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Abstract. We propose an empirical, perception-based evaluation approach for 
assessing the effectiveness and efficiency of longstanding cartographic design 
principles applied to 2D map displays. The approach includes bottom-up visual 
saliency models that are compared with eye-movement data collected in hu-
man-subject experiments on map stimuli embedded in the so-called flicker 
paradigm. The proposed methods are applied to the assessment of four com-
monly used visual variables for designing 2D maps: size, color value, color hue, 
and orientation. The empirical results suggest that the visual variable size is the 
most efficient (fastest) and most effective (accurate) visual variable to detect 
change under flicker conditions. The visual variable orientation proved to be the 
least efficient and effective of the tested visual variables. These empirical re-
sults shed new light on the implied ranking of the visual variables that have 
been proposed over 40 years ago. With the presented approach we hope to pro-
vide cartographers, GIScientists and visualization designers a systematic as-
sessment method to develop effective and efficient geovisualization displays. 

Keywords: Geographic visualization, visual variables, eye movements, change 
blindness, empirical studies. 

1   Introduction 

The cartographic design process is about a systematic transformation of collected 
(typically multivariate) spatial data into a two-, three- or four-dimensional visuo-
spatial display. This process is typically performed by applying scientific (i.e.,  
systematic, transparent, and reproducible) cartographic design methods, as well as 
aesthetic expressivity. Principles and details of the map design process can be found 
in many of the well-established cartography textbooks (see for example Dent, 1999; 
Slocum et al., 2008). More recently, cartographers have not only been interested in 
“what looks good” or “what visually communicates well”, but also increasingly how 
and why a particular design solution works well or not. 

Although the seemingly intuitive design principles have been successfully used for 
hundreds of years, and some of them (e.g., “light is less–dark is more”) have even 
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been internationally accepted as conventions, for example, in the statistics community 
(Palsky, 1999), very few of the proposed conventions have actually been tested sys-
tematically for their effectiveness and efficiency with human users. One such example 
is the well-known system of the seven visual variables proposed initially by the 
French cartographer Jacques Bertin (1967; and translated to English in 1983) and later 
extended by various cartographers, see for example, Morrison (1974) and 
MacEachren (1995). More recently, Bertin’s work has also received attention in the 
information visualization literature (Mackinlay, 1989). The variables seem to work 
when employed logically, but designers are typically not certain why. Unfortunately, 
there is very little empirical evidence on the effectiveness and efficiency of these 
visual variables (MacEachren, 1995). How can GIScientists, geovisualizers, and car-
tographers be sure that their design decisions produce effective and efficient displays? 
Naïve users tend to extract information based on perceptual salience rather than on 
thematic relevance (Lowe, 2003; Fabrikant & Goldsberry, 2005). For this reason, an 
empirical evaluation of design principles, and a systematic look into the relationships 
between perceptual salience and thematic relevance in visualization design is needed 
(MacEachren & Kraak, 2001) to understand how and why certain displays are more 
successful for spatial inference and decision making than others. 

2   Related Work 

2.1   Visual Variables for Guiding Visual Attention 

Bertin (1967/83) proposed a systematical approach to communicating information by 
visual means. He lists seven basic visual variables and presents effects of varying the 
perceptual properties of the visual variables in order to derive meaningful representa-
tions. There are two planar variables (the x and y position on the map plane), and five 
so-called “retinal” ones (size, color value, color hue, shape, and orientation), which 
we (and perhaps vision researchers) would probably translate as “pre-attentive” (Ber-
tin, 1967/83). Although Bertin (1967/83) lists these variables individually, effective 
map representations can of course include a combination of various visual variables 
(MacEachren, 1995). 

Bertin distinguishes selective, associative, ordered and quantitative visual vari-
ables. A visual variable is selective (e.g., color hue) and therefore fundamental for 
symbolization of data, if all symbols can be easily isolated (perceptually selected) to 
form a group of similar symbols based on this variable (e.g., where are the red signs 
compared to the green signs). Bertin contends that shape (for points, lines and areas) 
and orientation (only when applied to areas) are not selective. Conversely, a visual 
variable is called associative (e.g., shape) if it allows to perceptually group all catego-
ries or instances of symbols based on that particular visual characteristic (signs of the 
same shape with different sizes vs. signs of different sizes with the same shape). Only 
the visual variables size and color value are said to have perceptual dissociative char-
acteristics (Bertin, 1967/83). With dissociative visual variables (e.g., size) it is easier 
to detect visual variations among the signs themselves, than to visually form groups 
of similar symbols across other visual variables. Dissociative variables can be ordered 
or quantitative. A visual variable is defined ordered if it is possible to perceptually 
rank symbols based on one particular visually varying characteristic (e.g., lighter vs. 
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darker shading). If it is possible to perceptually quantify the degree of variation of a 
visual symbol, the visual variable property is defined as quantitative (e.g., size). Ber-
tin furthermore ranks visual variables in an explicit sequence: higher order variables 
(e.g., size) which possess a greater number of perceptual characteristics (i.e., quantita-
tive, ordered, and dissociative), compared to lower order variables (e.g., orientation), 
that may only have associative characteristics (only for areas). 

Ironically, Bertin does not cite any perceptual or psychophysical work that would 
provide empirical evidence to his design guidelines. In fact, his seminal volume on 
the Semiology of Graphics (1967/83) does not include any reference to any previous 
or related work. Bertin’s contributions can be understood within the context of the 
work by Gestalt psychologists such as, Wertheimer and Koffka in the 1920s (re-
viewed by Gregory, 1987 and Goldstein, 1989) who posited that the arrangement of 
features in an image plane will influence the perceived thematic or group membership 
relations of elements (i.e., figure/ground separation). Bertin’s proposals have been 
somewhat supported by later experimental evidence for classic visual search tasks 
(e.g., pop-out vs. conjunctive search) proposed by Treisman and colleagues (e.g., 
Treisman & Gelade, 1980). In a meta study summarizing several decades of visual 
search and attention work in psychology and neuroscience, Wolfe & Horowitz (2004) 
list color (hue), size and orientation as undoubted variables to guide visual attention 
(for static displays), and color value (luminance) and shape as probable cases. Inter-
estingly, these variables are not congruent with the ordering that Bertin suggests. 
Most if not all of this empirical work, however, has been performed on highly con-
trolled, and therefore simple graphic displays, typically containing only simple and 
isolated geometrical signs, thus not complex graphics such as commonly used maps, 
or other kinds of visualizations. 

Visual search strategies in a geographic context have been studied on realistic 
looking scenes such as maps (Lloyd, 1997), aerial photographs (Lloyd et al., 2002), 
and on remotely sensed images (Swienty et al., 2007). Additional empirical evidence 
for the validity of the visual variable system in more complex cartographic displays 
have been provided in the context of weather maps (Fabrikant et al., in press), the-
matic map animations (Fabrikant & Goldsberry, 2005), or for depicting the distance-
similarity metaphor in information spatializations (Fabrikant et al., 2004; Fabrikant et 
al., 2006). Visual attention guiding variables have also been employed for the con-
struction of computational vision models, as will be discussed in the next section. 

2.2   Computational (Bottom Up) Models of Visual Attention 

Itti & Koch (2001) present a computational framework to model visual saliency, 
based on based on neurobiological concepts of visual attention (Itti et al., 1998). The 
aim of the various computational models of visual attention is to model and predict 
visual attention based on psychophysical and neurophysiological empirical findings 
with human subjects (Koch, 2004). Visual saliency models also allow investigating 
complex and dynamic situations like animations, and changing natural scenes 
(Rosenholtz et al., 2007). Hence, they seem to be promising candidates for evaluating 
map displays as well. 
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Fig. 1. Stimulus with predicted first eye fixation based on its saliency map 

The Itti model is a neural-net based, neurobiologically plausible vision model. 
The goal of the model is to identify the focus of attention of a visual system (mam-
mal or robot) based on the ‘where’ (e.g., perceptually salient characteristics), but 
not the ‘what’ (e.g., semantic characteristics, requiring cognition). In this model, 
three filters are applied to extract color hue, color value and orientation contrasts at 
several levels of image resolutions in a visual scene. Interestingly, these are three of 
Bertin’s proposed visual variables. Three feature maps (one for each filter) are 
computed based on center-surround comparisons. Feature maps are additionally 
computed at several image resolutions and integrated to form a single conspicuity 
map for each feature type. A non-linear normalization is applied to each conspicuity 
map to amplify peaks of contrasts relative to noise in the background. In the final 
stage feature maps are combined to produce a single saliency map (SM). The sali-
ency model also predicts a sequence of locations (ranked saliency peaks in the SM) 
that will attract a viewer’s gaze in a scene (Parkhurst et al., 2002). The predicted 
initial eye fixation (white circle) is shown Figure 1. Lighter areas in Figure 1 iden-
tify image locations with higher saliency. 

It is important to emphasize that the Itti saliency map does not reveal top-down 
components of visual attention. However, because we specifically employ a bottom-
up approach within the flicker paradigm (see next section), and we are interested in 
evaluating the “retinal” (e.g., “pre-attentive”) characteristics of map symbols, we 
contend this not to be a limitation for our study. Moreover, despite these limits,  
saliency map models appear to have already proven to be useful for cartographic 
purposes (Fabrikant & Goldsberry, 2005; Fabrikant et al., in press). We employ the 
visual attention model developed by Itti and colleagues (Itti et al., 1998) as a baseline 
to later compare human subject viewing behaviors collected with eye movement data. 
While visual variables are said to guide visual attention based on visual saliency, it is 
important to be aware of limitations or failures of the visual system, which we discuss 
in the next sections. 
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2.3   Failures in Visual Attention 

Change blindness refers to a failure in the visual system in that observers often fail to 
detect even very salient and large changes in a scene when a blank field separates two 
alternating images. Change blindness is defined as “the inability to notice changes 
that occur in clear view of the observer, even when these changes are large and the 
observer knows they will occur” (Rensink, 2005: 76). According to Rensink (2005) 
change blindness occurs in different situations and under various conditions, thus it is 
a well-established phenomenon of human visual perception. Changes involving per-
ceptually salient features are easier to detect than changes involving perceptually less 
salient features (Simons, 2000). As mentioned earlier, previous work has already 
demonstrated that visual attention and visual perception are tightly related (see review 
by Wolfe & Horowitz, 2004).  

Rensink et al. (1997) introduced the flicker paradigm in order to investigate the 
phenomenon of change blindness. In the flicker paradigm “an original image A re-
peatedly alternates with a modified image A’, with brief blank fields placed between 
successive images” (Rensink, 1997: 368).  

Attention is characterized by bottom-up (stimulus-driven) and top-down (goal-
driven) attentional control (Wright & Ward, 2008). The bottom-up component of 
attention is modeled in the flicker paradigm asking observers to detect the change as 
quickly as possible (Rensink, 2005). As a consequence, the memory impact on the 
experiment is reduced, but not completely inhibited (Rensink, 2005). 

The dependent variable that can be measured under flicker conditions is the re-
sponse time (Rensink, 2005). An observer is asked to solve three kinds of tasks: 1) 
change detection (what?), 2) change localization (where?), and 3) change identifica-
tion (how?) (Rensink, 2002). Experimental results report that the identification task is 
typically the most complex task to handle (Rensink, 2002). 

3   Experiment 

In a controlled experiment we empirically investigated the relationships between the 
perceptual salience and thematic relevance in static 2D map displays. We employed a 
systematic bottom-up evaluation approach using the flicker paradigm (Rensink et al., 
1997), in combination with the eye movement data collection method. In our experi-
ment we focus specifically on those visual variables (i.e., size, color value, color hue 
and orientation) that according to Wolfe & Horowitz (2004) have been proven in 
psychophysical studies not only to guide visual attention, but are also used in a state-
of-the-art visual saliency models (Itti et al., 1998). 

In order to test the efficiency and effectiveness of these visual variables with users 
we prepared thirty-two thematic 2D map stimuli varying the visual variables size, color 
value, color hue and orientation (within-subject independent variables), embedded in a 
flicker display. The experiment consisted in solving three kinds of tasks: change detec-
tion, change localization, and change description. We hypothesize that the most efficient 
visual variable is detected faster in a flicker display than less efficient ones. Moreover, 
the more effective a visual variable, the more accurate participants’ responses will be in 
a flicker display, compared to a less effective visual variable. To investigate these two 
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hypotheses, the dependent variables time of response and accuracy of response are 
measured. In addition to the traditional success measures we additionally collect proce-
dural data in the form of participants’ eye movements when solving the experiment 
tasks. In this way, we hope to not only identify which visual variable works best, but 
also how. Finally, we derived saliency maps of the stimuli using a bottom-up computa-
tional model of visual attention  (Itti et al., 1998). These saliency maps provide  
additional information about the saliency effects of the employed visual variables, and 
permit validation with the collected eye movement data. 

Participants: Twenty participants (9 females and 11 males), recruited from the Uni-
versity of Zurich (UZH) and from the Swiss Federal Institute of Technology (ETH) 
Zurich, took voluntarily part in this study. They were not given any recompensation 
for participation. Participants were on average 29 years old, and no one indicated to 
be color-blind. Participants were selected to represent a range of professional back-
grounds, without any experience regarding the flicker paradigm and its implications. 
On average the participant pool has a low to average training in geographic informa-
tion science, such as cartography, geographical information systems, including the 
general familiarity with and usage of spatial data. Participants had a low or average 
level of training in computer science and related fields. 

Materials: Sixty-four 2D map stimuli were designed in AdobeIllustrator and embed-
ded in thirty-two flicker animations using AdobeFlash, according to the guidelines 
proposed by Rensink et al. (1997). The animations were embedded in a web page that 
could be automatically loaded by the eye tracker management software during the 
experiment. The flicker animations include four types of maps (i.e., eight flicker an-
imations for each type) systematically varying the visual variables color hue, color 
value, size, and orientation (within-subject independent variables). To keep the map 
design consistent across trials, the stimuli included graudate circles and choropleths, 
as depicted in Figure 2 below. For the size stimuli, circle sizes changed, while the 
uniform area fills in the choropleth map was held constant. For the other three vari-
ables the area fills were affected by change, while the cirlces sizes were held constant. 
Fgure 2 shows a map stimulus used in the experiment. 

 

 

Fig. 2. Sample map stimulus evaluated in the study (color hue) 
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The maps in the flicker animation depict a set of randomly selected Swiss munici-
palities at a scale of 1:100,000. The geometry of the maps was systematically rotated 
in steps of forty-five degrees to assure that participants would not recognize the loca-
tion, and therefore are able to focus their attention entirely on the change detection 
tasks. Based on the data characteristics (shown in the legend), we selected the appro-
priate visual variable for each thematic map stimulus, applying Bertin’s (1967/83) 
design guidelines. Only the map portion of the graphic stimulus exhibits change be-
tween two consecutive displays. The change locations were also systematically varied 
so that areas in the center and various periphery locations in the map would change. 
Map title and legend never changed. An arbitrary map title was chosen by randomly 
selecting a county name in the U.S.A. (unknown to Swiss participants). The chosen 
name does not match the shown geometry. The legend includes a map scale (i.e., 
randomly selected representative fraction), a map symbol key, and respective attribute 
information. The maps do not contain any other map elements, such as author infor-
mation, data source, or copyright sources. We reduced the design to a necessary 
(ecologically valid) minimum, in order to minimize cognitive load, and thus not fur-
ther distract participants from the change detection tasks.1 

Setup: The experiment took place in a windowless office, specifically designed and 
used to run eye movement experiments. It was administered on a Dell Precision 390 
Windows workstation. The Tobii Studio software was employed to display the map 
stimuli and test questions on a 20-inch flat panel display, at 1024 by 768 pixels screen 
resolution. A standard mouse and keyboard were used for input. Participants’ eye 
movements were recorded using a Tobii X120 eye tracker, at 60 Hz resolution. We 
employed a fixation filter with radius of 50 pixels, and minimal fixation duration at 
100ms to collect participants’ eye movements. Response time was measured as the 
elapsed time in milliseconds between the trial display appearing on the screen and the 
participant hitting a designated key on the keyboard to proceed to the next screen 
containing test questions. 

Procedure: At the beginning of the test session participants were welcomed to the 
eye-tracking lab, signed a consent form, and filled out a background questionnaire. 
Participants were then asked to sit comfortably in front of the experiment computer 
connected to the eye tracker. Information on the testing procedure was displayed on 
the screen. Participants first performed two change detection trials to get comfortable 
with the test instrument, without having their eyes tracked. Following the practice 
trials participants’ eye movements were calibrated with the eye tracker. Participants 
were again informed to sit comfortably, but as still as possible during the experiment, 
to improve calibration accuracy and consequently the eye tracking accuracy for the 
experiment. 

For each flicker animation, participants were asked to hit the F10 key as soon as 
they saw a change. After the animation stopped and the stimulus disappeared, an 
answer screen appeared displaying a black and white reference map including area 
labels. Participants were asked to answer three questions. Firstly, if they had seen a 
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visual change (detection task); secondly, where they had seen the change (localization 
task); and finally, to describe the change (identification task). Participants responded 
to the test questions orally by refering to area labels on the reference map and the 
experiment leader recorded their answers using a digital microphone, and by typing 
responses into a digital file. After answering the three questions, participants launched 
the next flicker animation by hitting the F10 key. If participants did not see any 
change, the animation stopped automatically after 60 seconds. Participants were then 
asked to continue to the next trial by hitting the F10 key. The display order of the 
stimuli was randomized to avoid any potential learning bias. After completing the on-
screen experiment participants were debriefed, and thanked for participation. 

4   Results 

Figure 3 shows participants’ response times (efficiency) for the change detection task 
on the four tested visual variables. On average, participants took more time to detect a 
change in a map display varying the visual variable orientation (M=1.94s, SD=1.08s) 
compared to the other tested visual variables. The variable size yielded the shortest 
response time (M=0.65s, SD=0.21s), followed by color hue (M=0.92s, SD=0.73s) and 
color value (M=1.00s, SD=0.33s). 

A repeated measures ANOVA (including a Bonferroni correction) reveals a sig-
nificant overall effect for the (within-subject) “visual variables” factor, F(25.805) = 
.000, p < .05, indicating that there is a significant efficiency difference between the 
visual variables under study. Pairwise comparisons reveal that the variable orientation 
is indeed the least efficient visual variable for detecting a change. For maps 
containing this visual variable people take significantly longer to detect a change than 
for all other maps. Furthermore, while the variable size is the fastest of all tested 
visual variables, it is only significantly faster than orientation and color value. The 
speed advantage to color hue is not significant. There are no significant speed 
differences between color hue and color value. 
 
 

 

Fig. 3. Response time values in seconds 
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Fig. 4. Mean “time to first fixation” 

We additionally investigated the efficiency (detection speed) of the visual variables 
by examining participants’ eye movement behavior. For each stimulus, we delineated 
an area of interest (AOI) where a change occurs in the map. The efficiency metric 
time to first fixation (Goldberg & Kotval, 1999) can be employed to identify how long 
participants take to first fixate that particular AOI. This metric is negatively correlated 
with the potential degree of saliency of a region. High values of time to first fixation 
denote low degrees of saliency (Jacob & Karn, 2003).  Figure 4 depicts the average 
length (in seconds), until participants fixated the relevant AOI for the first time during 
a trial. Again, people are slowest to first fixate on orientation changes, compared to 
color hue, color value, or size changes (fastest). 

A repeated measures ANOVA reports a significant main effect for the four tested 
visual variables, F(6.623) = .004, p < .05. Size is significantly faster compared to 
orientation, but there are no significant differences between size and color hue or 
color value. Orientation is significantly slower than all the other tested variables, 
except compared to color hue. Size (fastest) and orientation (slowest) are at the 
extreme ends of the efficiency spectrum.  There are no clear winners between color 
hue and color value. 

 

 

Fig. 5. Percentages of changes detected without looking explicitly at the change AOI 
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As Irwin (2004) notes, it is likely that the area of visual attention is larger than the 
location to where the fovea is pointing during a fixation. Evidence for this can be 
found in Figure 5. This Figure shows percentages of change that participants were 
able to detect correctly, without even fixating in the respective AOI. It is notable, that 
in 68% of the orientation trials (thus more than just by guessing) participants detected 
change without even fixating the respective “change” AOI. The percentages for the 
other trials are: color value (52%), size (36%) and color hue (28%), respectively. 

To further look into the attention guiding potential or saliency of a visual variable 
we computed a ratio between the fixation duration within an AOI placed in the visual 
center of the map and the fixation duration within a “change” AOI. If this ratio pro-
vides lower values, observers’ eyes were less attracted to the target AOI compared to 
“staring” into the center of the map. Higher ratio values might suggest that people’s 
gazes moved around the map more or were attracted more readily to other attention 
guiding regions of the display. Size and color value (both 1.59) have the highest ratio, 
compared with orientation (1.29), and color hue (1.20). This measure qualitatively 
confirms the results depicted in Figure 4. Size and color value seem to have attracted 
participants gazes more than color hue and orientation. 

We now turn to change localization. Regardless of the visual variable, people gen-
erally performed very well on the change localization tasks. This might be due to the 
stimuli having relatively low complexity. The size changes were localized practically 
error free (99%), followed by color hue and color value (both M=.994 SD=.028), and 
finally orientation with the lowest score (M=.925, SD=.143).  

A repeated measures ANOVA for the change localization task provides evidence 
that there are significant differences among the visual variables, F(7.589) = .002, p < 
.05. Analog to the efficiency outcome for the change detection task, the variable ori-
entation (least accurate localization) differs significantly from size (most accurate 
localization). No significant effects seem to exist between the other visual variables. 

Figure 6 above also shows the percentage of correctly described types of changes. 
There is little difference in people’s accuracy describing the change for size (99%), 
color hue (92%) and color value (97%) displays. However, changes in orientation 
seemed to have been much harder for people to describe accurately (69%). 
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Fig. 6. Percentages of correct change detection, localization and description 
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According to a repeated measures ANOVA there seems to be a significant differ-
ence in the change description accuracy across the visual variables, F(15.227) = .000, 
p < .05. The variable orientation differs significantly from to the other three visual 
variables, yielding the least accurate results. Size scores are highest again, with 100% 
description accuracy; significantly better than color hue and orientation. Color value 
does not differ significantly from size and color hue.  

4.1   Computational Saliency Evaluation 

We additionally evaluated the animated flicker displays with previously mentioned 
Itti saliency maps, using specifically the saliency model for dynamic visual scenes. In 
addition to contrasts in color hue, color value and orientation (for static scenes), the 
dynamic model also takes movement variables into consideration to compute the 
resulting saliency map. The additional dynamic variables considered are: change in 
location (motion up/down/right/left) as well as flicker (i.e., appearance and disappear-
ance at a location).  

We compared the location of highest saliency computed by the model and its re-
spective predicted eye fixation pattern with the actual change locations and our own 
collected eye movement data. The region of the change is indeed predicted by the 
model to be the most salient region in the saliency map. The model seems to work 
particularly well for the size displays. Comparing the predicted saliency maps of the 
map stimuli across the four tested variables, it is notable that the model yields a few 
highly concentrated areas of high saliency for the size stimuli, but less so for the other 
variables, where salient areas are more spread out and less crisp. On average, color 
hue has more salient locations in its saliency maps than the other tested variables. 
Consequently, one would expect that observers would be attracted to a larger number 
of locations competing for saliency (e.g., distractors), which might make the detection 
(“pop out”) of a changing area more difficult. Based on this, one might further argue 
that the variable color hue would yield the worst results in a change detection task. 
However, our empirical results do not support this hypothesis. Participants had greater 
difficulty and took significantly longer to detect a change in an orientation map than 
for the other maps. Perhaps orientation maps do not provide enough visual contrast 
between the enumeration areas. The linear pattern of the zone boundaries is harder to 
isolate, due to the linear fill pattern within the zones. The individual enumeration 
units seem to form larger homogeneous regions with little figure-ground contrast.  
Henderson & Ferreira (2004) note that uniform regions are characterized by low fixa-
tion counts and consequently they do not draw visual attention. On average, orienta-
tion provided fewer fixation counts in the “change AOI” than the other three visual 
variables. 

As we used animated graphic stimuli for the assessment of the visual variables, we 
need to also consider the effectiveness and efficiency of the visual variables for ani-
mated, or dynamic (e.g., interactive) visualizations.  The overall advantage of size and 
(to a lesser extent) color value in the change description task can perhaps be explained 
by the additional influence of the dynamic variables (also computed for the saliency 
map). Figures 7-8 show samples of overall saliency maps for the four tested visual 
variables, overlaid on top of a map stimulus (upper left panel). The lighter the shade 
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(“spot light”) the higher the saliency. The white circle in the map stimulus is the  
predicted first gaze point (location of highest saliency). All the saliency attributes 
contributing to the overall saliency map are placed to the right and below of the map 
stimulus (panels with black background). Both size (Figure 7a) and color value  
(Figure 8b) yield areas of high saliency that are highly localized, compact, of small 
extent, and with crisp boundaries (especially for the size variable). This is perhaps due 
to optimal correlation of the visual variables (hue, value and orientation) with the 
dynamic ones such as, flicker (on/off) and motion (left, down, up, and right). The hue 
maps (Figure 8a) and orientation maps (Figure 7b), showing a much more dispersed 
pattern in their saliency maps, for both the static (visual) and dynamic variables, seem 
to be less effective at guiding people’s attention to the relevant areas of change. 

 

 

 

Fig. 7. Saliency maps for the visual variable size 

 

Fig. 8. Saliency map for the visual variable orientation 
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Fig. 9. Saliency map for the visual variable color hue 

 

Fig. 10. Saliency map for the visual variable color value 

  
(a) (b) 

Fig. 11. Fixation concentrations across all participants for (a) orientation and (b) size 
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We now contrast (predicted) model results with our collected eye movement data. 
Figure 9 depicts two sample stimuli with aggregated eye fixations of all our partici-
pants. The lighter the display the higher the fixation concentration and magnitude. 

It is striking (but somewhat counter intuitive) that the model correctly predicts (as 
shown in Figure 7b), and confirmed by our empirical data (Figure 9), that the largest 
of the graduated circles in the size display is attended the least. Both the center of the 
map and the smallest symbols receive most attention in the size display. It seems that 
(center-surround) contrast changes (modeled explicitly in the saliency maps) are in-
deed attention guiding. The smaller circles offer more “contrast-changes” against a 
homogeneous background than larger circles. Interestingly, only a small portion of the 
relevant change AOI (marked with a star symbol in Figure 9) was fixated in the orien-
tation stimulus (compare with Figure 7b). This might be explained by the corner of 
the AOI being closest to the center of the map. Furthermore, if center-surround con-
trasts are relevant, then the concentration of stable boundary lines converging in a 
corner offer perhaps more contrast opportunities compared to directional changes of a 
linear fill pattern. 

Overall, the model results and empirical result are very encouraging for cartogra-
phers, because they suggest that commonly employed visual variables, when correctly 
applied, are indeed able to effectively and efficiently guide observers’ attention to 
relevant information. As Lowe (2003) suggests, congruently displaying thematically 
relevant information in a perceptually salient manner is one of the key challenges for 
designing effective and efficient map displays. However, empirical results presented 
in Figures 5 and 9, also provide some evidence that foveal attention and saliency are 
not always located in the same location. 

5   Discussion 

Summarizing our results we find that the selected four tested visual variables (Bertin, 
1967/83) are indeed attention guiding, as people performed significantly above 
chance (e.g., 50%) in detecting, localizing and describing a change in the display. 
This is in accordance to the summary of results presented in Wolfe & Horowitz 
(2004)’s meta study on attention guiding attributes. These authors list color, motion, 
orientation, and size as “undoubted attributes” to guide visual attention. However, 
unlike Bertin (1967/83), Wolfe & Horowitz (2004) do not provide a ranking of the 
attributes. Our empirical results do provide some evidence for the implied ordering of 
Bertin’s visual variables. We find the visual variable size to be the most efficient and 
effective variable to guide viewers’ attention in thematic 2D maps, under flicker con-
ditions.  Perhaps this can be explained by the size displays being visually the least 
complex (e.g., having fewer visual distractors), according to the computational sali-
ency model shown in Figure 7. According to Bertin, size is the only visual variable 
that has quantitative, ordered, selective (the signs perceived as different), and dissaso-
ciative characteristics (the signs are perceived as not similar). In fact, Bertin attributes 
size most “dissassociativeness”. Since size emphasizes sign difference (e.g., change), 
one might argue from an information theoretic encoding perspective that difference or 
change could be an aspect of “interestingness”, and thus, a very useful quality to 
guide attention. Since early eye movement studies on visual displays (Buswell, 1935; 
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Yarbus, 1967), it has been known that people concentrate their fixations on interest-
ing and informative scene regions (Henderson & Ferreira, 2004). 

The visual variable orientation appeared to be least effective and efficient of the 
four tested visual variables. As Bertin (1983: 93) writes: “in area representation 
variation in orientation is the easiest to construct, but it is at the same time the least 
selective” [of all seven visual variables].  Bertin assigns orientation only one attention 
guiding characteristic (i.e., associativity). He argues that with orientation (in areas) it 
is harder to isolate an area of change, as the variable emphasizes similarity, thus has a 
more uniform or homogeneous appearance. The computed saliency maps and our 
collected gaze data seem to support this idea. 

For the color value and color hue variables the result pattern is not as clear. While 
color hue and color value yielded similar results, color value seems to have a slight 
(but non significant) advantage.  In Bertin’s system, color value differs from size only 
in the lack of a quantitative characteristic, thus one would have expected color value 
to perform better than hue for change detection. These results might support Wolfe & 
Horowitz (2004)’s questioning of luminance polarity (e.g., contrast in brightness or 
color value) as an attention-guiding attribute. They suggest it might be a subset of 
color, that is, the luminance axis of a three-dimensional color space. 

6   Conclusion 

This paper presents a systematic empirical evaluation approach to assess the effec-
tiveness and efficiency of four commonly employed visual variables (size, color 
value, color hue and orientation) for the design of 2D map displays (Bertin, 1967/83). 
The proposed evaluation approach combines the application of visual saliency models 
developed in research on human vision with the assessment of change under flicker 
conditions by combining traditional performance measures (accuracy and speed) with 
eye movement recordings. We find that the visual variable size performs most effec-
tively (accurately) and most efficiently (fastest) under flicker conditions. Conversely, 
the visual variable orientation seems to be least effective and efficient in our change 
detection experiment. For color hue and color value the results pattern are not as 
clear. Our results suggest validity to the implied ordering of the visual variables pro-
posed by cartographer Jacques Bertin (1967/83) over 40 years ago. This study also 
shows that both the saliency map approach and the measurement of eye fixations 
under flicker conditions can be employed to systematically assess the utility of Ber-
tin’s (1967/83) system of seven visual variables widely used in cartography, and also 
discovered in information visualization (Mackinlay, 1989). The visual variable system 
was developed specifically to help cartographers better control the visual salience of 
symbols on maps.  However, until today it lacked in systematical validation proce-
dures, which we hope to have provided with this contribution. 
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