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Abstract 

We forecasted potential impacts of climate change on the ability of a network of key 

sites for bird conservation (Important Bird Areas; IBAs) to provide suitable climate for 370 

bird species of current conservation concern in two Asian biodiversity hotspots: the Eastern 

Himalaya and Lower Mekong. Comparable studies have largely not accounted for 

uncertainty, which may lead to inappropriate conclusions. We quantified the contribution of 

four sources of variation (choice of general circulation models, emission scenarios and 

species distribution modelling methods and variation in species distribution data) to 

uncertainty in forecasts and tested if our projections were robust to these uncertainties.  

Declines in the availability of suitable climate within the IBA network by 2100 were forecast 

as “extremely likely” for 45% of species, while increases were projected for only 2%. Thus, 
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we predict almost 24 times as many “losers” as “winners”. However, for no species was 

suitable climate “extremely likely” to be completely lost from the network.  Considerable 

turnover (median = 43%, 95% CI = 35-69%) in species compositions of most IBAs were 

projected by 2100. Climatic conditions in 47% of IBAs were projected as “extremely likely” 

to become suitable for fewer priority species. However, no IBA was forecast to become 

suitable for more species. Variation among General Circulation Models and Species 

Distribution Models contributed most to uncertainty among forecasts. This uncertainty 

precluded firm conclusions for 53% of species and IBAs because 95% confidence intervals 

included projections of no change. Considering this uncertainty, however, allows robust 

recommendations concerning the remaining species and IBAs. Overall, while the IBA 

network will continue to sustain bird conservation, climate change will modify which species 

each site will be suitable for. Thus, adaptive management of the network, including modified 

site conservation strategies and facilitating species’ movement among sites, is critical to 

ensure effective future conservation.  

 

Introduction 

Identifying and safeguarding areas of suitable habitat to protect species of 

conservation concern from land-use change, hunting and other threats is central to 

conservation management (Hambler, 2004). Networks of such sites, representing a large 

range of climate and habitat types distributed over large geographical areas (hereafter 

conservation site networks), are considered vital to protecting biodiversity (Chape et al., 

2005; Butchart et al., 2012). However, growing awareness that global climate change 

threatens biodiversity (Pereira et al., 2010; Bellard et al., 2012) has encouraged several 

assessments of the future viability of current conservation site networks given projected 
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changes (Araujo et al., 2004; Hannah et al., 2007; Hole et al., 2009; Araujo et al., 2011).  

Generally, such networks have been established on the basis of recent or contemporary 

species’ distributions (Gaston et al., 2006; Hannah et al., 2007).  However, shifts in species’ 

distributions due to climate change could mean that areas currently important for 

conservation priority species may not retain such species in the future (Araujo et al., 2004; 

Hannah et al., 2007; Hole et al., 2009; Araujo et al., 2011). Indeed, recent research on one 

European conservation site network suggests that future climates within a random set of sites 

could be as suitable for priority species as sites within the network (Araujo et al., 2011). 

However, other networks, in Europe (Araujo et al., 2011) and Africa (Hole et al., 2009), are 

projected largely to maintain their effectiveness. Conservation site networks designed with 

both current and future species’ distributions in mind may be more cost effective than adding 

new areas once the impact of climate change becomes apparent (Hannah et al., 2007). Thus, 

explicit consideration of future species’ distributions given climate change, and the 

consequences for area-based conservation is of increasing policy and planning relevance. 

 

Progress towards considering species’ future distributions in conservation decisions 

has been advanced by statistical tools that model species’ distributions as a function of 

environmental covariates like climate (Elith et al., 2006; Elith &  Leathwick, 2009; Franklin, 

2009; Thuiller et al., 2009).  When combined with General Circulation Model (GCM) 

projections of future climates, such species’ distribution models (SDMs) can provide useful 

forecasts of where suitable climates for species might occur in the future. SDMs have been 

used to predict recent range shifts and population changes successfully (Hill et al., 1999; 

Araujo et al., 2005; Gregory et al., 2009) and if carefully employed could contribute to 

conservation policy that is effective both now and in the future. These tools have stimulated 

an extensive literature assessing future biodiversity patterns given climate change (e.g. 
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Thomas et al., 2004; Jetz et al., 2007) and proposing adaptations to conservation policy 

(Carroll et al., 2010; Hole et al., 2011).  

 

While SDMs have advanced our ability to plan for the future considerably, 

forecasting species’ future ranges remains a major challenge (Davis et al., 1998; Pearson &  

Dawson, 2003; Dormann, 2007b; Beale et al., 2008). Using species’ distribution models to 

identify conservation priority areas or adapt management strategies requires caution. One 

approach to making robust conservation recommendations is to consider the uncertainty 

surrounding projections of future climate and species’ distributions (Elith et al., 2002). This 

permits conservation policy to be informed by confidence in model results (Moilanen et al., 

2006). For example, if multiple modelling methods unanimously suggest a particular site will 

enhance a conservation network, this site should be prioritised over others for which support 

varies among methods. Uncertainty in projections may arise from several sources, including: 

errors in the source data, uncertainty in GCM projections, uncertainty in future emissions 

trajectories and choice of modelling methodology.  Some authors have considered the 

importance of different sources of error explicitly (e.g. Dormann et al., 2008; Diniz-Filho et 

al., 2009; Buisson et al., 2010; Garcia et al., 2012), and several studies have combined 

multiple SDM approaches (ensemble methods, Araujo &  New, 2007; Thuiller et al., 2009; 

Araujo et al., 2011). However, many studies of climate change impacts on species’ 

distributions do not explicitly quantify the uncertainty among projections when making 

conclusions about specific species and areas, and often present averaged projections when 

multiple approaches are used (Elith &  Leathwick, 2009). Averaging models with different 

underlying assumptions should improve estimates of changes in species distributions, and 

constitutes an important first step.  However, in such situations it is still unclear how robust 

conclusions might be to uncertainties about future climate and the relationship between 
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climate and species’ distributions. For example, if the average projection for a species 

suggests decreased representation, but a few approaches forecast increases, this would 

indicate sensitivity to modelling assumptions, necessitating cautious interpretation. Even 

analyses that quantify model uncertainty do not investigate the consequences of this 

uncertainty for estimated impacts of climate change on conservation networks or identify the 

sources of uncertainty in this context. 

 

Here, we focus on BirdLife International’s Important Bird Area (IBA) network in two 

regions of Asia, the Eastern Himalayas and the Lower Mekong. IBAs form a global network 

of over 10,000 sites critical for avian conservation (BirdLife International, 2008), although 

half are currently not formally protected (Butchart et al., 2012). IBAs are identified using 

standardised criteria relating to populations of (i) globally threatened; (ii) restricted-range; 

(iii) biome-restricted; or (iv) congregatory species. The focus of these criteria on species of 

conservation concern makes IBAs a useful system for evaluating climate change effects on 

conservation site networks. The IBA network in the biodiversity hotspots of the Eastern 

Himalaya (163 sites) and the Lower Mekong (140 sites, see Figure S1) are of particular 

interest because they support unique avifaunas in regions experiencing particularly rapid 

development and population growth, as well as substantial climate change (Christensen et al., 

2007), and because the impacts of climate change on these sites have not been evaluated.  

 

We forecasted the ability of the IBA network to continue representing suitable climate 

for 370 bird species of conservation concern given projected climate change. We then 

assessed how robust conclusions based upon these forecasts were to uncertainty inherent in 

projecting models into the future.  We quantified four sources of error in our forecasts 
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including variation among: (i) GCMs, (ii) emission scenarios, (iii) SDM methodologies and 

(iv) data used to fit the SDMs.  As variation within the data is probably spatially dependent 

we developed a novel method that accounts for spatial auto-correlation. We use the 

forecasted climate suitability of IBAs for each species and their associated uncertainties to 

address the following three questions: 1) how will projected climate change affect the 

representation of suitable climate for each priority species within the IBA network?, 2) how 

will climate change alter species richness and composition in each IBA?, and 3) which 

sources of error contribute most to uncertainty in the forecasts? 

 

Materials and Methods 

Species’ distribution and IBA data 

We obtained breeding distribution maps for 400 bird species of conservation concern 

(i.e. those listed as Threatened or Near Threatened on the IUCN Red List, plus restricted-

range and biome-restricted species as defined by BirdLife International) as GIS shapefiles 

compiled by BirdLife International and NatureServe (2011, see 

http://www.birdlife.org/datazone/info/spcdownload). Taxonomy follows BirdLife 

International (2011, see http://www.birdlife.info/im/species/checklist.zip). We overlaid the 

breeding ranges of all species with a 30� latitude x longitude grid (roughly 55 x 55 km at the 

equator) covering Asia (grey area in Figure S1), and considered species to be present in all 

cells they intersected. Species whose breeding ranges intersected <5 cells (22 species) were 

not considered further.  By only considering species that currently breed in the focal regions, 

we may overlook some potential future colonists that originate beyond the region, which 

could alter projections of change in IBA species composition. However, our focus was on 

continued protection of species of conservation concern that currently occur within the 
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region. Exploring potential colonists (or potential for assisted migration, Kostyack et al., 

2011) from species originating beyond the region is beyond the scope of this work. BirdLife 

International also provided GIS shapefiles for the boundaries of the 303 IBAs in the focal 

regions (coloured red in Figure S1).  

 

Climate Data 

Contemporary Climatic Data 

Mean monthly temperature, precipitation and percentage sunshine data for 1951-2000 

(a period corresponding to the majority of data underlying the species’ range extent maps) 

were obtained from Worldclim (Hijmans et al., 2005, http://www.worldclim.org/) and CRU-

TS2.1 (Mitchell &  Jones, 2005, http://www.ipcc-data.org/obs/cru_ts2_1.html).  Soil water 

capacity data were obtained from Prentice et al. (1992). These data were used to calculate 

four bioclimatic variables previously found useful when modelling bird distributions 

(Huntley et al., 2006; Hole et al., 2009; Araujo et al., 2011) at a 30� resolution. These 

variables, chosen a priori, were mean temperatures of the coldest and warmest months, the 

ratio of actual to potential evapotranspiration and the seasonality of moisture availability. The 

methods used to calculate these bioclimatic variables are described in detail in the Supporting 

Information. 

 

Future Climate Projections 

We forecast species’ distributions for three time periods (2011-40, 2041-70 and 2071-

2100, henceforth referred to as 2025, 2055, 2085 respectively) using projections of future 

climate under three emissions scenarios (IPCC Special Report Emissions Scenarios; SRES) 
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and four GCMs. The three SRESs (A2, A1B and B1) were developed by the IPCC Special 

Report on Emission Scenarios (IPCC, 2000) to represent the plausible range of demographic, 

economic and technological drivers that may affect future emissions. The increase in global 

temperature by the end of the 21
st
 century is projected to be greatest under the A2 scenario 

(3.1
o
C), followed by the A1B scenario (2.7

o
C) and least under the B1 scenario (1.8

o
C) 

(Meehl et al., 2007). The four GCMs (HadCM3, MPI-ECHAM5, GFDL-2.1 and NCAR-

CCSM3) were selected to represent the range in projected climates presented in the IPCC 

Fourth Assessment Report (AR4, IPCC, 2007). Projections of future precipitation patterns 

range considerably among GCMs and these models represent this variation. Projections from 

HadCM3 and GFDL-2.1 are drier than the ensemble mean presented by the IPCC AR4 

(Meehl et al., 2007) while NCAR-CCSM3 and MPI-ECHAM5 are wetter than the mean. 

 

Extracting present and future climates for the IBAs 

We calculated bioclimates for individual IBAs to account for their large variability in 

extent and consequently in climatic representation. Present climate data were obtained at, or 

interpolated to (see Supporting Information), a 2.5� resolution (c. 4.6 x 4.6 km at the 

equator). Projections of future climate were obtained for the 36 combinations of three time 

periods, four GCMs and three SRESs from the World Data Center for Climate, Hamburg, 

Germany (http://cera-www.dkrz.de). We calculated anomalies between the projected 1951–

2000 climates from each GCM and their respective projections of future climates under each 

SRES scenario. These anomalies were applied to the observed 1951–2000 climate data to 

develop projections of future climates (see Supporting Information). These projections were 

downscaled from the original GCM resolution to a 2.5� resolution using the change-factor 

approach (Wilby et al., 2004; Tabor &  Williams, 2010; see Supporting Information). We 

overlaid these fine scale grids with the boundaries of each IBA and extracted data from all 
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intersecting cells. We also recorded the proportion of each 2.5�cell that lay within the IBA. 

These climate data were used to calculate the four bioclimatic variables described above for 

the present and future for every cell in each IBA. 

 

The projected future bioclimates included some values for individual bioclimatic 

variables that do not currently occur in Asia. Projecting species’ distributions under such 

bioclimates involves extrapolating beyond the range of data used in fitting the SDMs, which 

can be misleading (Fitzpatrick &  Hargrove, 2009). Therefore, we set any bioclimatic 

variables that were outside the observed range to their closest value in the 1951-2000 period 

(i.e. the maximum or minimum observed value), a procedure known as “clamping” (Phillips 

et al., 2006).  A small proportion of the total area of IBAs required clamping for the time 

period centred on 2025 (median across GCMs and SRES scenarios of 1% of total IBA area) , 

increasing to 4% in 2055 and 14% in 2085 (Figures S2 and S3).  

 

Species’ distribution models 

We employed four widely-used modelling techniques to estimate how climate 

influences species’ distributions: Generalised Linear Models (GLMs, McCullagh &  Nelder, 

1989), Generalised Additive Models (GAMs, Hastie &  Tibshirani, 1990; Wood, 2006), 

Boosted Regression Trees (BRTs, Ridgeway, 2006; Elith et al., 2008) and Random Forests 

(RFs, Breiman, 2001; Cutler et al., 2007). These methods were chosen because they perform 

well in comparisons of techniques (Araujo et al., 2005; Prasad et al., 2006; Meynard &  

Quinn, 2007; Elith &  Graham, 2009; Franklin, 2009; Wenger &  Olden, 2012) and provide a 

contrast between semi-parametric (GLMs and GAMs) and machine-learning approaches 

(BRTs and RFs).  
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Dealing with spatial dependence 

A concern with many species distribution modelling techniques (including those used 

here) is a failure to account for spatial autocorrelation (Dormann, 2007a; Dormann et al., 

2007; Beale et al., 2008; Beale et al., 2010). To deal with this problem we estimated the 

transferability of the fitted models to spatially segregated test data (k-fold partitioning) and 

then used a non-parametric jack-knife to estimate the uncertainty in model predictions. The 

data were split into sampling units defined on the basis of Asian ecoregions (Olson et al., 

2001 http://www.worldwildlife.org/science/data). The same ecoregion often occurs in 

several, geographically distinct locations; non-contiguous areas of an ecoregion were 

considered separate sampling units. A few very large ecoregions (greater than 450,000 km
2
 in 

area, roughly 6
o
 x 6

o
) were split into smaller sampling units by intersecting them with a 6

o
 x 

6
o
 grid and treating parts of the ecoregion in different grid squares as separate sampling units. 

This ensured that subsequent blocks formed by grouping the sampling units were similar in 

size. We grouped sampling units into 10 blocks so that the mean of the bioclimatic variables 

differed little among blocks but each block spanned the full range of bioclimates (using the 

‘blockTools’ package in R). This ensured that block and bioclimate were orthogonal and 

avoided truncation of species response curves, which can cause problems when analysing 

segregated data (Thuiller et al., 2004). 

 

We left out each block in turn (to be used as test data) and fitted our models to the 

remaining (training) data. We evaluated model performance, using the Area Under the Curve 

of the receiver-operating characteristic plot (AUC , Hanley &  McNeil, 1982), by assessing 

ability to predict the distribution of the species within the test block. Variation among the 10 

models provided a measure of the uncertainty in estimates of climatic suitability for each 

species. This approach ensured that the test data were spatially segregated from the training 
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data (unlike standard k-fold partitioning where data are divided at random) while the range of 

the predictors was similar in the training and testing data (unlike when data are separated into 

geographic regions). More complex modelling methods often fail to perform well when 

analysing data from large regions (Beale et al., 2010), possibly because of non-stationarity in 

the scale and direction of spatial dependence and the strong spatial auto-correlation in 

climatic data. Our non-parametric approach was flexible enough to capture this complexity. 

 

Generalised Linear Models 

We used generalised linear models (McCullagh &  Nelder, 1989) to fit polynomial 

relationships between each species’ occurrence (at a 30� grid cell resolution) and bioclimate.  

We used cross-validation to determine the degree of the polynomial relationship between 

bioclimate and species occurrence, up to a maximum degree of four. For each species, we 

excluded one block at a time and fitted 256 models of species occurrence as a function of the 

four bioclimatic variables.  The models included each possible combination of polynomial 

degree (1 – 4) for the four bioclimatic variables (4 variables^4 polynomial degrees = 256 

combinations). Model ability to predict species occurrence in the excluded block was 

assessed using AUC. The combination of polynomial degrees that maximised the average 

AUC across the 10 omitted blocks was used to fit a final set of 10 models; one omitting each 

block in turn. The median AUC across these models provided a measure of the models’ fit 

and transferability. 

 

Generalised Additive Models 

Non-linear relationships between species’ occurrence and bioclimate were fitted as 

thin-plate regression splines with the smoothness established using generalised cross-
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validation (Wood, 2006).  The presence or absence of each species in each 30� grid cell was 

modelled as a Bernoulli response, using a logit link. These models were fitted to each 

species’ data excluding a block at a time using the ‘gam()’ function from the ‘mgcv’ package 

in R (R Development Core Team, 2011). The median AUC (calculated using the omitted 

block) from the 10 models was used to evaluate the models’ fit and transferability. 

 

Boosted Regression Trees 

Boosted Regression trees (BRT) use machine learning to establish the (potentially 

non-linear) relationship between predictors and response (Friedman, 2002; Ridgeway, 2006; 

Elith et al., 2008). Modelling with BRTs involves setting three important parameters: the 

learning rate (lr), which controls the weight that is given to each component tree; the tree 

complexity (tc), which controls the number of nodes within each tree; and the number of trees 

(nt) kept in the final model. Optimising these parameters maximizes accuracy and 

transferability. We used the following cross-validation approach to select these parameters 

for each species. We excluded one block from the data at a time and fitted a BRT with 15,000 

trees using three values of lr (0.01, 0.005 and 0.001) and four values of tc (1 – 4). For each 

combination of lr and tc, we identified the nt (1 – 15,000) that best predicted data from the 

omitted block. Any combinations requiring <1000 or >10,000 trees were excluded. Models 

are recommended to have >1000 trees to minimise the influence of any single component tree 

(Ridgeway, 2006; Elith et al., 2008) and models with >10,000 trees may require more trees 

than attempted to converge. The set of parameters (lr, tc and nt) that returned the minimum 

summed error across all the blocks was used to fit a final set of 10 BRT models; each model 

fitted to data excluding one block in turn. The median AUC provided a measure of model fit 

and transferability. 
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Random Forests 

Random Forests is a machine learning approach that builds regression and 

classification trees to describe the relationship between the response and predictors (Breiman, 

2001; Prasad et al., 2006; Cutler et al., 2007). Multiple trees are built, each based on a 

bootstrap sample of the data and a random subset of the predictors. The final model 

predictions are an average prediction across component trees. Random forests require two 

main parameters to be chosen the number of trees: (nt) and the number of predictors used to 

build each tree (m) (Prasad et al., 2006). We used cross-validation to optimise these two 

parameters. The number of predictors, m, was set to 1 – 3 and a random forest with 1000 

trees was fitted omitting each block in turn. The ability of the model to predict the species’ 

occurrence in the omitted block was assessed using AUC. A further 500 trees were then 

added and the AUC for the omitted block computed again. If the larger model improved the 

AUC by more than 1% it was accepted. This was repeated iteratively until additional trees did 

not improve the AUC further.  The value of m that maximised mean AUC for the excluded 

data across the 10 blocks and the maximum nt used across the blocks was used to fit final 

models for the species, excluding each block in turn. The median AUC of these models when 

predicting data from the excluded block was used to measure model fit and transferability.  

 

Predicting the future effectiveness of the IBA network 

Estimating climate suitability within each IBA 

The 40 models (10 jack-knife iterations x 4 SDMs) were used to predict the 

probability that each IBA might contain suitable climate for each species using present 

climate and the 36 future climate projections. We used the bioclimatic variables from each 

2.5� climate cell (i), in each IBA (j), to calculate the probability that each species (k) might 
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find suitable climate within that cell in time-period t (pijk[t]). The SDMs were fitted to species 

occurrence data at 30� resolution and because larger cells are more likely to contain suitable 

climate than smaller ones, this has to be corrected for when projecting to different sized cells 

(Alagador et al., 2011). Therefore, the probabilities were adjusted to account for the smaller 

size of the 2.5� cells by using the following relationship (based on a binomial distribution).  

      (eq. 1)  

where Aij is the area of cell i (in degrees) that lies within IBA j. An IBA may cover several 

2.5� cells, so an aggregate estimate of whether species k would find suitable climate 

somewhere within IBA j, with n cells, was calculated as  

 

      (eq. 2) 

 

The difference in Pjk[t] between the present and a future projection is a measure of the change 

in climate suitability within IBA j (ΔPjk[t]) for species k.  The projected species richness 

within an IBA can be estimated by summing the probabilities that each of the s species 

modelled would find suitable climate within each IBA. Thus, the species richness within IBA 

j is estimated as 

 

                (eq. 3)           
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Subtracting predicted present species richness for an IBA from Sj[t] gives an index of the 

projected change in species richness ΔSj[t]. To estimate projected turnover, Tj[t], of species 

between the present and future projection for time-period t, we used the Bray-Curtis index 

that measures dissimilarity between two communities (Bray &  Curtis, 1957) and is a 

continuous analogue of the turnover metric used in previous papers (e.g. Hole et al., 2009) 

 

         (eq.4) 

 

To test the ability of our models to predict the suitability of each IBA in the network 

for the study species, we obtained species inventories from 130 IBAs located in four focal 

countries (Cambodia, Laos, Nepal and Vietnam). We compared the inventory of each IBA to 

the models’ projections of present climate suitability for each species within the IBA (i.e. 

Pjk[present]). We calculated the AUC for this comparison to quantify the performance of the 

models. 

 

Summaries for individual species 

To evaluate how climate change might affect an individual species, k, across the 

entire network, we summed Pjk[t] across all the IBAs. This provides an estimate of how many 

IBAs are projected to contain suitable climate for species k. Subtracting the estimate of Pjk[t] 

for the present from each future climate simulation provides an index of the overall change 

predicted for species k under climate change, ΔPk[t].  
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Quantifying forecast uncertainty 

Using every combination of jack-knife iteration, SDM, GCM, and SRES scenario 

(480 predictions) we calculated ΔSj[t] and Tj[t] for every IBA and ΔPk[t] for each species 

between the present and each of the three future time periods. We calculated the median 

values across these projections for each species or IBA. To quantify the uncertainty in these 

estimates we calculated the 95% quantiles of the distribution of values across the 480 

projections.  We refer to changes where these quantiles do not overlap 0 as ‘extremely 

likely’, following the terminology of the IPCC 4
th

 Assessment Report (IPCC, 2007, pp. 22-

23). We do not refer to these changes as ‘significant’ because the choices of SDM, GCM and 

SRES scenario were not made at random, but reflect considered choices from several discrete 

options. Throughout the text we present the results for the time-period centred on 2085, along 

with maps when relevant.  

 

Identifying the sources of uncertainty 

We quantified variation in the end-of-century projections of ΔPk[2085], ΔSj[2085] 

and Tj[2085] due to SRES scenario, GCM, SDM and jack-knife iteration using variance 

component analysis. Tj[t] was logit-transformed prior to analysis to satisfy the assumption of 

normality (Warton & Hui, 2011). Species or IBA were also included in the models. We 

calculated both the variance component due to the main effect of each source of variation and 

its interaction with species or IBA. The main effects provide information on the impact of 

different components of uncertainty on the overall conclusions (i.e. average loss of suitable 

climate across all species or average species richness change or average turnover across all 

IBAs). The interactions provide information about the contributions of components to 

projections for individual species or IBAs. 
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Results 

Model evaluation 

Models were fitted successfully to 370 species. Of the initial 400 species, 13 did not 

breed in the focal regions, nine occurred in < 5 grid cells, three were restricted to a single 

block, and one of the four modelling methods failed to converge for five species. Model fit 

was very good for most species. The median AUC across the 10 models fitted to each 

species’ present distribution ranged between 0.862-0.999 (median = 0.990) for the GLMs, 

0.873-0.999 (median = 0.989) for the GAMs, 0.854-0.999 (median= 0.990) for the BRTs and 

0.620-0.999 (median = 0.991) for the Random Forests. The models also performed well when 

projecting present assemblages within the 130 IBAs for which inventories were available 

(median AUCs: GLMs=0.857; GAMs = 0.862; BRTs = 0.873, Random Forests = 0.882). 

AUC values >0.9 reflect very good discrimination and those >0.7, useful discrimination 

(Swets, 1988; Franklin, 2009).  

 

Impacts on individual species 

 The models projected that by the end of the 21
st
 century (2085) the vast majority of 

the 370 species analysed (88%) will experience reduced availability of suitable climate within 

the IBA network (i.e. median ΔPk[2085] < 0 across GCMs, SRES scenarios, SDMs and jack-

knife iterations;  Figure 1). Suitable climate for each species was projected to disappear from 

about 4 IBAs on average by 2085, but there was substantial variation among species (median 

ΔPk[2085] = -4.1 IBAs, 95% CI across species = -14.8 – 3.0 IBAs). This equates to, on 

average, suitable climate for species being lost from about 29% of the IBAs that are currently 

climatically suitable. There was also substantial variation among projections for each species 

among SRES scenarios, GCMs, SDMs and jack-knife iterations. After accounting for this 
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uncertainty, 45% of species were projected as ‘extremely likely’ to decline (i.e. the upper 

97.5% of ΔPk from all combinations of SRES scenario, GCM, SDM and jack-knife iterations 

were <0; filled portion of bars in Figure 1).  Over the same period, around 2% of species were 

projected as ‘extremely likely’ to find more suitable climate within the network. Overall, the 

models projected approximately 24 times as many “losers” as “winners” among these species 

of conservation concern. However, complete loss of suitable climate from the IBA network 

by 2085 was not “extremely likely” for any species considered (i.e. the probability of finding 

at least some suitable climate within the network was >5% for all species). 

 

Accounting for variation among projections alters our interpretation of the results, 

sometimes considerably. For example, the median projection for 51 species suggested that 

they would be found in 10 fewer IBAs by 2085 (median ΔPk[2085] <  -10). However, the 

97.5% quantile of the projections for 49 of these species suggested they would be lost from 

fewer IBAs. Thus, the analyses only support such dramatic losses of representation in IBAs 

for the remaining two species (Hypsipetes leucocephalus and Pericrocotus brevirostris). 

 

Impacts on IBAs 

By the end of the 21
st
 century, 89% of IBAs were projected to become climatically 

suitable for fewer of the species considered. Once again, these projections were accompanied 

by considerable uncertainty due to variation among GCMs, SRES scenarios, SDMs and jack-

knife iterations. After accounting for this uncertainty, 47% of IBAs were projected as 

‘extremely likely’ to be suitable for fewer species by 2085 (Figure 2).  In contrast, only 11% 

of IBAs were projected to become suitable for more species by 2085 and this was ‘extremely 

likely’ for no IBAs. The models projected a median loss of suitable climate for 2.8 species of 
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conservation concern per IBA by 2085 (95% CI=-8.9 – 0.6 species per IBA) which 

corresponds to about 37% of such species that an IBA is currently climatically suitable for. 

Projected species richness loss was significantly greater for fully protected IBAs than for 

partially protected or unprotected IBAs (median species loss in protected IBAs was greater 

by 1.87 species, 95% CI = 3.78 – 0.43 species). However, the proportion of species lost was 

not significantly different between fully protected IBAs and partially or unprotected IBAs 

(median proportional species loss in protected IBAs was 3.9% lower, 95% CIs = -1.1 – 

1.3%). Generally, IBAs in the Lower Mekong were affected more negatively by projected 

climate change than IBAs in the Eastern Himalaya. By 2085, 59% of IBAs in the Lower 

Mekong were projected as ‘extremely likely’ to lose suitable climate for species compared to 

37% of IBAs in the Eastern Himalaya.  

 

Overall, median turnover in species of conservation concern increased from 19% in 

2025 (95% confidence range = 14 – 45%) to 43% in 2085 (35 – 69%, Figure 3). There was 

considerable variation among projections of turnover for the IBAs (Figure 3). There was little 

difference in species turnover between protected and unprotected IBAs (median turnover was 

1.5% lower in protected IBAs, 95% CI = -6.8 – 2.6%). In contrast to the regional differences 

in species loss, median projected turnover was very similar in the two regions: 42% (22 – 

70%) in the Eastern Himalaya and 44% (24 – 67%) in the Lower Mekong. 

 

Taking variation among projections into account affected our inferences about 

changes in IBAs. For example, according to median projections, 60 IBAs (20%) were 

forecast to lose >10 species by the end of the century. However, this level of species loss was 

only supported for 13 IBAs (4%) once uncertainty among projections was accounted for (i.e. 
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the upper 95% limit for the remaining IBAs were >-10). Similarly, median turnover of >50% 

was projected for 99 IBAs (33%) by 2085. However, in all these cases, the lower 95% 

quantiles of the turnover projections were <50%, so such drastic turnover was not ‘extremely 

likely’ for any IBA.  

 

Components of uncertainty 

Choice of GCM, SRES scenario and SDM all contributed substantially to forecast 

uncertainty (Table 1). Variation among projections of future climates (GCMs and SRES 

scenarios together) was the biggest source of uncertainty for overall estimates of mean 

ΔPk[2085], ΔSj[2085]and Tj[2085]. Variation among SRES scenarios had a larger impact on 

uncertainty in turnover than on uncertainty in changes in species representation or species 

richness. In fact, variation among SRES scenarios made the largest contribution to 

uncertainty in average IBA turnover, with the median projected turnover by 2085 under the 

A2 scenario about 12% higher than that under the B1 scenario (Figure 3). Choice of SDM 

technique also contributed substantially to variation in mean turnover across IBAs, with 

median turnover for the random forest projections approximately 9% higher than those for 

GLMs. The difference between projections from the machine learning and semi-parametric 

methods was very small (a comparison of models with and without a term for model type 

suggested no significant difference; χ2
1=0.51, P=0.48).  Variation among SDM techniques 

was also important for projections for individual species and IBAs, as indicated by the 

relatively large amount of variation attributed to the interactions between SDM and species or 

IBA (10–14 %, Table 1). Indeed the species x SDM interaction was the largest source of 

variation in projections of change for individual species. GCMs also contributed considerably 

to variation among projections for individual species and IBAs, explaining the most variation 

for projections of species richness change and turnover for individual IBAs. Variation among 
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jack-knife iterations contributed least to the overall uncertainty in forecasts for species and 

particularly for IBAs.  While the contribution of jack-knife iteration was small, it was not 

necessarily unimportant (it explained >10% of the variation in forecasts for about 17% of 

species). However, in general, uncertainty arising from projections of future climate and 

modelling methods was much greater. 

 

Discussion 

The impact of recent climate change on species distributions (Thomas et al., 2004; 

Chen et al., 2011) makes evaluating its future consequences for the effectiveness of 

conservation programmes a priority (Araujo et al., 2004; Hannah et al., 2007; Hole et al., 

2011). While forecasting the fate of biological communities using models based on 

correlations will always be fraught with uncertainties, evaluating the performance of models 

and measuring the uncertainty associated with their predictions makes this process more 

robust (Elith et al., 2002; Garcia et al., 2012). These steps enable identification of 

deficiencies in methodology or data and often suggest improvements. It is standard for SDM 

applications to provide assessments of model performance (e.g. AUC, Cohen’s Kappa), but 

information on the variation among predictions due to climate projections, modelling 

approach and variation in the training data is rarely provided. In this study, we explicitly 

quantified this variation, with important ramifications for our conclusions and potentially for 

resultant conservation management recommendations.  Median projections for almost 90% of 

the species considered here suggested decreased representation within the IBA network by 

the end of the 21
st
 century. However, in half of these species, the results depended on the 

methodology, making strong recommendations in these cases inadvisable. Nevertheless, 

almost half of the species and IBAs were projected as ‘extremely likely’ to be negatively 

impacted by climate change even after accounting for uncertainty surrounding projections. 
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Conversely very few species (2%) were ‘extremely likely’ to be more widespread in IBAs in 

the future and no IBAs were ‘extremely likely’ to protect more species. This supports the 

emerging consensus that climate change will affect the representation of species of 

conservation concern in conservation site networks (Hole et al., 2009; Araujo et al., 2011; 

Hole et al., 2011) and suggests that this conclusion is independent of the methodology used 

to project species’ distributions. 

 

The magnitude of climate change is projected to be relatively high in both the Eastern 

Himalaya and the Lower Mekong (Christensen et al., 2007; Williams et al., 2007). Greater 

seasonality of precipitation is predicted in south and south-east Asia, with intensification of 

both wet and dry seasons indicated by GCM projections (Christensen et al., 2007). Thus, 

large and widespread impacts on bird communities are not unexpected.  These results for the 

Asian IBA network are consistent with those for other regions of the world. Hole et al. (2009) 

projected that by 2100 African IBAs would experience a turnover among conservation 

priority species of 35-45% (compared to 43% for the Eastern Himalaya and Lower Mekong 

over the same period). Araujo et al. (2011) projected that 64% of Red-listed bird species 

currently found in Europe would lose representation in protected areas by 2080. We project a 

similar percentage of priority bird species as ‘extremely likely’ to lose representation in the 

Asian IBA network (45%). Because the methods used in these three studies have important 

differences (neither Hole et al. 2009 nor Araujo et al. 2011 quantify uncertainty explicitly), it 

would be unwise to make strong conclusions about the relative impacts of climate change on 

the three continents. Nonetheless, these studies agree that climate change could potentially 

drive substantial changes in the species composition of conservation areas globally. 
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Variation among projections of future climate (GCMs and SRES scenarios) was the 

biggest contributor to uncertainty in overall estimates of climate change impacts. The 

projections of future climates for both south and south-east Asia vary substantially between 

climate models (Christensen et al., 2007). This is due to insufficient observational data for 

parts of both regions, an incomplete understanding of how changes in El Niño - Southern 

Oscillation (ENSO) might affect regional monsoon and tropical cyclone patterns, and the 

complex topography and coastal margins (Christensen et al., 2007). Variability among SDM 

methodologies was also important, especially for projections for individual species (where it 

was the largest contributor) or IBAs. Other studies (Diniz-Filho et al., 2009; Buisson et al., 

2010; Garcia et al., 2012) have also highlighted variation among GCMs and SDM techniques 

as major contributors to uncertainty in projected species distributions. Overall however, in 

this study, the consequences of SDM methodology were more relevant for individual species 

than for overall conclusions about communities and regions, which were affected more by 

uncertainty in projections of future climate. This may be because differences among SDM 

techniques ‘average out’ when calculating aggregate measures of change (like species 

richness change or turnover) over multiple species. This could explain why SDM method 

contributed most to variation in projections for individual species (because the influence of 

GCMs and SRES scenarios were averaged across the 303 IBAs) while GCM contributed 

most to variation in projections for IBAs (because the influence of SDM techniques were 

averaged over the 370 species).  While uncertainty in the data, including spatial dependency, 

contributed to overall projection uncertainty, its contribution was dwarfed by that from other 

sources. This may suggest that while the issue of spatial dependence is important for models 

of individual species’ distributions (Beale et al., 2008), it may be less critical when the goal is 

to infer general effects of climate change on regions and communities.  
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There are several additional sources of uncertainty when projecting species’ 

distributions into the future that we have not considered in this study. First, we made an a 

priori choice of climatic predictors of species distributions. It is likely that the distributions of 

some of the species included in this study are more constrained by other, unconsidered, 

climatic variables. Models based on different predictors may yield alternative projections of 

species’ future distributions, adding a further layer of uncertainty. The models presented here 

ignore interactions among species that could potentially affect climate change impacts on 

species’ distributions and community dynamics (Davis et al., 1998; Suttle et al., 2007). We 

also ignore the potential for species to acclimate or adapt to future climates as has been 

proposed elsewhere (Dawson, 2011). Our projections assume that species will be able to 

disperse from areas of present to future climatic suitability. Whilst some studies have 

demonstrated that species are capable of adjusting their ranges to match the changing 

distribution of suitable climate (Chen et al., 2011), this is far from certain for all species, and 

several recent studies have highlighted species lagging behind changes in climate (Willis et 

al., 2009; Devictor et al., 2012).  Finally, both the Lower Mekong and Eastern Himalaya are 

projected in part to have climates by 2100 that have no present-day analogues (Williams et 

al., 2007). This adds an additional uncertainty to the analysis, because rather than extrapolate 

for such no-analogue climates we chose to ‘clamp’ predictor values to the range observed in 

the period 1951-2000. All these factors create further uncertainties in projections, but ones 

that are difficult to quantify. Developing methods that address these additional sources of 

uncertainty quantitatively and integrate them into analyses provides a future challenge for 

species’ distribution modelling.  

 There is growing consensus that climate change will alter species’ distributions and 

that this will have consequences for the future efficacy of conservation networks. In this 

study, we provide evidence that this conclusion is robust to many of the uncertainties in 
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future climate change projections and species’ distribution models. Evidence that climate 

change will influence the effectiveness of conservation networks is only the first step in 

informing more robust conservation strategies. The high turnover in the avifauna of the IBAs 

considered here suggests that facilitating movement of species among IBAs in the network 

may be important for its continued effectiveness. One important step to adapting conservation 

networks for climate change therefore is identifying and conserving contiguous areas of 

habitat through which species will be able to move between sites that are suitable now and 

sites suitable in the future. Sites projected to contain climates suitable for priority species in 

the future may also have to be added to the network.  Recent progress has been made towards 

achieving these goals (Phillips et al., 2008; Carroll et al., 2010; Hole et al., 2011) and this has 

been facilitated by the increasing availability of analysis tools both for understanding climatic 

constraints on species’ distributions (Elith et al., 2006; Elith &  Leathwick, 2009; Franklin, 

2009) and for conservation site network design (Moilanen et al., 2006; Phillips et al., 2008; 

Ball et al., 2009; Fuller et al., 2010). In addition, because it is only feasible for a small 

portion of the landscape to be protected formally, management options that maximise the 

permeability of surrounding landscapes (e.g. production forests and agricultural land) to 

wildlife populations should be considered  (Kostyack et al., 2011). Some species may not be 

able to move between current and future areas with suitable climate, indicating that 

translocation (or even ex situ conservation) may need to be considered (Araujo et al., 2004; 

Hoegh-Guldberg et al., 2008; Kostyack et al., 2011). It must be acknowledged that 

sometimes managing individual sites for particular species or assemblages may be rendered 

futile by climate change (Hole et al., 2009), so occasionally, resources may be better spent on 

other sites or adapting management to facilitate successful establishment of other species 

(Fuller et al., 2010; Jackson &  Sax, 2010; Hole et al., 2011).  
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This study highlights that while there is considerable uncertainty associated with 

projecting the impacts of climate change on conservation site networks, robust conclusions 

are still possible when these uncertainties are accounted for. In particular, our analyses 

suggest that while climate change will substantially alter the distribution of suitable climate 

for many species, the existing conservation site network has potential to continue protecting 

species of conservation concern. Adapting management plans to cope with a changing 

climate will involve considerable effort, both in developing management plans and evaluating 

their effectiveness. Monitoring such management plans will be more informative if the 

uncertainties are considered explicitly. This should lead to conservation policy that is more 

robust to an uncertain future. 
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Table 1:  The components of uncertainty in projections of change by 2085 in the number of 

suitable IBAs for each species (ΔPk[2085]) and change in species richness (ΔSj[2085]) and 

turnover in species composition for each IBA (Tj[2085]). The percentage variance in 

projections for each species or IBA due to Emissions Scenario (SRES), General Circulation 
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Model (GCM), modelling methodology (SDM) and data variation, including spatial 

autocorrelation (SIM), were estimated using variance components analysis.  The main effect 

for each component indicates its contribution to uncertainty in the mean projection across all 

species or IBAs; the interactions represent their contribution to uncertainty in projections for 

individual species or IBAs. 

Change in species 

representation ΔPk[2085] 

 

Change in IBA species 

richness ΔSj[2085] 

Turnover in IBA species 

composition Tj[2085] 

Source % Variance Source % Variance Source 

% 

Variance 

Species 59.81  IBA 47.05  IBA 44.40 

SRES 1.35  SRES 0.94  SRES 9.07 

GCM 2.82  GCM 1.91  GCM 0.94 

SDM 0.84  SDM 0.58  SDM 3.28 

SIM 0.09  SIM 0.07  SIM 0.09 

Species x 

SRES 2.18 

 IBA x 

SRES 2.17

 IBA x 

SRES 0.97 

Species x GCM 10.62 

 IBA x 

GCM 27.45

 IBA x 

GCM 19.01 

Species x SDM 14.12 

 IBA x 

SDM 9.94

 IBA x 

SDM 11.90 

Species x SIM 1.24  IBA x SIM 0.50  IBA x SIM 0.76 

Residual 6.93  Residual 9.39  Residual 9.58  
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Figure Legends 

Figure 1: Projected impacts of climate change on the representation of suitable climate for 

370 species of conservation concern within the IBA network in the Eastern Himalaya (163 

sites) and the Lower Mekong (140 sites). The histograms show the distribution of median 

changes in representation of species within the network. The height of each bar is the number 

of species projected with a median change in representation (in terms of number of IBAs) 

indicated on the x-axis. The filled portion of each bar is the number of species that are 

‘extremely likely’ to show the direction of change indicated. Open portions of the bars 

indicate the number of species where the direction of change was not consistent across 

projections from combinations of SDM methodology, jack-knife iteration and GCM (the 95% 

quantiles overlap 0). The panels represent combinations of 30-year time-period (rows) and 

SRES scenario (columns). 

Figure 2: Projected impacts of climate change on species richness in 163 IBAs in the Eastern 

Himalaya (top left) and 140 IBAs in the Lower Mekong (bottom left). The maps show 

projected changes in the number of species of conservation concern for which there is 

suitable climate in each IBA between the present and the end of the 21
st
 Century. Future 

climates in coloured IBAs are “extremely likely” to be suitable for fewer species (red) or 

more species (blue). Colour intensity indicates the magnitude of the projected change. IBAs 

where there is no consistent trend (95% quantiles overlap 0) among the projections using 

different SRES scenarios, GCMs, SDM methods and jack-knife iterations are filled with 

grey. The histograms show the distribution of changes in species richness for the IBAs across 

combinations of 30-year time-periods (rows) and SRES scenarios (columns). The height of 

each bar represents the number of IBAs projected to experience a change of magnitude 

indicated on the x-axis. The filled portion of each bar indicates the number of IBAs that are 

‘extremely likely’ to experience a change of that magnitude (the colour of the bar matches the 
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colours in the maps). The grey portion indicates the number of IBAs lacking no consensus 

across projections. 

 Figure 3: Projected percentage turnover in species composition within 163 IBAs in the 

Eastern Himalaya (top left) and 140 IBAs in the Lower Mekong (bottom left) by the end of 

the 21
st
 Century. The colour of each IBA polygon indicates the projected turnover in species 

composition. The plots show the projected turnover in combinations of three 30-year time-

period (rows) and three SRES scenarios (columns). The solid lines show the number of IBAs 

with a median projected turnover less than the value on the x-axis. The region shaded in grey 

represents the area where 95% of the projections lie (across the SDM methodologies, jack-

knife iterations and GCMS). The colour bars displayed at the bottom of each plots match the 

colours in the maps. The vertical dashed lines indicate the median turnover for each SRES 

scenario x time-period combination. 

Figure S1: Map of Asia with the two study regions, the Eastern Himalayas and Lower 

Mekong marked in red.  

Figure S2: Maps of the Eastern Himalayas indicating the occurrence in the IBAs included in 

this study of projected climate conditions outside of the range used to fit the species 

distribution models. Projections of these climate conditions were “clamped (see text for 

details). IBAs that were clamped are filled with red, and the intensity of the colour shows the 

proportion of the IBAs cells that were affected (as indicated by the colour bar). 

Figure S3: Maps of the Lower Mekong indicating the occurrence in the IBAs included in this 

study of projected climate conditions outside of the range used to fit the species distribution 

models. Projections of these climate conditions were “clamped” (see text for details). IBAs 

that were clamped are filled with red, and the intensity of the colour shows the proportion of 

the IBAs cells that were affected (as indicated by the colour bar). 
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