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ABSTRACT

Learning disentangled representations is regarded as a fundamental task for im-
proving the generalization, robustness, and interpretability of generative models.
However, measuring disentanglement has been challenging and inconsistent, often
dependent on an ad-hoc external model or specific to a certain dataset. To address
this, we present a method for quantifying disentanglement that only uses the gener-
ative model, by measuring the topological similarity of conditional submanifolds
in the learned representation. This method showcases both unsupervised and su-
pervised variants. To illustrate the effectiveness and applicability of our method,
we empirically evaluate several state-of-the-art models across multiple datasets.
We find that our method ranks models similarly to existing methods. We make our
code publicly available at https://github.com/stanfordmlgroup/disentanglement.
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Figure 1: Factors in the dSprites dataset displaying topological similarity and semantic correspon-
dence to respective latent dimensions in a disentangled generative model, as shown through Wasser-
stein RLT distributions—vectorizations of the persistent homology of submanifolds conditioned on a
latent dimension—and latent interpolations along respective latent dimensions.

1 INTRODUCTION

Learning disentangled representations is important for a variety of tasks, including adversarial
robustness, generalization to novel tasks, and interpretability (Stutz et al., 2019; Alemi et al., 2017;
Ridgeway, 2016; Bengio et al., 2013). Recently, deep generative models have shown marked
improvement in disentanglement across an increasing number of datasets and a variety of training
objectives (Chen et al., 2016; Lin et al., 2020; Higgins et al., 2017; Kim and Mnih, 2018; Chen
et al., 2018b; Burgess et al., 2018; Karras et al., 2019). Nevertheless, quantifying the extent of this
disentanglement has remained challenging and inconsistent. As a result, evaluation has often resorted
to qualitative inspection for comparisons between models.

Existing evaluation metrics are rigid: while some rely on training additional ad-hoc models that
depend on the generative model, such as a classifier, regressor, or an encoder (Eastwood and Williams,
2018; Kim and Mnih, 2018; Higgins et al., 2017; Chen et al., 2018b; Glorot et al., 2011; Grathwohl
and Wilson, 2016; Karaletsos et al., 2015; Duan et al., 2020), others are tuned for a particular
dataset (Karras et al., 2019). These both pose problems to the evaluation metric’s reliability, its
relevance to different models and tasks, and consequently, its applicable scope. Specifically, reliance
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on training and tuning external models presents a tendency to be sensitive to additional hyperpa-
rameters and introduces partiality for models with particular training objectives, e.g. variational
methods (Chen et al., 2018b; Kim and Mnih, 2018; Higgins et al., 2017; Burgess et al., 2018) or
adversarial methods with an encoder head on the discriminator (Chen et al., 2016; Lin et al., 2020).
In fact, this reliance may provide an explanation for the frequent fluctuation in model rankings when
new evaluation metrics are introduced (Kim and Mnih, 2018; Lin et al., 2020; Chen et al., 2016).
Meanwhile, dataset-specific preprocessing, such as automatically removing background portions from
generated portrait images (Karras et al., 2019), generally limits the scope of the evaluation metric’s
applicability because it depends on the preprocessing procedure and may otherwise be unreliable.

To address this, we introduce an unsupervised disentanglement evaluation metric that can be applied
across different model architectures and datasets without training an ad-hoc model for evaluation or
introducing a dataset-specific preprocessing step. We achieve this by using topology, the mathematical
discipline which differentiates between shapes based on gross features such as holes, loops, etc.,
alongside density analysis of samples. The combination of these two ideas are the basis for functional
persistence, which is one of the areas of application of persistent homology (Cayton, 2005; Narayanan
and Mitter, 2010; Goodfellow et al., 2016). In discussing topology, we walk a fine line between
perfect mathematical rigor on the one hand and concreteness for a more general audience on the other.
We hope we have found the right level for the machine learning community.

Our method investigates the topology of these low-density regions (holes) by estimating homology, a
topological invariant that characterizes the distribution of holes on a manifold. We first condition the
manifold on each latent dimension and subsequently measure the persistent homology of these condi-
tional submanifolds. By comparing persistent homology, we examine the degree to which conditional
submanifolds continuously deform into each other. This provides a notion of topological similarity
that is higher across submanifolds conditioned on disentangled dimensions than those conditioned
on entangled ones. From this, we construct our evaluation metric using the aggregate topological
similarity across data submanifolds conditioned on every latent dimension in the generative model.

In this paper, we make several key contributions:

• We present an unsupervised metric for evaluating disentanglement that only requires the
generative model (decoder) and is dataset-agnostic. In order to achieve this, we propose
measuring the topology of the learned data manifold with respect to its latent dimensions. Our
approach measures the topological dissimilarity measure across latent dimensions, and permits
the clustering of submanifolds based on topological similarity.

• We also introduce a supervised variant that compares the generated topology to a real reference.

• For both variants, we develop a topological similarity criterion based on Wasserstein distance,
which defines a metric on barcode space in persistent homology (Carlsson, 2019).

• Empirically, we perform an extensive set of experiments to demonstrate the applicability of
our method across 10 models and three datasets using both the supervised and unsupervised
variants. We find that our results are consistent with several existing methods.

2 BACKGROUND

Our method draws inspiration from the Manifold Hypothesis (Cayton, 2005; Narayanan and Mitter,
2010; Goodfellow et al., 2016), which posits that there exists a low-dimensional manifoldMdata

on which real data lie and pdata(x) is supported, and that generative models g : Z → X learn
an approximation of that manifold Mmodel. As a result, the true data manifold Mdata contains
high-density regions, separated by large expanses of low-density regions.Mmodel approximates the
topology ofMdata, and superlevel sets of density withinMdata, through the learning process.

A k-manifold is a space X , for example a subset of Rn for some n, which locally looks like an open
set in R

k (formally, for every point x ∈ X , there is a subset can be reparametrized to an open disc in
R

k). A coordinate chart for the manifold X is an open subset U of Rk together with a continuous
parametrization g : U → X of a subset of X . An atlas for X is a collection of coordinate charts that
cover X . For example, any open hemisphere in a sphere is a coordinate chart, and the collection of
all open hemispheres form an atlas. We say two manifolds are homeomorphic if there is a continuous
map from X to Y that has a continuous inverse. Intuitively, two manifolds are homeomorphic if one
can be viewed as a continuous reparametrization of the other. If we have a continuous map f from a
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Figure 2: Illustration of obtaining Wasserstein Relative Living Times (W. RLTs) from a manifold.
(a) a learned manifold with holes, on which (b) pmodel(x) is presumed to be supported (images here
are generated based on the dSprites dataset). From pmodel(x), we obtain (c) samples X . From X ,
we construct (d) simplicial complexes from increasing the proximity of balls over time, producing a
distribution of holes of varying dimensionalities, an RLT. In this example, we first have no holes in the
simplicial complex (homology group H0), then both a 1-dimensional hole and no hole (H1,H0), and
finally a 1-dimensional hole (H1). From the W. barycenter of many RLTs, we obtain (e) a W. RLT.
Fig. (a) is drawn from Hanson (1994) and (c)(d) are drawn from Khrulkov and Oseledets (2018).

manifold X to R
n, and are given two nearby points ~x and ~y in R

n, it is often useful to compare the
subsets f−1(~x) and f−1(~y), which are manifolds (where the Jacobian matrix of f is maximal rank).
They are frequently homeomorphic, and we will be using topological invariants that can distinguish
between two non-homeomorphic manifolds.

Among the easiest topological invariants to numerically estimate is homology (Hatcher, 2005), which
characterizes the number of k-dimensional holes in a topological space such as a manifold. Intuitively,
these holes correspond to low-density regions on the manifold. The field of persistent homology offers
several methods for estimating the homology of a topological space from data samples (Carlsson,
2019). Recent work on Relative Living Times (RLTs) (Khrulkov and Oseledets, 2018) has applied
persistent homology to generative model data manifolds, also enabling direct comparison of generated
data manifolds to real ones. For low-dimensional data (and images), points correspond to their vector
representation (flattened matrices of pixels); for high-dimensional data, particularly images, points
correspond to vectorized embeddings from a pretrained VGG16 (Simonyan and Zisserman, 2015).

To obtain RLTs, we first construct a family of simplicial complexes–graph-like structures–from data
samples, each starting with a set of vertices representing the data points and no edges (Figure 2).
These are witness complexes that characterize the topology of a set of points, a common method
for statistically estimating topological invariants in persistent homology (Carlsson, 2019; Lim et al.,
2020). These simplicial complexes approximate the persistent homology of the data manifold by
identifying k-dimensional holes present in the simplices at varying levels of proximity. Proximity is
defined with a dissimilarity metric (Euclidean distance) between points. It is used to build a simplicial
complex in which a collection of points spans a simplex if all points have proximity measure less
than some threshold, as shown in Figure 2d. Varying the threshold gives persistent homology. As
proximity increases, simplices are added, creating varying numbers of k-dimensional holes, which
gives rise to persistence barcodes (Carlsson, 2019; Zomorodian and Carlsson, 2005; Ghrist, 2008).

RLTs are vectorizations of these persistence barcodes, specifically the discrete distributions over the
duration of each k-dimensional hole as it appears and disappears, or their lifetime relative to other
holes. This is merely one method to (partially) vectorize persistence barcodes efficiently, and we leave
it to future work to explore alternate methods (Adcock et al., 2013; Bubenik, 2015). To measure the
topological similarity between data samples representing two generative model manifolds, Khrulkov
and Oseledets (2018) then take the Euclidean mean of several RLTs to produce a discrete probability
distribution, called a Mean Relative Living Time; they propose employing the Euclidean distance
between two Mean Relative Living Times as the measure of topological similarity between two sets
of data samples, known as the Geometry Score. Additional background is in Appendix B.

3 MANIFOLD INTERPRETATION OF DISENTANGLEMENT

We use prevailing definitions of disentanglement where a disentangled model has a factorized latent
space corresponding bijectively to factors of variation (Shu et al., 2019; Higgins et al., 2018; Duan
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EntangledScale Rotation

Figure 3: Consider a set of images of a spinning heart with different sizes. We can embed these
images on any group that combines a rotational and a scalar invariance (i.e. a group with the SO(2,1)
symmetry), visualizing this as a conical shell. The submanifolds conditioned on a given rotation
have no holes, while those conditioned on scale have a 1D hole. Notably, the topology of the
submanifold when holding scale fixed is different from the topology when holding rotation fixed.
Latent dimensions of a disentangled model would embed images on each axis. By contrast, an
entangled model may embed one dimension on an axis and the other in a spiral.

et al., 2020). We frame our approach primarily on the definition in Shu et al. (2019), with a more
formal connection between their approach and our method in Appendix A.

From the manifold perspective, disentanglement is an extrinsic property that is dependent on the
generative model’s atlas. Consider a disentangled generative model g with manifoldM that assumes
topology τ . We can define another generative model g′ with the same underlying manifoldM and τ ,
but it is entangled and has a different atlas. In fact, we can define several alternate disentangled and
entangled atlases, provided there are multiple valid factorizations of the space. As a result, we need a
method that can detect whether an atlas is disentangled.

In this paper, we sliceM into submanifolds Usi=v ⊂M that are conditioned on a factor si at value
v. These conditional submanifolds may have different homology from their supermanifoldM. If we
observe samples from one factor, e.g. Xs1=v ∼ Us1=v at varying values of v, we find that all samples
Xs1=v appear identical, except with respect to that single factor of variation si set to a different value
of v. For a generative model, the correspondence between latent dimensions zj and factors si is not
known upfront. As a result, we perform this procedure by conditioning on each latent dimension zj .

Conditional submanifold topology. For two submanifolds to have the same topology, there needs
to be a continuous and invertible mapping between them. First, assume that there exists an invertible
mapping, or encoder e : X → Z, and a generative model g : Z → X , where both functions are
continuous. Then, for a given z and x = g(z), we can recover z by the composition z = e(g(z)).
We can also construct a simple linear mapping l : z→ z’, which adapts a factor’s value, such that
z’ = l(e(g(z))) remains continuously deformable. This holds across factors, where the manifold
is topologically symmetric with respect to different factors, i.e. its conditional submanifolds are
homeomorphic. As an example, consider a disentangled generative model g(z0, z1, z2) that traces a

tri-axial ellipsoid x2

z2

0

+ y2

z2

1

+ z2

z2

2

= 1. If we condition the model on varying values of each factor, the

resulting submanifolds are ellipses and have the same topology.

Most complex manifolds have submanifolds that have non-homeomorphic factors of variation. For
example, consider a generative model g(z0, z1) that traces a cylindrical shell with angle z0, height z1,
and for simplicity, no thickness. The submanifolds conditioned on angle z0 form lines (no holes),
while the submanifolds conditioned on height z1 form circles (a 1D hole). However, the topology
remains the same for a given factor. A visualization of this principle on a cone is shown in Figure 3.
Taken together, this means that submanifolds within a factor (intra-factor) are homeomorphic, while
submanifolds between factors (extra-factor) can be either homeomorphic or non-homeomorphic.

Topological asymmetry. Because topologically asymmetric submanifolds are non-homeomorphic,
using a single e that continuously deforms across submanifolds no longer holds under disentanglement.
To address this, assume that for each factor j, there exists a continuous invertible encoder ej : X → Zj

that exclusively encodes information on j from a generated sample. In the cylindrical shell example,
this means continuously deforming across submanifolds conditioned on varying values of z0 using e0
(deforming between lines) and likewise for z1 using an e1 (deforming between circles). Note that
this formulation prevents continuous deformations between lines and circles. More generally, we
cannot continuously deform across submanifolds conditioned by arbitrary factors and expect the
topology to be preserved. This procedure now amounts to performing latent traversals along an axis
and observing the topology of the resulting submanifolds. In a disentangled model, the j-conditional
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Algorithm 1: Procedure for producing W. RLTs on generated images: For generator g with latent
prior P and N samples, Dz latent dimensions, and nd samples per latent dimension, returns a W.
RLT for each dimension. RLT is the RLT procedure from Khrulkov and Oseledets (2018).

for i in 1 : N do
Sample z(i) ∼ P {note: z ∈ R

N×Dz}
end for
for latent dimension d in 1 : Dz do

for k in 1 : nd do
z′ ← copy(z)
Set z′d ← k ∼ Pd

Compute ez ← embedding(g(z′d)) {e.g. using VGG16}
Compute rlt[d, k]← RLT (ez, γ = 1/128, L0 = 64, n = 100)

end for
Compute WB[d]←W.Barycenter(rlt[d, k])

end for
return WB

submanifolds exhibit the same topology by continuous composition of z = ej(g(z)), using a linear
mapping that only adapts factor j across the traversal, i.e. z′ = lj(ej(g(z))).

In an entangled model by contrast, more than one factor—such as both the angle and height in the
cylindrical shell example—exhibit variation along a dimension zj . Put another way, the topology
on submanifolds conditioned on zj changes when multiple factors contribute to variation along this
dimension. Concretely, following the cylindrical shell example, a dimension that encodes height and,
after a certain height threshold, also begins to adapt the angle will result in a topology that changes to
include a 2D hole. Consequently, submanifolds conditioned on the same latent dimension zj have the
same topology in a disentangled model, yet different topology in an entangled one.

Because we cannot assume that the data manifold of a generative model is completely symmetric, we
only consider submanifolds to be homeomorphic along the same factor in a disentangled model. By
contrast, since these submanifolds are not homeomorphic in an entangled model, we can measure the
similarity across submanifolds to evaluate a model’s disentanglement. Using this notion of intra-factor
topological similarity, we may sufficiently measure disentanglement in most cases, but it does not
shield us from the scenario where a generative model learns a single trivial factor along all dimensions,
i.e. a factorization of one. If we assume that there exists assymmetries in the data manifold, then
ensuring that the manifold exhibits topological dissimilarity between certain factors would disarm that
case. We operationalize this by identifying homeomorphic clusters of factors, whereby each cluster
has a distinct topology to ensure there is not a factorization of one. Within clusters, we measure
topological similarity, but between clusters, we calculate topological dissimilarity. Consequently,
topological similarity and dissimilarity form the basis of our evaluation metric. A more principled
treatment of how manifold topology measures disentanglement is in Appendix A.

3.1 TOPOLOGICAL SIMILARITY USING WASSERSTEIN RELATIVE LIVING TIMES

Figure 4: Wasserstein RLTs from factors in the
CelebA dataset, based on the same cluster above,
and in distinct clusters below. As one can see, the
W. RLTs within a cluster (above) are more similar
to each other than to those outside of that cluster
(below). Additional examples are in Appendix D.

To estimate the topological similarity between
conditional submanifolds, we build on Relative
Living Times (Khrulkov and Oseledets, 2018)
and introduce Wasserstein (W.) Relative Living
Times. Wasserstein distance, unlike Euclidean
distance, defines a metric on barcode space
(Carlsson, 2019); recall that barcodes are the
discrete distributions representing the presence
and absence of different k-dimensional holes
(more formally known as Betti numbers, or k-
th homology groups), vectorized to form RLTs
(Carlsson, 2019). This strongly motivates us to
consider Wasserstein over Euclidean distance,
which we find empirically to improve separation
between distinct factors of variation (on a real
disentangling dataset), detailed in Appendix C.
Thus, in lieu of the Euclidean mean across RLTs,
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Figure 5: Topological similarity matrices across experimental conditions. Dark clusters along
the diagonal indicate homeomorphic clusters. Darker values indicate greater similarity (lower W.
distance) to each other. Note that models spectrally cocluster differently across dataset settings.

we equivalently employ the W. barycenter (Agueh and Carlier, 2011). For distances between W.
barycenters, we employ standard W. distance.

The W. barycenter p̄w of the distributions p1...pN corresponds to finding the minimum cost for

transporting p̄W to each pi, where cost is defined in W-2 distance: p̄W = argminq
∑N

j=1 λjW
2
2 (q, pj),

where λ ≥ 0 and
∑N

j=1 λj = 1. This is a weighted Fréchet mean, p̄ = argminq
∑N

j=1 λjd(q, pj),

where d = W 2
2 . In contrast, Euclidean distance, or the l2 norm, is defined using d = ‖ · ‖22.

Because our distributions represent discrete unnormalized counts of k-dimensional holes, we leverage
recent work in unbalanced optimal transport (Chizat et al., 2018; Frogner et al., 2015) that assumes
that pi are not normalized probabilities containing varying cumulative mass. The unbalanced W.
barycenter modifies the W. distance to penalize the marginal distributions based on the extended KL
divergence (Chizat et al., 2018; Dognin et al., 2019). Unlike Euclidean, Hellinger, or total variation
distance, W. distance defines a valid metric on barcode space in persistent homology (Carlsson, 2019).

We provide the procedure for W. RLTs for the generated data manifold in Algorithm 1 and the real
data manifold in Algorithm 2 of Appendix I. We also show in Appendix C that the use of both W.
RLTs and W. distance result in a distance metric on sets of RLTs that best separates similar and
dissimilar topological features, as measured using persistent homology.

3.2 EVALUATION METRIC

Equipped with a procedure for measuring topological similarity, we develop a disentanglement
evaluation metric from intra-cluster topological similarity and extra-cluster topological dissimilarity.
Beginning with intra-factor topological similarity, we are concerned with the degree to which the
topology of pmodel(x|si = v) varies with respect to a factor si at different values of v. Specifically,
we condition the manifold on a particular factor si at value v, while allowing other factors s\i to
vary. We then measure the topology of this conditional submanifold. For each factor si, we find the
topology of conditional submanifolds at varying values of v. A disentangled model would exhibit
topological similarity within the set of submanifolds conditioned on the same si. We visualize similar
and dissimilar W. RLTs on factors of the CelebA dataset in Figure 4.

For a generative model, the correspondence between latent dimensions zj and factors si is not known
upfront. As a result, we perform this procedure by conditioning on each latent dimension zj . We
then assess pairwise topological similarity across latent dimensions ∀j,kd(zj , zk), where d is the W.
distance between W. RLTs. This operation constructs a j-dimensional similarity matrix M . We use
spectral coclustering (Dhillon, 2001) on M to cocluster zj into c biclusters, which represent different
clusters of likely homeomorphic submanifolds conditioned on a shared factor. Spectral coclustering
uses SVD to identify, in our case, the c ≤ j most likely biclusters, or the subsets of rows that are most
similar to columns in M . The resulting biclusters create a correspondence from latent dimensions
zi to a cluster of homeomorphic submanifolds conditioned on a factor hc. We then minimize the
total variance of intra-cluster variance and extra-cluster variance on the biclusters in M to find the
value for c. Aggregating biclusters in M , we obtain a c-dimensional matrix M ′

c (see examples in
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Figure 5). Using M ′
c, we compute a score µ that rewards high intra-cluster similarity ρc = tr(M ′)

and low extra-cluster similarity ρ\c =
∑

a M
′
a\a− tr(M ′) where a indexes the bicluster rows of M ′.

This score is based on the normalized cut objective in spectral coclustering to measure the strength of
associations within a bicluster (Dhillon, 2001). As a result, the unsupervised evaluation metric

µ = ρc − ρ\c.

Supervised variant. In order to capture the correspondence between the learned and real data
topology, we present a supervised variant that uses labels of relevant factors on the real dataset to
represent the real data topology. This is motivated in large part by F. Locatello et al. (2019), who
importantly show that learning a fully disentangled a model requires supervision; further discussion
is in Appendix B. While this supervised variant requires labeled data, there are no external ad-hoc
classifiers or encoders that might favor one training criterion over another. Persistent homology is
computed in the same way for the real data submanifolds as the generated data submanifolds, except
that we have desired clusters of factors si upfront. See Figure 1 for a comparison between real and
generated Wasserstein RLTs of two dSprites factors. The major difference is that the generated data
manifold is no longer compared to itself, but to the real data manifold, where topological similarity
is now computed between the two manifolds: ∀i,jd(zj , si), where d = W2. Note that the relevant
factors in the real topology form a specific factorization, so a model that finds an alternate factorization
and scores well on the unsupervised evaluation metric may not fare well on the supervised variant.

We use the same spectral coclustering procedure, though this time on a j× i matrix. Note that because
it is not a square matrix, ρc =

∑c

a=0 M
′
aa and ρ\c =

∑c

a=0

∑c

b=0 M
′
ab−ρc, where c = min(c, i) so

we only consider the real factors if c > i. Finally, we normalize the final score by number of factors

µSUP = µ/i,

to penalize methods that do not find any correspondence to some factors. Ultimately, the supervised
evaluation metric favors submanifolds, conditioned on clusters of latent dimensions, which are similar
to the conditional submanifolds of the ground truth dataset.

Limitations. In Figure 6, we highlight cases where our evaluation metric may face limitations,
delineated from scenarios where it would behave as expected. The first limitation is that it is
theoretically possible for two factors to be disentangled and, under cases of complete symmetry, still
have the same topology. This is more likely in datasets with trivial topologies that are significantly
simpler than dSprites. While partial symmetry is handled in the evaluation metric with spectral
coclustering of homeomorphic factors, complete symmetry is not.

Similar Topology Different Topology
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Expected 

Low μ 

Expected 

High μ 

Not applicable 
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interpretation
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in complex data 

manifolds

Figure 6: Topology-entanglement com-
binations considered in our method.

Because we assume the manifold is not exactly symmetric,
we do not account for all factors to present symmetry. In
order to safeguard against this case, we would need to
consider the covariance of topological similarities across
pairwise conditional manifolds. This requires selecting
fixed points from v that hold two dimensions constant, and
subsequently verifying that the topologies do not covary.
However, this approach comes with a high computational
cost for a benefit only to, for the most part, simple toy
datasets. If we assign a Dirichlet process prior over all pos-
sible topologies (Ranganathan, 2008) and treat the number
of factors as the number of samples, we find the probabil-
ity of having only a single set of all homeomorphic factors
decreases factorially with the number of dimensions n.

An additional limitation of our method is that RLTs do not compute a full topology of the data
manifold, but instead efficiently approximate one topological invariant, homology, so that we can
comparatively rank generative models on disentanglement. Our overall approach of measuring
disentanglement is general enough to incorporate measurements of other topological invariants.

4 EXPERIMENTS

Across an extensive set of experiments, our goal is to show the extent to which our metric is
able to evaluate across different generative model architectures, training criteria, and datasets. We
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Figure 7: Comparisons of µ to MIG (Chen et al., 2018b) and µSUP to classifier-based disentanglement
score (Kim and Mnih, 2018) on the dSprites dataset.

additionally show that our metric performs similarly to existing disentanglement metrics, without the
same architectural or dataset-specific needs. We use pretrained model checkpoints where possible
or else train with default hyperparameters. For each model and dataset combination we compute µ
following Algorithms 1 and 3. To compute µSUP we also use Algorithm 2 to generate the W. RLTs of
the real dataset. For the embedding function in Algorithms 1 and 2, we used a pretrained VGG16
(Simonyan and Zisserman, 2015) with the last 3 layers removed to embed image samples into 64
feature dimensions. Additional training details are in Appendix G.

Datasets. We present empirical results on three datasets: (1) dSprites (Matthey et al., 2017) is a
canonical disentanglement dataset whose five generating factors {shape, scale, orientation, x-position,
y-position} are complete and independent, i.e. they fully describe all combinations in the dataset;
(2) CelebA is a popular dataset for disentanglement and image generation, and is comprised of over
202K human faces, which we align and crop to be 64× 64 px (Liu et al., 2015). There are also 40
attribute labels for each image; and (3) Celeba-HQ, a higher resolution subset of CelebA consisting
of 30K images (Karras et al., 2018).

Generative models. We compare ten canonical generative models, including a standard VAE, β-
VAE (Higgins et al., 2017), β-VAEB (Burgess et al., 2018), FactorVAE (Kim and Mnih, 2018),
β-TCVAE (Chen et al., 2018b), InfoGAN (Chen et al., 2016), InfoGAN-CR (Lin et al., 2020),
BEGAN (Berthelot et al., 2017), WGAN-GP (Gulrajani et al., 2017), ProGAN (Karras et al., 2018),
and StyleGAN (Karras et al., 2019). We evaluate VAE and InfoGAN variants on dSprites and CelebA,
WGAN-GP and BEGAN on CelebA, and ProGAN and StyleGAN on CelebA-HQ. We match models
to datasets, on which they have previously demonstrated strong performance and stable training.

Metric parity. We find that {µ, µSUP} rank models similarly to several other frequently cited metrics,
including: (1) an information-theoric metric MIG that uses an encoder (Chen et al., 2018b), (2)
a supervised metric from (Kim and Mnih, 2018) that uses a classifier, and (3) a dataset-specific
metric PPL (Karras et al., 2019) that caters to face datasets such as CelebA-HQ. We use scores from
their respective papers and prior work (Chen et al., 2018b; Kim and Mnih, 2018; Lin et al., 2020;
Karras et al., 2019) to show that our method ranks most or all models the same across each metric (µ
compared to MIG and PPL, µSUP to the supervised method). The source of deviation from MIG is the
ranking of β-VAE; nevertheless, both of our scores exhibit exceptionally high variance across runs,
suggesting that β-VAE has inconsistent disentanglement performance (see Figure 7). The classifier
method ranks β-TCVAE and FactorVAE quite far apart, while ours ranks them similarly. We find that
their nearly identical training objectives should rank them more closely and do not find this disparity
particularly unexpected. Finally, our method agrees with PPL rankings on CelebA-HQ.

As shown in Table 1, these experiments highlight several key observations:

• Performance is not only architecture-dependent, but also dataset-dependent. This highlights the
importance of having a metric that can cater to comparisons across these facets. Nevertheless,
we note that β-VAEB shows especially strong results on both metrics and two dataset settings.

• As expected, the VAE and InfoGAN variants designed for disentanglement show greater
performance on µ than their GAN counterparts. However, on µSUP, we find that BEGAN is able
to perform inseparably close to β-VAEB , suggesting that the model learns dependent factors
consistent with the attributes in CelebA.
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Model Dataset µ µSUP

β-VAEB dSprites 23.53 ± 8.14 3.55 ± 4.25
β-TCVAE dSprites 14.92 ± 3.46 -0.79 ± 1.35

InfoGAN-CR dSprites 9.73 ± 4.03 1.85 ± 2.63
FactorVAE dSprites 8.66 ± 1.83 0.35 ± 0.90
InfoGAN dSprites 7.42 ± 1.19 0.16 ± 0.92

VAE dSprites 7.05 ± 1.25 1.54 ± 1.27
β-VAE dSprites 6.53 ± 2.89 1.81 ± 2.90

StyleGAN CelebA-HQ 1.03 ± 0.24 0.77 ± 0.07
ProGAN CelebA-HQ 0.68 ± 0.08 0.37 ± 0.45

Model Dataset µ µSUP

β-VAEB CelebA 4.73 ± 2.27 0.29 ± 0.25
β-TCVAE CelebA 10.66 ± 2.48 0.04 ± 0.36

InfoGAN-CR CelebA 0.72 ± 0.27 0.07 ± 0.15
FactorVAE CelebA 8.53 ± 4.53 -0.14 ± 0.28
InfoGAN CelebA 1.11 ± 0.81 0.00 ± 0.01

VAE CelebA 6.98 ± 2.78 0.00 ± 0.15
β-VAE CelebA 15.10 ± 8.94 0.13 ± 0.38

BEGAN CelebA 0.85 ± 0.25 0.22 ± 0.10
WGAN-GP CelebA 0.83 ± 0.29 0.07 ± 0.13

Table 1: Experimental results on several generative models and dataset settings for our unsupervised
µ and supervised µSUP metrics, across five runs. We find that, consistent with other disentanglement
metrics, no model architecture that we evaluated supercedes all others on every metric and dataset.
Higher values indicate greater disentanglement.

• With similar training objectives, β-TCVAE and FactorVAE demonstrate comparable strong
performances on µ across both dSprites and CelebA. β-TCVAE displays slight, yet consistent,
improvements over FactorVAE, which may point to FactorVAE’s underestimation of total
correlation (Chen et al., 2018b). Nevertheless, FactorVAE demonstrates higher µSUP on dSprites.

• StyleGAN demonstrates consistently higher disentanglement, compared to ProGAN, which
supports architectural decisions made for StyleGAN (Karras et al., 2019).

Different datasets and requirements for evaluating disentanglement may favor an unsupervised variant
over a supervised variant, and vice versa. Without known factors or without factors of interest, the
unsupervised variant is clearly the more favorable or in some cases the only option.

One benefit of using the unsupervised variant even if the factors are known is when multiple
combinations of factors are valid to disentangle the data. For example, one can imagine disentangling
color into RGB {red, green, blue}, HSL {hue, saturation, lightness}, or HSV {hue, saturation, value}.
The unsupervised evaluation metric would be satisfied with a model that disentangles into any of
these. A supervised evaluation metric, for which the known factors are RGB, however, would not.
RGB is a human (supervised) prior that dictates not only whether but how the factors disentangle.
In effect, this leads to differences in rankings across the two variants. Nevertheless, in the case of
a disentanglement dataset, such as dSprites, where the factors were created first and the data was
created from those factors, we would expect that the known factors are reasonable ones, if not the
best ones according to human judgment, to disentangle. That is, while there may be alternatives, this
is a good, and quite possibly the most intuitive, human prior.

However, datasets in the wild, which CelebA veers closer to, differ in this respect. We do not know
the complete set of factors of variation for CelebA’s human faces, and the attributes provided in the
metadata are a subset at best. In this case, if one wishes to measure disentanglement generally, we
suggest using unsupervised approaches to assess disentanglement of a learned model. If one wishes to
measure disentanglement of specific factors, e.g. sunglasses and hair color, then the supervised variant
would be more appropriate. Nevertheless, different variants suit different needs, and across datasets
and variants, we may expect different models to emerge as superior in their ability to disentangle.

5 CONCLUSION

In this paper, we have introduced a disentanglement evaluation metric that measures intrinsic proper-
ties of a generative model with respect to its factors of variation. Our evaluation metric circumvents
the typical requirements of existing evaluation metrics, such as requiring an ad-hoc model, a particular
dataset, or a canonical factorization. This opens up the stage for broader comparisons across models
and datasets. Our contributions also consider several cases of disentanglement, where labeled data is
not available (unsupervised) or where direct comparisons to user-specified, semantically interpretable
factors are desired (supervised). Ultimately, this work advances our ability to leverage the intrinsic
properties of generative models to observe additional desirable facets and to apply these properties to
important outstanding problems in the field.
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