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Evaluating the benefits of Octree-based indexing for LiDAR data 1	  

This paper presents the implementation and evaluation of an octree-based index atop a commercial spatial 2	  

database for the hosting, indexing, and querying of three-dimensional pointcloud data from aerial laser 3	  

scanning. 4	  

 5	  

Abstract 6	  

In recent years the geospatial domain has seen a significant increase in the availability of very large three-7	  

dimensional (3D) point datasets. These datasets originate from a variety of sources, such as for example 8	  

Light Detection and Ranging (LiDAR) or meteorological weather recordings. Increasingly, a desire 9	  

within the geospatial community has been expressed to exploit these types of 3D point data in a 10	  

meaningful engineering context that goes beyond mere visualization. However, current Spatial 11	  

Information Systems (SISs) provide only limited support for vast 3D point datasets. Even those systems 12	  

that advertise their support for in-built 3D data types provide very limited functionality to manipulate 13	  

such data types. In particular, an effective means of indexing large 3D point datasets is yet missing, 14	  

however it is crucial for effective analysis. Next to the large size of 3D point datasets they may also be 15	  

information rich, for example they may contain color information or some other associated semantic. This 16	  

paper presents an alternative spatial indexing technique, which is based on an octree data structure. We 17	  

show that it outperforms R-tree index, while being able to group 3D points based on their attribute values 18	  

at the same time. This paper presents an evaluation employing this octree spatial indexing technique and 19	  

successfully highlights its advantages for sparse as well as uniformly distributed data on the basis of an 20	  

extensive LiDAR dataset. 21	  

 22	  

 23	  



Confidential Page 2 23/07/2013	  

1. Introduction 24	  

Recent years have seen an ever increasing availability of three-dimensional (3D) point cloud datasets, 25	  

such as those generated from Light Detection and Ranging (LiDAR), also known as laser scanning. 26	  

LiDAR is a remote sensing technology that has gained widespread popularity due to its usage in 27	  

environmental and disaster management scenarios (e.g. Straatsmas & Baptist, 2008; Olsen, 2009; Laefer 28	  

& Pradhan, 2006). The introduction of GPS+GLONASS and “fitting” software facilitating data collection 29	  

with increased accuracy (Burman, 2002), and recent innovations in flight path design demonstrate new 30	  

possibilities for large-scale 3D data collection in urban environments. This increasing availability of these 31	  

vast LiDAR-based point cloud datasets (typically containing hundreds of millions of points) has 32	  

challenged existing means of effective exploitation, as support for efficient management of these datasets 33	  

is still in its early stages. A major difficulty lies in the efficient storing and indexing of these large 34	  

datasets in conventional Spatial Information Systems (SISs). 35	  

Two main efforts for storing and analysis can be identified thus far. On one side, conventional 36	  

Geographic Information Systems (GISs) store the data spread across several files. This approach has been 37	  

followed since the 1960s, when GISs were used to deal with positional data or data with spatial extent 38	  

(Sheckhar & Chawla, 2003). Nowadays, different GIS vendors utilize their own proprietary file formats 39	  

for the representation of such data. The storage and management of any vast dataset in a file system has 40	  

the following disadvantages: (1) data inconsistency, (2) data redundancy, (3) lack of multi-user 41	  

concurrency, and  (4) lack of data integrity. Analysis in such a scenario relies on frequent import and 42	  

export transactions of said files into various Computer Aided Design (CAD) or other proprietary 43	  

software, such Leica’s Cyclone. This process is time intensive and requires the availability of and the 44	  

training of staff on several software packages.  45	  

Database Management Systems (DBMSs) on the other hand, provide means for effective data handling of 46	  

large data volumes, while facilitating the retrieval of information in vast datasets through Structured 47	  

Query Language (SQL). An alternative technology called Spatial Database Management System 48	  
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(SDBMS) relies on a DBMS. In such an arrangement many vendors provide spatial extensions to their 49	  

Object Relational Database Management System (ORDBMS). PostGIS, for example, is an 50	  

implementation of the OGC standard (OGC, 2010) is a non-commercial system for the storage of spatial 51	  

data. However, it does not provide any in-built support for vast 3D point cloud data. Oracle Spatial, a 52	  

commercial system on the other hand, has recently included support for these data types. Their usefulness 53	  

and capabilities are further evaluated within this paper. 54	  

Looking forward, a scenario where many individuals and organizations are contributing data and trying to 55	  

access the subsequent combined data is easy to envision. In recent calls for proposals both Ireland’s 56	  

National Road Authority and America’s Association for State Highway and Transportation Organizations 57	  

have sought research proposals for the integration of both terrestrial and aerial remote sensing data (NRA 58	  

2010) based on increasing interest in this area (IDOT 2003). Such an environment will further strain the 59	  

existing strategies to store this data in a meaningful way.  Furthermore, there will be a greater desire to 60	  

exploit the three-dimensional (3D) functionality of the data.  A key component of that is to have access to 61	  

the original data points. This will greatly facilitate the integration of multiple datasets. As such, the 62	  

traditional approach to store 3D point cloud data across various files or deriving other formats such as 63	  

Digital Elevation Models (DEMs) for analysis purposes is likely to become less than attractive.  As such, 64	  

new approaches must be considered to fully enable the increasingly rich and 3D nature of the data, such 65	  

as better support of the raw point cloud data in SDBMSs. This paper show the potential of octree-based 66	  

indexing for 3D point clouds hosted within an SDBMS.  67	  

Applying an SDBMS for LiDAR data hosting allows for improved data integrity, multi-user access, web 68	  

access, and the use of SQL for spatial queries. However, such a spatial system must support the data types 69	  

for storing geometries in 3D Euclidean space (such as point, line, surface and volume) that are based on a 70	  

3D geometric data model (i.e. vector and/or raster data with underlying geometry and topology). The 71	  

query language of a 3D spatial system must also support operations and functions to handle 3D data types 72	  

(Bruenig & Zlatanova, 2004). To date, support for two-dimensional (2D) positional data is widely 73	  
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available in both GIS and SDBMS technology. However, very limited capabilities are provided by 74	  

commercial products for 3D data (Schön, 2009a). Presently, many of the benefits of these datasets remain 75	  

relatively unexploited due to the inability of current systems to fully support 3D objects in a spatially 76	  

accurate and meaningful manner.  77	  

The speed of data retrieval operations from a database table is a critical issue for handling large datasets. 78	  

Indexing improves the speed with which operations are performed on a dataset by reducing the amount of 79	  

data that needs to be analyzed. In the spatial domain, indexes organize the dataset based on either objects 80	  

or the underlying space for efficient execution of spatial queries. Common indexing techniques for spatial 81	  

datasets include object-based R-tree indexing and space-based quadtree/octree indexing. Oracle Spatial 82	  

has provided R-tree  indexing for spatial data while the previously supported quadtree has been 83	  

deprecated (Murray, 2003). However, particular 3D spatial queries (e.g. window queries, nearest 84	  

neighbor) cannot currently be performed on 3D datasets using Oracle R-tree index as will be further 85	  

discussed in section 2.1.  86	  

In this paper, the integration of all required functionality for storing, indexing, manipulating and 87	  

analyzing 3D point clouds within an SDBMS as a viable solution is considered with respect to an octree 88	  

index implementation atop Oracle Extensible Indexing Framework (OEIF) (Laefer et al., 2009).  This 89	  

approach greatly benefits spatial queries on a variety of 3D point clouds. The particular contribution of 90	  

the method described within this paper is its applicability to 3D point clouds of varied distributions, as 91	  

well as such that contain further semantic information,  as is illustrated in section 4. 92	  

2. Indexing 3D Point Cloud Data 93	  

Indexing provides faster and more intelligent query executions. Typically, the data are structured into a 94	  

hierarchical tree. Queries then need only follow certain branches and may avoid others. In principle, 95	  

spatial queries on 3D point clouds could be performed directly on the entire dataset without indexing. In 96	  

that scenario, for a particular spatial query, the corresponding spatial function analyzes the entire dataset 97	  
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and then retrieves only the relevant spatial objects. However, since spatial functions are comparatively 98	  

expensive, it would be rather cost-effective to analyze an entire dataset.  Instead, an appropriate spatial 99	  

index needs to be created. Spatial indexes help retrieving candidate geometries for the specified spatial 100	  

query, and the corresponding spatial function is then applied to this filtered dataset, which is consequently 101	  

reduced. In order to find the area of interest and retrieve the most reduced dataset, the suitability of the 102	  

indexing method is critical.  103	  

An effective algorithm for spatial indexing depends on the type and dimension of the spatial objects 104	  

involved. For efficient querying of 3D point clouds, it is important to index these data taking all three 105	  

dimensions into account. The data must also be processed in a timely fashion to facilitate efficient 106	  

execution of spatial queries. Some spatial indexing methods are discussed in the following section, with a 107	  

particular focus on 3D point cloud data. 108	  

2.1. Different Spatial Indexing Approaches 109	  

A spatial index organizes the spatial data and the underlying space in order to perform efficient execution 110	  

of spatial queries either in an object-based or a space-based fashion. Object-based spatial indexes 111	  

organize the dataset based on the spatial objects distribution, while the space-based spatial indexes 112	  

subdivide the dataset based on a subdivision of the underlying space.  113	  

One of the most popular and enduring object-based indexing techniques is the so called R-tree, which was 114	  

developed by Guttmann (1984). A popular space-based alternative is the two-dimensional (2D) quadtree 115	  

(Samet, 1995) and its 3D extension, the octree (Samet, 2006).  116	  

An R-tree is a dynamic depth-balanced tree, which indexes the Minimum Bounding Rectangles (MBRs) 117	  

in 2D or Minimum Bounding Boxes (MBBs) in 3D of spatial objects. The MBRs/MBBs of spatial objects 118	  

form the leaf nodes of the tree, and multiple MBRs/MBBs are grouped together into larger 119	  

rectangles/boxes in order to form intermediate nodes of the tree. The process is repeated until only one 120	  

rectangle/box is left that contains all the data that corresponds to the root node of the tree.  121	  
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A quadtree is a space-based hierarchical tree structure which applies a recursive subdivision of a 2D space 122	  

into four quadrants (also known as cells). It can be applied to the indexing of spatial objects embedded in 123	  

a 2D space. In the basic quadtree structure, the subdivision of the space is in equal sized quadrants. 124	  

Typically, a quadtree results in an unbalanced tree for irregularly-distributed data. This is beneficial as 125	  

empty patches of spaces are not stored within the structure and are thus emitted during analysis. Several 126	  

variations of the quadtree structure have been developed in the literature (Samet, 2006, p.28) for point 127	  

data and linear data.  128	  

The tree-based quadtrees are based on the recursive subdivision of the region into four congruent 129	  

quadrants until a quadrant is homogeneous. The homogeneity condition for point data could be defined as 130	  

the maximum number of points that a quadrant contains or other user-defined criteria. Alternatively, the 131	  

homogeneity condition could be based on the semantic information of the point data (e.g. color). For 132	  

example, subdivision could occur until a single color percentage threshold is reached.  133	  

One adaptation of the quadtree for indexing high volume point clouds is the so called PR quadtree. It 134	  

divides the underlying space up to a fixed tiling level. Each tile (also known as cell) is assigned with a 135	  

unique code (also known as cell code), which is used to index the points that are covered by this tile. This 136	  

is how the quadtree was implemented in Oracle Spatial. The 3D analogue of PR quadtree is the PR octree, 137	  

which has been implemented by the authors, as described in section 3.This approach has the distinct 138	  

advantage of being performance efficient, as the current branch level does not need to be stored within the 139	  

database, which would reduce the efficiency of queries. On the other hand, this approach looses the initial 140	  

advantage of a space based spatial index to grow naturally from the underlying space and omit empty 141	  

areas. Indexing point data using a PR quadtree/octree may be very useful since its quadrant/octant can 142	  

contain the data points along with their location information directly. In addition, it can store the semantic 143	  

information of data points. The quadtree index was extended by De Floriani et al. (2008) to work with 144	  

Triangular Irregular Networks (TINs). Theoretically, this approach could be generalized for Tetrahedral 145	  

Irregular Networks (TENs) based on an octree structure in order to support true 3D functionality. 146	  
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Currently, there is no published work describing this research. Boubekeur et al. (2006) emphasized that 147	  

hierarchical space division based structures (e.g. octree and k-d tree) are critical for surface representation 148	  

as they are purely volume based. Therefore, they suggested a combined approach called Volume-Surface 149	  

tree (VS tree), which combines an octree structure with a set of quadtrees to describe a discrete 3D 150	  

surface. The VS-tree is constructed by switching back to the quadtree during the recursive split involved 151	  

in the octree construction, as soon as a certain “height field” is reached. However, this approach was 152	  

found to break down to mere octree indexing on certain surfaces (Velizhev & Shapovalov, 2008). Several 153	  

other strategies have been developed for efficient indexing of multi-dimensional data. However, there is 154	  

limited vendor support for these and true 3D index creation is an ongoing research issue. 155	  

Efficient indexing of multi-dimensional data and true 3D index creation is still an ongoing research 156	  

problem as summarized by Schön et al. (2009b). Most of the commercial systems provide only support 157	  

for 2D index creation with simple 3D extension (Arens, 2005). Alternatively, this paper presents the 158	  

implementation of a 3D space-based indexing structure based on an octree, which is not currently 159	  

available commercially (Laefer et al., 2009). In the following section, the advantages of octree indexing 160	  

over R-tree indexing for 3D point cloud data are discussed. 161	  

2.2. Advantages of an Octree Index for 3D Point Cloud Data 162	  

Employing an octree structure for indexing 3D point cloud data has distinct advantages over using an R-163	  

tree data structure. One major benefit is that the octree can be applied directly on the point geometries, as 164	  

opposed to merely the bounding boxes that an R-tree relies upon. As such, there is no need to decide how 165	  

to implement a bounding box for a 3D point. Furthermore, the octree is a hierarchical tree where nodes 166	  

are disjoint. This means that the regions corresponding to tree nodes are non-overlapping. On the other 167	  

hand, bounding boxes in R-trees are often overlapping. If bounds overlap, more branches have to be 168	  

traversed to process a query, which reduces an index’s efficiency. In Oracle Spatial, the implementation 169	  

of the R-tree index stores the tree structure into a table and selects a node using internal SQL statements 170	  

while each node is visited (Kothuri, 2002). For that reason, query processing using an R-tree index in 171	  
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Oracle Spatial involves processing several recursive SQL statements, which prolongs the query 172	  

processing time (Kothuri, 2002). 173	  

A standard octree implementation typically results in an unbalanced tree. However, it can be implemented 174	  

as a balanced tree (i.e. the entire space is subdivided only to a specified tiling level). In this particular 175	  

case, it only requires storing the tiling level as the tree structure can be rebuilt during query processing by 176	  

using this tiling level information. This approach has been adopted for the implementation of the octree 177	  

structure as described later in this paper. 178	  

Another advantage of the octree is its capability to maintain the semantics of point data. Because the 179	  

octree has the ability to store data points directly (instead of merely their bounding boxes), semantic 180	  

information is accessible from the index and can, in fact, be used to build the index itself. As a practical 181	  

example, this means that points with specific attributes can be grouped together in one cell. Regarding 182	  

LiDAR data, an example of semantic criterion might be color based on RGB values, see schematic in 183	  

fig.1. This criterion could allow cell subdivision until a given percentage of color similarity is reached 184	  

within a cell. An R-tree index is not capable of grouping the data according to their semantics, therefore 185	  

loosing valuable information associated to individual points. Figure 1 illustrates how an octree preserves 186	  

the semantics, choosing color as a semantic criterion; for ease of illustration, all figures are presented in 187	  

2D, and the semantic of a region is illustrated as fully homogenously colored region, even though the 188	  

same principle applies in 3D and to regions of only partial uniformity, e.g. 80% color similarity within 189	  

cells (for reasons of publishing, instead of color different shapes were substituted to indicate different 190	  

attributes). 191	  
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	  192	  

Figure	  1:	  Octree	  segmentation	  using	  a	  Semantic	  as	  Grouping	  Parameter	  193	  

194	  
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A further advantage of using an octree for 3D point cloud indexing lies in the possibility to optimize 3D 195	  

point cloud visualization (Koo & Shin, 2005). Rendering of 3D point clouds is computationally 196	  

expensive, but an octree can be used to filter visible points for rendering a specific view frustum, instead 197	  

of rendering all points in the dataset at once. 198	  

Naturally, the decision of which indexing structure to use depends on many factors, such as data 199	  

distribution and the type of data. The following section presents the approach employed within this paper, 200	  

an octree implementation atop the Oracle Extensible Indexing Framework (OEIF). This approach is 201	  

further evaluated in section 4 and discussed in section 5. 202	  

3. Implementation of an Octree Structure in Oracle Spatial 203	  

This section presents an implementation of a new octree-based index structure for 3D point clouds within 204	  

Oracle Spatial 11g. The extensibility capability of the Oracle SDBMS was utilized in order to implement 205	  

this index. The framework for indexing is known as Oracle Extensible Indexing Framework (OEIF) and 206	  

the new index is a so called domain index. The framework defines a set of interface methods, which is 207	  

required to be implemented in an object type, called indextype (Belden, 2008). The name of the interface 208	  

is ODCIIndex where ODCI stands for Oracle Data Cartridge Interface. The methods of the ODCIIndex 209	  

interface are categorized into four classes:  index definition methods, index maintenance methods, index 210	  

scan methods, and index metadata methods. 211	  

An indextype is an object that specifies the routines that manage a domain (application-specific) index. 212	  

An indextype has two major components:  the methods that implement the index’s behavior and the 213	  

operators that the index supports. In this paper, a new indextype has been implemented in OEIF in order 214	  

to implement the proposed octree structure for LiDAR data indexing in Oracle Spatial. The name of the 215	  

new indextype is OCTREEINDEX. This index implementation is also comprised of an operator 216	  

implementation called OT_CLIP_3D, which performs a window query on any given 3D point cloud, 217	  

which is stored in an SDO_GEOMETRY data type.  218	  
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Before introducing 3D data types, Oracle Spatial relied heavily on SDO_GEOMETRY. More recently 219	  

Oracle Spatial has moved to SDO_PC as the main data type employed for the storage of multi-220	  

dimensional point cloud data. With this, a set of points are grouped and stored as the Binary Large Object 221	  

(BLOB) object in a row. While there is no upper bound on the number of points in an SDO_PC object, 222	  

the current version of Oracle Spatial offers only a limited amount of placeholders for the storage of 223	  

information alongside locational attributes, as only nine attributes can be stored together in one element 224	  

within SDO_PC (Murray, 2009). Another disadvantage is that Oracle Spatial does not yet offer 225	  

functionality to update SDO_PC objects. Consequently, the SDO_GEOMETRY data type remains highly 226	  

useful for the still provides the greatest flexibility in storage of any geometry type, including 3D data 227	  

points. In particular, when considering 3D point clouds, it is desirable to store in the same table the 228	  

locational information and the attribute information (e.g. color, intensity), as semantic information 229	  

oftentimes directs the feature recognition processes – typically applied at a later stage in the workflow. 230	  

For these reasons, our implementation relies on SDO_GEOMETRY instead of SDO_PC. However, the 231	  

approach could easily be adapted to be used with SDO_PC. 232	  

A conventional octree is an unbalanced hierarchical tree, which would require storage of its logical tree 233	  

structure in a SDBMS for reconstruction of the tree structure during query processing. As described in 234	  

section 2.2., this could introduce inefficient query processing due to the issuance of several internal 235	  

recursive SQL select statements generated during each node visit. This issue is resolved by constructing a 236	  

balanced tree structure with a fixed tiling level. In this case, only the tiling level information (as opposed 237	  

to the whole tree) needs to be stored for tree reconstruction. The pre-selection of an appropriate tiling 238	  

level for a specific dataset is a crucial factor, which involves considerations regarding the dataset’s area 239	  

and size. As such, this is a drawback of this approach, as experimentation with different levels is needed 240	  

in order to optimize performance for a specific dataset. This was discussed in section 2.2. 241	  

In the current implementation, the user is allowed to specify the tiling level of the octree through the 242	  

parameter OCTREE_LEVEL during index creation. The 3D region is recursively divided into eight 243	  
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congruent cells up to the specified tiling level. Each cell is associated with a unique code, which is 244	  

hereafter referred to as the cell code. The cell code is obtained by using z-ordering (i.e. Morton encoding) 245	  

of all cells at the specified level (Morton, 1966). Each point is indexed by the associated cell code of the 246	  

octant that contains the point. The ROWID of the point and the associated cell code are stored in the 247	  

index storage table. The meta data (e.g. tiling level, index name, index owner, max level, min level) for 248	  

the entire index are stored as a row in the index meta data table. 249	  

 250	  

Figure	  2:	  3D	  query	  processing	  using	  Octree	  index. 251	  

The 3D query processing using this implementation is illustrated in  252	  

Figure 2. To generate the result set for a spatial query, the octree index acts as the primary filter to find 253	  

the area of interest or candidate geometries for this query.   254	  

Figure 2 illustrates the use of a primary and a secondary filter during the query process. The area of 255	  

interest is the union of the cells of the octree that interact spatially (e.g. intersect, touch, inside, covered-256	  

by) with the query geometry, as established by the primary filter. These cells are identified by the cell 257	  

code, and candidate geometries are identified by the associated cell code from the index storage table. 258	  

These candidate geometries are passed through the intermediate filter and divided into two sets. Cells 259	  

inside or covered-by the query geometry are identified as exact matches. The points associated with these 260	  

cells are sent directly to the result set. The remaining cells (those that intersect or touch the query 261	  
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window) are identified as unknown and passed through the secondary filter. The secondary filter is a 262	  

spatial function, which corresponds to the spatial query. 263	  

The required ODCIIndex interface methods for implementing the proposed octree index for LiDAR data 264	  

atop OEIF are implemented as Java callouts. A previously available Java API was harnessed for this 265	  

purpose (Kothuri, 2007, p. 223). It enables applications written in Java to access and process geometry 266	  

objects managed in Oracle database with Oracle Spatial. The details of this implementation are available 267	  

in Mosa (2010). 268	  

4. Evaluation of the Octree Spatial Index 269	  

This section provides an evaluation of the implementation of the octree index presented in the previous 270	  

section. A window query is used in order to compare response times of the existing Oracle Spatial R-tree 271	  

and the newly implemented octree index. This evaluation has been conducted on a computer with the 272	  

Intel Core2 Duo CPU 2.53GHz and 4GB RAM, 7,200 SATA hard drive on Oracle 11g release 11.1.0.6. 273	  

The 3D point cloud dataset is stored in Oracle’s SDO_GEOMETRY data type. In order to perform spatial 274	  

queries on 3D point cloud data, the dataset is indexed using R-tree and with an octree in a separate run. 275	  

The R-tree index was created using Oracle’s existing in-built spatial index.  Presently, a 3D window 276	  

query cannot be performed using Oracle R-tree index, as all but one spatial operator can only be applied 277	  

to 2D geometries. As such, true 3D window queries cannot be performed using Oracle R-tree index. The 278	  

overlap of sibling nodes and the uneven size of nodes in an R-tree may develop inefficient query 279	  

execution (Zhu, 2007). Thus, only the 2D window query could be performed on the 2D R-tree index 280	  

using the SDO_RELATE operator by providing “inside and touch” masks (Kothuri, 2007, p. 274). This 281	  

provides functionality similar to a general window query. Here, the 2D R-tree index is created on the 2D 282	  

projection of the 3D point cloud data. 283	  

With the octree index, the 3D window query can be performed on 3D LiDAR point cloud data using the 284	  

operator OT_CLIP_3D. A tiling level of five was selected for the candidate dataset used in this example. 285	  
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An increased tiling level would result in a decreased indexed point per cell count, as well as candidate 286	  

geometries. In contrast, the increase of tiling levels results in an increase of leaf nodes (e.g. total number 287	  

of leaf node at tiling level ‘n’ is 8
n
), as well as memory consumption during octree manipulation.  288	  

The comparison of a 2D (x- and y- ordinates) window query using an R-tree index with a 3D (x, y and z) 289	  

window query using octree index requires the same number of resulting geometries for a window query as 290	  

query response time increases with increases in the query window, as well as the number of resulting 291	  

geometries (Kothuri, 2002). To ensure the same number of resulting geometries for octree and R-tree 292	  

index, the minimum and maximum value of the z-ordinates of the query window is set to the minimum 293	  

and maximum value of the underlying space in case of the octree index. 294	  

To this end, two randomly selected data subsets from a dense aerial LiDAR flyover of Dublin’s city 295	  

centre (Hinks et al., 2009) were selected for this experiment.  One contained just shy of 2.9 million points 296	  

and the other almost 66 million points. Query response times were compared for the two index types for a 297	  

variety of window sizes. For the smaller dataset (2.9 million), the octree was twice as fast as R-tree for the 298	  

small window of 25m
2
 and 8 times as fast for the large window of 2,500m

2
. For the larger dataset (66 299	  

million), the R-tree outperforms the octree for the small window of 400m
2
 size, but for large windows of 300	  

1600m
2
 and above, the octree performed distinctly better, with a six-fold improvement for a 40,000m

2
 301	  

window. 302	  

As datasets combined from different sources are becoming more irregularly distributed with significantly 303	  

higher densities in some areas. To evaluate potential performance benefits of octree-based indexing on 304	  

irregularly-distributed LiDAR point clouds, portions of data were selectively removed from a high 305	  

density aerial LiDAR flyover of Dublin’s city centre (Hinks et al, 2009). The dataset contains nearly 66 306	  

million points over .25km
2
, including points on the ground and road surfaces, rooftops, tree canopies and 307	  

building facades. The initial point distribution was quite uniform, with a density of 225 points per square 308	  

meter almost everywhere. For evaluation purposes it was of interest to test the octree index structure also 309	  
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on an irregularly distributed dataset, which was consequently derived from the initial dataset. This was 310	  

achieved by removing points where the z ordinate was larger than 20 meters or less than 10 meters.  311	  

The resulting dataset contains points on building facades.  The dataset also contains points on the rooftops 312	  

and the tree canopies, where the height is less than 20 meters. This generates an irregular distribution of 313	  

points within the 3D point cloud with a variable density in different areas. Figure 3 presents the 3D 314	  

rendering of this dataset approximately 17,5 million points. Table 1 presents the density distribution in 315	  

different area of the dataset. 316	  

 317	  
Figure	  3:	  Irregular	  distribution	  of	  3D	  point	  cloud	  (17,517,406	  points	  in	  the	  dataset)	  318	  

Table	  1:	  Density	  Distribution	  of	  Query	  Windows	  (17,517,406	  irregularly	  distributed	  points)	  319	  

Window 

No. 
X1 Y1 X2 Y2 

Area 

(m2) 

Total 

Point 

Density 

(points/m2) 

1 233,900 316,300 234,000 316,400 10,000 14,579 1.46 

2 233,700 316,200 233,800 316,300 10,000 273,688 27.37 

3 233,700 316,400 233,800 316,500 10,000 321,059 32.11 

4 233,600 316,400 233,700 316,500 10,000 337,032 33.7 

5 233,800 316,200 233,900 316,300 10,000 345,263 34.53 

6 233,700 316,100 233,800 316,200 10,000 381,920 38.19 

7 233,800 316,300 233,900 316,400 10,000 406,465 40.65 

8 233,700 316,300 233,800 316,400 10,000 433,147 43.31 

9 233,900 316,100 234,000 316,200 10,000 451,694 45.17 

10 233,500 316,400 233,600 316,500 10,000 507,923 50.79 

11 233,700 316,000 233,800 316,100 10,000 531,261 53.13 

12 233,900 316,200 234,000 316,300 10,000 563,964 56.4 

Points	  removed	  from	  ground	  surfaces	  

Points	  removed	  from	  roof	  
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13 233,800 316,100 233,900 316,200 10,000 734,972 73.5 

14 233,900 316,000 234,000 316,100 10,000 797,447 79.74 

15 233,900 316,400 234,000 316,500 10,000 809,561 80.96 

16 233,600 316,300 233,700 316,400 10,000 812,631 81.26 

17 233,800 316,000 233,900 316,100 10,000 854,245 85.42 

18 233,800 316,400 233,900 316,500 10,000 862,660 86.27 

19 233,500 316,300 233,600 316,400 10,000 936,929 93.69 

20 233,600 316,100 233,700 316,200 10,000 1,018,365 101.84 

21 233,500 316,000 233,600 316,100 10,000 1,139,836 113.98 

22 233,600 316,200 233,700 316,300 10,000 1,166,117 116.61 

23 233,500 316,100 233,600 316,200 10,000 1,168,042 116.8 

24 233,500 316,200 233,600 316,300 10,000 1,236,741 123.67 

25 233,600 316,000 233,700 316,100 10,000 1,414,439 141.44 

	  320	  

 321	  
Figure	  4:	  R-‐tree	  vs.	  octree	  17,517,406	  irregularly	  distributed	  points	  322	  

 323	  

Table 2 presents the average query response time along with the density distribution in different regions. 324	  

A square window of size 10,000 m
2
 (100m x 100m) was chosen for the window query and moved around 325	  

the underlying area in a random pattern. A total of 25 query windows were chosen in a 5x5 grid. The 326	  

query windows are presented in Table 2 in ascending order according to their point density. For every 327	  

query window, 10 queries were performed and query response time presents the average of these queries. 328	  
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Tab. 2 illustrates the comparison of the window query response time between the R-tree and the octree 329	  

index. The minimum density is 1.46 m
2,
 maximum density is 141.44 m

2
, and median density 73.5 m

2
.  330	  

The query response time increases with some variations with the increase of density. Overall, it can be 331	  

noted from this evaluation series that the octree index performs in a very consistent manner. In most 332	  

cases, the octree significantly outperforms the in-built R-tree index by an average factor 2,4.  333	  

For the window of 27,37 points/m
2
 density, the octree is 2,4 times faster than R-tree. Additionally, for 334	  

window densities below the median value the octree is on average twice as fast as the R-tree. On the other 335	  

hand, for window densities over the median value the octree is on average three times faster than the R-336	  

tree. For the highly dense region (141,44 m
2
), the octree is about five times faster than the R-tree. The 337	  

octree in most cases outperforms the R-tree.  338	  

	  339	  

Table	  2:	  R-‐tree	  vs.	  octree	  (17,517,406	  irregularly	  distributed	  points)	  340	  

Window 

No. 

Density 

(no. of points /m2) 

Avg. Query Response Time 

in sec. (R-tree) 

Avg. Query Response Time 

in sec. (octree) 

1 1.46 15.58 61.72 

2 27.37 144.22 59.96 

3 32.11 101.42 60.42 

4 33.7 93.88 59.26 

5 34.53 96.51 59.44 

6 38.19 155.5 63.32 

7 40.65 102.41 60.42 

8 43.31 109.32 59.66 

9 45.17 120.44 59.68 

10 50.79 103.09 60.87 

11 53.13 140.68 67.38 

12 56.4 114.76 68.58 

13 73.5 187.72 61.45 

14 79.74 116.39 62.11 

15 80.96 154.43 62.68 

16 81.26 214.75 61.67 

17 85.42 135.05 62.2 

18 86.27 193.59 62.89 

19 93.69 201.62 64.33 

20 101.84 246.1 64.98 

21 113.98 234.01 112.83 

22 116.61 261.84 65.9 

23 116.8 226.73 102.16 

24 123.67 190.47 65.49 
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25 141.44 331.8 66.44 

5. Discussion 341	  

The research presented in this paper has implemented an octree index for 3D point cloud data, employing 342	  

Oracle’s extensible indexing framework. An operator has been implemented in order to perform a 3D 343	  

window query. The implementation is described along with some optimizations. The newly implemented 344	  

octree index and Oracle’s inbuilt R-tree index are compared using a high density aerial LiDAR point 345	  

cloud dataset. The evaluation highlights distinct advantages of using an octree based index for both 346	  

regularly and irregularly-distributed point cloud data. For regularly-distributed data, the octree index 347	  

consistently outperforms an R-tree index by two to eight times for almost every window size. For 348	  

irregularly-distributed data, the octree index consistently outperforms the R-tree index by two to five 349	  

times for most of the density areas except the lower density area (1,46 points/m
2
). However, the current 350	  

implementation can be optimized further to improve the performance for lower density area. 351	  

In this work Oracle Spatial was chosen due to its current ability to store 3D data. However, the 352	  

implementation could be adapted for other SDBMS. Currently, in Oracle Spatial, the R-tree or quadtree 353	  

index can be applied on the block extent column of the SDO_PC data type. However, it is possible to 354	  

implement an octree index on the block extent of the SDO_PC. Currently, using Oracle’s SDO_PC, only 355	  

the block extents are indexed rather the actual point geometries. However, it is possible to access these 356	  

points directly from the block column and index them. Furthermore, it is also possible to implement a 357	  

two-step index, where an octree indexes the points inside a block and therefore maintains their semantic 358	  

information inside that block, and an R-tree index serves as a higher level index that is applied to the 359	  

block extents, as R-tree indexing is more suitable for polygon objects than an octree index would be. 360	  

Further work will fully evaluate this approach. 361	  

Finally, the method presented in this paper employs only one operator, which implements a window 362	  

query. A more comprehensive evaluation is needed in order to assess the octree index’s full potential for 363	  

other query operators, such as nearest neighbor or within distance. Since octree indexes are useful for 364	  
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solving the visibility of points during 3D point cloud rendering, an operator can be implemented based on 365	  

the octree index implemented for this purpose. The operator should have the view frustum or window as 366	  

input parameter and return only the visible points for this window. It facilitates the extraction of visual 367	  

points for the specified window through SQL. In this prototype, the tiling level is determined by the user 368	  

of a dataset. Further work will enhance the prototype by incorporating a feature for automatic tiling level 369	  

determination. 370	  
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