
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title Evaluating the benefits of Octree-based indexing for LiDAR data

Authors(s) Mosa, Abu Saleh Mohammad; Schoen, Bianca; Bertolotto, Michela; et al.

Publication date 2012

Publication information Photogrammetric Engineering and Remote Sensing, 78 : 927-934

Publisher American Society for Photogrammetry & Remote Sensing

Item record/more information http://hdl.handle.net/10197/4872

Publisher's statement Reproduced with permission from the American Society for Photogrammetry and Remote

Sensing, Bethesda, Maryland, www.asprs.org

Downloaded 2022-08-24T17:55:33Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=Evaluating+the+benefits+of+Octree-bas...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F4872

Confidential Page 1 23/07/2013	

Evaluating the benefits of Octree-based indexing for LiDAR data 1	

This paper presents the implementation and evaluation of an octree-based index atop a commercial spatial 2	

database for the hosting, indexing, and querying of three-dimensional pointcloud data from aerial laser 3	

scanning. 4	

 5	

Abstract 6	

In recent years the geospatial domain has seen a significant increase in the availability of very large three-7	

dimensional (3D) point datasets. These datasets originate from a variety of sources, such as for example 8	

Light Detection and Ranging (LiDAR) or meteorological weather recordings. Increasingly, a desire 9	

within the geospatial community has been expressed to exploit these types of 3D point data in a 10	

meaningful engineering context that goes beyond mere visualization. However, current Spatial 11	

Information Systems (SISs) provide only limited support for vast 3D point datasets. Even those systems 12	

that advertise their support for in-built 3D data types provide very limited functionality to manipulate 13	

such data types. In particular, an effective means of indexing large 3D point datasets is yet missing, 14	

however it is crucial for effective analysis. Next to the large size of 3D point datasets they may also be 15	

information rich, for example they may contain color information or some other associated semantic. This 16	

paper presents an alternative spatial indexing technique, which is based on an octree data structure. We 17	

show that it outperforms R-tree index, while being able to group 3D points based on their attribute values 18	

at the same time. This paper presents an evaluation employing this octree spatial indexing technique and 19	

successfully highlights its advantages for sparse as well as uniformly distributed data on the basis of an 20	

extensive LiDAR dataset. 21	

 22	

 23	

Confidential Page 2 23/07/2013	

1. Introduction 24	

Recent years have seen an ever increasing availability of three-dimensional (3D) point cloud datasets, 25	

such as those generated from Light Detection and Ranging (LiDAR), also known as laser scanning. 26	

LiDAR is a remote sensing technology that has gained widespread popularity due to its usage in 27	

environmental and disaster management scenarios (e.g. Straatsmas & Baptist, 2008; Olsen, 2009; Laefer 28	

& Pradhan, 2006). The introduction of GPS+GLONASS and “fitting” software facilitating data collection 29	

with increased accuracy (Burman, 2002), and recent innovations in flight path design demonstrate new 30	

possibilities for large-scale 3D data collection in urban environments. This increasing availability of these 31	

vast LiDAR-based point cloud datasets (typically containing hundreds of millions of points) has 32	

challenged existing means of effective exploitation, as support for efficient management of these datasets 33	

is still in its early stages. A major difficulty lies in the efficient storing and indexing of these large 34	

datasets in conventional Spatial Information Systems (SISs). 35	

Two main efforts for storing and analysis can be identified thus far. On one side, conventional 36	

Geographic Information Systems (GISs) store the data spread across several files. This approach has been 37	

followed since the 1960s, when GISs were used to deal with positional data or data with spatial extent 38	

(Sheckhar & Chawla, 2003). Nowadays, different GIS vendors utilize their own proprietary file formats 39	

for the representation of such data. The storage and management of any vast dataset in a file system has 40	

the following disadvantages: (1) data inconsistency, (2) data redundancy, (3) lack of multi-user 41	

concurrency, and (4) lack of data integrity. Analysis in such a scenario relies on frequent import and 42	

export transactions of said files into various Computer Aided Design (CAD) or other proprietary 43	

software, such Leica’s Cyclone. This process is time intensive and requires the availability of and the 44	

training of staff on several software packages. 45	

Database Management Systems (DBMSs) on the other hand, provide means for effective data handling of 46	

large data volumes, while facilitating the retrieval of information in vast datasets through Structured 47	

Query Language (SQL). An alternative technology called Spatial Database Management System 48	

Confidential Page 3 23/07/2013	

(SDBMS) relies on a DBMS. In such an arrangement many vendors provide spatial extensions to their 49	

Object Relational Database Management System (ORDBMS). PostGIS, for example, is an 50	

implementation of the OGC standard (OGC, 2010) is a non-commercial system for the storage of spatial 51	

data. However, it does not provide any in-built support for vast 3D point cloud data. Oracle Spatial, a 52	

commercial system on the other hand, has recently included support for these data types. Their usefulness 53	

and capabilities are further evaluated within this paper. 54	

Looking forward, a scenario where many individuals and organizations are contributing data and trying to 55	

access the subsequent combined data is easy to envision. In recent calls for proposals both Ireland’s 56	

National Road Authority and America’s Association for State Highway and Transportation Organizations 57	

have sought research proposals for the integration of both terrestrial and aerial remote sensing data (NRA 58	

2010) based on increasing interest in this area (IDOT 2003). Such an environment will further strain the 59	

existing strategies to store this data in a meaningful way. Furthermore, there will be a greater desire to 60	

exploit the three-dimensional (3D) functionality of the data. A key component of that is to have access to 61	

the original data points. This will greatly facilitate the integration of multiple datasets. As such, the 62	

traditional approach to store 3D point cloud data across various files or deriving other formats such as 63	

Digital Elevation Models (DEMs) for analysis purposes is likely to become less than attractive. As such, 64	

new approaches must be considered to fully enable the increasingly rich and 3D nature of the data, such 65	

as better support of the raw point cloud data in SDBMSs. This paper show the potential of octree-based 66	

indexing for 3D point clouds hosted within an SDBMS. 67	

Applying an SDBMS for LiDAR data hosting allows for improved data integrity, multi-user access, web 68	

access, and the use of SQL for spatial queries. However, such a spatial system must support the data types 69	

for storing geometries in 3D Euclidean space (such as point, line, surface and volume) that are based on a 70	

3D geometric data model (i.e. vector and/or raster data with underlying geometry and topology). The 71	

query language of a 3D spatial system must also support operations and functions to handle 3D data types 72	

(Bruenig & Zlatanova, 2004). To date, support for two-dimensional (2D) positional data is widely 73	

Confidential Page 4 23/07/2013	

available in both GIS and SDBMS technology. However, very limited capabilities are provided by 74	

commercial products for 3D data (Schön, 2009a). Presently, many of the benefits of these datasets remain 75	

relatively unexploited due to the inability of current systems to fully support 3D objects in a spatially 76	

accurate and meaningful manner. 77	

The speed of data retrieval operations from a database table is a critical issue for handling large datasets. 78	

Indexing improves the speed with which operations are performed on a dataset by reducing the amount of 79	

data that needs to be analyzed. In the spatial domain, indexes organize the dataset based on either objects 80	

or the underlying space for efficient execution of spatial queries. Common indexing techniques for spatial 81	

datasets include object-based R-tree indexing and space-based quadtree/octree indexing. Oracle Spatial 82	

has provided R-tree indexing for spatial data while the previously supported quadtree has been 83	

deprecated (Murray, 2003). However, particular 3D spatial queries (e.g. window queries, nearest 84	

neighbor) cannot currently be performed on 3D datasets using Oracle R-tree index as will be further 85	

discussed in section 2.1. 86	

In this paper, the integration of all required functionality for storing, indexing, manipulating and 87	

analyzing 3D point clouds within an SDBMS as a viable solution is considered with respect to an octree 88	

index implementation atop Oracle Extensible Indexing Framework (OEIF) (Laefer et al., 2009). This 89	

approach greatly benefits spatial queries on a variety of 3D point clouds. The particular contribution of 90	

the method described within this paper is its applicability to 3D point clouds of varied distributions, as 91	

well as such that contain further semantic information, as is illustrated in section 4. 92	

2. Indexing 3D Point Cloud Data 93	

Indexing provides faster and more intelligent query executions. Typically, the data are structured into a 94	

hierarchical tree. Queries then need only follow certain branches and may avoid others. In principle, 95	

spatial queries on 3D point clouds could be performed directly on the entire dataset without indexing. In 96	

that scenario, for a particular spatial query, the corresponding spatial function analyzes the entire dataset 97	

Confidential Page 5 23/07/2013	

and then retrieves only the relevant spatial objects. However, since spatial functions are comparatively 98	

expensive, it would be rather cost-effective to analyze an entire dataset. Instead, an appropriate spatial 99	

index needs to be created. Spatial indexes help retrieving candidate geometries for the specified spatial 100	

query, and the corresponding spatial function is then applied to this filtered dataset, which is consequently 101	

reduced. In order to find the area of interest and retrieve the most reduced dataset, the suitability of the 102	

indexing method is critical. 103	

An effective algorithm for spatial indexing depends on the type and dimension of the spatial objects 104	

involved. For efficient querying of 3D point clouds, it is important to index these data taking all three 105	

dimensions into account. The data must also be processed in a timely fashion to facilitate efficient 106	

execution of spatial queries. Some spatial indexing methods are discussed in the following section, with a 107	

particular focus on 3D point cloud data. 108	

2.1. Different Spatial Indexing Approaches 109	

A spatial index organizes the spatial data and the underlying space in order to perform efficient execution 110	

of spatial queries either in an object-based or a space-based fashion. Object-based spatial indexes 111	

organize the dataset based on the spatial objects distribution, while the space-based spatial indexes 112	

subdivide the dataset based on a subdivision of the underlying space. 113	

One of the most popular and enduring object-based indexing techniques is the so called R-tree, which was 114	

developed by Guttmann (1984). A popular space-based alternative is the two-dimensional (2D) quadtree 115	

(Samet, 1995) and its 3D extension, the octree (Samet, 2006). 116	

An R-tree is a dynamic depth-balanced tree, which indexes the Minimum Bounding Rectangles (MBRs) 117	

in 2D or Minimum Bounding Boxes (MBBs) in 3D of spatial objects. The MBRs/MBBs of spatial objects 118	

form the leaf nodes of the tree, and multiple MBRs/MBBs are grouped together into larger 119	

rectangles/boxes in order to form intermediate nodes of the tree. The process is repeated until only one 120	

rectangle/box is left that contains all the data that corresponds to the root node of the tree. 121	

Confidential Page 6 23/07/2013	

A quadtree is a space-based hierarchical tree structure which applies a recursive subdivision of a 2D space 122	

into four quadrants (also known as cells). It can be applied to the indexing of spatial objects embedded in 123	

a 2D space. In the basic quadtree structure, the subdivision of the space is in equal sized quadrants. 124	

Typically, a quadtree results in an unbalanced tree for irregularly-distributed data. This is beneficial as 125	

empty patches of spaces are not stored within the structure and are thus emitted during analysis. Several 126	

variations of the quadtree structure have been developed in the literature (Samet, 2006, p.28) for point 127	

data and linear data. 128	

The tree-based quadtrees are based on the recursive subdivision of the region into four congruent 129	

quadrants until a quadrant is homogeneous. The homogeneity condition for point data could be defined as 130	

the maximum number of points that a quadrant contains or other user-defined criteria. Alternatively, the 131	

homogeneity condition could be based on the semantic information of the point data (e.g. color). For 132	

example, subdivision could occur until a single color percentage threshold is reached. 133	

One adaptation of the quadtree for indexing high volume point clouds is the so called PR quadtree. It 134	

divides the underlying space up to a fixed tiling level. Each tile (also known as cell) is assigned with a 135	

unique code (also known as cell code), which is used to index the points that are covered by this tile. This 136	

is how the quadtree was implemented in Oracle Spatial. The 3D analogue of PR quadtree is the PR octree, 137	

which has been implemented by the authors, as described in section 3.This approach has the distinct 138	

advantage of being performance efficient, as the current branch level does not need to be stored within the 139	

database, which would reduce the efficiency of queries. On the other hand, this approach looses the initial 140	

advantage of a space based spatial index to grow naturally from the underlying space and omit empty 141	

areas. Indexing point data using a PR quadtree/octree may be very useful since its quadrant/octant can 142	

contain the data points along with their location information directly. In addition, it can store the semantic 143	

information of data points. The quadtree index was extended by De Floriani et al. (2008) to work with 144	

Triangular Irregular Networks (TINs). Theoretically, this approach could be generalized for Tetrahedral 145	

Irregular Networks (TENs) based on an octree structure in order to support true 3D functionality. 146	

Confidential Page 7 23/07/2013	

Currently, there is no published work describing this research. Boubekeur et al. (2006) emphasized that 147	

hierarchical space division based structures (e.g. octree and k-d tree) are critical for surface representation 148	

as they are purely volume based. Therefore, they suggested a combined approach called Volume-Surface 149	

tree (VS tree), which combines an octree structure with a set of quadtrees to describe a discrete 3D 150	

surface. The VS-tree is constructed by switching back to the quadtree during the recursive split involved 151	

in the octree construction, as soon as a certain “height field” is reached. However, this approach was 152	

found to break down to mere octree indexing on certain surfaces (Velizhev & Shapovalov, 2008). Several 153	

other strategies have been developed for efficient indexing of multi-dimensional data. However, there is 154	

limited vendor support for these and true 3D index creation is an ongoing research issue. 155	

Efficient indexing of multi-dimensional data and true 3D index creation is still an ongoing research 156	

problem as summarized by Schön et al. (2009b). Most of the commercial systems provide only support 157	

for 2D index creation with simple 3D extension (Arens, 2005). Alternatively, this paper presents the 158	

implementation of a 3D space-based indexing structure based on an octree, which is not currently 159	

available commercially (Laefer et al., 2009). In the following section, the advantages of octree indexing 160	

over R-tree indexing for 3D point cloud data are discussed. 161	

2.2. Advantages of an Octree Index for 3D Point Cloud Data 162	

Employing an octree structure for indexing 3D point cloud data has distinct advantages over using an R-163	

tree data structure. One major benefit is that the octree can be applied directly on the point geometries, as 164	

opposed to merely the bounding boxes that an R-tree relies upon. As such, there is no need to decide how 165	

to implement a bounding box for a 3D point. Furthermore, the octree is a hierarchical tree where nodes 166	

are disjoint. This means that the regions corresponding to tree nodes are non-overlapping. On the other 167	

hand, bounding boxes in R-trees are often overlapping. If bounds overlap, more branches have to be 168	

traversed to process a query, which reduces an index’s efficiency. In Oracle Spatial, the implementation 169	

of the R-tree index stores the tree structure into a table and selects a node using internal SQL statements 170	

while each node is visited (Kothuri, 2002). For that reason, query processing using an R-tree index in 171	

Confidential Page 8 23/07/2013	

Oracle Spatial involves processing several recursive SQL statements, which prolongs the query 172	

processing time (Kothuri, 2002). 173	

A standard octree implementation typically results in an unbalanced tree. However, it can be implemented 174	

as a balanced tree (i.e. the entire space is subdivided only to a specified tiling level). In this particular 175	

case, it only requires storing the tiling level as the tree structure can be rebuilt during query processing by 176	

using this tiling level information. This approach has been adopted for the implementation of the octree 177	

structure as described later in this paper. 178	

Another advantage of the octree is its capability to maintain the semantics of point data. Because the 179	

octree has the ability to store data points directly (instead of merely their bounding boxes), semantic 180	

information is accessible from the index and can, in fact, be used to build the index itself. As a practical 181	

example, this means that points with specific attributes can be grouped together in one cell. Regarding 182	

LiDAR data, an example of semantic criterion might be color based on RGB values, see schematic in 183	

fig.1. This criterion could allow cell subdivision until a given percentage of color similarity is reached 184	

within a cell. An R-tree index is not capable of grouping the data according to their semantics, therefore 185	

loosing valuable information associated to individual points. Figure 1 illustrates how an octree preserves 186	

the semantics, choosing color as a semantic criterion; for ease of illustration, all figures are presented in 187	

2D, and the semantic of a region is illustrated as fully homogenously colored region, even though the 188	

same principle applies in 3D and to regions of only partial uniformity, e.g. 80% color similarity within 189	

cells (for reasons of publishing, instead of color different shapes were substituted to indicate different 190	

attributes). 191	

Confidential Page 9 23/07/2013	

	 192	

Figure	 1:	 Octree	 segmentation	 using	 a	 Semantic	 as	 Grouping	 Parameter	 193	

194	

Confidential Page 10 23/07/2013	

A further advantage of using an octree for 3D point cloud indexing lies in the possibility to optimize 3D 195	

point cloud visualization (Koo & Shin, 2005). Rendering of 3D point clouds is computationally 196	

expensive, but an octree can be used to filter visible points for rendering a specific view frustum, instead 197	

of rendering all points in the dataset at once. 198	

Naturally, the decision of which indexing structure to use depends on many factors, such as data 199	

distribution and the type of data. The following section presents the approach employed within this paper, 200	

an octree implementation atop the Oracle Extensible Indexing Framework (OEIF). This approach is 201	

further evaluated in section 4 and discussed in section 5. 202	

3. Implementation of an Octree Structure in Oracle Spatial 203	

This section presents an implementation of a new octree-based index structure for 3D point clouds within 204	

Oracle Spatial 11g. The extensibility capability of the Oracle SDBMS was utilized in order to implement 205	

this index. The framework for indexing is known as Oracle Extensible Indexing Framework (OEIF) and 206	

the new index is a so called domain index. The framework defines a set of interface methods, which is 207	

required to be implemented in an object type, called indextype (Belden, 2008). The name of the interface 208	

is ODCIIndex where ODCI stands for Oracle Data Cartridge Interface. The methods of the ODCIIndex 209	

interface are categorized into four classes: index definition methods, index maintenance methods, index 210	

scan methods, and index metadata methods. 211	

An indextype is an object that specifies the routines that manage a domain (application-specific) index. 212	

An indextype has two major components: the methods that implement the index’s behavior and the 213	

operators that the index supports. In this paper, a new indextype has been implemented in OEIF in order 214	

to implement the proposed octree structure for LiDAR data indexing in Oracle Spatial. The name of the 215	

new indextype is OCTREEINDEX. This index implementation is also comprised of an operator 216	

implementation called OT_CLIP_3D, which performs a window query on any given 3D point cloud, 217	

which is stored in an SDO_GEOMETRY data type. 218	

Confidential Page 11 23/07/2013	

Before introducing 3D data types, Oracle Spatial relied heavily on SDO_GEOMETRY. More recently 219	

Oracle Spatial has moved to SDO_PC as the main data type employed for the storage of multi-220	

dimensional point cloud data. With this, a set of points are grouped and stored as the Binary Large Object 221	

(BLOB) object in a row. While there is no upper bound on the number of points in an SDO_PC object, 222	

the current version of Oracle Spatial offers only a limited amount of placeholders for the storage of 223	

information alongside locational attributes, as only nine attributes can be stored together in one element 224	

within SDO_PC (Murray, 2009). Another disadvantage is that Oracle Spatial does not yet offer 225	

functionality to update SDO_PC objects. Consequently, the SDO_GEOMETRY data type remains highly 226	

useful for the still provides the greatest flexibility in storage of any geometry type, including 3D data 227	

points. In particular, when considering 3D point clouds, it is desirable to store in the same table the 228	

locational information and the attribute information (e.g. color, intensity), as semantic information 229	

oftentimes directs the feature recognition processes – typically applied at a later stage in the workflow. 230	

For these reasons, our implementation relies on SDO_GEOMETRY instead of SDO_PC. However, the 231	

approach could easily be adapted to be used with SDO_PC. 232	

A conventional octree is an unbalanced hierarchical tree, which would require storage of its logical tree 233	

structure in a SDBMS for reconstruction of the tree structure during query processing. As described in 234	

section 2.2., this could introduce inefficient query processing due to the issuance of several internal 235	

recursive SQL select statements generated during each node visit. This issue is resolved by constructing a 236	

balanced tree structure with a fixed tiling level. In this case, only the tiling level information (as opposed 237	

to the whole tree) needs to be stored for tree reconstruction. The pre-selection of an appropriate tiling 238	

level for a specific dataset is a crucial factor, which involves considerations regarding the dataset’s area 239	

and size. As such, this is a drawback of this approach, as experimentation with different levels is needed 240	

in order to optimize performance for a specific dataset. This was discussed in section 2.2. 241	

In the current implementation, the user is allowed to specify the tiling level of the octree through the 242	

parameter OCTREE_LEVEL during index creation. The 3D region is recursively divided into eight 243	

Confidential Page 12 23/07/2013	

congruent cells up to the specified tiling level. Each cell is associated with a unique code, which is 244	

hereafter referred to as the cell code. The cell code is obtained by using z-ordering (i.e. Morton encoding) 245	

of all cells at the specified level (Morton, 1966). Each point is indexed by the associated cell code of the 246	

octant that contains the point. The ROWID of the point and the associated cell code are stored in the 247	

index storage table. The meta data (e.g. tiling level, index name, index owner, max level, min level) for 248	

the entire index are stored as a row in the index meta data table. 249	

 250	

Figure	 2:	 3D	 query	 processing	 using	 Octree	 index. 251	

The 3D query processing using this implementation is illustrated in 252	

Figure 2. To generate the result set for a spatial query, the octree index acts as the primary filter to find 253	

the area of interest or candidate geometries for this query. 254	

Figure 2 illustrates the use of a primary and a secondary filter during the query process. The area of 255	

interest is the union of the cells of the octree that interact spatially (e.g. intersect, touch, inside, covered-256	

by) with the query geometry, as established by the primary filter. These cells are identified by the cell 257	

code, and candidate geometries are identified by the associated cell code from the index storage table. 258	

These candidate geometries are passed through the intermediate filter and divided into two sets. Cells 259	

inside or covered-by the query geometry are identified as exact matches. The points associated with these 260	

cells are sent directly to the result set. The remaining cells (those that intersect or touch the query 261	

Confidential Page 13 23/07/2013	

window) are identified as unknown and passed through the secondary filter. The secondary filter is a 262	

spatial function, which corresponds to the spatial query. 263	

The required ODCIIndex interface methods for implementing the proposed octree index for LiDAR data 264	

atop OEIF are implemented as Java callouts. A previously available Java API was harnessed for this 265	

purpose (Kothuri, 2007, p. 223). It enables applications written in Java to access and process geometry 266	

objects managed in Oracle database with Oracle Spatial. The details of this implementation are available 267	

in Mosa (2010). 268	

4. Evaluation of the Octree Spatial Index 269	

This section provides an evaluation of the implementation of the octree index presented in the previous 270	

section. A window query is used in order to compare response times of the existing Oracle Spatial R-tree 271	

and the newly implemented octree index. This evaluation has been conducted on a computer with the 272	

Intel Core2 Duo CPU 2.53GHz and 4GB RAM, 7,200 SATA hard drive on Oracle 11g release 11.1.0.6. 273	

The 3D point cloud dataset is stored in Oracle’s SDO_GEOMETRY data type. In order to perform spatial 274	

queries on 3D point cloud data, the dataset is indexed using R-tree and with an octree in a separate run. 275	

The R-tree index was created using Oracle’s existing in-built spatial index. Presently, a 3D window 276	

query cannot be performed using Oracle R-tree index, as all but one spatial operator can only be applied 277	

to 2D geometries. As such, true 3D window queries cannot be performed using Oracle R-tree index. The 278	

overlap of sibling nodes and the uneven size of nodes in an R-tree may develop inefficient query 279	

execution (Zhu, 2007). Thus, only the 2D window query could be performed on the 2D R-tree index 280	

using the SDO_RELATE operator by providing “inside and touch” masks (Kothuri, 2007, p. 274). This 281	

provides functionality similar to a general window query. Here, the 2D R-tree index is created on the 2D 282	

projection of the 3D point cloud data. 283	

With the octree index, the 3D window query can be performed on 3D LiDAR point cloud data using the 284	

operator OT_CLIP_3D. A tiling level of five was selected for the candidate dataset used in this example. 285	

Confidential Page 14 23/07/2013	

An increased tiling level would result in a decreased indexed point per cell count, as well as candidate 286	

geometries. In contrast, the increase of tiling levels results in an increase of leaf nodes (e.g. total number 287	

of leaf node at tiling level ‘n’ is 8
n
), as well as memory consumption during octree manipulation. 288	

The comparison of a 2D (x- and y- ordinates) window query using an R-tree index with a 3D (x, y and z) 289	

window query using octree index requires the same number of resulting geometries for a window query as 290	

query response time increases with increases in the query window, as well as the number of resulting 291	

geometries (Kothuri, 2002). To ensure the same number of resulting geometries for octree and R-tree 292	

index, the minimum and maximum value of the z-ordinates of the query window is set to the minimum 293	

and maximum value of the underlying space in case of the octree index. 294	

To this end, two randomly selected data subsets from a dense aerial LiDAR flyover of Dublin’s city 295	

centre (Hinks et al., 2009) were selected for this experiment. One contained just shy of 2.9 million points 296	

and the other almost 66 million points. Query response times were compared for the two index types for a 297	

variety of window sizes. For the smaller dataset (2.9 million), the octree was twice as fast as R-tree for the 298	

small window of 25m
2
 and 8 times as fast for the large window of 2,500m

2
. For the larger dataset (66 299	

million), the R-tree outperforms the octree for the small window of 400m
2
 size, but for large windows of 300	

1600m
2
 and above, the octree performed distinctly better, with a six-fold improvement for a 40,000m

2
 301	

window. 302	

As datasets combined from different sources are becoming more irregularly distributed with significantly 303	

higher densities in some areas. To evaluate potential performance benefits of octree-based indexing on 304	

irregularly-distributed LiDAR point clouds, portions of data were selectively removed from a high 305	

density aerial LiDAR flyover of Dublin’s city centre (Hinks et al, 2009). The dataset contains nearly 66 306	

million points over .25km
2
, including points on the ground and road surfaces, rooftops, tree canopies and 307	

building facades. The initial point distribution was quite uniform, with a density of 225 points per square 308	

meter almost everywhere. For evaluation purposes it was of interest to test the octree index structure also 309	

Confidential Page 15 23/07/2013	

on an irregularly distributed dataset, which was consequently derived from the initial dataset. This was 310	

achieved by removing points where the z ordinate was larger than 20 meters or less than 10 meters. 311	

The resulting dataset contains points on building facades. The dataset also contains points on the rooftops 312	

and the tree canopies, where the height is less than 20 meters. This generates an irregular distribution of 313	

points within the 3D point cloud with a variable density in different areas. Figure 3 presents the 3D 314	

rendering of this dataset approximately 17,5 million points. Table 1 presents the density distribution in 315	

different area of the dataset. 316	

 317	
Figure	 3:	 Irregular	 distribution	 of	 3D	 point	 cloud	 (17,517,406	 points	 in	 the	 dataset)	 318	

Table	 1:	 Density	 Distribution	 of	 Query	 Windows	 (17,517,406	 irregularly	 distributed	 points)	 319	

Window

No.
X1 Y1 X2 Y2

Area

(m2)

Total

Point

Density

(points/m2)

1 233,900 316,300 234,000 316,400 10,000 14,579 1.46

2 233,700 316,200 233,800 316,300 10,000 273,688 27.37

3 233,700 316,400 233,800 316,500 10,000 321,059 32.11

4 233,600 316,400 233,700 316,500 10,000 337,032 33.7

5 233,800 316,200 233,900 316,300 10,000 345,263 34.53

6 233,700 316,100 233,800 316,200 10,000 381,920 38.19

7 233,800 316,300 233,900 316,400 10,000 406,465 40.65

8 233,700 316,300 233,800 316,400 10,000 433,147 43.31

9 233,900 316,100 234,000 316,200 10,000 451,694 45.17

10 233,500 316,400 233,600 316,500 10,000 507,923 50.79

11 233,700 316,000 233,800 316,100 10,000 531,261 53.13

12 233,900 316,200 234,000 316,300 10,000 563,964 56.4

Points	 removed	 from	 ground	 surfaces	

Points	 removed	 from	 roof	

Confidential Page 16 23/07/2013	

13 233,800 316,100 233,900 316,200 10,000 734,972 73.5

14 233,900 316,000 234,000 316,100 10,000 797,447 79.74

15 233,900 316,400 234,000 316,500 10,000 809,561 80.96

16 233,600 316,300 233,700 316,400 10,000 812,631 81.26

17 233,800 316,000 233,900 316,100 10,000 854,245 85.42

18 233,800 316,400 233,900 316,500 10,000 862,660 86.27

19 233,500 316,300 233,600 316,400 10,000 936,929 93.69

20 233,600 316,100 233,700 316,200 10,000 1,018,365 101.84

21 233,500 316,000 233,600 316,100 10,000 1,139,836 113.98

22 233,600 316,200 233,700 316,300 10,000 1,166,117 116.61

23 233,500 316,100 233,600 316,200 10,000 1,168,042 116.8

24 233,500 316,200 233,600 316,300 10,000 1,236,741 123.67

25 233,600 316,000 233,700 316,100 10,000 1,414,439 141.44

	 320	

 321	
Figure	 4:	 R-‐tree	 vs.	 octree	 17,517,406	 irregularly	 distributed	 points	 322	

 323	

Table 2 presents the average query response time along with the density distribution in different regions. 324	

A square window of size 10,000 m
2
 (100m x 100m) was chosen for the window query and moved around 325	

the underlying area in a random pattern. A total of 25 query windows were chosen in a 5x5 grid. The 326	

query windows are presented in Table 2 in ascending order according to their point density. For every 327	

query window, 10 queries were performed and query response time presents the average of these queries. 328	

Confidential Page 17 23/07/2013	

Tab. 2 illustrates the comparison of the window query response time between the R-tree and the octree 329	

index. The minimum density is 1.46 m
2,
 maximum density is 141.44 m

2
, and median density 73.5 m

2
. 330	

The query response time increases with some variations with the increase of density. Overall, it can be 331	

noted from this evaluation series that the octree index performs in a very consistent manner. In most 332	

cases, the octree significantly outperforms the in-built R-tree index by an average factor 2,4. 333	

For the window of 27,37 points/m
2
 density, the octree is 2,4 times faster than R-tree. Additionally, for 334	

window densities below the median value the octree is on average twice as fast as the R-tree. On the other 335	

hand, for window densities over the median value the octree is on average three times faster than the R-336	

tree. For the highly dense region (141,44 m
2
), the octree is about five times faster than the R-tree. The 337	

octree in most cases outperforms the R-tree. 338	

	 339	

Table	 2:	 R-‐tree	 vs.	 octree	 (17,517,406	 irregularly	 distributed	 points)	 340	

Window

No.

Density

(no. of points /m2)

Avg. Query Response Time

in sec. (R-tree)

Avg. Query Response Time

in sec. (octree)

1 1.46 15.58 61.72

2 27.37 144.22 59.96

3 32.11 101.42 60.42

4 33.7 93.88 59.26

5 34.53 96.51 59.44

6 38.19 155.5 63.32

7 40.65 102.41 60.42

8 43.31 109.32 59.66

9 45.17 120.44 59.68

10 50.79 103.09 60.87

11 53.13 140.68 67.38

12 56.4 114.76 68.58

13 73.5 187.72 61.45

14 79.74 116.39 62.11

15 80.96 154.43 62.68

16 81.26 214.75 61.67

17 85.42 135.05 62.2

18 86.27 193.59 62.89

19 93.69 201.62 64.33

20 101.84 246.1 64.98

21 113.98 234.01 112.83

22 116.61 261.84 65.9

23 116.8 226.73 102.16

24 123.67 190.47 65.49

Confidential Page 18 23/07/2013	

25 141.44 331.8 66.44

5. Discussion 341	

The research presented in this paper has implemented an octree index for 3D point cloud data, employing 342	

Oracle’s extensible indexing framework. An operator has been implemented in order to perform a 3D 343	

window query. The implementation is described along with some optimizations. The newly implemented 344	

octree index and Oracle’s inbuilt R-tree index are compared using a high density aerial LiDAR point 345	

cloud dataset. The evaluation highlights distinct advantages of using an octree based index for both 346	

regularly and irregularly-distributed point cloud data. For regularly-distributed data, the octree index 347	

consistently outperforms an R-tree index by two to eight times for almost every window size. For 348	

irregularly-distributed data, the octree index consistently outperforms the R-tree index by two to five 349	

times for most of the density areas except the lower density area (1,46 points/m
2
). However, the current 350	

implementation can be optimized further to improve the performance for lower density area. 351	

In this work Oracle Spatial was chosen due to its current ability to store 3D data. However, the 352	

implementation could be adapted for other SDBMS. Currently, in Oracle Spatial, the R-tree or quadtree 353	

index can be applied on the block extent column of the SDO_PC data type. However, it is possible to 354	

implement an octree index on the block extent of the SDO_PC. Currently, using Oracle’s SDO_PC, only 355	

the block extents are indexed rather the actual point geometries. However, it is possible to access these 356	

points directly from the block column and index them. Furthermore, it is also possible to implement a 357	

two-step index, where an octree indexes the points inside a block and therefore maintains their semantic 358	

information inside that block, and an R-tree index serves as a higher level index that is applied to the 359	

block extents, as R-tree indexing is more suitable for polygon objects than an octree index would be. 360	

Further work will fully evaluate this approach. 361	

Finally, the method presented in this paper employs only one operator, which implements a window 362	

query. A more comprehensive evaluation is needed in order to assess the octree index’s full potential for 363	

other query operators, such as nearest neighbor or within distance. Since octree indexes are useful for 364	

Confidential Page 19 23/07/2013	

solving the visibility of points during 3D point cloud rendering, an operator can be implemented based on 365	

the octree index implemented for this purpose. The operator should have the view frustum or window as 366	

input parameter and return only the visible points for this window. It facilitates the extraction of visual 367	

points for the specified window through SQL. In this prototype, the tiling level is determined by the user 368	

of a dataset. Further work will enhance the prototype by incorporating a feature for automatic tiling level 369	

determination. 370	

References 371	

Arens, C., Stoter, J., & van Oosterom, P., 2005. Modelling 3D Spatial Objects in a Geo-DBMS using a 372	

3D primitive. Computers & Geosciences, 31(2): 165-177. 373	

Belden, E., Chorma, T., Das, D., Hu, Y., Kotsovolos, S., Lee, G., et al., 2008. Oracle Database Data 374	

Cartridge Developer's Guide, 11g Release 1 (11.1). 375	

Boubekeur, T., Heidrich, W., Xavier, G., and Christophe, S., 2006. Volume-Surface Trees. Eurographics, 376	

25(3): 399-406. 377	

Bruenig, M., and Zlatanova, S. (2004, November 6). 3D Geo-DBMS. Directions Magazine. Retrieved 378	

March 2010, from http://www.directionsmag.com/article.php?article_id=694 379	

Burman, H., 2002. Laser Strip Adjustment for Data Calibration and Verification. Photogrammetric 380	

Computer Vision, ISPRS Commission III, Symposium 2002, (pp. A-67-72). Graz, Austria. 381	

De Floriani, L., Facinoli, M., Magillo, P., & Debora, D., 2008. A Hierarchical Spatial Index for 382	

Triangulated Surfaces. International Conference on Computer Graphics Theory and Applications, (pp. 86-383	

91). 384	

Geo-Consortium, 2007. Introduction to Spatial Data Management with PostGIS. Presentation Slides by 385	

the Consulting Centre Geographic Information Systems. 386	

Confidential Page 20 23/07/2013	

Guttman, A., 1984. R-trees: A Dynamic Index Structure for Spatial Searching. Proceedings of the 1984 387	

ACM SIGMOD International Conference on Management of Data (pp. 47–57). ACM NY, USA. 388	

Hinks, T., Carr, H., and Laefer, D.F., 2009. Flight Optimization Algorithms for Aerial LiDAR Capture 389	

for Urban Infrastructure Model Generation. Journal of Computing in Civil Engineering, 23(6), 330-339. 390	

Iowa Department of Transportation (IDOT) (2003). Remote Sensing (LIDAR) for Management of 391	

Highway Assets for Safety: Application of Advance Remote Sensing Technology to Asset Management. 392	

Final Report – October 2003. 393	

Koo, Y.-M., and Shin, B.-S., 2005. An Efficient Point Rendering Using Octree and Texture Lookup. 394	

Computational Science and Its Applications-ICCSA 2005, 3482, 1187–1196. 395	

Kothuri, R.K., Ravada, S., and Abugov, D., 2002. Quadtree and R-tree Indexes in Oracle Spatial: a 396	

Comparison Using GIS Data. ACM SIGMOD International Conference on Management of Data (pp. 397	

546-557). Wisconsin, USA: ACM. 398	

Kothuri, R., Godfrind, A., and Beinat, E., 2007. Pro Oracle Spatial for Oracle Database 11g. 399	

Laefer, D.F., Bertolotto, M., Schoen, B., and Mosa, A.S.M., 2009. Enablement of three-dimensional 400	

hosting, indexing, analysing, and querying structure for spatial databases. Patent Application No. 401	

09177926. Europe. (full filing Dec. 2009). 402	

Laefer, D. F., Pradhan, A., 2006. Evacuation Route Selection Based on Tree-Based Hazards Using 403	

LiDAR and GIS. J. Transportation Eng., 132 (4): 312-20. 404	

Morton, G.M., 1966. A Computer Oriented Geodetic DataBase and a New Technique in File Sequencing. 405	

IBM, Ottawa, Canada. 406	

Mosa, A.S.M., 2010. Hosting, Indexing and Visualization of Three-Dimensional (3D) Point Clouds. MSc 407	

Thesis, University College Dublin, National University of Ireland. 408	

Confidential Page 21 23/07/2013	

Murray, C., 2003. Quadtree Indexing. Retrieved March 2010, from Oracle: 409	

http://www.oracle.com/technology/products/spatial/pdf/qt.pdf (accessed 02 Nov 2010) 410	

Murray, C. 2009. Oracle Spatial Developer's Guide 11g Release 1 (11.1) B28400-04. 411	

National Roads Authority (NRA), 2010. 412	

http://www.nra.ie/Publications/DownloadableDocumentation/GeneralPublications/file,17098,en.pdf 413	

OGC 2010. OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 414	

2: SQL option, ed. John R. Herring. 415	

Olsen, M. J., Johnstone, E., Driscoll, N., Ashford, S.A., Kuester, F., 2009. Terrestrial Laser Scanning of 416	

Extended Cliff Sections in Dynamic Environments: Parameter Analysis. J. Surveying Eng., 135 (4): 161-417	

169. 418	

Samet, H., 1984. The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys 419	

(CSUR), 16 (2): 187-260. 420	

Samet, H., 1995. Spatial Data Structures. Modern Database Systems: The Object Model, Interoperability 421	

and Beyond, 361–385. 422	

Samet, H., 2006. Object-Based and Image-Based Image Representations. In H. Samet, and A. Palmeiro 423	

(Ed.), Foundations of Multidimensional and Metric Data Structures (pp. 211-220). 424	

Schön, B., Laefer, D.F., Morrish, S.W., and Bertolotto, M., 2009a. Three-Dimensional Spatial 425	

Information Systems: State of the Art Review. Recent Patents in Computer Science, 2(1): 21-31. 426	

Schön, B., Bertolotto, M. and Laefer, D.F., 2009b. “Storage, manipulation, and visualization of LiDAR 427	

data” 3
rd

 Int’l Wkshp, 3D-ARCH’2009: 3D Virtual Reconstruction and Visualization of Complex 428	

Architectures, Feb. 25-28, Trento, Italy, ed.s Remondino, F., El-Hakim, S., and Gonzo, L. International 429	

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-430	

Confidential Page 22 23/07/2013	

5/W1, ISSN 1682-1777. Retrieved August 2010, from http://www.isprs.org/proceedings/XXXVIII/5-431	

W1/pdf/schoen_etal.pdf 432	

Sheckhar, S., and Chawla, S., 2003. Spatial databases - a tour. Prentice Hall. 433	

Straatsma M.W., Baptist

M.J., 2008. Floodplain roughness parameterization using airborne laser scanning 434	

and spectral remote sensing. Remote Sensing of Environment, 112(3): 1062-1080. 435	

Velizhev, A. and Shapovalov, R., 2008. GML LidarK Library. 436	

http://graphics.cs.msu.ru/ru/science/research/3dpoint/lidark (accessed Nov 02, 2010). 437	

Zhu, Q., Gong, J., and Yeting, Z., 2007. An Efficient 3D R-tree Spatial Index Method for Virtual 438	

Geographic Environments. ISPRS Journal of Photogrammetry and Remote Sensing, 62(3): 217-224. 439	

