation. In addition, the OSP-
bench focuses on containerized cloud deployments via Docker, while our implementation
runs natively under Linux.

Kross and Krcmar [19] are closest to our measurement approach with respect to perfor-
mance simulation and prediction. They presented an approach for automatically extracting
stack traces, framework configuration settings, and other complementary performance
metrics for Apache Spark. They provided a dedicated Java agent to extract information
and transform the results into a performance model based on the Palladio Component
Model [20]. In this way, they can simulate the model and make predictions on how Spark
behaves under different conditions. Their approach can measure CPU consumption at the
stage level and thus provide a more in-depth analysis compared to measurements at the
process or host level. However, their approach was developed for batch and not stream pro-
cessing. As the stages of a batch job are not identical to the tasks of a streaming application,
the approach does not work for DSPS. Furthermore, the extraction approach is dedicated to
the Spark framework and requires the framework’s API to provide complementary metrics.
It can not be used for different engines. Lastly, the use of Java profiling, which is required
to extract the stack traces, causes overheads that may distort the overall measurement.

Finally, the approach in this paper builds upon our previous work [21], in which we
sketched out our first idea for achieving task-level CPU efficiency analysis. In this paper,
we present the following major extensions:

1. We extend the concept to support distributed systems;
2. We present the details of our technical implementation;
3. We evaluate the consistency of the measurement results and the performance over-

heads of the approach;
4. We integrate the prototype into an existing benchmark;
5. We perform extensive experiments to analyze the performance of three open-source

streaming frameworks;
6. We provide our prototype open-source, including installation scripts that ease the

setup.

In summary, most previous performance studies either focused on end-to-end latency
and throughput or neglected CPU efficiency at the task level. Furthermore, many eval-
uations in the streaming domain were based on the YSB pipeline indicating that it is a
well-studied candidate for demonstrating our task-level approach.

Big Data Cogn. Comput. 2023, 7, 49 5 of 31

3. Task-Level Performance Measurement

In this section, we present our conceptual approach to measuring CPU efficiency
at the task level. We first explain the enabling technologies on which our concept is
based. Afterwards, we provide an overview of the components and their interplay. Finally,
we elaborate on how task-level measurement works and how the scope of the analysis
is defined.

3.1. Enabling Technologies

Profiling is a common technique used to measure the performance of individual tasks
or operations in a system. The most common profiling approach is based on “stack trace
sampling”, in which stack traces of a process are collected at a specified interval, usually
several times per second. While most programming languages offer dedicated profilers,
another technology has gained popularity in recent years. The extended Berkeley Packet
Filter (eBPF) is a Linux kernel technology that allows users to attach small programs,
called “eBPF programs”, to specific kernel functions to monitor and modify the behavior
of the kernel. This can be useful for a wide range of purposes, including networking,
security, and performance monitoring [22]. One advantage of using eBPF for profiling
is that it achieves better performance compared to traditional profilers that operate in
user space. This is because eBPF operates at the kernel level, allowing it to collect stack
traces and other metrics more efficiently by avoiding the need for continuous system calls.
In contrast, traditional profilers require these system calls, which results in continuous
user/kernel space switches. Such switches are time-consuming and resource intensive.
Another advantage of eBPF is that it is language-independent, meaning that it can be
used to profile tasks implemented in different languages. In the context of DSPSs, this is
useful because, while most frameworks are implemented in Java, some systems also run,
for example, on C/C++. Hence, eBPF allows for a “single source of truth” for metrics across
different languages. In addition to being able to sample stack traces, eBPF also supports
the use of tracepoints, kprobes, and uprobes to measure additional metrics in kernel space.
Tracepoints allow users to insert custom code at specific points in the kernel code, while
kprobes and uprobes allow users to intercept function calls and returns at the kernel and
user level, respectively. These features can be particularly useful in further enhancing the
performance analysis. Our eBPF implementation can, for example, trace incoming and
outgoing network transmissions to support CPU-efficiency calculations in situations where
the number of processed events is unknown. It can check if the packages are received by
or sent to an external IP address to omit local inter-process communication. Lastly, eBPF
has been part of the Linux Kernel since release 3.18 and hence is an “on-board tool” that is
officially maintained.

Overall, the use of eBPF for profiling offers several advantages over traditional pro-
filers and other performance approaches. However, while stack trace sampling based on
eBPF can show performance hot spots in the code, it does not retrieve the actual CPU
cycles consumed. This, however, is an important metric for calculating CPU efficiency.
A DSPS may run on hosts that have processors with different clock-rates. For this reason,
we also query performance information via Performance Monitoring Counters (PMC).
CPUs provide a number of programmable registers to count PMCs such as CPU cycles,
branch misses, or cache misses at the process level. We combine these results with our
stack-trace sampling, to calculate the CPU consumption at the task level. PMCs provide
high accuracy and incur almost no overheads [22].

3.2. Conceptual Approach

In this section, we provide an overview of the major components of our toolchain and
the steps (0–8) of how they interact with each other. As depicted in Figure 1, measurements
on a host are collected via the profiler component. As the DSPS usually runs on a cluster
of machines, the profiler component needs to be deployed on all hosts that belong to the
DSPS. The measuring process is triggered by the central profilingCoordinator component (1).

Big Data Cogn. Comput. 2023, 7, 49 6 of 31

The profilingCoordinator may run on any host as long as public-key authentication with the
other cluster nodes is available. It retrieves all required information about the cluster from
the cluster.txt file. This file, as well as the application_profile, has to be configured by the user
in advance (0).

<host>_
result.txt
<host>_
result.txt

summary
.html

ControlPlane

application_
profile.txt flame-

graph.svg

 profiling
 Coordinator

summary
.csv

not_
matched.txt

0

Workers

 profiler

 Scope
 Analyzer

 JavaPerf
Map

PMC

perf_map.txt

eBPFstack

PMC_
results.txt

eBPFnet
_results.txt

eBPFstack
_results.txt

 eBPFnet

Master

 profiler

PMC

PMC_
results.txt

 Scope
 Analyzer<host>_

result.txt

 Flame
 Graph

flame-
graph.svg

ssh ssh

ssh

1

cluster.txt

2

2

known_
spes.txt

3

3

4

5

6

6

7

8

Figure 1. Conceptual architecture of the measurement tool.

The profiler component uses three major subcomponents, the scopeAnalyzer, the eBPFs-
tack, and eBPFnet. The scopeAnalyzer is responsible for detecting all process IDs (PIDs) that
belong to the DSPS (2). Furthermore, it is responsible for distinguishing between managing
processes and workload processes. A workload process executes the streaming application
(in Spark, this process is named Executor, in Flink, TaskManager), while the managing
processes perform various supporting framework tasks (for example, in Spark, this is the
Driver, while, in Flink, it is the JobManager).

The scopeAnalyzer identifies the relevant processes via a list of known process names,
which can be configured in the known_spes.txt file. If an emerging streaming framework
is not covered, the file can be adjusted. Furthermore, the ScopeAnalyzer provides the
option of identifying relevant processes by tracing exec() during the startup of an engine.
The scopeAnalyzer then passes the identified PIDs to the profiler component. For each PID,
the profiler calls the PMC component that measures a configurable list of performance
events such as CPU cycles or branch misses.

The profiler only starts the eBPFstack component via which the stack trace sampling
is performed (4) for workload processes. This samples stack traces at 99 Hz using eBPF,
which we found to achieve consistent performance results while causing only little over-
heads. If the target DSPS is based on Java, the JavaPerfMap also starts. This component is
required for the symbol resolution of class and method names in the stack trace. Optionally,
the profiler can also start network tracing with the eBPFnet component (5). PMC, eBPFstack,
and eBPFnet generate an individual performance result file for every PID measured (6).
After the measurement phase has been completed, the profiler performs a pre-aggregation
in which the individual performance results of all processes are combined into a single
<host>_result.txt file (7). During this step, the calculation of the task-level CPU consumption
also takes place using the application_profile.txt file. To find potential keywords and the right
level of abstraction, the eBPFstack uses the FlameGraph component to provide an interactive
Flamegraph representation of the sampled stack traces. The Flamegraph supports filter
and drill-down functionality to ease the analysis. The next section explains more about
the definition of the application_profile. Finally, the profilingCoordinator fetches the results

Big Data Cogn. Comput. 2023, 7, 49 7 of 31

and calculates a summary.csv file that contains performance results for the whole DSPS. In
addition, an HTML representation of the results is generated that can be automatically
written to a web server for automatic result updates (8).

3.3. Stack Trace Analysis

In this section, we present how the “profiler” calculates the task-level measurements
and how the “application_profile” affects the abstraction level of the performance analysis.

A “streaming application” is composed of at least one or a finite number of “logical
operations” that specify the processing steps as defined in the source code. As shown
in Figure 2, these logical operations form a directed acyclic graph, where each node
represents a “logical operation”, and the edges represent the flow of data. A “streaming
task” in our approach is a single, or a sequence of “logical operations” (subgraph), and is
defined by the user in the “application_profile”. The “application_profile” itself is a list
of “task_names”, which refer to class or method names. Each “task_name” contained in
the “application_profile”, for example, Filter, Project, or Kafka, defines a corresponding
“streaming task”, for which the performance results (e.g., CPU cycles) are aggregated by
the toolchain. In other words, the “application_profile” defines the scope and abstraction
level of the performance analysis. This allows the user to start the performance evaluation
with a broad scope for initial analysis and allows for drilling down further by changing the
specification in the “application_profile”.

StreamingApplication.java
DataStream<String> eventStream
= env.addSource (new Kafka...
eventStream
 .flatMap(new Deserializer())
 .filter(new Filter())
 ...

Kafka Deserializer Filter

Kafka
Consumer

Partition
Reader

Json
Parser

Json
Deserializer

String
Compare

getField

Abstraction Level 1
application_profile1.txt

Scope: Initial
Analysis

Kafka
Deserializer
Filter
...

PartitionReader
KafkaConsumer
JsonDeserializer
...

1

application_profile2.txt

2Abstraction Level 2

Scope: Drilldown
Analysis

Logical
Operations

Figure 2. Scope definition.

The tool automatically determines which code paths belong to a “streaming task”.
As an example, as depicted in Figure 2 during the Scope “Initial Analysis”, all stack traces
that captured the “Partition Reader” or “Kafka Consumer” need to be assigned to the
streaming task “Kafka”. Therefore, the profiler component has to analyze each stack trace
that is contained in the “eBPFstack_results.txt” via stack trace walking. Algorithm 1 shows
the main procedure for how this is accomplished. Each streaming task is initialized with
the value 0, which describes the number of samples each task profiled (2–3). Subsequently,
each stack trace is transformed into the individual operations of the call hierarchy (7).
We iterate over the resulting list starting with the latest operation, and check whether a
matching task exists. If so, we map the samples of this trace to the associated streaming
task (10–16). If no related streaming task exists, we assign the samples to the dummy task
“unmatched”. In this case, we also print the trace to a dedicated file for manual inspection
(17–20). This way, the developer can refine the “application_profile” for further analysis.
When all traces are finally processed (21), the percentage of each streaming task on the
total CPU utilization is determined. However, this percentual utilization is not sufficiently

Big Data Cogn. Comput. 2023, 7, 49 8 of 31

accurate because the clock-rate of a CPU can be different on the individual “hosts” of the
distributed cluster. Therefore, we include the results provided by the PMC. The PMC
provides us a “pmc_result_file” that contains performance statistics on the process level. It
includes elements such as pid_cpu_time, pid_cycles, pid_instructions, pid_branch_misses,
pid_cache_misses, and more. Developers can easily extend these metrics by querying
additional events. For this concept, we only need the element “pid_cycles”. These are the
total_cycles of the process consumed during execution. The tool calculates the CPU cycles
of each “streaming task” by multiplying the percentual share with the “pid_cycles” (22–24).

Algorithm 1: Stack trace analysis to identify the code paths associated with each
streaming task and aggregate the number of CPU cycles consumed for each task

1 task-level analysis (stacktr, pro f ile, pmc);
Input : pro f ile contains the content of the application_profile as a list of strings,

stacktr<trace, samples> contains a map of stack traces and the number of
samples that were collected for each trace, and pmc contains the PMC
results

Output : result←map containing the streaming tasks as key and the number of
consumed CPU-cycles as value

2 tasks← <pro f ile.getElements(), 0>
3 totalsamples← 0
4 foreach trace in stacktr do
5 samples← stacktr.getValue(trace)
6 totalsamples← +samples
7 operations← trace.split()
8 assigned← f alse
9 foreach operation in operations do

10 if tasks.contains(operation) then
11 task← tasks.getTask(operation);
12 tasks.put(task, tasks.getValue(task) + samples);
13 assigned← true
14 break
15 end
16 end
17 if !assigned then
18 tasks.put(′unmatched′, tasks.getValue(′unmatched′) + samples);
19 print f (trace)→ ./umatched_stacktraces.txt
20 end
21 end
22 foreach task in tasks do
23 results.put(task, tasks.getValue(task)/totalsamples ∗ pmc.get(pid_cycles))
24 end

4. Testing Approach

In this chapter, we present the setup of the extended YSB and the integration of our
concept. First, we start with a general introduction to the YSB and explain our extensions
to the original implementation. Next, we present how we integrated the profiling approach
into the extended benchmark. Finally, we present our testing approach and the environment
used for the experiments.

4.1. YSB Extensions

The business scenario of the YSB [11] is an advertisement clickstream. Each event
represents a user viewing an advertisement that belongs to one campaign. The streaming
applications join these events to their respective campaign_id via a Redis key-value store

Big Data Cogn. Comput. 2023, 7, 49 9 of 31

and count in 10-s windows, for each campaign, how many events were received. These
results are finally written back to Redis. As depicted in Figure 3, the original pipeline was
composed of seven streaming tasks (without the Enrich task). The Kafka task is responsible
for pulling events from the Kafka broker and deserializing the byte representation into
JSON strings. During the Deserialize task, the JSON strings are transformed into Java
objects. Afterwards, the Filter removes all events that do not have the event_type property
“view,” while the Projection removes unnecessary fields such as “user_id” or “page_id.”
During the Join, the campaign_id is obtained from Redis. Afterwards, a keyBy() or groupBy()
(not depicted) ensures that all events with the same campaign_id are further processed by
the same worker. This is important for the Window task, which is instantiated for each
campaign to count its number of advertisements on a 10-s basis. Finally, the result of each
window gets written to Redis as part of the (Sink) task.

General Changes: The main reason why we chose the YSB is that it is a well-studied
benchmark and features a full application pipeline. However, there are some known
limitations that we had to address to make the results more representative. Kafka, as the
central message broker, is prone becoming a bottleneck because it is confronted with a
high ingestion rate by the producers, as well as a high pull rate by the consumers [15].
Kafka’s performance is mainly dependent on its transaction log. Since persistence is of no
interest for our performance evaluation, we equipped each broker with a 250 GB RAM
disk. In this way, we achieved ingestion rates above 3 m e/s, for our four-broker setup,
albeit without any reading consumers. In addition, we introduced the new Enrich task
to the YSB pipeline. Its main purpose is to perform an additional latency calculation
called pre-window latency that covers the time from event generation until the stateful
processing starts (Windowing+Sink task). In this way, we can calculate the processing
time of the windowing itself by subtracting the pre-window latency from the total latency.
Furthermore, the pre-window latency shows how time-consuming the stateless part of
the application is compared to the stateful part. In addition, it indicates problems with
the source pipeline (Kafka or load generation). If the pre-window latency is high, while
the processing time of the Window+Sink is low, it could indicate that the incoming events
arrive with a high latency, e.g., because Kafka was overloaded. Hence, the Enrich task not
only provides additional performance insights but also serves as a quality indicator for the
validity of our measurements. Redis can become a bottleneck as well if lots of windows
are being used [12]. In the YSB, every campaign_id translates to one window at least every
10 s. However, we only used 16k campaigns at the most, which translates to 1600 write
operations per second, which is still low even for a single Redis instance.

During our Spark STR implementation, we identified that the original YSB featured a
cache for Flink, while Spark had no cache. Consequently, after a short warm-up period,
Flink was able to serve every join from the cache, while Spark still had to query Redis.
While Spark does not support a true dynamic cache implementation, we considered it an
inequality because the benchmark would artificially favor Flink over Spark. Therefore,
we decided to make the implementation more even and equip Spark with a static cache
that is filled once during startup. Since there are no changes during runtime, Flink and
Spark will have a 100% hit-ratio after a short startup period making them equal from a
performance perspective while simultaneously relieving the workload for Redis. Whether
a real connection with Redis would result in a more interesting analysis is open to debate.
However, as Spark STR does not support a dynamic cache, implementing no cache for both
frameworks would be the only alternative.

Big Data Cogn. Comput. 2023, 7, 49 10 of 31

vSwitch 40Gbit/s

IBM Power E870
<Cores: 40x 4190Mhz, 4TB RAM>

Clojure
<Loadgen + Result

Calculator>

<2 cores, 32GB RAM>

 VMs - Load Drivers

<3 cores, 350GB RAM>

VMs - Add. Kafka Brokers

Apache Kafka
<Message Broker>

ad-
events
<topic>

<4 cores, 400GB RAM>

Apache Kafka
<Message Broker>

VM - Source + Sink

Redis <key-value store>

ad_id to
campaign_id

table

campaign-
window seen

table

1x

JSON

e

e

JobManager
<Flink>

<1 core, 24GB RAM>

or Driver
<Spark>

VM(s) - SPE Worker(s)

Kafka
Source

VM - SPE Master

<1--12 cores, 8--98 GB RAM>

Deserialize Filter Projection Join

Enrich Window

Sink

e

Stream Processing Application

3x4x

1x 1--12x

Settings: Warmup: 900s, Test Duration: 900s

keyby

Shared Server
System Clock

user_id, page_id, ad_id,
ad_type,

event_type="view",
event_time, ip_address

Figure 3. Benchmark and testbed.

We also noticed that the load generation is resource-intensive. Shahverdi et al. [14]
deployed 10 generators for a peak load of 150k e/s. Therefore, we multi-threaded the load-
generation so that the program uses as many threads as there are (virtual) cores available.
Furthermore, the original generator wasted processing time on dynamically calculating
unimportant fields, such as user_id or ip_adress. We coded these values statically since they
have no effect on processing and get removed by the Projection task anyway.

Versions: Originally, the YSB supported the frameworks Storm (v0.9.7), Flink (v1.1.3),
and Spark Streaming (1.6.2). Flink matured significantly since 2016 and has introduced
many new features. For example, the original YSB did not implement native Windowing but
used a custom implementation instead. We reworked the Flink implementation to a newer
version (v1.14.3) and supported native Windowing based on event_time and watermarks.
Although still widely used, we did not include Storm and Spark Streaming. Instead, we
provide an implementation of the more modern Spark STR (v3.2.0) that solves many of the
problems of the original Spark Streaming API, getting closer to the idea of a true streaming
engine. Most importantly, Spark STR no longer requires a configured micro-batch interval
but instead determines its micro-batch duration dynamically based on processing time.

In addition, we also provide an implementation of Spark STR’s experimental Continu-
ous Processing Mode. Spark CP performs true record-at-a-time processing. To the best of
our knowledge, we are the first to provide such an implementation for the YSB pipeline.
However, it should be noted that Spark CP comes with several limitations. Most impor-
tantly, it does not support aggregations (windowing task) or re-partitioning to different
nodes (groupby() or keyby()). For this reason, we needed to change the application semantic
as follows. For every event, we calculate, based on the campaign_id and the event_time,
to which logical window (time_bucket) the event belongs. As displayed in Figure 4, we use
Redis as a state store and a HashMap as a cache, which is periodically flushed to Redis.
While this workaround provides the same semantic as a true windowing operation, there
is no such solution for the missing groupby() operation. Consequently, multiple workers
process the same campaign_id for the same 10 s time_bucket. Hence, for each logical window,
we obtain a number of partial windows that is equal to the number of worker nodes.
To resolve these partial windows, we need to aggregate them, which is carried out by the
result calculator. This different processing logic affects the performance in the following
way. First, depending on the number of workers, Spark CP requires significantly more
windowing operations, which puts more pressure on the Sink task. Second, for each new
partial window, we have an additional read operation to Redis, which again is an overhead.

Big Data Cogn. Comput. 2023, 7, 49 11 of 31

Lastly, there is no groupby() operation and consequently no event redistribution between
the workers, which is a significant communications savings. The remainder of the Spark CP
implementation is identical to Spark STR. CP mode is activated by calling the “continuous”
processing trigger. The framework itself handles all the changes that are required. This
makes it especially interesting to compare STR with CP at the task level because it induces
fundamental efficiency changes, as we see for Kafka in Section 6.1.

Check if window
exists in HashMap

Recalculate window

Check if window
exists in Redis

Start:
Event arrives at

window+sink
operation

Yes

No

Window
exists?

Load window into
HashMap

Create empty window

Process next event

No

Yes

Window
exists?

Figure 4. Spark CP windowing implementation.

4.2. Testbed

Our testbed configuration is displayed in Figure 3. All VMs run Ubuntu 20.04 LTS and
are deployed on an IBM Power E870 Server with 40 cores (4190 Mhz) and 4 TB RAM. Due
to the single server deployment, all VMs are connected via a virtual switch that is provided
by the hypervisor. This setup ensures that we do not run into bandwidth saturation and
that no unpredictable latency effects are caused by the network, which is a common issue
in performance research [23]. Similarly to [16], we aim to minimize time skew between our
VMs to achieve good latency measurements. However, we take a much simpler approach.
As all VMs are located on the same server, they share the same hardware-clock, which is
read during boot, minimizing any skew as long as the cluster is restarted regularly. We
use four VMs as Kafka brokers and equip each one with a 250 GB ram disk to ensure
fast transaction speed. Four VMs are used as load generators. Up to 12 physical cores
distributed on up to 12 VMs are used as workers. On IBM Power8, the SMT setting can be
dynamically changed between ST, SMT2, SMT4, and SMT8, which translates to 1–8 vCPUs
per physical core. We set the SMT setting of all Workers to 4 since this resulted in the best
overall throughput and latency.

5. Approach Quality

While eBPF profiling has vast performance advantages over traditional profiling, it
is still possible that the results are distorted. For this reason, we first check how much
overhead is caused by eBPF profiling. In addition, the timed sampling of the profiler may
result in variances. To evaluate the quality of the performance data, we need to assess the
consistency of the results.

Big Data Cogn. Comput. 2023, 7, 49 12 of 31

5.1. Profiling Overheads

Our goal is to measure the overheads caused by eBPF profiling and classical profiling
and compare their results with the non-profiled baseline. We use a two-node cluster with
one core per VM and focus on a high-load scenario. Since profiling is a CPU-intensive
activity, we need to test it under high CPU utilization to see how it affects the performance
of the SUT. To find the highest stable throughput, we increase the load level in steps of
10k events per second (e/s) and select the highest load level that does not cause instability
(latency within 15 s). For Spark STR and CP, we determined a sustainable load of 240k e/s
and for Flink 300k e/s. We use eBPF profiling as our main method and the Java profiler
“JPROFILER” [24] as an alternative method for comparison. We set the sampling rate of
JPROFILER to 1 ms and do not apply any profiling filters. Except for these changes, we
used the default settings. There may be other settings that could optimize JPROFILER’s
analysis and reduce its overheads.

Table 1 shows the latency of all engines with and without profiling. The results
indicate that eBPF profiling has much lower overheads than traditional Java profiling.
For Flink and Spark CP, eBPF profiling increased the average latency by 3.1 ms (+3.9%)
and 68.6 ms (+2.4%), respectively, while Java profiling caused unsustainable processing
and increased the average latency by ~75 s and ~103 s, respectively. For Spark STR, eBPF
profiling increased the average latency by 1.8 s (+18.7%), which is higher than for the other
two engines, but still lower than Java profiling which increased the average latency by
5.7 s (+37%). However, this increase in latency may be partly due to other factors such
as micro-batch size and CPU utilization. We observed that both eBPF and Java profiled
applications had lower CPU utilization than non-profiled applications (2.6% and 5.1% less,
respectively), which suggests higher efficiency. Spark STR achieves higher efficiency by
increasing the micro-batch size, which also increases the latency. Therefore, we cannot
attribute all the latency increase to eBPF profiling alone. In summary, our experiment
demonstrates that eBPF profiling has superior performance over traditional Java profiling
even under high-load scenarios. Thus, our approach provides a valuable addition to
existing profiling methods.

Table 1. Performance Overhead of BPF and JPROFILER.

AVG_LAT AVG_PRE_WNDW Processed Events CPU-Util

Flink

No Profiling 80.1 1.2 134,892,334 89.0%

BPF Profiling 83.3 1.0 134,896,023 90.8%

Diff-BPF 3.1 −0.2 3690 1.8%

JPROFILER 75,978.8 75,276.7 102,057,612 76.9%

Diff-JPROF 75,898.7 75,275.5 −32,834,722 −0.1

Spark STR

No Profiling 9661.8 6100.7 107,898,950 80.4%

BPF Profiling 11,472.6 7497.4 107,941,936 77.8%

Diff-BPF 1810.8 1396.7 42,986 −2.6%

JPROFILER 15,364.9 9935.9 108,028,000 75.3%

Diff-JPROF 5703.1 3835.2 129,050 −5.1%

Spark CP

No Profiling 2784.1 5.5 107,908,636 91.8%

BPF Profiling 2852.7 8.3 107,791,544 92.0%

Diff-BPF 68.6 2.9 −117,092 0.2%

JPROFILER 106,657.0 97,112.4 80,136,000 92.0%

Diff-JPROF 103,872.9 97,106.9 −27,772,636 0.2%

As displayed in Table 1, the latency for all engines increases when using profiling.
For Flink, it increases by 3.9%, for Spark CP 2.4%, and for Spark STR 18.7%. For Spark STR,

Big Data Cogn. Comput. 2023, 7, 49 13 of 31

this influence seems quite high; however, it could also be caused by other effects. For this
reason, we also took the process’s CPU util. into account. Looking at the utilization, we see
that the profiled application took 2.6% less CPU and therefore had higher efficiency. Spark
STR achieves this typically by setting a larger micro-batch size, which in turn increases
latency. Hence, the increased latency can at least partially be explained by this. Considering
that this reflects a worst-case scenario, the overheads caused by the profiling are acceptable.

5.2. Profiling Consistency

Next, we check if the yielded results remain consistent. In this experiment, we measure
on a single-node with one core to prevent variances due to uneven load balancing. For each
SPE and load level, we perform five measurement runs and plot the standard deviation.
As displayed in Figure 5, the standard deviation of almost all tasks is below 3%. Only with
Spark did we observe high deviations for the Waiting task when using low load levels (20k
and 40k).

0%

1%

2%

3%

4%

5%

6%

0k 20k 40k 60k 80k 100k120k140k

St
an

d
ar

d
 D

e
vi

at
io

n

FLINK

Kafka Deserialize

Filter+Project+Join Enrich

Window + Sink Cluster Comm

Waiting Other

0%

1%

2%

3%

4%

5%

6%

0k 20k 40k 60k 80k 100k120k140k

St
an

d
ar

d
 D

e
vi

at
io

n

SPARK STR

Kafka Deserialize

Filter+Project+Join Enrich

Window + Sink Cluster Comm

Waiting Other

0%

1%

2%

3%

4%

5%

6%

0k 20k 40k 60k 80k 100k120k140k

St
an

d
ar

d
 D

e
vi

at
io

n

SPARK CP

Kafka Deserialize

Filter+Project+Join Enrich

Window + Sink Cluster Comm

Waiting Other

Figure 5. Profiling consistency.

To check if these variances do indeed result indeed from profiling randomness, we
took the deviations of the average latency (LAT), average pre-window latency (WNDW),
processed events (Events), and CPU utilization (normalized to 100% = util./vCPUs) into
account. As shown in Table 2, each measurement run itself suffers from deviations (inde-
pendent of the profiling). This is especially evident when looking at the CPU utilization
for Flink and Spark CP. Based on this finding, we conclude that variations in the profiling
results can be partially explained by actual differences in the processing. Overall, except for
the Spark STR 20k and 40k run, the profiling yields quite stable results and is adequate for
our performance evaluation approach.

Table 2. Standard deviations per load level.

FLINK SPARK_STR SPARK_CP
LOAD LAT WNDW EVENTS CPU LAT WNDW EVENTS CPU LAT WNDW EVENTS CPU
20,000 20.4 0.5 1399 0.1% 176.8 10.8 1673 0.3% 908.6 0.1 1089 0.1%
40,000 7.8 0.0 3744 0.8% 69.9 34.8 5021 0.1% 777.4 1.2 2887 0.8%
60,000 9.9 0.0 9773 3.0% 119.7 30.8 5170 0.2% 454.9 2.3 410 3.0%
80,000 4.5 0.7 8106 3.5% 238.3 56.4 15,485 0.1% 124.3 0.1 8485 3.5%
100,000 2.8 0.1 11,150 3.2% 496.4 128.0 6583 0.2% 237.1 4.5 13,165 3.2%
120,000 6.6 0.6 21,167 4.2% 404.4 212.0 13,161 0.2% 539.0 48.3 5111 4.2%
140,000 3.4 0.8 14,594 4.5% - - - - - - - -

5.3. Advantages over Micro-Benchmarking

To the best of our knowledge, our approach is the first work that can be integrated into
any DSPS for measuring CPU efficiency at the task level. Nevertheless, there are other ap-
proaches that are able to benchmark the CPU usage of individual tasks. The most common
baseline approach for this is micro-benchmarking, which, however, has some limitations.

• First, our approach is not limited to testing a single isolated task but can be applied to
complete application pipelines, providing a more comprehensive picture of system

Big Data Cogn. Comput. 2023, 7, 49 14 of 31

performance. This is particularly important in the context of distributed stream
processing, where interactions between different tasks and components can have a
significant impact on overall performance;

• Second, our approach is designed to be applied to already existing, potentially produc-
tive applications. This means that it can be used for monitoring and analysis purposes
without the need for a dedicated performance testing environment;

• Third, the approach enables a more holistic picture of system performance by incorpo-
rating other context metrics. These include metrics such as IPC value or cache misses,
which can provide valuable insights for root cause analysis. The approach manages
to embed the measured performance in an overall context to better understand the
performance of the streaming application;

• Fourth, our approach requires less effort than micro-benchmarking, as only a single
run is required to analyze all tasks of the application. In contrast, micro-benchmarking
requires individual measurement runs and customized application pipelines for each
operation;

• Finally, our approach allows wide customization via the application profile. This way,
developers can start at a higher level of abstraction and gradually refine the scope to
gain more granular performance insights.

6. Evaluating Task-Level CPU Efficiency

In this chapter, we demonstrate the potential of task-level CPU measurement by
performing three experiments. We do not claim to obtain optimal results for each SPE,
as this would require extensive fine-tuning at the application and configuration level. Our
experiments consider the following five factors:

1. Load level: Configured as e/s and per node (10k steps; 10k–150k);
2. SPEs: Flink, Spark STR, and Spark CP;
3. Nodes: Number of worker nodes (1, 2, 4, 6, 12);
4. CPUs: Number of cores per node (1, 2, 4, 6, 12);
5. State: Number range of campaign_id (100, 1k, 2k, 4k, 8k, 16k).

Given our requirements of using five repetitions per configuration, the experiments
required for a full factorial design in accordance with [25] would be:

n = 5
k

∏
i=1

ni = (5)× (15)× (3)× (5)× (5)× (6) = 33,750 (1)

Since one measurement takes at least 900 s, such a design is not practical. For this
reason, we choose to use a fractional factorial design. We split our analysis into three
experiments and select a subset of factors for each. First, we look at load scalability to
answer the question of how increasing load affects the performance behavior of every task
in the YSB pipeline. Next, we compare scale-up and scale-out configurations and measure
how this affects the CPU efficiency of each task. Finally, we look at state scalability and
measure how the performance of each task is affected when increasing the state.

6.1. Load Scalability

For this experiment, we use two worker nodes, each equipped with one CPU core,
and use the default number of campaigns (100). Hence, the factors for this experiment are
(1) load and (2) SPE. We scale the load in 20k steps from 20k e/s to 300k e/s as long as the
throughput is sustainable. The results displayed in Figure 6 show the average CPU cycles
that are required both in total, and to process a single event (total cycles divided by the
number of processed events) for the first four tasks of the YSB pipeline. Since these values
represent the resource consumption of one node, we normalized the applied load relative
to one node (10k–150k e/s).

Big Data Cogn. Comput. 2023, 7, 49 15 of 31

Figure 6. CPU consumption per task when scaling the load-part1.

Kafka: For all three engines, the Kafka task requires the most CPU resources. This
task fetches the individual records from the Kafka broker, checks the offset, and splits
the data by partition. For all SPEs, we observe that the CPU cycles per event fall linearly
with increased load, meaning that the efficiency increases (superlinear scalability). While
Spark STR and Flink require a similar amount of CPU resources, Spark CP starts with a
considerably higher consumption. Spark’s CP mode uses the KafkaContinousPartitionReader
internally, whereas Spark STR uses the KafkaMicroBatchReader that fetches a higher number
of records in a single request and hence provides better resource efficiency. Interestingly,
despite Flink being a record-at-a-time processing engine, it appears to use a micro-batch
approach in its Kafka consumption similar to Spark STR, which results in nearly identical
processing efficiencies, presumably at the cost of higher latency. However, looking at the
latency in Figure 7, it is apparent that Flink’s latency is very low (<104 ms), achieving
excellent latency results and efficient processing at the same time. It should be noted that,
with version 1.14, Flink has introduced a new KafkaSource package which supersedes the
old KafkaConsumer implementation, hence these results are only valid for newer versions
of Flink. For Spark CP, it should be checked if a micro-batch approach such as Flink is
possible without significantly increasing the latency because its current processing costs
are quite high.

Big Data Cogn. Comput. 2023, 7, 49 16 of 31

Figure 7. Total CPU and network consumption when scaling the load.

Deserialize: Deserialization is a very common task for stream processing systems [26].
The Deserialize task of the YSB parses the received JSON strings of Kafka into Java objects.
Such parsing is known to be highly CPU bound [27] and also, in the YSB, deserialization
accounts for the second highest CPU consumption. For Flink and Spark CP, the process-
ing effort per event remains quite constant. Since every event is treated individually, no
efficiency gain takes place when increasing the load. For Spark STR, we observe a linear de-
crease in CPU cycles per event (super linear scalability), which is caused by the larger batch
sizes that can be processed more efficiently. However, Flink is about three times as effective
in this regard and likewise Spark CP is twice as efficient and only gets outperformed at
about 100k e/s (high load).

Filter+Projection+Join: For better comparability among the frameworks, we grouped
the tasks Filter, Projection and Join together. While Filter and Projection are typical map
operations, the Join is implemented as a RichFlatMap function that uses a cache to store
the ad_id to campaign_id mapping. Due to our long warm-up period of 900 s, the cache
of all SPEs results in a hit ratio of 100% during the measurement, which makes actual
communication with Redis obsolete. It can be seen that Spark STR and CP require fewer
CPU resources than Flink. This is largely due to Spark’s Dataset API, which treats each
event as an appended row to the internal table structure. For this reason, Spark’s SQL
execution engines benefit from these classical SQL operations. Interestingly, the record-
at-a-time processing mode of Spark CP works even more efficiently than the micro-batch
approach of Spark STR, independent of the load level. In addition, we see quite different
scaling behaviors. For Flink, the number of cycles required to process a single event
increases slightly, whereas, for Spark CP, it remains constant. For Spark STR, the efficiency
increases with higher load levels but is not able to outperform CP.

Enrich: The Enrich task is again a common map operation that adds an additional
latency field to each incoming event. For the calculation, the event time is subtracted from
the current system time. For Flink, we observe that, due to the record-at-a-time processing,
the CPU consumption per event remains quite constant as each event is treated individually.
The same effect might also be expected for Spark CP, but instead it is observed that the
number of CPU cycles increases slightly. Spark STR’s micro-batch approach starts with
worse efficiency in low load situations and improves with higher load, as is the case for the
Deserialize task. Overall, Flink provides the highest efficiency followed by Spark CP, while
Spark STR does not outperform the others at any load level.

Windowing + Sink: Figure 8, depicts the second part of the YSB pipeline, which starts
with the combined Windowing+Sink task. Windowing is a core task in stream processing

Big Data Cogn. Comput. 2023, 7, 49 17 of 31

applications [28] and can either be performed incrementally or in full. Flink’s YSB window
is based on an incremental aggregation function, which evaluates every event as it arrives.
In contrast, Spark STR uses a full evaluation function due to its micro-bench approach.
A full evaluation first collects events and then waits for a trigger to process them all at once.
The advantage of an incremental window is that the state remains small, whereas the full
evaluation requires less computation. Every ten seconds, a window is instantiated for each
campaign_id (jumping) and counts the sum of sighted events. After 10-s, the aggregated
results of each window are written to Redis (Sink). As already explained in Section 3.1,
Spark CP does not support stateful operations. Hence, CP uses Redis as its state store,
meaning, for every event, CP reads its corresponding Window+campaign_id combination
either from the sink or an internal HashMap. For this reason, we combined both tasks to be
able to compare them with the other SPEs.

Figure 8. CPU consumption per task when scaling the load-part2.

For Flink and Spark STR, we can split up the task into its Sink and Windowing, as dis-
played in Figure 9:

• Windowing: For Flink, the CPU costs remain constant, while, for Spark STR, it decreases.
We explain this as follows. Despite the increased load, the number of windows is
only affected by the range of campaign_ids (default: 100), which remains the same

Big Data Cogn. Comput. 2023, 7, 49 18 of 31

throughout the different load levels. Nevertheless, Flink has to process every event
individually and hence does not benefit from any efficiency gains. Spark STR, on the
other hand, increases its efficiency through its use of micro-batches, which leads to
fewer window calculations (full evaluation function);

• Sink: The costs for both SPEs, Flink, and Spark STR decrease. This is again due
to the number of windows that remain constant (1× window for each campaign_id
every 10 s). These windows are in turn directly transformed into write operations.
Hence, the actual number of events received by the Sink task is not determined by the
load, but by the windows, which is always 10 e/s. In summary, the selectivity of the
Windowing task also increases with increasing load levels [27], resulting in higher CPU
efficiency for both frameworks.

0k

2k

4k

6k

8k

10k

12k

14k

16k

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

FLINK WINDOWING / EVENT

Windowing Total WindowOperation
MyTimeStampAssigner Watermarking

0k

2k

4k

6k

8k

10k

12k

14k

16k

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

SPARK STR WINDOWING / EVENT

Windowing Total HashAggregate TimeStamp

0

500

1.000

1.500

2.000

2.500

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

FLINK SINK / EVENT

Redis Sink

0

500

1.000

1.500

2.000

2.500

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

SPARK STR SINK / EVENT

Redis Sink

0k

5k

10k

15k

20k

25k

30k

35k

40k

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

FLINK CLUSTER COMM. / EVENT

Total netty RecordWriter Deserializer

0k

5k

10k

15k

20k

25k

30k

35k

40k

0k 20k 40k 60k 80k 100k 120k 140k 160k

C
P

U
 C

yc
le

s
p

er
 E

ve
n

t

Events/s per Node

SPARK STR Cluster Comm. / event

Total netty RecordWriter Deserializer

Figure 9. Drilldown: window, sink, and cluster communication.

As displayed in Figure 8, Flink’s Sink efficiency gains do not affect the combined
Windowing+Sink task since the write operations make up less than 1% of the windowing
costs. This is no surprise given that, for a duration of 10 s, a load level of 150k e/s will
result in 1.5 m e/s to be processed by the windowing task, while only 100 events are
written to Redis (for Spark, this depends on the micro-batch size). Overall, Flink starts to be
outperformed by Spark STR at about 40k e/s. (mid load), although Flink’s Sink task is more
efficient. For this reason, we will check in Section 5.3 if this remains true when increasing
the range of campaign_ids, which will also increase the number of write operations. Our
assumption is that Flink will outperform Spark STR in high- and mid-load situations. Spark
CP is almost able to keep up with Flink and scales similarly to it. It is outperformed by STR
at about 30k e/s.

ClusterCommunication: While the first generation of SPSs was single-node systems
that only allowed a scale-up approach [29,30], modern systems are designed to distribute
their work among several workers. This, however, comes with increased overheads.
The task Cluster Communication covers all data communication between the different work-
ers, which happens, e.g., during data repartitioning based on a keyby() or groupby() operation.

Big Data Cogn. Comput. 2023, 7, 49 19 of 31

For example, in the context of the YSB, we need to ensure that all events with the same
campaign_id are processed by the same node before it gets aggregated by the Window task.
Flink’s Cluster Communication CPU costs remain constant on a per-event basis. We found
this surprising because Flink utilizes an intricate control flow mechanism that improves
CPU efficiency in high-load situations via buffering. For example, during data transmission
via the netty framework, it uses bigger payloads that decrease the protocol overheads on
a per-event basis [31]. Hence, we expected that Cluster Communication in general should
decrease and indeed, looking at the CPU cycles of netty (Figure 9), we can see that the
efficiency considerably increases. However, we also accounted for serialization (Record-
Writer) and deserialization (RecordDeserializer) in the Cluster Communication task. Both
operations increase on a per-event basis and even the performance gains of netty. Overall,
the communication costs of Flink are higher than those of Spark STR/CP. For Spark STR,
the CPU costs of Cluster Communication fall with increased load and it outperforms Flink at
about 50k e/s. Spark’s network communication is also based on the netty framework with
similar scalability to Flink. However, in contrast to Flink, the (de-)serialization’s costs also
decrease. This is not only due to the micro-batch approach, but also because Spark requires
less network traffic overall, as shown in Figure 7.

Wait: The Wait task includes pthread_cond_timedwaits and epolls that typically occur
when the execution engine is blocked until a condition is fulfilled. For example, for Spark
STR, e.g., this primarily happens as long as the SPE is waiting for the previous micro-
batch job to complete. Spark STR always attempts to process batches as soon as possible.
In contrast to Spark Streaming, there is no fixed batch size or batch duration. For all engines,
the waiting decreases with increased load levels. We noticed that, for Spark, the initial
waiting effort is extremely high. This behavior is also reflected when looking at Spark’s
total CPU consumption. Figure 7 confirms that Spark already consumes 50% of the total
CPU when only processing 10k e/s, which is similar to the observations in [14,15].

Other: All stack traces that were not assigned to one of the previous tasks remain in
the Other task. Examples include GC, Safepoints, and CodeGeneration (Spark), among
others. For Spark STR, the CPU consumption of the Other task is significant during low-load
scenarios but drops exponentially with higher workloads. Again, this shows that Spark
STR has high base overheads. On a per-event basis, the costs for Spark CP remain constant,
while, for Flink, they are slightly decreasing.

Total: Looking at the overall statistics, as shown in Figure 7, we see that, for the
entire YSB pipeline in the 10k to 100k range, Flink provides both the best CPU efficiency
and the best latency. After 100k e/s, Spark STR outperforms Flink with regard to CPU
efficiency, although this comes at the cost of higher latency. During low-load situations,
Spark STR has considerably higher CPU costs than the other two frameworks, which was
already observed by [15]. Spark CP offers a good trade-off between latency and CPU costs
as well, and it outperforms Spark STR in both areas in the load range of 10k to 60k e/s.
Looking at the network utilization, we observe that Spark STR and Spark CP require almost
identical network resources even though Spark CP uses more window operations and
Redis connections. However, this effect seems to be marginal at only 100 campaigns. On the
other hand, Flink requires significantly more network resources, which is also visible in the
cluster communication costs. This could indicate that Spark STR provides better scale-out
capabilities than Flink, which we will analyze in Section 5.2.

CPU Stalling: Thus far, we have looked at the total number of cycles spent on a task.
However, due to the PMC metrics, we can split these cycles up further into stalled and
retired cycles. Stalling occurs whenever the SPE runs on the CPU (not idle) and has work
to perform, but the processor is not able to make any progress, e.g., due to cache misses or
bad branch prediction [32]. Hence, the distinction between “stalled” and “retired” cycles
allows further consideration of whether efficiency differences are due to an SPE actually
having more work to do, e.g., less efficient code semantics (retired cycles), or whether the
resource environment (CPU architecture, memory subsystem, ...) is not well aligned to
the SPE and would, for example, profit from bigger caches. Looking at the retired cycles

Big Data Cogn. Comput. 2023, 7, 49 20 of 31

as displayed in Figure 10, we see that, during low loads, Flink actually has less work
to perform than the other SPEs. At 120k e/s, the required number of retired cycles for
Flink and Spark STR is equal; however, at this point, Flink is stalled more frequently than
Spark STR, which explains why Spark provides better efficiency at this stage. Interestingly,
Spark’s CP mode requires fewer retired cycles and has less stalling compared to STR during
low load. In summary, the efficiency of all SPEs increases with higher load, as shown by
the increasing IPC value that profits from dropping page faults and branch misses.

0 m

5 m

10 m

15 m

CONTEXT SWITCHES

Flink Spark Spark CP

0 m

2 m

4 m

6 m

8 m

10 m

PAGE FAULTS

Flink Spark Spark CP

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

IPC

Flink Spark Spark CP

0.5 tn 0.9 tn 0.8 tn 0.8 tn 1.0 tn 1.3 tn 1.1 tn 1.0 tn 1.5 tn 1.3 tn 1.1 tn 1.5 tn 1.3 tn
2.2 tn

5.6 tn
3.5 tn 4.0 tn

5.9 tn 5.7 tn 5.6 tn 5.9 tn
7.0 tn 6.8 tn 6.5 tn

7.5 tn 7.6 tn

1.3 tn

3.4 tn

2.0 tn
2.4 tn

3.6 tn 4.3 tn
3.4 tn 3.7 tn

5.2 tn
4.1 tn 4.1 tn

5.1 tn 4.7 tn

4.0tn

9.8tn

6.2tn
7.2tn

10.5tn
11.3tn

10.1tn
10.6tn

13.6tn

12.2tn 11.7tn

14.0tn
13.6tn

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink

30,000 60,000 90,000 120,000 150,000

CPU Stalling and Retirement by SPE and Load

Stalled Cycles Frontend Stalled-Cycles-Backend Retired Cycles

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

BRANCH MISSES

Flink Spark Spark CP

Figure 10. CPU stalling behavior when increasing load.

6.2. Scale-Up vs. Scale-Out

Scalability is the system’s ability to increase its processing capability by spreading the
workload across additional resources such as cores (scale-up) or nodes (scale-out) [33]. Both
approaches have advantages and disadvantages. Usually, scale-out approaches induce
overheads due to increased communication effort, while scale-up is considered to be less
cost-efficient [34]. However, especially when using a JVM-based SPE, the performance
of a scale-up approach may also degrade due to increased state management and, thus,
e.g., more frequent GC cycles [35]. For modern SPEs that are designed to run in a distributed
manner and allow high degrees of parallelization, scalability is of particular importance.
Mc Sherry et al. [36] showed that many performance evaluations of Big Data systems
were scaled to such an extent that the actual performance gain was consumed by the
parallelization overheads that the scaling induced. In addition, Van Dongen et al. [18]
analyzed the throughput scalability of four SPEs by scaling the system in both directions,

Big Data Cogn. Comput. 2023, 7, 49 21 of 31

horizontally and vertically. In this experiment, we do a similar evaluation but again focus
on the individual streaming tasks and how these scale with regard to CPU efficiency.

We compare six different cluster configurations with varying numbers of nodes and
CPU cores assigned. However, in total, we always use the same number of resources. All
configurations use 96 GB RAM and 12 physical hardware cores (smt4 = 48 virtual cores) in
total, but we distribute them across up to 12 nodes. For every configuration, ‘N’ represents
the number of nodes, whereas ‘C’ C denotes the number of cores per node, and we allocate
8 GB of RAM per core. For example, ‘SCALE_N4_C3’ translates to four nodes with three
physical cores and 24 GB RAM per worker. The ‘Core Used’ axis represents vCPUs as seen
by the operating system. We configured a fixed load of 600k e/s. Unfortunately, the Spark
CP implementation was unsustainable using more than two nodes. This is why we only
included the configurations for one and two nodes. The factors for this experiment are
(1) SPE, (2) cores, and (3) nodes.

Kafka, Deserialize, Filter+Projection+Join, Enrich: As shown in Figure 11, Flink’s
CPU efficiency is almost not affected by looking at these tasks. The only exception is
Kafka which benefits from using single-node or 2-nodes. Spark STR shows a “bell-shaped”
efficiency curve, meaning it benefits from either a few- or many-node cluster. This effect
was also confirmed by Awan et al. [35] when evaluating Spark as a Big Data platform
(batch-processing). Interestingly, the IPC values, as displayed in Figure 12, show an almost
exact inverted “bell-shape” curve (U-shape), so the efficiency decrease for mixed scaling
approaches can at least partially be explained by the worse IPC efficiency. Furthermore, all
tasks have a small efficiency outlier at four nodes for both Spark STR and Flink. A similar
effect was observed in [18], which measured the worst scalability factor for four workers in
their aggregation pipeline. Spark CP’s CPU costs increased in a similar way to Spark STR
when switching to a two-node cluster. However, with regard to Kafka, the costs increased
by about 260%. This indicates why increasing the cluster size further no longer yielded
sustainable results.

Figure 11. Cont.

Big Data Cogn. Comput. 2023, 7, 49 22 of 31

Figure 11. CPU consumption per task and cluster configuration.

Figure 12. CPU stalling behavior for different cluster configurations.

Windowing+Sink: This task benefits from a single-node deployment as well, but is
otherwise hardly affected by the number of scale-out nodes. For Flink, we observe a small
cost increase when switching from 6 to 12 nodes, while this has no impact on Spark STR.
Overall, the Windowing+Sink task scales well with additional worker nodes.

Cluster Communication: As expected, the Cluster Communication task is heavily influ-
enced by the number of nodes. For Flink, we observe that the communication costs increase

Big Data Cogn. Comput. 2023, 7, 49 23 of 31

linearly with each worker. This is due to the fact that every taskmanager of Flink requires
a logical connection with every other taskmanager, hence the number of communication
channels increases. The level of thread-parallelism on the host itself, however, does not
impact the performance because, as long as every thread is assigned to the same JVM, all
communication is multiplexed over one channel [31]. In our experiment, we achieved
a high linear correlation between communication costs and the number of nodes used
(R2 = 0.9957). For Spark STR, the communication costs for the scale-out approach increase
as well. However, compared with Flink, these costs are much lower. This indicates that
Spark STR has better scale-out capabilities compared to Flink, which can also be observed
when looking at the total network utilization, as displayed in Figure 13.

Wait+Other: For all engines, the cycles spent on Wait and Other increase when scaling
from one to two nodes. Adding even more nodes hardly affect the performance of Flink,
while, for Spark STR, the Wait costs decrease. In contrast, the CPU demand for the Other task
increases with higher node counts. This is mostly due to increased GC cycles (+1129% when
scaling from 1 to twelve nodes). Interestingly, this observation seems to be in contradiction
with other performance evaluations, such as [18]. Distributing a given state to several nodes
should usually reduce total state management, which is also true if the state size remains
constant. However, in the context of our YSB implementation, increasing the number
of workers also increases the global state, e.g., due to the custom cache implementation
(redundant caches on every worker). While this effect is measurable, its impact on the
overall latency and CPU efficiency is quite low. Still, it explains why the GC cost increased.

Total: With regard to CPU efficiency, a single scale-up node achieves the best CPU
efficiency for all SPEs (Figure 13). This is no surprise since a single-node requires no
communication effort with other workers. However, we could also observe that adding
even more worker nodes does not necessarily decrease the efficiency further. This is
especially evident when looking at Flink for which only the Cluster Communication task
increases linearly with the number of nodes, whereas the other tasks remain unaffected.
For Spark STR, we observed a bell-shaped efficiency for most tasks meaning that it either
favors many small or few powerful nodes. Despite the fact that a single-node achieved
the highest efficiency, looking at the latency, we see a significant increase when choosing a
single-node configuration over a multi-node cluster. For this reason, a scale-out approach
is advisable when using Spark STR. This is also true for Spark CP, although we did not
test more than two nodes. Flink, on the other hand, achieves solid performance results in
scale-out and scale-up scenarios. With regard to network utilization, the communication
costs for Flink increased significantly when switching to a scale-out approach. For Spark,
on the other hand, the number of nodes has almost no effect on the network, indicating
that Spark could be better suitable for very large scale-out approaches.

Stalling: The stalling behavior of Flink and Spark is almost identical. As shown in
Figure 12, the stalling of both frontend- and backend cycles increases when switching from
single- to multi-node. Running clusters bigger than four nodes does not affect the stalling
behavior any further. Flink’s IPC decreases when switching to a two-node cluster but is
otherwise unaffected by the addition of any further nodes. Spark STR, however, depicts a
small U-shape that partially explains the bell-shaped efficiency curve that we observed in
Figure 12. Finally, the number of retired cycles has its peak with four and six nodes. This
means that the four- and six-node configurations required the most work.

Big Data Cogn. Comput. 2023, 7, 49 24 of 31

Figure 13. CPU consumption per task for different cluster configurations’ summary.

6.3. State Scalability

Stream processing systems require state to store intermediate calculation results and
buffering incoming events. An application’s streaming task composition largely affects the
state size. Among the most common stateful streaming tasks are Joins and Windows [37],
which are also used in the context of the YSB. In addition, the workload characteristic may
also influence the state size, e.g., the YSB’s state is mostly affected by the number range of
campaign_ids, as this directly determines the number of windows. State management can
considerably degrade the performance of an SPE and result in increased latency or recovery
time [38]. This is, e.g., caused due to state checkpointing, state migration, or, depending
on the state backend, increased GC or I/O costs [39]. In this experiment, we explore how
state scalability affects the individual streaming tasks of the YSB pipeline. For this reason,
we apply a fixed load of 120k e/s to a 2-node cluster, with 1 core per node, and scale the
campaign_id range from 1k to 16k. The factors for this experiment are hence (1) SPE and
(2) campaign_ids.

Kafka, Deserialize, and Enrich: With regard to Flink and Spark CP, these tasks are
hardly affected by the number of campaign_ids, as shown in Figure 14. For Spark STR,
on the other hand, we observe a considerable efficiency gain the higher the number of
campaigns gets. This seems to be counter-intuitive, but can be explained when looking at
the latency in Figure 15, which increases considerably with a higher state. We conclude that
Spark STR dynamically increases its batch size to keep up with the processing. This in turn
results in efficiency gains that we already observed during the load scalability experiment
in Section 6.1.

Filter+Projection+Join: This task shows consistent efficiency for Spark STR and Spark
CP, as well as a small cost increase for Flink. Flink’s performance degradation is caused by
the Join task. We measured a 16.3% CPU increase when scaling from 1k to 16k campaign_ids.
The reason why this effect is so small is due to the cache implementation. A real join with
Redis would have a bigger impact on the actual performance.

Big Data Cogn. Comput. 2023, 7, 49 25 of 31

Figure 14. CPU consumption per task when scaling campaigns 1k–16k.

Windowing+Sink: As shown in Figure 14, for all SPEs, the Windowing and Sink task
increases linearly with the number of campaign_ids. Due to the groupby/keyby operation,
every campaign results in one window and at least one write operation to Redis. Hence,
more campaigns mean more windows and consequently more writes. For Spark CP, the cost
increase is even bigger, due to our workaround implementation as described in Section 3.1.

Cluster Communication and Wait: With regard to Flink, the CPU efficiency of both
tasks is not affected by the number of campaigns. Although the Window task’s groupby/keyby
re-partitions the events based on the campaign_ids, not the number of campaigns, the ra-
tio affects the performance. The load balancing is performed in a round-robin manner;
with only two nodes available, half of the events are always sent to the first worker and
the other half to the second one as long as the range of campaign_ids is even. Only for
extremely uneven cases, e.g., campaings = 3, would we expect to see a difference. Due to this,
Spark STR’s Cluster Communication should not be affected as well. However, we observe
again efficiency increases that are caused by the general efficiency gains due to the larger
micro-batches (at the cost of higher latency).

Big Data Cogn. Comput. 2023, 7, 49 26 of 31

Other: For Flink and Spark CP, the Other task remains stable. For Spark STR, we
observe a linear incline of cycle costs the more campaigns that are configured. This is
mainly due to the increased number of GC cycles.

Figure 15. CPU consumption when scaling campaigns 1k–16k—summary.

Total: For all SPEs, the efficiency decreases mainly due to the cost increase of the
Windowing+Redissink task. Flink’s CPU utilization and latency both increase with the
number of campaign_ids, whereas, for Spark STR, it appears that the total CPU costs cap at
about 3.0 cores. However, looking at the latency, we see that the latency jumps up to 14 s.
Hence, the CPU savings are bought at the cost of larger micro-batch sizes. Spark CP was
not able to reliably scale beyond 4000 campaign_ids, probably due to the steep incline of the
Windowing+Sink task.

Stalling: As displayed in Figure 16, both the number of retired and stalled cycles
increase with the number of campaign_ids. The IPC of all SPEs drops, partially due to an
increase in context switches and branch misses.

Big Data Cogn. Comput. 2023, 7, 49 27 of 31

0 m

1 m

2 m

3 m

4 m

5 m

6 m

7 m

1000 2000 4000 8000 16,000

PAGE FAULTS

Flink Spark Spark CP

0.6 tn 0.9 tn 0.8 tn 0.6 tn 1.0 tn 0.8 tn 0.6 tn 1.1 tn 1.0 tn 0.6 tn 1.1 tn 0.7 tn 1.1 tn

3.1 tn

5.6 tn

3.9 tn
3.2 tn

6.2 tn

4.3 tn
3.3 tn

6.3 tn
5.2 tn

3.5 tn

6.1 tn

3.7 tn

6.1 tn
1.9 tn

3.6 tn

2.5 tn

1.9 tn

4.0 tn

2.7 tn

2.0 tn

4.1 tn

3.1 tn

2.1 tn

4.2 tn

2.2 tn

4.2 tn

5.6 tn

10.1 tn

7.2 tn

5.7 tn

11.2 tn

7.8 tn

5.9 tn

11.5 tn

9.4 tn

6.3 tn

11.3 tn

6.5 tn

11.4 tn

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink Spark Spark
CP

Flink Spark Spark
CP

1000 2000 4000 8000 16000

CPU Stalling and Retirement by SPE and Cluster Config

StalledFront StalledBack Retired

0 m

5 m

10 m

15 m

20 m

25 m

30 m

35 m

1000 2000 4000 8000 16,000

CONTEXT SWITCHES

Flink Spark Spark CP

0 bn

5 bn

10 bn

15 bn

20 bn

25 bn

1000 2000 4000 8000 16,000

BRANCH MISSES

Flink Spark Spark CP

0.30

0.35

0.40

0.45

0.50

1000 2000 4000 8000 16,000

IPC

Flink Spark Spark CP

Figure 16. CPU stalling behavior when scaling campaigns from 1k to 16k.

7. Conclusions

CPU efficiency in the context of data stream processing is the ratio of the events
processed by an SPE to the CPU resources invested. Thus far, performance research in the
area of DSPSs has focused on latency and throughput. However, we argue that, for many
business cases, it is becoming increasingly important to find the SPE that is merely capable
of meeting the SLOs for latency and throughput with minimal resource consumption,
whether due to resource constraints in edge computing scenarios or to save power and
compute costs in large cloud deployments. In this paper, we have presented an approach
for measuring the CPU efficiency of DSPSs at the task level. We have presented the concept
from a conceptual as well as a technical perspective and evaluated the quality of our
implementation in terms of consistency and overheads. This has shown that, despite the
efficiency of eBPFs, there are still measurable performance overheads in scenarios with
high base load. However, the overheads were found to be acceptable and did not skew the
results. In contrast, the traditional approach, which was based on a classic Java profiler,
caused significant overheads that even resulted in unsustainable processing for Flink and
Spark CP. In terms of consistency, our approach showed quite stable results.

To demonstrate the potential of this new measurement approach, we focused partic-
ularly on measuring and analyzing the task-level CPU efficiency of three different SPEs
under the influence of load-, cluster-, and state scalability. In this way, we could provide
a detailed picture of the individual tasks of the YSB, which was not previously possible.
The main findings of the experiments are summarized in Table 3.

Big Data Cogn. Comput. 2023, 7, 49 28 of 31

Table 3. Performance findings summary.

Experiment Analysis FLINK SPARK STR SPARK CP

Total

- CPU efficiency:
Highest ->low+mid
High ->high

- Latency: Lowest ->all

- Network util.: Highest ->all

- CPU efficiency:
Poor ->low+mid
Highest ->high

- Latency: High ->all

- Network util.: Low ->all

- CPU efficiency:
Poor ->high load
High ->low+mid

- Latency: Low ->all

- Network util.: Low ->all

Load
Scalability

(low->high)

Task-
Level

- Highest CPU efficiency:
Deserialize,
Enrich, Sink,
Framework

- Highest CPU efficiency:
ClusterComm.,
Windowing

- Highest CPU efficiency:
Filter+Projection+Join

- Kafka: High CPU demand
->improvement required

Total

- CPU efficiency:
Highest ->single-node

- Latency: Not affected

- CPU efficiency:
Lowest ->single node

- Latency:
Poor ->single-node
->scale-out recommended

- CPU efficiency:
Highest ->single-node

- Latency:
Poor ->single node
->scale-out recommended

Scale-up
vs.
Scale-out

(single->12)

Task-
Level

- ClusterComm.: Significant
CPU efficiency decrease

- Kafka: Highest efficiency
for single-node; Stable
for multi-node

- Remaining tasks: Stable

- ClusterComm.: Minor
linear efficiency increase

- Windowing+Sink: Stable

- Remaining tasks: Highest efficiency
for single-node; Increasing
efficiency for large cluster

- All tasks: Highest efficiency
for single-node

Total

- CPU efficiency:
Slightly decreases

- Latency:
Slightly increases

- Network util.:
Slightly increases

- CPU efficiency: Slightly
decreses until 4k; Afterwards
constant at cost of higher latency

- Latency: Rapidly increases
after 4k

- Network util.: Slightly increases

- CPU efficiency: Decreases

- Latency: Slightly increases
until 4k; Unsustainable
afterwards

-Network util.:
Slightly increases

State
Scalability
(1k ->16k)

Task-
Level

- Windowing+Sink:
CPU efficiency decreases
- Remaining tasks: Stable

- Windowing+Sink:
CPU efficiency decreases

- Windowing+Sink:
CPU efficiency decreases

Load Scalability: With regard to load scalability, we observed that, for the YSB applica-
tion, Spark STR consumes the most resources in low and mid-load scenarios. In these cases,
Spark STR is not only considerably less CPU efficient than Spark CP and Flink, but it still
has a higher latency. Hence, if the application supports the continuous processing mode,
developers should test Spark CP. In the example of our YSB implementation, it improved
CPU efficiency, and latency at low and medium workloads, while STR outperformed CP
in terms of CPU efficiency in high-load situations. However, as demonstrated for the
Filter+Projection+Join task, CP even has the potential to outperform STR at all load levels, so
it depends on the application’s task composition. Spark STR’s efficiency outperforms Flink
at about 110k e/s with regard to CPU efficiency; however, it does so with considerably
increased latency costs. Our task-level analysis showed that Flink has efficiency advantages
over Spark STR and CP for the tasks Deserialize, Enrich, and Sink and, in general, has lower
framework overheads (Other and Wait, for example, less GC). Spark STR/CP, on the other
hand, was able to outperform Flink with regard to Cluster Communication, Windowing and
Filter+Projection+Join. Finally, Flink and Spark STR achieved the same efficiency with regard
to the Kafka task, whereas Spark CP required considerably more cycles. Hence, a future
area of research might be to improve CP’s Kafka connector.

Scale-up vs. Scale-out: In terms of CPU efficiency for the YSB, all three SPEs benefit
significantly from a single scale-up node over a scale-out approach (>36% less CPU).
However, with regard to latency, Spark STR and CP achieve considerably better results on
a multi-node cluster, whereas, for Flink, the latency is unaffected by the number of nodes.
This indicates that Flink would be the better choice when choosing a single-node scale-up
approach. In addition, we observed that Flink’s and Spark STR’s Cluster Communication
costs increase linearly with the number of nodes. However, for Spark STR, this rate of
increase is lower than for Flink. It would be interesting to evaluate how this comparison
behaves when scaling beyond our twelve-node setup. Overall, it seems that Spark STR is
more suitable for a very-large scale-out approach.

Big Data Cogn. Comput. 2023, 7, 49 29 of 31

State Scalability: Increasing the number of campaign_ids resulted in increased state
due to a higher number of windows and larger join caches. For Flink, both CPU utilization
and latency increased when scaling the state. Unfortunately, our Spark CP application
was not able to scale beyond 4k campaigns, probably due to our experimental imple-
mentation. For Spark STR, the total CPU utilization increased as well but capped after
4k campaigns. However, at the task level, we observed that the CPU consumption of
the Windowing+Redissink task increases linearly with the number of campaigns. These
additional costs are compensated by general efficiency increases due to larger micro-batch
sizes but at the expense of higher latency.

8. Limitations and Future Research

In this work, we mainly used Flink and Spark with their default settings. While we
ensured optimal parallelization settings in terms of throughput and latency, we did not aim
to achieve optimal resource efficiency, e.g., by tuning GC. The goal of this work was to show
how task-level CPU analysis can be achieved and to demonstrate its potential. There is room
for further improvement for all SPEs, but this would require specific analysis because many
settings that would improve one task could worsen another. In addition, our experiments
were conducted for small to medium streaming clusters (up to 12 nodes/48 vCPUs and a
peak load of 600k e/s). While we did not evaluate large clusters with hundreds of nodes,
our results are representative of most real-world implementations of similar sizes. As a
future research direction, we intend to use our task-level results to parametrize performance
models to achieve accurate latency and energy predictions. Kross et al. [40] have shown
that, in controlled environments, Spark Streaming’s response time for a load scale-up
scenario can be predicted with high accuracy. However, as shown in this work, many
factors besides load affect CPU efficiency and thus latency. This makes it difficult to achieve
accurate predictions for real-world scenarios and often requires dedicated performance
models for individual use cases. We assume that task-based performance analysis could
allow for better parameterization so that better models could be created that could handle
multiple influencing factors simultaneously. Furthermore, since CPU efficiency is related
to energy savings, we would like to make predictions in this regard as well. Energy
consumption is becoming increasingly important in the context of stream processing
systems, and predicting the consumption at an early stage would provide valuable insights.

Author Contributions: Conceptualization, J.R., A.H. and H.K.; methodology, J.R. and A.H.; software,
J.R and J.H.; validation, J.R. and J.H.; formal analysis, J.R.; investigation, J.R. and J.H.; resources,
H.K.; data curation, J.R. and J.H.; writing—original draft preparation, J.R.; writing—review and
editing, J.R. and A.H.; visualization, J.R. and J.H.; supervision, H.K.; project administration, A.H.
and H.K.; funding acquisition, H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please find the source code of this work at https://github.com/rankj/
YSB-task-level (accessed on 31 December 2022). The data of our experiments are also publicly
available at https://doi.org/10.21227/ar4v-hk87.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/rankj/YSB-task-level
https://github.com/rankj/YSB-task-level

Big Data Cogn. Comput. 2023, 7, 49 30 of 31

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
DSPS Distributed Stream Processing System
eBPF Extended Berkley Package Filter
IoT Internet of Things
LUW Logical Unit of Work
PID Process ID
PMC Performance Monitoring Counters
YSB Yahoo Streaming Benchmark
SLO Service Level Objective
Spark CP Spark Continuous Processing
Spark STR Spark Structured Streaming
SPE Stream Processing Engine

References
1. Jung, J.J. Special Issue Editorial: Big Data for Mobile Services. Mob. Netw. Appl. 2018, 23, 1080–1081. [CrossRef]
2. Tan, L.; Wang, N.M. Future internet: The Internet of Things. In Proceedings of the 2010 3rd International Conference on

Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; Volume 5, pp. V5–376–V5–380.
3. Apiletti, D.; Barberis, C.; Cerquitelli, T.; Macii, A.; Macii, E.; Poncino, M.; Ventura, F. iSTEP, an integrated Self-Tuning Engine

for Predictive maintenance in Industry 4.0. In Proceedings of the 2018 IEEE International Conference on Big Data and Cloud
Computing, Yonago, Japan, 12–13 July 2018; pp. 924–931.

4. Umadevi, K.; Gaonka, A.; Kulkarni, R.; Kannan, R.J. Analysis of Stock Market using Streaming data Framework. In Proceedings
of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India,
19–22 September 2018; pp. 1388–1390. [CrossRef]

5. Akram, S.; Bilas, A. A Sleep-based Communication Mechanism to Save Processor Utilization in Distributed Streaming Systems.
In Proceedings of the Second Workshop on Computer Architecture and Operating SYSTEM Co-Design, Heraklion, Greece, 24–26
May 2011.

6. Brunnert, A.; Vögele, C.; Danciu, A.; Pfaff, M.; Mayer, M.; Krcmar, H. Performance management work. Wirtschaftsinformatik 2014,
56, 197–199. [CrossRef]

7. Kim, T.; Yoo, S.; Kim, Y. Edge/Fog Computing Technologies for IoT Infrastructure. Sensors 2021, 21, 3001. [CrossRef] [PubMed]
8. Xhafa, F.; Kilic, B.; Krause, P. Evaluation of IoT stream processing at edge computing layer for semantic data enrichment. Future

Gener. Comput. Syst. 2020, 105, 730–736. [CrossRef]
9. Dhakal, A.; Kulkarni, S.G.; Ramakrishnan, K.K. Machine Learning at the Edge: Efficient Utilization of Limited CPU/GPU

Resources by Multiplexing. In Proceedings of the 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid,
Spain, 13–16 October 2020; pp. 1–6. [CrossRef]

10. Abdallah, H.B.; Sanni, A.A.; Thummar, K.; Halabi, T. Online Energy-efficient Resource Allocation in Cloud Computing Data
Centers. In Proceedings of the 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Paris, France, 1 March 2021; pp. 92–99.

11. Chintapalli, S.; Dagit, D.; Evans, B.; Farivar, R.; Graves, T.; Holderbaugh, M.; Liu, Z.; Nusbaum, K.; Patil, K.; Peng, B.J.; et al.
Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming. In Proceedings of the 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016; pp. 1789–1792.
[CrossRef]

12. Grier, J. Extending the Yahoo! Streaming Benchmark. Available online: https://www.ververica.com/blog/extending-the-yahoo-
streaming-benchmark (accessed on 8 December 2022).

13. Karakaya, Z.; Yazici, A.; Alayyoub, M. A Comparison of Stream Processing Frameworks. In Proceedings of the 2017 International
Conference on Computer and Applications (ICCA), Doha, United Arab Emirates, 6–7 September 2017; pp. 1–12. [CrossRef]

14. Shahverdi, E.; Awad, A.; Sakr, S. Big Stream Processing Systems: An Experimental Evaluation. In Proceedings of the 2019 IEEE
35th International Conference on Data Engineering Workshops (ICDEW), Macao, Macao, 8–12 April 2019; pp. 53–60. [CrossRef]

15. Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V. Benchmarking Distributed Stream Data Processing
Systems. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April
2018; pp. 1507–1518. [CrossRef]

16. van Dongen, G.; Steurtewagen, B.; Van den Poel, D. Latency Measurement of Fine-Grained Operations in Benchmarking
Distributed Stream Processing Frameworks. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData
Congress), San Francisco, CA, USA, 2–7 July 2018; pp. 247–250. [CrossRef]

17. Van Dongen, G.; Van den Poel, D.E. Evaluation of Stream Processing Frameworks. IEEE Trans. Parallel Distrib. Syst. 2020, 31,
1845–1858. [CrossRef]

http://dx.doi.org/10.1007/s11036-018-1070-7
http://dx.doi.org/10.1109/ICACCI.2018.8554561
http://dx.doi.org/10.1007/s11576-014-0414-6
http://dx.doi.org/10.3390/s21093001
http://www.ncbi.nlm.nih.gov/pubmed/33922893
http://dx.doi.org/10.1016/j.future.2019.12.031
http://dx.doi.org/10.1109/ICNP49622.2020.9259361
http://dx.doi.org/10.1109/IPDPSW.2016.138
https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark
https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark
http://dx.doi.org/10.1109/COMAPP.2017.8079733
http://dx.doi.org/10.1109/ICDEW.2019.00-35
http://dx.doi.org/10.1109/ICDE.2018.00169
http://dx.doi.org/10.1109/BigDataCongress.2018.00043
http://dx.doi.org/10.1109/TPDS.2020.2978480

Big Data Cogn. Comput. 2023, 7, 49 31 of 31

18. Van Dongen, G.; Van Den Poel, D. Influencing Factors in the Scalability of Distributed Stream Processing Jobs. IEEE Access 2021,
9, 109413–109431. [CrossRef]

19. Kroß, J.; Krcmar, H. PerTract: Model Extraction and Specification of Big Data Systems for Performance Prediction by the Example
of Apache Spark and Hadoop. Big Data Cogn. Comput. 2019, 3, 47. [CrossRef]

20. Reussner, R.H.; Becker, S.; Happe, J.; Heinrich, R.; Koziolek, A. Modeling and Simulating Software Architectures: The Palladio
Approach; MIT Press: Cambridge, MA, USA, 2016.

21. Rank, J.; Hein, A.; Krcmar, H. A Dynamic Resource Demand Analysis Approach for Stream Processing Systems. In Proceedings
of the Symposium on Software Performance, Leipzig, Germany, 5–6 November 2020.

22. Gregg, B. BPF Performance Tools; Addison-Wesley Professional: Boston, MA, USA, 2019.
23. Souza, P.R.R.D.; Matteussi, K.J.; Veith, A.D.S.; Zanchetta, B.F.; Leithardt, V.R.Q.; Murciego, A.L.; Freitas, E.P.D.; Anjos, J.C.S.D.;

Geyer, C.F.R. Boosting Big Data Streaming Applications in Clouds With BurstFlow. IEEE Access 2020, 8, 219124–219136. [CrossRef]
24. EJ-Technologies. Java Profiler-JProfiler. Available online: https://www.ej-technologies.com/products/jprofiler/overview.html

(accessed on 30 December 2022).
25. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling;

Wiley Professional Computing; Wiley: Hoboken, NJ, USA, 1991.
26. Nabi, Z.; Bouillet, E.; Bainbridge, A.; Thomas, C. Of Streams and Storms A Direct Comparison of IBM InfoSphere Streams and

Apache Storm in a Real World Use Case. IBM White Paper 2014. Available online: https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=c82f170fbc837291d94dc0a18f0223d182144339 (accessed on 6 December 2022).

27. Shukla, A.; Chaturvedi, S.; Simmhan, Y. Riotbench: An iot benchmark for distributed stream processing systems. Concurr.
Comput. Pract. Exp. 2017, 29, e4257. [CrossRef]

28. Hesse, G.; Matthies, C.; Perscheid, M.; Uflacker, M.; Plattner, H. ESPBench: The Enterprise Stream Processing Benchmark. In
Proceedings of the ACM/SPEC International Conference on Performance Engineering, Virtual, 19–23 April 2021; pp. 201–212.
[CrossRef]

29. Abadi, D.J.; Carney, D.; Çetintemel, U.; Cherniack, M.; Convey, C.; Lee, S.; Stonebraker, M.; Tatbul, N.; Zdonik, S. Aurora: A new
model and architecture for data stream management. VLDB J. 2003, 12, 120–139. [CrossRef]

30. Abadi, D.J.; Ahmad, Y.; Balazinska, M.; Cetintemel, U.; Cherniack, M.; Hwang, J.H.; Lindner, W.; Maskey, A.; Rasin, A.; Ryvkina,
E.; et al. The design of the borealis stream processing engine. In Proceedings of the Cidr, Asilomar, CA, USA, 4–7 January 2005;
Volume 5, pp. 277–289.

31. Kruber, N. A Deep-Dive into Flink’s Network Stack. Available online: https://flink.apache.org/2019/06/05/flink-network-stack.
html (accessed on 7 September 2022).

32. Chatzopoulos, G.; Dragojević, A.; Guerraoui, R. ESTIMA: Extrapolating Scalability of in-Memory Applications. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), Barcelona, Spain, 12–16 March
2016. [CrossRef]

33. Hill, M.D. What is Scalability? SIGARCH Comput. Archit. News 1990, 18, 18–21. [CrossRef]
34. Hwang, K.; Shi, Y.; Bai, X. Scale-Out vs. Scale-Up Techniques for Cloud Performance and Productivity. In Proceedings of the 2014

IEEE 6th International Conference on Cloud Computing Technology and Science, Singapore, 15–18 December 2014; pp. 763–768.
[CrossRef]

35. Awan, A.J.; Brorsson, M.; Vlassov, V.; Ayguade, E. How Data Volume Affects Spark Based Data Analytics on a Scale-up Server.
In Proceedings of the Big Data Benchmarks, Performance Optimization, and Emerging Hardware; Zhan, J., Han, R., Zicari, R.V., Eds.;
Springer International Publishing: Basel, Swizterland, 2016; pp. 81–92.

36. McSherry, F.; Isard, M.; Murray, D.G. Scalability! However, at what COST? In Proceedings of the 15th Workshop on Hot Topics
in Operating Systems (HotOS XV), Kartause Ittingen, Switzerland, 18–20 May 2015; USENIX Association: Kartause Ittingen,
Switzerland, 2015.

37. De Matteis, T.; Mencagli, G. Parallel patterns for window-based stateful operators on data streams: An algorithmic skeleton
approach. Int. J. Parallel Program. 2017, 45, 382–401. [CrossRef]

38. To, Q.C.; Soto, J.; Markl, V. A survey of state management in big data processing systems. VLDB J. 2018, 27, 847–872. [CrossRef]
39. Del Monte, B.; Zeuch, S.; Rabl, T.; Markl, V. Rhino: Efficient Management of Very Large Distributed State for Stream Processing

Engines. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 4–19
June 2020; SIGMOD ’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 2471–2486. [CrossRef]

40. Kroß, J.; Krcmar, H. Modeling and simulating Apache Spark streaming applications. Softw.-Trends 2016, 36, 1–3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3102645
http://dx.doi.org/10.3390/bdcc3030047
http://dx.doi.org/10.1109/ACCESS.2020.3042739
https://www.ej-technologies.com/products/jprofiler/overview.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c82f170fbc837291d94dc0a18f0223d182144339
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c82f170fbc837291d94dc0a18f0223d182144339
http://dx.doi.org/10.1002/cpe.4257
http://dx.doi.org/10.1145/3427921.3450242
http://dx.doi.org/10.1007/s00778-003-0095-z
https://flink.apache.org/2019/06/05/flink-network-stack.html
https://flink.apache.org/2019/06/05/flink-network-stack.html
http://dx.doi.org/10.1145/2851141.2851159
http://dx.doi.org/10.1145/121973.121975
http://dx.doi.org/10.1109/CloudCom.2014.66
http://dx.doi.org/10.1007/s10766-016-0413-x
http://dx.doi.org/10.1007/s00778-018-0514-9
http://dx.doi.org/10.1145/3318464.3389723

	Introduction
	Related Work
	Task-Level Performance Measurement
	Enabling Technologies
	Conceptual Approach
	Stack Trace Analysis

	Testing Approach
	YSB Extensions
	Testbed

	Approach Quality
	Profiling Overheads
	Profiling Consistency
	Advantages over Micro-Benchmarking

	Evaluating Task-Level CPU Efficiency
	Load Scalability
	Scale-Up vs. Scale-Out
	State Scalability

	Conclusions
	Limitations and Future Research
	References

