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Abstract

Background: Genomic prediction is a genomics assisted breeding methodology that can increase genetic gains by

accelerating the breeding cycle and potentially improving the accuracy of breeding values. In this study, we use

41,304 informative SNPs genotyped in a Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla

parents and their 949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic density

and pulp yield, circumference at breast height and height and tree volume scored at age three and six years. We

assessed the impact of different genomic prediction methods, the composition and size of the training and

validation set and the number and genomic location of SNPs on the predictive ability (PA).

Results: Heritabilities estimated using the realized genomic relationship matrix (GRM) were considerably higher than

estimates based on the expected pedigree, mainly due to inconsistencies in the expected pedigree that were readily

corrected by the GRM. Moreover, the GRM more precisely capture Mendelian sampling among related individuals, such

that the genetic covariance was based on the true proportion of the genome shared between individuals. PA improved

considerably when increasing the size of the training set and by enhancing relatedness to the validation set. Prediction

models trained on pure species parents could not predict well in F1 hybrids, indicating that model training has to be

carried out in hybrid populations if one is to predict in hybrid selection candidates. The different genomic prediction

methods provided similar results for all traits, therefore either GBLUP or rrBLUP represents better compromises between

computational time and prediction efficiency. Only slight improvement was observed in PA when more than 5000 SNPs

were used for all traits. Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled

exclusively in genic regions.

Conclusions: The size and composition of the training set and number of SNPs used are the two most important

factors for model prediction, compared to the statistical methods and the genomic location of SNPs. Furthermore,

training the prediction model based on pure parental species only provide limited ability to predict traits in interspecific

hybrids. Our results provide additional promising perspectives for the implementation of genomic prediction in

Eucalyptus breeding programs by the selection of interspecific hybrids.

Keywords: Genomic relationship, Genomic heritability, Two-generation, Genome annotation, High-density SNP-chip,

Bayesian LASSO, GBLUP, rrBLUP

* Correspondence: par.ingvarsson@slu.se
1Umeå Plant Science Centre, Department of Ecology and Environmental

Science, Umeå University, Umeå SE-90187, Sweden
6Present address: Department of Plant Biology, Uppsala BioCenter, Swedish

University of Agricultural Sciences, Uppsala SE-75007, Sweden

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tan et al. BMC Plant Biology  (2017) 17:110 

DOI 10.1186/s12870-017-1059-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-017-1059-6&domain=pdf
mailto:par.ingvarsson@slu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Eucalyptus species and their hybrids are the most widely

planted hardwoods in tropical, subtropical and temper-

ate regions, due to their fast growth, short rotation

times, wide environmental adaptability and suitability for

commercial pulp and paper production [1, 2]. Interspe-

cific hybrids of E.grandis and E.urophylla, in particular,

are generally superior to their parents in growth, wood

quality and biotic and abiotic stresses resistance, by

inheriting both the fast growth and good rooting abilities

of E.grandis while by maintaining disease tolerance and

wide adaptability of E.urophylla [3]. A conventional

breeding cycle toward clonal selection in hybrid popula-

tions involves mating, progeny trials, a small-scale clonal

trial and a second expanded clonal trial, that together

typically take between 12 and 18 years [1, 4]. To acceler-

ate the genetic gain per unit time, new methods that can

help shorten the breeding cycles are greatly needed.

Genomic prediction or genomic selection (GS) is one

of the most recent developments in genomics-assisted

methods that are aimed at improving breeding efficiency

and genetic gains. Genomic prediction provides a

genome-wide paradigm for marker-assisted selection

(MAS) [5, 6]. In GS all genome-wide markers are fitted

simultaneously in a model that relies on the principle of

linkage disequilibrium (LD) to capture most of the

relevant variation throughout the genome, whereas MAS

focuses on discrete quantitative trait loci (QTLs) that

have previously been detected, usually in underpowered

experiments, and thus leaving most of the phenotypic

variation unaccounted for [7]. GS are generally per-

formed in three steps: (1) genotyping and phenotyping a

‘reference’ or ‘training population’ combined with the

development of genomic prediction models that allow

for prediction of phenotypes from genotypes; (2) valid-

ation of the predictive models in a ‘validation popula-

tion’, i.e. a set of individuals that did not participate in

model training; (3) application of the models to predict

the genomic estimated breeding values (GEBVs) of

unphenotyped individuals which are then selected

according to their GEBVs [6]. GS has been successfully

implemented in the breeding of livestock [7, 8] and

crops [9, 10] and several recent papers have also exem-

plified its great potential in forest tree breeding [11, 12].

The accuracies of genomic prediction models vary de-

pending on the statistical methods employed. Several

methods have been developed for GS, including ridge-

regression best linear unbiased prediction (rrBLUP),

genomic best linear unbiased prediction (GBLUP),

BayesA, BayesB, Bayesian LASSO, BayesR and reprodu-

cing kernel Hilbert space (RKHS) regression [7, 13].

These methods mainly differ in the assumptions of the

distribution and variances of marker effects. For rrBLUP

all loci are a priori assumed to explain an equal amount

of variance and thus assumes that marker effects follow

a normal distribution where all effects are shrunk to a

similar and small size. [6, 14] In Bayesian methods

(BayesA, BayesB, Bayesian LASSO and BayesR) the gen-

etic variance explained by the ith locus, Vgi, is assumed

to themselves follow a prior distribution, p(Vgi). There-

fore, the variance can vary across loci, and combining

the information from the prior distribution with that of

the data yields an estimate of Vgi [6, 15]. For instance,

BayesA assumes that the genetic variance follow an

inverted chi-square distribution whereas Bayesian

LASSO assume the genetic variance follow a double

exponential distribution. The GBLUP method computes

the additive genetic merits from a genomic relationship

matrix and is equivalent to rrBLUP under conditions

that are generally met in practice [16]. The RKHS

regression model is a linear combination of the basic

function provided by the reproducing kernel [17]. Recent

studies have indicated that the selection of suitable stat-

istical methods relies on the actual data at hand and the

pattern of phenotypic variation in the traits of interest

and with reference population used [9, 18].

Beside statistical methods, other factors are known to

influence the accuracy of genomic prediction models,

such as the size of the training population, number of

markers employed, and relatedness between the training

and validation population and, by extension, to the

future selection candidates. Hayes et al. [19] found that

for a given effective population size (Ne), increasing the

size of reference population leads to improved accuracy

of genomic predictions. Closer relationship between

training population and selection candidates has also

been reported to lead to a higher accuracy of genomic

predictions, while enlarging the genetic diversity of the

training population resulted in lower accuracy [20]. A

number of simulation and empirical studies have shown

that increasing the number of markers may improve the

predictive accuracy as Ne also increased [9, 21–23].

However, increasing the number of markers in small Ne

populations provides little or no improvement on

predictive accuracy [24, 25].

Going one step further from previous studies in forest

trees, where individuals of the same breeding generation

were allocated to training and validation sets for the

evaluation of genomic prediction models, in this study

we used both the parental and progeny generations of E.

grandis, E. urophylla and their F1 hybrids to build

prediction models using different subsets of parents and

progeny for training and validation sets. A multi-species

single-nucleotide polymorphism (SNP) chip containing

60,904 SNPs [26] were used to provide high-density

genotyping of the two generations. Based on these data,

we developed genomic prediction models for height,

circumference at breast height (CBH), volume, wood
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basic density and pulp yield, using a number of statistical

methods and compared their performance to the

traditional pedigree-based prediction. Furthermore, we

evaluated the impact of varying the number of SNPs and

the composition and size of training and validation sets

on the predictive ability (PA) of genomic prediction.

Methods

Breeding population

The breeding population in this study was obtained

through controlled crossings of 86 E. urophylla and 95

E. grandis trees (G0 population) following a incomplete

diallel mating design, resulting in 16,660 progeny indi-

viduals (G1 population) comprising 476 full-sib families

with 35 individuals per family. In 2009, the progenies

were deployed in a field trial under a randomized

complete block design with single-tree plots and 35 rep-

licates per family in Belmonte (Brazil, 39.19 W, 16.06 S,

210 m above the sea level) at Veracel Celulose S.A.

(Eunápolis, BA, Brazil). Our experimental population

consists of 168 parents (78 of E.urophylla and 90 of

E.grandis) (G0), as not all parents were still alive at the

time of the study, and 958 progeny individuals (G1)

sampled across 338 full-sib families by avoiding low

performing trees. The number of individuals in each

full-sib family ranged from one to 13 with an average of

2.8 individuals per family.

Phenotyping

For the 958 G1 samples, height, volume, and circumfer-

ence at breast height (CBH) were measured at age three

and six years, respectively, and wood traits (basic density

and pulp yield) were measured at age five years. For the

168 G0 parents, the same traits had been measured at

age seven years for E. grandis and at age five years for E.

urophylla. Briefly, height was measured using a Suunto

hypsometer/height meter (PM-5/1520 series) and CBH

was measured with a centimetre tape at 130 cm above

ground. Wood properties were estimated by employing

near-infrared reflectance spectra of sawdust samples col-

lected at breast height using a FOSS NIRSystem 5000-M

and applying calibration models developed earlier by

Veracel S.A..

A mixed linear model was applied to minimize the im-

pacts of environmental and age differences on each trait.

Y ¼ Xβþ ZuþWbþ e

where Y is a vector of observations of a single trait; β is

a vector of fixed effects, including overall mean,

experimental sites and age differences; u is a vector of

random additive genetic effect of individuals with a

normal distribution, u ~N(0, A σ2u), A is a matrix of

additive genetic relationships among individuals; b is a

vector of random incomplete block effect nested in

each experimental site; and e is a heterogeneous ran-

dom residual effect in each experimental site. X, Z and

W are incidence matrices for β, u and b, respectively.

The phenotypes of each trait were then corrected by

subtracting variation of sites, ages and blocks effects for

all individuals, and were referred to adjusted pheno-

types. The adjusted phenotypic traits were used for

calculating the heritability of traits and for building

genomic prediction models.

Genotyping and quality control

The 168 G0 and 958 G1 populations were genotyped

using the Illumina Infinium EuCHIP60K [24] that

contains probes for 60,904 SNPs. EUChip60K

intensity data (.idat files) were obtained through

GENESEEK (Lincoln, NE, USA). SNP genotypes were

called using GenomeStudio (Illumina Inc., San Diego,

CA, USA) following standard genotyping and quality

control procedures with no manual editing of clusters

as described earlier [26]. Further quality control of

the genotyped samples was performed using PLINK

[27]. Nine G1 individuals with sample call rate less

than 70% or inbreeding coefficients greater than one

were removed for further analyses. 10,240 SNPs were

excluded due to low call rates (less than 70%) and

9243 SNPs were filtered out due to monomorphism

or by having minor allele frequency (MAF) less than

0.01. Finally 117 SNPs were removed because they

showed strong deviations from Hardy-Weinberg

equilibrium (p-value <1 × 10−6).

After quality control, missing genotypes of the

remaining individuals were filled in by imputation. We

first tested the accuracy of imputation methods across a

range of missing data (2% - 30%) by artificial removing

SNPs from a fraction of our genotypes. Among the avail-

able family-based and population-based methods we

assessed the following programs for imputation accur-

acy: BEAGLE [28], fastPHASE [29], MENDEL [30], ran-

dom forest, SVD Impute, k-nearest neighbors [31],

BLUP A matrix, Bayesian PCA, NIPALS, Probabilistic

PCA [32]. BEAGLE provided the best accuracy for all

missing data percentages, with accuracies exceeding 95%

in all cases (Additional file 1). We therefore used BEA-

GLE to impute missing genotypes at 41,304 SNPs

retained after the filtering steps discussed above, across

all 168 G0 and 949 G1 individuals. The imputed geno-

type data was subsequently used in all genomic predic-

tion analyses. LD between SNP pairs were measured

using the squared correlation coefficient (r2) for SNPs

located on the same chromosome. Following Remington

et al. [33], the decay of LD versus physical distance was

then modelled using a nonlinear regression method.
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We further estimated population structure and pair-

wise genomic relationships among the 1117 individ-

uals by performing principal components analysis

(PCA) [34] and by calculating genomic relationships

among individuals [14] using 10,213 independent

SNPs (LD-pruned) (r2 < 0.2) calculated in PLINK [27].

Pedigree-based genetic relationship was estimated by

using ABLUP in ASReml (see below for further

information).

Statistical methods for genomic prediction

Four statistical methods were assessed for their ability

to estimate the parameters in eq. (1) and for predict-

ing GEBVs. These methods include genomic best

linear unbiased predictor (GBLUP) [5], ridge

regression BLUP (rrBLUP) [6], Bayesian LASSO (BL)

[35], and reproducing kernel Hilbert space (RKHS)

regression [17]. These methods were chosen to

represent the variety of available approaches for

genomic prediction. GBLUP represents a method

which does not rely on marker effect estimation;

rrBLUP estimates marker effects using linear and

penalized parameters; BL represents a linear, para-

metric and Bayesian method for marker effect

estimation; whereas RKHS represents a non-linear

semi-parametric method. The performance of the four

genomic prediction methods was compared with that

of the commonly used pedigree-based BLUP (ABLUP)

[36].

The GEBVs were estimated using the following mixed

linear model:

y ¼ 1βþ Zaþ e ð1Þ

where y is the vector of adjusted phenotypes of single

trait, β is the vector of overall mean fitted as a fixed

effect, a is the vector of random effects, and e is the

vector of random residual effects. 1 and Z are incident

matrix of β and a, respectively.

ABLUP

ABLUP is the standard method for predicting breeding

values using the expected relatedness among

individuals based on pedigree information [36]. For

ABLUP, the vector of random additive effects (a) in

Eq. (1) is assumed to follow a normal distribution aeN
0;Aσ2a
� �

, where A is the additive numerator relation-

ship matrix estimated from pedigree information and

the σ2a is the additive genetic variance. The residual

vector e is assumed as eeN 0; Iσ2
e

� �
, where I is the iden-

tity matrix. Under these assumptions, Eq. (1) can be

re-written as:

XTX XTZ

ZTX ZTZ þ A−1 σ2e
σ2a

2
4

3
5 β

∧

a
∧

" #
¼

XTy

ZTy

" #
ð2Þ

where σ2e and σ2a are estimated using a restricted max-

imum likelihood method. The estimated breeding values

(â ) and fixed effects (β̂ ) can be calculated directly from

Eq. (2). ABLUP calculations were performed using

ASReml 3.0 [37].

GBLUP

The GBLUP method is derived from ABLUP, but dif-

fers in that the matrix A in Eq. (2) is replaced with the

genomic relationship matrix (G) that is calculated from

genotypic data using G ¼ M−Pð Þ M−Pð ÞT

2
Pp

j¼1
pj 1−pjð Þ

, where M is the

matrix of samples with SNPs encoded as 0, 1, 2 (i.e.

the number of minor alleles), P is the matrix of allele

frequencies with the j-th column given by 2(pj− 0.5),

where pj is the observed allele frequency of the sam-

ples [5]. In GBLUP, the random additive effects (a) in

the Eq. (1) is assumed to follow aeN 0;Gσ2g

� �
, where

σ2g is the genomic-based genetic variance and GEBVs

(â ) are again calculated from equation (2) but with A−1

replaced by G−1 and σ2
a replaced by σ2g . The GBLUP

calculations were performed using ASReml 3.0 [37]

and the G matrix was estimated using the “A.mat”

function from the rrBLUP package in R [14].

rrBLUP

As opposed to the previous two methods, rrBLUP al-

ters the notations of parameters a and Z in the Eq. (1),

where Z now refers to a design matrix for SNP effects,

rather than an incident matrix and a refers to SNP

effects that are assumed to follow aeN 0; Iσ2m
� �

, where

σ2m denotes the proportion of the genetic variance

contributed by each SNP [6]. With these alterations,

Eq. (2) becomes:

XTX XTZ

ZTX ZTZ þ Iλ

" #
β
∧

a
∧

" #
¼

XTy

ZTy

" #
ð3Þ

where λ ¼ σ2e=σ
2
u is the ratio between the residual and

marker variances. A prediction for the GEBV for each

individual is calculated as ĝ i ¼ Z
T

i
â from equation (3),

where Z
T

i
is the SNP vector for individual i and â is the

vector of estimated SNP effects. All calculations were

performed using the “mixed.solve” function from the

rrBLUP package in R [14].
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Bayesian LASSO

The Bayesian LASSO (BL) method is the Bayesian

treatment of LASSO regression as proposed by Legarra

et al. [34]. In BL the vector of SNP effects, a in

equation (1), is assumed to follow a hierarchical prior

distribution with aeN 0;Tσ2m
� �

, where T ¼ diag

τ21;…; τ2p

� �
. τ2j is assigned as τ2j eExp λ2

� �
, j = 1,…,p. λ2

is assigned as λ2 ~Gamma(r, δ). The residual variance

σ2e is assigned as σ2eeχ−2 df e; Seð Þ.

We implemented the BL method using the “BLR”

function from the BLR package in R [38]. Here a

Monte Carlo Markov Chains sampler was applied

and prior parameters (dfe , Se , r , δ , and λ2) were

defined following the guidelines proposed by de los

Campos et al. [39]. The chain length was 20,000

iterations, with the first 2000 excluded as burn-in

and with a subsequent thinning interval of 100.

RKHS

RKHS assumes that the random additive effects in

Eq. (1) are aeN 0;Kσ2
g

� �
, where K is computed by

means of a Gaussian kernel that is given by Kij =

exp(−hdij) [17]. h is a semi-parameter that controls

how fast the prior covariance function declines as

genetic distance increase and dij is the genetic dis-

tance between two samples computed as dij ¼
Pp

k¼1

xik−xjk
� �2

, where xik and xjkare kth SNPs (k = 1,…,p)

for the ith and jth samples, respectively. We imple-

mented the RKHS method through the “BGLR”

function from the BGLR package in R [40], which

use a Gibbs sampler for the Bayesian framework and

assigns the prior distribution of σ2g and σ2e as σ2
geχ

−2

df g ; Sg

� �
and σ2

eeχ
−2 df e; Seð Þ , respectively. Here we

chose a multi-kernel model as suggested by Perez

[40], where three h values were defined as h1 ¼ 2=

5�d
� �

, h2 ¼ 2=d , h3 ¼ 2�5=d , d was the median of

dij. The Gibbs chain length was 20,000 iterations

with the first 2000 iterations discarded as burn-in

and a thinning interval set to 100.

Heritability estimation

We estimated the pedigree-based narrow-sense heritabil-

ity (h2a ) using the relationship matrix from the ABLUP

method, and the narrow-sense genomic heritability (h2g )

using the genomic relationship matrix from GBLUP

(details in [41]). The respective heritabilities were

calculated as:

h2a ¼
σ2a
σ2y

h2g ¼
σ2g

σ2y

where σ2a is the additive variance estimated from ABLUP,

while σ2g is the marker-based genetic variance estimated

from GBLUP. σ2y is the phenotypic variance of the

population.

Size and genetic composition of the training and validation

sets

We simultaneously assessed the impact of the size and

genetic participation of G0 and G1 individuals in the

training set (TS) and validation set (VS) of the genomic

prediction models. Regarding relative TS/VS sizes, we

divided all 1117 (G0 and G1) individuals into five differ-

ent size groups with a TS:VS ratio of 1:1, 2:1, 3:1, 4:1 or

9:1. The corresponding sizes of the TS/VS were respect-

ively 558/559, 743/374, 836/281, 892/225 and 1003/114

individuals. Within these pre-established size composi-

tions, four scenarios were employed where the participa-

tion of G0 and G1 individuals were evaluated to assess

the impact of varying the degrees of relationship and di-

versity between TS and VS. In the first scenario (CV1)

assignment of individuals to either TS or VS was ran-

dom. For the second scenario (CV2) all G0 parents were

assigned to the TS and complemented with a random

selection of G1 individuals up to the required number in

the set, while the VS was composed exclusively of the

remaining G1 individuals. The third (CV3) and fourth

(CV4) scenarios were built based on minimizing and

maximizing relatedness between TS and VS. The

relatedness-based assignment of individuals was deter-

mined using the procedure described in Spindel et al.

[9]. Briefly, 1117 individuals were assigned to 182 clus-

ters based on their genotypes using a k-means clustering

algorithm implemented in the “pamk” function from the

fpc package in R. This method attempts to minimize the

distance between individuals in a cluster and the centre

of that cluster. Using the relatedness estimates, CV3 was

then built by assigning individuals to TS and VS based

on dissimilarity, such that individuals from the same

cluster were not allowed to be both in the same TS or

VS. For CV4 individuals from same cluster were forced

to be either in the TS or VS to increase relatedness

within TS and VS [9].

Genomic prediction models

We evaluated the effects of the five statistical

methods (GBLUP, rrBLUP, BL, RKHS and ABLUP),

five TS/VS sizes and four TS/VS composition scenar-

ios (5*5*4 = 100 models in total) on the predictive

ability (PA) of genomic prediction. For each of the

100 models, 200 replicate runs were carried out for
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each trait and the performance of the models were

evaluated in terms of their PA (ry, ĝ), which is defined

as the Pearson correlation between the adjusted phe-

notypes and the GEBVs of the samples in the VS.

ANOVA was performed with all effects declared as

fixed on 80 out of the 100 models tested (the 20

ABLUP models were excluded) to partition the total

variance into different sources (genomic prediction

method, TS/VS size and genetic composition). The

significant differences we found were further assessed

by means of a paired t tests (α = 5%), adjusted by a

Bonferroni correction. The 80 models, as described

above, were used for assessing the impact of TS/VS

composition and TS/VS size, while all 100 models

were used to evaluate the statistical methods against

ABLUP. All available SNPs were used in all the

analyses of these models.

Numbers and genomic location of SNPs subsets

We finally assessed the impact of the number of SNPs

and their locations (gene vs. intergenic region) on the

PA of genomic prediction models. 12 subsets with differ-

ent numbers of SNPs were generated by randomly

selecting 10, 20, 50, 100, 200, 500, 1000, 2000, 5000,

10,000, 20,000 and 41,304 SNPs from all the available

SNPs. For SNP location, SNPs subsets located in differ-

ent regions of the genome were established by including

SNPs located in four different regions: (i) coding se-

quences (CDS) only (11,786 SNPs); (ii) entire genic re-

gions including CDS, UTRs, introns, and sequences 2 kb

up and downstream of the gene (30,405 SNPs); (iii)

intergenic regions (10,899 SNPs), and (iv) all 41,304

SNPs. The location and classification of each SNP was

obtained by mapping SNPs onto the E.grandis genome

using SnpEff [42]. Genomic prediction models were built

for all four TS/VS compositions using only the two stat-

istical methods (GBLUP and RKHS) that showed the

best predictive performance in the previous analyses,

using a TS/VS size ratio of 4:1 (892/224).

Results

Phenotypic trait correlations

Growth (height, volume, and CBH) and wood properties

(basic density and pulp yield) were measured for all

168 G0 and 949 G1 individuals. The raw phenotypic

data were adjusted using a mixed linear model to

minimize the impacts of environment and age differ-

ences. The pairwise correlations between the adjusted

traits were described by calculating Pearson correl-

ation coefficients (Fig. 1). Growth traits were corre-

lated with each other. Interestingly, however, while

CBH and volume at age three and six years were

highly correlated (r = 0.92 and 0.95 respectively),

height at age three was only weakly correlated with

height at age 6 (r = 0.36). For wood properties traits,

basic density was negatively correlated with pulp yield,

although only weakly so (r = −0.28). Growth traits showed

no correlations with wood traits (r = − 0.1 to 0.1).

Breeding population structure and relatedness

Population structure across G0 and G1 individuals was

assessed by PCA based on 10,213 LD-pruned, independ-

ent SNPs (r2 < 0.2). The first two PCs explained 6.07%

and 3.8% of the total genetic variance (Fig. 2a) and

clearly separated the G0 individuals of the two species,

E.grandis and E.urophylla, with the E.grandis individuals

further subdivided into two subgroups likely represent-

ing the two main provenances used in breeding

programs in Brazil. The G1 individuals were generally

projected into the space defined by their parents, but

with a few outliers. The expected pedigree-based and

realized genomic-based genomic relationships among

G0 and G1 individuals were visualized using heatmaps

(blue and red in Fig. 2b, respectively). The result of the

genomic relationship analysis corroborated the PCA

result, in which E. urophylla was clustered into a single

group, whereas E. grandis formed two subgroups. The

average values of the realized genomic relationships

among what were considered to be full-sibs, half-sibs

and unrelated individuals from the pedigree data were

generally lower than the expected relationships values

(0.309 vs. 0.5, 0.131 vs. 0.25 and 0.0056 vs. 0, respect-

ively) (Table 1). This result suggests that pedigree errors

were likely present in this population. These putative

pedigree errors in turn negatively affected our ability to

estimate the heritability of traits based on pedigree

information, which were considerably lower than those

estimated using genomic-based realized genetic

relationships (Table 2).

Predictive abilities with different statistical methods

Estimates of PAs were obtained using different statistical

methods, compositions and sizes of TS/VS for each trait

(Additional file 2). An ANOVA showed that all these

factors had a significant effect on the PA (P-value

<0.005) (Additional file 3). Across the four genomic pre-

diction methods used (GBLUP, rrBLUP, BL, and RKHS)

the average PA varied from 0.27 to 0.274 (Additional file

4). All the four methods outperformed the pedigree-

based ABLUP prediction (mean PA = 0.121) by an aver-

age of 80%–200% across the eight traits (Fig. 3). RKHS

yielded a slightly better PAs for six out of eight traits

and this method was particularly suitable for predicting

traits that displayed lower heritabilities, such as CBH

and height. The other three methods generally gave

similar results across all traits, although with a slightly

better performance than RKHS for pulp yield (Fig. 3).
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Impact of TS/VS compositions and relative sizes on

predictive ability

The average PAs differed significantly for the different

TS/VS compositions tested and varied from 0.253 to

0.286 (Additional file 5). The genomic prediction

model built with CV2 (all G0 parents in the TS)

showed the highest PAs for all traits except pulp

yield, whereas models based on CV3 (minimum

relatedness between TS and VS) gave the worst

predictions. The models based on CV1 (random as-

signment) and CV4 (maximum relatedness between

TS and VS) showed no significant differences in PA

(Fig. 4, Additional file 5). The average PA was signifi-

cantly improved from 0.251 to 0.285, as the TS/VS

ratio increased from 1:1 (558/559) to 9:1 (1003/113)

(Additional file 6), irrespective of the prediction

method (Fig. 3) or the genetic composition of TS/VS

used (Fig. 4), clearly showing the importance of an

adequate size of the training set to build prediction

models. Furthermore, there was a steeper increase in

PA when TS/VS ratio increased from 1:1 (558/559) to

2:1 (743/374) than from 2:1 (743/374) to 9:1 (1003/

114) for all traits (Figs. 3 and 4).

Impact of the number of SNPs and their genomic location

on predictive ability

Estimates of PA using different numbers of SNPs

(Additional file 7) and subsets of SNPs in different gen-

omic locations (Additional file 8) were obtained with

two prediction methods, using a TS/VS ratio of 892/225

and using all the four different TS/VS compositions. An

ANOVA showed that both the number of SNPs and

their genomic location significantly affect the PA for

both prediction methods (GBLUP and RKHS) (P-value

<0.005), and that the number of SNPs has a larger im-

pact than their genomic location (Additional file 9). The

average PAs across all traits decreased from 0.278 to

0.113 when the number of SNPs used in the prediction

models dropped from 41,304 to only 10, and the reduc-

tion was especially strong when the number of SNPs

went below 5000 (Additional file 10). On the other hand,

no significant improvement was generally seen in the

average of PA when more than 5000 SNPs were used

(Additional file 10, Fig. 5). The results obtained for the

different traits suggest that traits with lower heritability

are more sensitive to the reduction in the number of

SNPs (Fig. 5). For instance, PA for basic density (h2 = 0.35)

Fig. 1 Correlation and distribution of phenotypes. Scatter plots (lower off-diagonal) and correlations with probability values (upper off-diagonal;

H0: r = 0) for adjusted phenotypes between pairs of traits. Color key on the right indicates the strength of the correlations. Diagonal: histograms

of the distribution of adjusted phenotypes values
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went from 0.47 to 0.24 (a 50% decrease) when the number

of SNPs dropped from 40,000 to 10, whereas CBH of age

three (h2 = 0.113) decreased from 0.128 to 0.03 (a 77%

decrease). Overall, slight significant differences were seen

in PAs by using SNP sets located in different genomic re-

gions (Fig. 6), the average PAs range from 0.270 to 0.284

(Additional file 11). Predictions using SNPs located in

intergenic regions were marginally better than using SNPs

in genic regions or all SNPs, except for pulp yield that

could be better predicted based on models using SNPs

from coding and gene regions (Fig. 6). When comparing

the PA of models using SNPs in coding versus entire gene

regions, the latter had a slightly better performance, most

likely due to the larger number of SNPs used (30,504 vs.

11,786) and not due to any specific effect of genomic loca-

tion. When we assessed the pairwise LD (r2) among SNPs

in the four regions tested, the extent of LD differed among

them, with LD showing the most rapid decay in coding

regions and the slowest decay in intergenic regions

(Additional file 12).

Discussion
This study presents the results of an empirical evalu-

ation of the accuracy of genomic prediction on growth

and wood quality traits in Eucalyptus using data from a

high-density SNP array. Our results are based on data

from a two generations breeding population and provide

additional encouraging results on the prospects of using

genomic prediction to accelerate breeding. We have

assessed a range of factors, including the statistical

methods used to estimate predictive ability, the size and

composition of the training and validation sets as well as

the number and genomic locations of SNPs used in the

prediction model. Hereafter we will discuss how these

factors influenced the prediction accuracy.

Genomic data corrected pedigree inconsistencies

All four genomic prediction methods performed signifi-

cantly better than the pedigree-based evaluations for all

complex traits assessed (Fig. 3). While similar results

have been reported for animals [18, 43] and crop species

[9, 36] across a number of traits, in forest trees predic-

tion accuracies using genomic data have generally been

similar or up to 10–30% lower than accuracies obtained

using pedigree-estimated breeding values, including

Eucalyptus [4], loblolly pine (Pinus taeda) [44], white

spruce (Picea glauca) [45, 46], interior spruce (Picea

engelmannii × glauca) [47, 48] and maritime pine (Pinus

pinaster) [49]. Genomic predictions with lower accur-

acies than pedigree-based predictions could arise from

insufficient marker density, such that not all casual vari-

ants are captured in the genomic estimate [41], or an

overestimate of the pedigree-based prediction due to its

inability of ascertaining the true genetic relationships in

half-sib families [47]. Our result however differ from

previous studies in forest trees due to the fact that the

Table 1 Pairwise expected pedigree-based and realized genomic-based relationships in the different family types

Full-sib families (961)a Half-sib families (12718) Unrelated individuals (434252)

Min Mean Max Min Mean Max Min Mean Max

Pedigree-expected relationship 0.5 0.5 0.5 0.25 0.25 0.25 0 0 0

Genomic-realized relationship −0.274 0.309 0.933 −0.464 0.131 0.908 −0.467 −0.056 0.891

aNumber in parentheses indicate the number of pairwise estimates

Fig. 2 Genetic structure and relatedness in the breeding population. (a) First two principal components of a PCA revealing population structure.

Dots represent E.grandis (blue), E.urophylla (red) and their F1 (green) individuals. (b) Heatmaps of the pairwise pedigree-expected relationships

(blue, upper off-diagonal) and genomic-realized relationship (red, lower off-diagonal) of the 1117 individuals assigned to E.grandis (G), E.urophylla

(U) and their hybrid progenies (H)
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average pairwise estimates of genetic relationship among

individuals were substantially lower using SNP data than

expectations based on pedigree information (Table 1),

clearly suggesting that the expected pedigrees, and con-

sequently the pairwise relationships, had considerable in-

consistencies that were corrected by the SNP data. We

speculate that these inconsistencies likely derived from

pollen contamination and/or mislabelling in the process

of generating the full and half-sib families. Besides cor-

recting potential pedigree errors, the relatively dense

SNP data used in our study also was able to accurately

capture the Mendelian sampling variation within families

so that genetic variances estimates were based on the

true proportion of the genome that is identical by des-

cent (IBD) or state (IBS) among half- or full-sib individ-

uals, resulting in improved estimates of trait heritability

(Table 2).

Genomic predictions show that traits adequately fit the

infinitesimal model

Overall, the different genomic prediction methods pro-

vided similar results for the all traits evaluated, with only

a slight advantage for RKHS which showed better PAs

for the low-heritability growth traits (Fig. 3). However,

for pulp yield, RKHS was instead the worst performing

method, and it is possible that the definition of a kernel

simply was not suitable for this particular trait [17].

Our results corroborate previous reports from both

crops and animals [18, 50, 51], as well as forest trees.

In loblolly pine, for example, the performance of

rrBLUP and three Bayesian methods were only mar-

ginally different when compared across 17 traits with

distinct heritabilities, with a small improvement seen

for BayesA only for fusiform rust resistance where

loci of relatively larger effect have been described

[44]. Similar results were obtained for growth and

wood traits in other forest trees showing no perform-

ance difference between rrBLUP and Bayesian

methods [46, 48, 49]. This occurs despite simulation

studies suggesting that Bayesian methods, like BL,

should outperform univariate methods such as

rrBLUP and GBLUP [6, 52, 53]. One possible reason

for the apparent disagreement between simulations

and empirical data sets could be that the true QTL

effects for most of traits are relatively small and the

distribution is less extreme than in simulated data

[54]. Our results therefore support the proposal that

either rrBLUP or GBLUP are effective methods in

providing the best compromise between computa-

tional time and prediction efficiency [55] and that the

quantitative traits assessed in our study adequately fit

the assumption of the infinitesimal model.

Table 2 Pedigree-based and genomic heritabilities for each trait

CBH (3)a Height (3) Volume (3) CBH (6) Height (6) Volume (6) Basic density Pulp yield

h2a
b 0.051(0.03) 0.074(0.04) 0.057(0.03) 0.085(0.04) 0.097(0.05) 0.068(0.04) 0.23(0.04) 0.27(0.05)

h2g 0.113(0.04) 0.171(0.05) 0.162(0.04) 0.184(0.04) 0.193(0.05) 0.196(0.04) 0.35(0.05) 0.46(0.05)

aNumber in parentheses correspond the age at measurement;
bh2a and h2g correspond to the pedigree and genomic narrow-sense heritability, respectively, with their standard deviation in parenthesis

Fig. 3 Predictive abilities with different methods and increasing sizes of training sets. Predictive ability (y axis) estimated using five methods

across five training set/validation set sizes in numbers of individuals (x axis) 558/559, 743/374, 836/281, 892/225 and 1003/114. Red and blue

dashed lines indicate the pedigree-based (h2a) and genomic-realized (h2g) narrow-sense heritability respectively
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Training set size, composition and relatedness strongly

affect predictive ability

Our results show that the size and compositions of

training and validation sets had the largest impact on

the PA, irrespective of the analytical method used

(Fig. 4). The average PA rapidly increased with in-

creasing sizes of the TS and did not show any sign of

plateauing. Earlier simulations of Eucalyptus breeding

scenarios had in fact shown that with up to N = 1000

individuals in the TS, the accuracy would rapidly in-

crease, and additional gains were seen up to N = 2000

individuals for traits with low heritabilities, for larger

numbers of QTLs involved in traits and for larger ef-

fective population size (Ne). After N = 2000 the

predictive accuracy would tend to plateau irrespective

of the Ne and genotyping density [22]. Simulations

[19, 56] and proof-of-concept studies [57] in crop

species also show improved PA with larger TS sizes.

Larger training populations alleviate the probability of

losing rare favourable alleles from the breeding popu-

lation as generations of selection advance. Addition-

ally, by sampling more individuals for training, a

larger diversity is captured and better estimates of the

marker effects are obtained which in turn positively

Fig. 4 Predictive abilities with variable levels of relatedness between training and validation sets. CV1: random assignment of individuals to either

training set (TS) or validation set (VS); CV2: all the G0 pure species parents assigned to the TS; CV3: minimum relatedness between TS and VS

individuals; CV4: maximum relatedness between TS and VS individuals. Estimates were obtained using GBLUP and RKHS across five TS/VS sizes in

numbers of individuals (x axis): 558/559, 743/374, 836/281, 892/225 and 1003/114

Fig. 5 Predictive abilities with increasing numbers of SNPs. Predictive ability estimated with GBLUP and RKHS with increasingly larger sets of SNP

sampled at random from the total of 41,304 SNPs. Outliers are indicated by black dots. Letters indicate significant difference between the different

models after Bonferroni adjustment (P < 0.05)
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impact predictions in cross-validations and future

genomic selection candidates.

As expected, relatedness between TS and VS had a

large impact on PAs for all traits. Prediction models built

under scenario CV3 (minimized relatedness between TS

and VS) resulted in significantly worse predictions than

in scenario CV4 when relatedness was maximized. Our

results are in line with previous reports in forest trees,

such as white spruce [45, 46] and Eucalyptus [4], where

models developed for one population had limited or no

ability of predicting phenotypes in unrelated popula-

tions, suggesting that prediction models are largely

population specific. With a lower relationship between

TS and VS, the extent of LD is shorter and not stable

across distantly related individuals in populations and

the predictive ability of genomic prediction model is

therefore reduced. Recent simulations show that the ac-

curacy of genomic prediction models decline approxi-

mately linearly with increasing genetic distance between

training and prediction populations [58]. Increased re-

latedness reduce the number of independently segregat-

ing chromosome segments and therefore increase the

probability that chromosome segments that are IBD and

which are sampled in the training population are also

represented in the selection candidates. Our results pro-

vide additional experimental evidence that for successful

implementation of GS the selection candidates have to

show a close genetic relationship to the training

population.

PAs were considerably higher when all the G0 parents

were kept in the TS (scenario CV2). This result could be

due to two reasons. On one hand, by keeping all G0

parents in TS, we ensure that a large genetic diversity is

available for model training, which could explain the

positive impact of G0 inclusion on predictions. On the

other hand, it is possible that by allocating all G0 indi-

viduals to the TS the positive effect we observe is strictly

not due to increased predictive power but rather because

we avoid the potentially negative impact of having pure

species parents in the validation set in combination with

G1 progeny that were largely F1 hybrids. In order to

evaluate this, we estimated PA of genomic prediction

models by using GBLUP and RKHS, having only the

168 G0 parents for TS and randomly selected 168 G1 in-

dividuals in VS. To control for the effect of the strongly

reduced TS size, we compared this setup with random

assignment of individuals to TS or VS but keeping the

size of each at N = 168. The results showed considerably

lower PAs (even zero or negative) when using only pure

species parents to predict G1 hybrid progeny phenotypes

(Additional file 13). This observation, together with the

fact that PAs for scenario CV4 (maximum relatedness

between TS and VS) were also generally lower than CV2,

suggest that the higher PAs we observe for scenario CV2

is mostly due to avoiding the negative effect of having

pure species parents in the VS.

The issue of genomic prediction in hybrid breeding

has been investigated so far only within species and only

for domestic animals, more specifically for bovine and

pig breeding in which selection is carried out in pure

breeds but with the aim to improve crossbred perform-

ance [43, 59]. Results from simulations show that

training on crossbred data provides good PAs by select-

ing purebred individuals for crossbred performance,

Fig. 6 Predictive abilities using SNPs located in different genomic regions. Predictive ability estimated with GBLUP and RKHS using 11,786 SNPs in

coding DNA, 30,405 SNPs in genic regions (CDS, UTR, intron, and within 2 kb upstream and downstream of genes), 10,899 SNPs in intergenic

regions and all 41,304 SNPs. Letters indicate significant difference between the different models after Bonferroni adjustment (P < 0.05)
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although PAs drop with increasing distances between

breeds [60]. When crossbred data is not available, separ-

ate purebred training populations can be used either

separately or combined depending on the correlation of

LD phase between the pure lines [61], which in turn is

in part determined by the time of divergence between

the populations. Compared to bovine breeds that belong

to the same species and have diverged relatively recently

(<300KYA) [62], the estimated divergence time between

the two Eucalyptus species used in our study is much

older, estimated at 2–5 MYA [63]. We therefore don’t

expect much correlation of LD phase between the two

species and it is thus not surprising that training on the

combined pure species sets with validation in F1 hybrids

resulted in poor PA. To the best of our knowledge, our

results are the first ones to provide an initial look at the

issue of genomic prediction from pure species to inter-

specific hybrids and our results indicate that, consistent

with theoretical expectations, models have to be trained

using hybrids if one is to predict phenotypes in hybrid

selection candidates.

Number of SNPs is more important than SNP genomic

location

Across all traits, no major improvement was detected in

PA when more than 5000 SNPs were used (Additional

file 10, Fig. 5), although a slight increase was observed

for height of age three, basic density and pulp yield

when using GBLUP based on 20,000 SNPs. Several stud-

ies have previously shown that considerably lower num-

bers of SNPs provided PAs equivalent to those observed

using all SNPs available [24, 64]. The necessary number

of SNPs needed for genomic prediction model depends

on the extent of LD, which is strictly dependent on Ne.

Our results, where we achieve equivalent PAs using ei-

ther all or only 10–20% of the genotyped markers sug-

gests that it represents a closed breeding population

with a relatively modest Ne. This has been a common

approach in domestic animals with the intent of devel-

oping low-density genotyping chips to reduce genotyp-

ing costs [8]. The main advantage of using reduced SNP

panels is cost-effectiveness, although it is expected that

using a higher density of markers will be necessary to

mitigate the decay of PAs over generations due to the

combined effect of recombination and selection on the

patterns of LD [65]. It is also questionable whether it

will be more cost effective to have targeted low-density

SNP chips for specific populations or a full SNP chip

that can be used across breeding populations of several

organizations. By having a SNP chip that will accommo-

date several populations the cost-effectiveness and econ-

omy of scale of amassing many more samples to be

genotyped with the same chip will likely be much larger

than the cost reduction observed by using a smaller

number of SNPs on each specific population.

SNP location also contributed to the predictive ability

of genomic prediction model although the effects were

rather modest. PAs using SNPs in intergenic regions

were slightly better than using SNPs in genic regions or

using all SNPs, except for pulp yield that could be some-

what better predicted with SNPs in coding and gene re-

gions (Fig. 6). This likely represents a random sampling

effect and not any specific enrichment for functional

variants for this trait. However, the decline of LD was

slower for SNPs in intergenic regions than for SNPs in

genic and/or coding regions (Additional file 12) and the

slightly longer range of LD might help explain why using

SNPs in intergenic regions provided better PAs. With

slower LD decay, SNPs in intergenic regions might bet-

ter capture QTLs across longer genomic segments than

SNPs in coding regions where LD decays more rapidly.

Further issues affecting the accuracy of model prediction

Several issues remain to be investigated for successful

adoption of genomic prediction in operational eucalypt

breeding. First, how does the accuracy of genomic pre-

diction decline over successive generations of selection

due to the effects of recombination? Simulation studies

illustrated that the prediction accuracy decline rapidly

during early generations but this decline slows down in

later generations [6, 16]. A GS model should therefore

be updated after the phenotypes of next generation indi-

viduals become available. Second, how stable are gen-

omic prediction models across multiple environments

and how important is it to consider genotype by envir-

onment interactions in the models? The interaction be-

tween genomic prediction and environmental effects will

essentially follow conventional G x E strategies. Predic-

tion models are expected to be accurate across sites

within the same breeding zone (an area within which a

single population of improved trees can be planted with-

out fear of maladaptation) but not necessarily across dif-

ferent breeding zones [12]. Furthermore, with genomic

prediction, individuals are not evaluated on the basis of

their own phenotypic performance, but on the basis of

genomic information across other individuals, years and

environments, which given an opportunity to evaluate

the effect of particular genomic segments that are shared

between individuals across multiple environments.

Burgueno et al. [66] showed that models incorporating

pedigree and marker data on wheat lines from multiple

environments can substantially enhance prediction

accuracy relative to only pedigree-based prediction or

relative to genomics prediction models derived from

single environments. Finally, we have only considered

the additive genetic variance for building genomic

prediction models in our eucalypt population, but it is
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possible, and perhaps even likely, that non-additive gen-

etic effects play an important role in many breeding

populations and specifically in populations consisting of

early generation hybrids. A recent simulation study of

genomic prediction in Eucalyptus breeding reported that

genomic prediction including dominance effects per-

formed better for clone selection where as non-additive

effects did not improve the estimation of breeding value

for parental selection [67]. To the best of our knowledge,

no experimental data exist in forest trees regarding the

ability of GS to predict the total genotypic value of indi-

vidual trees, including both additive and non-additive

effects.

Conclusions

Our experimental results provide further promising per-

spectives for the implementation of genomic prediction in

Eucalyptus breeding programs. Genomic prediction

largely outperformed pedigree-based prediction in our ex-

periment, mainly due to the fact that our expected pedi-

gree had major inconsistencies, resulting in gross

underestimation of all pedigree-based estimates. This

rather unexpected result illustrated an additional advan-

tage of using SNP data and genomic prediction in breed-

ing programs. While the main advantage of genomic

prediction in eucalypt breeding will likely be the reduction

of the breeding cycle length [4], the use of a genomic rela-

tionship matrix allowed us to obtain precise estimates of

genetic relationship and heritabilities that we would other-

wise not have had access to. Furthermore, our results

corroborated the key role of relatedness as a driver of PA,

the potential of using lower density SNP panels, and the

fact that growth and wood traits adequately fit the infini-

tesimal model such that either GBLUP or rrBLUP repre-

sents a good compromise between computational time

and prediction efficiency. In contrast to previous studies

in Eucalyptus, we had accessed to both the pure species

parents (E. grandis and E. urophylla) and their F1 progeny.

We show that models trained on pure species parents do

not allow for accurate prediction in F1 hybrids, likely due

to the strong genetic divergence between the two species

and lack of consistent patterns of LD between the two

species and their hybrids.

Additional files

Additional file 1: Average accuracy of SNP imputation methods with

increasing proportions of missing data. SNPs on chromosomes 6 and 8

were randomly removed from the dataset to generate specific missing

data proportions. Accuracy between imputed and true SNP genotypes

were subsequently calculated with the different methods.

(DOCX 1714 kb)

Additional file 2: Predictive abilities on genomic selection model that

comprises of statistical methods, genetic compositions and relative sizes

of Training Set/Validation Set for each trait. (XLSX 16 kb)

Additional file 3: ANOVA analysis of sources of variation affecting the

predictive ability. (DOCX 48 kb)

Additional file 4: Mean and standard deviation of predictive ability with

the five prediction methods for the eight traits. (DOCX 96 kb)

Additional file 5: Mean and standard deviation of predictive ability

estimated with the four Training Set/Validation Set compositions.

(DOCX 84 kb)

Additional file 6: Mean and standard deviation of predictive ability

estimated with the five relative sizes of Training Set/Validation Set

expressed in proportions and numbers of individuals. (DOCX 89 kb)

Additional file 7: Mean and standard deviation of predictive ability

across increasing numbers of SNPs, statistical methods (RKHS and

GBLUP), four Training Set/Validation Set compositions for each of eight

traits. (XLSX 61 kb)

Additional file 8: Mean and standard deviation of predictive ability

estimated with SNPs in four genomic locations, with two statistical methods

(RKHS and GBLUP), four Training Set/Validation Set compositions for each of

eight traits. (XLSX 58 kb)

Additional file 9: ANOVA of predictive ability with SNP genomic

location and SNP number as sources of variation. (DOCX 62 kb)

Additional file 10: Average predictive ability estimated with different

numbers of SNPs fitted into the model. (DOCX 136 kb)

Additional file 11: Average predictive abilities estimated using SNP sets

located in different genomic regions. (DOCX 82 kb)

Additional file 12: Decay of linkage disequilibrium (LD) with physical

distance estimated with SNPs in different genomic locations. (a) A

comparison of the decay of LD with physical distance in four classes of

SNPs located with coding, genic, intergenic and all regions, respectively.

Dots of pairwise LD versus physical distance and the LD decay for SNPs

located in all regions (b), coding region (c), genic region (d) and

intergenic region (e), respectively. (DOCX 1375 kb)

Additional file 13: Predictive abilities by training in pure species

eucalypt parents and predicting in their F1 hybrids. Predictive ability

estimated under three training/validation sets (TS/VS) scenarios with two

methods (GBLUP and RKHS) for each trait. PO168 (red boxes): all 168 E.

grandis and E. urophylla pure species G0 parents used for training and

168 G1 random selected hybrid progeny for validation; random168

(green): randomly selected 168 individuals from all 1117 for TS and 168

randomly also for VS; random558 (blue): randomly divided all 1117

individuals into TS and VS of same size (558/558). Outlier estimates are

indicated by black dots. (DOCX 174 kb)

Abbreviations

BL: Bayesian LASSO; CBH: Circumference at breast height; CDS: Coding

sequences; GBLUP: Genomic best linear unbiased predictor; GEBV: Genomic

estimated breeding values; GRM: Genomic relationship matrix; GS: Genomic

selection; IBD: Identity by descent; IBS: Identity by state; LD: Linkage

disequilibrium; MAS: Marker-assisted selection; Ne: Effective population size;

PA: Predictive ability; PCA: Principal components analysis; QTLs: Quantitative

trait loci; RKHS: Reproducing kernel Hilbert space; rrBLUP: Ridge-regression

best linear unbiased prediction; SNP: Single-nucleotide polymorphism;

TS: Training set; VS: Validation set

Acknowledgements

We would like to thank Michelle Bayerl Fernandes for her contribution on

phenotyping the breeding population. The computations were performed

on resources provided by the Swedish National Infrastructure for Computing

(SNIC) at UPPMAX and HPC2N.

Funding

The study has partly been funded through grants from Vetenskapsrådet and

the Kempestiftelserna to PKI. BT gratefully acknowledges financial support

from the Umeå Plant Science Centre (UPSC) “The Research School of Forest

Genetics, Biotechnology and Breeding”.

Tan et al. BMC Plant Biology  (2017) 17:110 Page 13 of 15

dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6
dx.doi.org/10.1186/s12870-017-1059-6


Availability of data and materials

The data that support the findings of this study are available from Veracel but

restrictions apply to the availability of these data, which were used under license

for the current study, and so are not publicly available. Data are available from

the authors upon reasonable request and with permission of Veracel.

Authors’ contributions

BT, BS and PKI conceived and designed the experiment; GSM phenotyped

data; GSM and KZF collected samples for genotyping; DG was responsible

for genotyping; BT analysed the data under DG and PKI’s guidance; BT

drafted the first version of the manuscript and BT, DG, BS and PKI critically

contributed to the final version of the manuscript. All authors read and

approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Umeå Plant Science Centre, Department of Ecology and Environmental

Science, Umeå University, Umeå SE-90187, Sweden. 2Biomaterials Division,

Stora Enso AB, Nacka SE-13104, Sweden. 3EMBRAPA Genetic Resources and

Biotechnology – EPqB, Brasilia, DF 70770-910, Brazil. 4Universidade Católica

de Brasília- SGAN, 916 modulo B, Brasilia, DF 70790-160, Brazil. 5Veracel

Celulose S.A., Eunápolis, BA 45.820-970, Brazil. 6Present address: Department

of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural

Sciences, Uppsala SE-75007, Sweden.

Received: 13 October 2016 Accepted: 15 June 2017

References

1. Rezende GDSP, Resende MDV, Assis TF. Eucalyptus breeding for clonal forestry.

In: Fenning T, editor. Challenges and opportunities for the world's forests in

the 21st century. Dordrecht: Springer Netherlands; 2014. p. 393–424.

2. Myburg AA, Potts BM, Marques CM, Kirst M, Gion JM, Grattapaglia D, Grima-

Pettenati J. Eucalyptus. Genome Mapping and Molecular Breeding in Plants.

Volume 7. Edited by: Kole CR. New York: Springer, Forest trees; 2007. pp.

115-160.

3. Bison O, Ramalho M, Rezende G, Aguiar A, De Resende M. Comparison

between open pollinated progenies and hybrids performance in Eucalyptus

grandis and Eucalyptus urophylla. Silvae Genet. 2006;55(4–5):192–6.

4. Resende MD, Resende MF Jr, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar

AM, et al. Genomic selection for growth and wood quality in Eucalyptus:

capturing the missing heritability and accelerating breeding for complex

traits in forest trees. New Phytol. 2012;194(1):116–28.

5. Goddard ME, Hayes BJ, Meuwissen THE. Using the genomic relationship

matrix to predict the accuracy of genomic selection. J Anim Breed Genet.

2011;128(6):409–21.

6. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value

using genome-wide dense marker maps. Genetics. 2001;157(4):1819–29.

7. Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock

with genomic selection. Annu Rev Anim Biosci. 2013;1:221–37.

8. Van Eenennaam AL, Weigel KA, Young AE, Cleveland MA, Dekkers JCM.

Applied animal genomics: results from the field. Annu Rev Anim Biosci.

2014;2:105–39.

9. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, et al. Genomic

selection and association mapping in rice (Oryza sativa): effect of trait

genetic architecture, training population composition, marker number and

statistical model on accuracy of rice genomic selection in elite, tropical rice

breeding lines. PLoS Genet. 2015;11(2):e1004982.

10. Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrells ME, et al.

Effectiveness of genomic prediction of maize hybrid performance in

different breeding populations and environments. G3-Genes Genom Genet.

2012;2(11):1427–36.

11. Isik F. Genomic selection in forest tree breeding: the concept and an

outlook to the future. New Forest. 2014;45(3):379–401.

12. Grattapaglia D. Breeding Forest Trees by Genomic Selection: Current

Progress and the Way Forward. In: Genomics of Plant Genetic Resources:

Volume 1 Managing, sequencing and mining genetic resources. Edited by

Tuberosa R, Graner A, Frison E. Dordrecht: Springer Netherlands; 2014. pp.

651–82.

13. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, MPL C. Whole-

genome regression and prediction methods applied to plant and animal

breeding. Genetics. 2013;193(2):327–45.

14. Endelman JB. Ridge regression and other kernels for genomic selection

with R package rrBLUP. Plant Genome. 2011;4(3):250–5.

15. Silva FF E, Viana JM, Faria VR, de Resende MD. Bayesian inference of mixed

models in quantitative genetics of crop species. Theor Appl Genet. 2013;

126(7):1749–61.

16. Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship

information on genome-assisted breeding values. Genetics. 2007;177(4):2389–97.

17. De los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J. Semi-parametric

genomic-enabled prediction of genetic values using reproducing kernel

Hilbert spaces methods. Genet Res. 2010;92(4):295–308.

18. Neves HH, Carvalheiro R, Queiroz SA. A comparison of statistical methods

for genomic selection in a mice population. BMC Genet. 2012;13(1):100.

19. Hayes B, Daetwyler H, Bowman P, Moser G, Tier B, Crump R, Khatkar M,

Raadsma H, Goddard M. Accuracy of genomic selection: comparing theory

and results. In: Proceedings of the 18th Conference: Association for the

Advancement of Animal Breeding and Genetics, Barossa Valley, Australia;

2009. pp. 34–37.

20. Wu X, Lund MS, Sun D, Zhang Q, Su G. Impact of relationships between

test and training animals and among training animals on reliability of

genomic prediction. J Anim Breed Genet. 2015;132(5):366–75.

21. Zhong S, Dekkers JC, Fernando RL, Jannink JL. Factors affecting accuracy

from genomic selection in populations derived from multiple inbred

lines: a barley case study. Genetics. 2009;182(1):355–64.

22. Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding.

Tree Genet Genomes. 2011;7(2):241–55.

23. Moser G, Khatkar MS, Hayes BJ, Raadsma HW. Accuracy of direct genomic

values in Holstein bulls and cows using subsets of SNP markers. Genet Sel

Evol. 2010;42

24. Su G, Brondum RF, Ma P, Guldbrandtsen B, Aamand GR, Lund MS.

Comparison of genomic predictions using medium-density (similar to

54,000) and high-density (similar to 777,000) single nucleotide

polymorphism marker panels in Nordic Holstein and red Dairy cattle

populations. J Dairy Sci. 2012;95(8):4657–65.

25. MacLeod IM, Hayes BJ, Goddard ME. The effects of demography and

long-term selection on the accuracy of genomic prediction with

sequence data. Genetics. 2014;198(4):1671–84.

26. Silva-Junior OB, Faria DA, Grattapaglia D. A flexible multi-species

genome-wide 60K SNP chip developed from pooled resequencing of

240 Eucalyptus tree genomes across 12 species. New Phytol. 2015;206(4):

1527–40.

27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al.

PLINK: a tool set for whole-genome association and population-based

linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

28. Browning SR, Browning BL. Rapid and accurate haplotype phasing and

missing-data inference for whole-genome association studies by use of

localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97.

29. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in

haplotype inference and missing-data imputation. Am J Hum Genet.

2005;76(3):449–62.

30. Candes EJ, Recht B. Exact matrix completion via convex optimization.

Found Comput Math. 2009;9(6):717–72.

31. Rutkoski JE, Poland J, Jannink JL, Sorrells ME. Imputation of unordered

markers and the impact on genomic selection accuracy. G3-Genes

Genom Genet. 2013;3(3):427–39.

32. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods - a

bioconductor package providing PCA methods for incomplete data.

Bioinformatics. 2007;23(9):1164–7.

Tan et al. BMC Plant Biology  (2017) 17:110 Page 14 of 15



33. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR,

Doeblay J, et al. Structure of linkage disequilibrium and phenotypic

associations in the maize genome. P Natl Acad Sci USA. 2001;98(20):

11479–84.

34. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS

Genet. 2006;2(12):2074–93.

35. Legarra A, Robert-Granie C, Croiseau P, Guillaume F, Fritz S. Improved Lasso

for genomic selection. Genet Res. 2011;93(1):77–87.

36. Crossa J, Campos Gde L, Perez P, Gianola D, Burgueno J, Araus JL, et al.

Prediction of genetic values of quantitative traits in plant breeding using

pedigree and molecular markers. Genetics. 2010;186(2):713–24.

37. Gilmour AR, Gogel B, Cullis B, Thompson R, Butler D. ASReml user guide

release 3.0. UK https://www.vsni.co.uk/: VSN International Ltd, Hemel

Hempstead; 2009.

38. Perez P. De los Campos G, Crossa J, Gianola D. Genomic-enabled prediction

based on molecular markers and pedigree using the Bayesian linear

regression package in R. Plant Genome. 2010;3(2):106–16.

39. los Campos G, Pérez P, Vazquez AI, Crossa J. Genome-enabled prediction

using the BLR (Bayesian linear regression) R-package. In: Genome-wide

association studies and genomic prediction. Edited by Gondro C, van der

Werf J, Hayes B. Totowa, NJ: Humana Press; 2013: 299-320.

40. Perez P. De los Campos G. Genome-wide regression and prediction with

the BGLR statistical package. Genetics. 2014;198(2):483–95.

41. de Los CG, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS

Genet. 2015;11(5):e1005048.

42. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program

for annotating and predicting the effects of single nucleotide

polymorphisms. SnpEff Fly. 2012;6(2):80–92.

43. Hidalgo AM, Bastiaansen JWM, Lopes MS, Harlizius B, Groenen MAM, de

Koning DJ. Accuracy of predicted genomic breeding values in purebred

and crossbred pigs. G3-Genes Genom Genet. 2015;5(8):1575–83.

44. Resende MF Jr, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, et

al. Accuracy of genomic selection methods in a standard data set of loblolly

pine (Pinus taeda L.). Genetics. 2012;190(4):1503–10.

45. Beaulieu J, Doerksen T, Clement S, MacKay J, Bousquet J. Accuracy of

genomic selection models in a large population of open-pollinated families

in white spruce. Heredity. 2014;113(4):343–52.

46. Beaulieu J, Doerksen TK, MacKay J, Rainville A, Bousquet J. Genomic

selection accuracies within and between environments and small breeding

groups in white spruce. BMC Genomics. 2014;15:1048.

47. El-Dien OG, Ratcliffe B, Klapste J, Chen C, Porth I, El-Kassaby YA. Prediction

accuracies for growth and wood attributes of interior spruce in space using

genotyping-by-sequencing. BMC Genomics. 2015;16:370.

48. Ratcliffe B, El-Dien OG, Klapste J, Porth I, Chen C, Jaquish B, et al. A

comparison of genomic selection models across time in interior spruce

(Picea engelmannii x glauca) using unordered SNP imputation methods.

Heredity. 2015;115(6):547–55.

49. Isik F, Bartholome J, Farjat A, Chancerel E, Raffin A, Sanchez L, et al.

Genomic selection in maritime pine. Plant Sci. 2016;242:108–19.

50. Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, et al.

Genomic prediction in CIMMYT maize and wheat breeding programs.

Heredity. 2014;112(1):48–60.

51. Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, et al.

Exploring the areas of applicability of whole-genome prediction methods

for Asian rice (Oryza sativa L.). Theor Appl Genet. 2015;128(1):41–53.

52. Clark SA, Hickey JM, van der Werf JHJ. Different models of genetic variation

and their effect on genomic evaluation. Genet Sel Evol. 2011;43(1):1–9.

53. Honarvar M, Rostami M. Accuracy of genomic prediction using RR-BLUP and

Bayesian LASSO. Eur J Exp Biol. 2013;3:42–7.

54. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic

architecture on genome-wide evaluation methods. Genetics. 2010;185(3):1021–31.

55. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, et al. Genomic

selection in plant breeding: knowledge and prospects. Adv Agron. 2011;110

56. Lorenz AJ. Resource allocation for maximizing prediction accuracy and

genetic gain of genomic selection in plant breeding: a simulation

experiment. G3-Genes Genom Genet. 2013;3(3):481–91.

57. Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger

AE. Genomic predictability of interconnected biparental maize populations.

Genetics. 2013;194(2):493–503.

58. Scutari M, Mackay I, Balding D. Using genetic distance to infer the accuracy

of genomic prediction. PLoS Genet. 2016;12(9):e1006288.

59. Esfandyari H, Bijma P, Henryon M, Christensen OF, Sørensen AC. Genomic

prediction of crossbred performance based on purebred landrace and

Yorkshire data using a dominance model. Genet Sel Evol. 2016;48(1):1–9.

60. Ibánẽz-Escriche N, Fernando RL, Toosi A, Dekkers JC. Genomic selection of

purebreds for crossbred performance. Genet Sel Evol. 2009;41(1):1–10.

61. Esfandyari H, Sørensen AC, Bijma P. Maximizing crossbred performance

through purebred genomic selection. Genet Sel Evol. 2015;47(1):1–16.

62. Murray C, Huerta-Sanchez E, Casey F, Bradley DG. Cattle demographic

history modelled from autosomal sequence variation. Philos T R Soc B. 2010;

365(1552):2531–9.

63. Silva-Junior OB, Grattapaglia D. Genome-wide patterns of recombination,

linkage disequilibrium and nucleotide diversity from pooled resequencing

and single nucleotide polymorphism genotyping unlock the evolutionary

history of Eucalyptus grandis. New Phytol. 2015;208(3):830–45.

64. Zhang Z, Ding X, Liu J, Zhang Q, de Koning DJ. Accuracy of genomic

prediction using low-density marker panels. J Dairy Sci. 2011;94(7):3642–50.

65. Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE. Genomic selection

using different marker types and densities. J Anim Sci. 2008;86(10):2447–54.

66. Burgueno J, de los Campos G, Weigel K, Crossa J. Genomic prediction of

breeding values when modeling genotype x environment interaction using

pedigree and dense molecular markers. Crop Sci. 2012;52(2):707–19.

67. Denis M, Bouvet J-M. Efficiency of genomic selection with models including

dominance effect in the context of Eucalyptus breeding. Tree Genet

Genomes. 2012;9(1):37–51.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Tan et al. BMC Plant Biology  (2017) 17:110 Page 15 of 15

https://www.vsni.co.uk/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Breeding population
	Phenotyping
	Genotyping and quality control
	Statistical methods for genomic prediction
	ABLUP
	GBLUP
	rrBLUP
	Bayesian LASSO
	RKHS

	Heritability estimation
	Size and genetic composition of the training and validation sets
	Genomic prediction models
	Numbers and genomic location of SNPs subsets

	Results
	Phenotypic trait correlations
	Breeding population structure and relatedness
	Predictive abilities with different statistical methods
	Impact of TS/VS compositions and relative sizes on predictive ability
	Impact of the number of SNPs and their genomic location on predictive ability

	Discussion
	Genomic data corrected pedigree inconsistencies
	Genomic predictions show that traits adequately fit the infinitesimal model
	Training set size, composition and relatedness strongly affect predictive ability
	Number of SNPs is more important than SNP genomic location
	Further issues affecting the accuracy of model prediction

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

