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Abstract

Neural Architecture Search (NAS) methods,

which automatically learn entire neural model

or individual neural cell architectures, have

recently achieved competitive or state-of-the-

art (SOTA) performance on variety of natu-

ral language processing and computer vision

tasks, including language modeling, natural

language inference, and image classification.

In this work, we explore the applicability of

a SOTA NAS algorithm, Efficient Neural Ar-

chitecture Search (ENAS) (Pham et al., 2018)

to two sentence pair tasks, paraphrase detec-

tion and semantic textual similarity. We use

ENAS to perform a micro-level search and

learn a task-optimized RNN cell architecture

as a drop-in replacement for an LSTM. We

explore the effectiveness of ENAS through

experiments on three datasets (MRPC, SICK,

STS-B), with two different models (ESIM,

BiLSTM-Max), and two sets of embeddings

(Glove, BERT). In contrast to prior work

applying ENAS to NLP tasks, our results

are mixed – we find that ENAS architec-

tures sometimes, but not always, outperform

LSTMs and perform similarly to random archi-

tecture search.

1 Introduction

Neural Architecture Search (NAS) methods aim

to automatically discover neural architectures that

perform well on a given task and dataset. These

methods search over a space of possible model

architectures, looking for ones that perform well

on the task and will generalize to unseen data.

There has been substantial prior work on how

to define the architecture search space, search

over that space, and estimate model performance

(Elsken et al., 2019).

Recent works, however, cast doubt on the qual-

ity and performance of NAS-optimized architec-

∗Work completed while interning at Amazon.

tures (Sciuto et al., 2020; Li and Talwalkar, 2019),

showing that current methods fail to find the best

performing architectures for a given task and per-

form similarly to random architecture search.

In this work, we explore applications of a SOTA

NAS algorithm, ENAS (Pham et al., 2018), to two

sentence-pair tasks, paraphrase detection (PD) and

semantic textual similarity (STS). We conduct a

large set of experiments testing the effectiveness of

ENAS-optimized RNN architectures across mul-

tiple models (ESIM, BiLSTM-Max), embeddings

(BERT, Glove) and datasets (MRPC, SICK, STS-

B). We are the first, to our knowledge, to ap-

ply ENAS to PD and STS, to explore applica-

tions across multiple embeddings and traditionally

LSTM-based NLP models, and to conduct exten-

sive SOTA HPT across multiple ENAS-RNN ar-

chitecture candidates.

Our experiments suggest that baseline LSTM

models, with appropriate hyperparameter tuning

(HPT), can sometimes match or exceed the per-

formance of models with ENAS-RNNs. We

also observe that random architectures sampled

from the ENAS search space offer a strong base-

line, and can sometimes outperform ENAS-RNNs.

Given these observations, we recommend that re-

searchers (i) conduct extensive HPT (preferably

using automated methods) across various can-

didate architectures for the fairest comparisons;

(ii) compare the performances of ENAS-RNNs

against both standard architectures like LSTMs

and RNN cells randomly sampled from the ENAS

search space; (iii) examine the computational

(memory and runtime) requirements of ENAS

methods alongside the gains observed.

2 Related Work

NAS methods have shown strong performance on

many NLP and CV tasks, such as language model-

http://arxiv.org/abs/2010.04249v1


ing and image classification (Zoph and Le, 2017;

Pham et al., 2018; Luo et al., 2018; Liu et al.,

2019). Applications in NLP, such as NER

(Jiang et al., 2019; Li et al., 2020), translation

(So et al., 2019), text classification (Wang et al.,

2020), and natural language inference (NLI)

(Pasunuru and Bansal, 2019; Wang et al., 2020)

have also been explored.

Current SOTA approaches focus on learn-

ing new cell architectures as replacements for

LSTM or convolutional cells (Zoph and Le, 2017;

Pham et al., 2018; Liu et al., 2019; Jiang et al.,

2019; Li et al., 2020) or entire model architectures

to replace hand-designed models such as the trans-

former or DenseNet (So et al., 2019; Pham et al.,

2018).

Recently, the superiority of NAS to random ar-

chitecture search and traditional architectures with

SOTA HPT methods has been called into question.

Li and Talwalkar (2019) discuss reproducibility is-

sues with current NAS methods and find that,

on language modeling and image classification

tasks, NAS algorithms perform similarly to ran-

dom architecture search. Similarly, Sciuto et al.

(2020) find minimal differences in performance

between NAS and random search and that the pop-

ular weight-sharing strategy (Pham et al., 2018)

decreases performance. With this in perspective,

we conduct a study to investigate the value added

by ENAS to two NLP tasks, PD and STS, which,

to our knowledge, have not been been explored in

previous NAS literature.

3 Neural Architecture Search for

Sentence-Pair Tasks

In this work, we explore applications of ENAS to

two sentence-pair tasks, PD and STS. We select

ENAS because prior work (Pasunuru and Bansal,

2019; Wang et al., 2020) has shown promising re-

sults applying it to a closely-related task, NLI,

with gains of up to 1.3% absolute over LSTMs

and 1.6% over an RNN with a random architec-

ture. Through our evaluations on PD and STS, we

aim to study whether the ENAS methods used in

prior work for NLI are generalizable and whether

the results hold when applied to related tasks and

datasets.

ENAS models consist of two parts: 1) a search

space over model architectures, i.e. child mod-

els, and 2) a controller that samples architectures

from that search space. The primary contribution

of ENAS is that all child models in the search

space share their weights, so each child model

does not have to be trained from scratch to evalu-

ate it. Training the child models and controller pro-

ceeds as follows – first, the controller is fixed, and

the child models are trained together for one epoch

on the dataset, sampling a new architecture from

the controller to use for each minibatch. Then, the

child model shared parameters are fixed, and the

controller is updated – we sample child architec-

tures from its policy and update the controller to

maximize the expected reward on the dev set (e.g.

dev set accuracy). This two-step process then re-

peats for a specified number of epochs. After train-

ing is complete, a number of child models are sam-

pled from the controller and the best one is trained

from scratch and evaluated on the test set. We refer

the reader to Pham et al. (2018) for further details

on ENAS.

In this work, we follow the setup of

Pasunuru and Bansal (2019), using standard

LSTM-based NLP models and replacing the

LSTMs with RNN cells sampled from the ENAS

controller. We leave the rest of the model archi-

tecture (e.g. attention, pooling, output layers) the

same, so the child model search space consists of

every possible ENAS-RNN architecture with the

standard model architecture around it. As with

standard ENAS training, the parameters of the

ENAS-RNNs and standard model architecture

(e.g. final output layer) are shared across all child

models.

3.1 Experiments

We evaluate ENAS on three sentence-pair datasets

using two models and two sets of embeddings:

3.1.1 Sentence-Pair Datasets

• Microsoft Research Paraphrase Corpus

(MRPC; Dolan and Brockett (2005)): binary

label (sentences are paraphrases or not).

• Semantic Textual Similarity Benchmark

(STS-B; Cer et al. (2017)): similarity score

for each sentence-pair in 0 - 5.

• SICK-R (Marelli et al., 2014): similarity

score for each sentence-pair in 1 - 5.

3.1.2 Models

• BiLSTM-Max (BLM, Conneau et al.

(2017)): uses a BiLSTM + max-pooling

to form a representation of each sentence



(s1, s2) and forms a joint representation

h = [s1; s2; |s1 − s2|; s1 ⊙ s2]. h is

then fed through a feedforward layer and

a projection to single predicted value.

Pasunuru and Bansal (2019) use BLM in

their work applying ENAS to NLI.

• ESIM (Chen et al., 2017): uses 2 BiL-

STMs, with a cross-sentence attention mod-

ule in between, then mean and max pool-

ing get representations of each sentence.

It then forms a joint representation h =
[s1,avg; s1,max; s2,avg; s2,max] which is fed

through a feedforward layer and a final pro-

jection to single predicted value.

3.1.3 Embeddings

• Feature-based BERT-base (Devlin et al.,

2019): Following Peters et al. (2019), we

jointly encode the sentence pair (rather than

encoding each separately). and learn a lin-

ear weighted combination of BERT’s layers.

BERT is frozen during training.

• Glove (Pennington et al., 2014): 300 dimen-

sional vectors trained on Wikipedia and Gi-

gaword. Embeddings are frozen during train-

ing.1

3.2 LSTM Baselines

We first benchmark LSTM implementations of

both models. We adapt the BLM implementation

from Pasunuru and Bansal (2019) and use the Al-

lenNLP implementation of ESIM (Gardner et al.,

2018). To have the most competitive baselines pos-

sible, we perform extensive HPT, running 500 tri-

als using a Tree-structured Parzen Estimator (TPE;

Bergstra et al. (2011)). We tune the hidden dimen-

sion sizes, dropout rates, batch size, loss function

(only for regression tasks: mean squared error or

mean absolute error), learning rate, weight decay,

grad norm, and random seed. See Appendix A.2

for full HPT experiment details. Note that we

put emphasis on extensive, automated HPT and

conduct hundreds of HPT trials (as opposed to

only tens of trials typically used in prior work, e.g.

Yogatama et al. (2015)).

Given that we train BLM and ESIM on top of

frozen embeddings, we use the ESIM + BERT re-

sults from Peters et al. (2019) as a baseline. Our re-

1Our initial experiments found that static Glove embed-
dings outperformed non-static ones.

produced results are in the same ballpark (Table 1,

rows 2-3), albeit with small deviations.

3.3 ENAS Training

After finding the best hyperparameters for each

〈dataset, embedding, model〉 LSTM configuration,

we run ENAS to search for a new RNN for each

configuration. Following Pasunuru and Bansal

(2019), we use 6 node ENAS-RNNs. We use Mi-

crosoft NNI’s (Microsoft, 2020) ENAS implemen-

tation. We replace the BiLSTM in BLM and both

BiLSTMs in ESIM with the ENAS BiRNNs (we

use same architecture in both ESIM layers). We

train ENAS for 150 epochs with early-stopping.

For each 〈dataset, embedding, model) configura-

tion, we train the ENAS models with the same

hyperparameters as the best corresponding LSTM

model, except learning rate of 1e-4 and grad norm

0.25, which are used across all ENAS models2.

We follow the hyperparameter configurations from

Pham et al. (2018) for the ENAS controller.

3.4 Training Discovered Architectures

After training ENAS, we sample 10 architectures

from the controller. Just as during ENAS train-

ing, we then use these architectures as drop-in re-

placements for LSTMs, replacing a model’s BiL-

STM layer(s) with ENAS BiRNN(s). We then

train the models from scratch and repeat HPT, ex-

tending the original LSTM hyperparameter search

space with a choice over the 10 sampled architec-

tures. We run 200 trials of HPT. We note that,

unlike the CUDA implementations for LSTMs, it

is non-trivial to implement highly optimized arbi-

trary ENAS-RNN architectures. We discuss these

limitations and the overall compute dedicated for

HPT on LSTM and ENAS-RNN based models in

Appendix A.2.

In addition to experiments replacing all BiL-

STM layers with ENAS BiRNNs, we also exam-

ine mixing ENAS-RNN and LSTM layers in the

multi-layer ESIM model. Specifically, we experi-

ment with only replacing the 1st BiLSTM layer in

ESIM with an ENAS BiRNN and only replacing

the 2nd BiLSTM layer. These models have the

same hyperparameter search space as the ESIM

model with ENAS-RNNs in both layers (i.e. same

possible ENAS-RNN architectures), but we tune

2Training is unstable with the higher learning rates found
during HPT for our LSTM models and those suggested in
Pasunuru and Bansal (2019); Pham et al. (2018)



and evaluate them separately (see Table 1, rows 5-

6, 11-12).

4 Results

Table 1 lists the dev and test results for all datasets,

embeddings, and models. We focus our discus-

sion on the test results. On the whole, the re-

sults are mixed. 〈BLM, ENAS〉 outperforms

〈BLM, LSTM〉 across all datasets and embed-

dings by an average of 1.9%. 〈ESIM, ENAS〉,
on the other hand, fails to consistently outperform

〈ESIM, LSTM〉. ESIM models with ENAS-RNNs

in both layers lag behind LSTMs by 0.9%, on av-

erage.

Focusing first on BLM, we find that 〈BLM,

ENAS〉 outperforms 〈BLM, LSTM〉 by an aver-

age of 2.1% across all three datasets using BERT

(row 8) and 1.7% using Glove (row 14). These re-

sults parallel those of Pasunuru and Bansal (2019),

who find that 〈BLM, ENAS〉 with ELMO em-

beddings (Peters et al., 2018) outperforms 〈BLM,

LSTM〉 on two NLI datasets and is on par on a

third. However, both in our experiments and those

of Pasunuru and Bansal (2019), the 6 node ENAS-

RNNs have more parameters than the correspond-

ing LSTM models3, making it difficult to get a

clear picture of the effects of just changing the

RNN architecture. To control for this, in §4.1 we

conduct experiments comparing ENAS-RNNs to

RNNs randomly sampled from the same search

space.

Examining ESIM, the results are mixed. ESIM

models with ENAS-RNNs in both layers (rows

4, 10) are worse than 〈ESIM, LSTM〉 on 4 of

6 〈dataset, embedding〉 configurations. The best

〈ESIM, ENAS〉 performance is actually achieved

using a mix of ENAS-RNNs and LSTMs across

different layers. In fact, the only configurations

in which 〈ESIM, ENAS〉 outperforms 〈ESIM,

LSTM〉 across all three datasets is 〈BERT, ENAS

/ LSTM) (row 5), where we only replace the first

LSTM layer with an ENAS-RNN. The gains, how-

ever, are modest compared to those of the BLM

model, improving over 〈ESIM, LSTM〉 by 0.73%

on average. Further, changing the embeddings to

Glove 〈Glove, ENAS / LSTM) (row 11), 〈ESIM,

ENAS〉 underperforms 〈ESIM, LSTM〉 across all

3 datasets by nearly 2% on average. Since we do

3The exact ratio in number of parameters between 6 node
ENAS-RNNs and LSTMs depends on the input and hidden
dimensions

not observe similar performance gains with ESIM

as with BLM, we hypothesize that optimization

of specific RNN architectures might matter less

as model complexity (e.g. number of layers) in-

creases. We suggest future work further examine

the importance of ENAS as it relates to model com-

plexity, especially on tasks where an RNN’s archi-

tecture might have a higher impact on modeling

performance.

4.1 Random & Transfer Architectures

In addition to comparisons to LSTMs, we evaluate

two common claims about NAS methods: 1) NAS

outperforms random search (Pham et al., 2018;

Zoph and Le, 2017; Luo et al., 2018; Liu et al.,

2019) 2) NAS architectures are transferable to

related datasets and tasks (Zoph and Le, 2017;

Liu et al., 2019; Luo et al., 2018). We choose two

configurations to evaluate these claims: (i) 〈Glove,

BLM〉 and (ii) 〈BERT, ESIM, ENAS / LSTM〉
with ENAS-RNNs only in the first layer, keep-

ing the second BiLSTM layer. We chose these

configurations since they perform well relative to

LSTMs and, between them, cover all embeddings

and models.

For claim #1, we first randomly sample 10 RNN

architectures from the ENAS search space. Then,

just as for the ENAS-RNNs, we perform 200 HPT

trials, replacing the 10 ENAS-RNN candidates

with the 10 randomly sampled RNN candidates.

For claim #2, we test the transferability of SICK-

R and MRPC cells to/from each other. We do not

evaluate the transferability of STS-B cells, since

STS-B contains data from SICK-R and MRPC.

We again perform 200 HPT trials, but with the

different dataset’s ENAS-RNN cells in the search

space.

Table 2 shows our results. We again focus

on test results. For claim #1, we find mixed re-

sults, with ENAS outperforming random search

by an average of 1.33% in the configuration

〈BERT, ESIM, ENAS / LSTM〉 (rows 1-4), but

performing worse or on par with random on

〈GLOVE, BLM〉 (rows 5-8) (average 0.9% de-

crease). These results contrast those of Pham et al.

(2018); Pasunuru and Bansal (2019), who report

gains over random search on language modeling

(25.4% decrease in perplexity) and NLI datasets

(1.53% increase in accuracy). We hypothesize

that these differences are due, in part, to our em-

phasis on creating strong baselines by searching



Dev Performance Test Performance

Author Embedding Model RNN SICK-R MRPC STS-B SICK-R MRPC STS-B

1. Devlin et al. (2019) BERT fine-tuned – – – – 88.7 84.8 87.1

2. Peters et al. (2019) BERT ESIM L / L – – – 86.4 78.1 82.9

3.

Ours

BERT ESIM L / L 88.9 88.0 88.0 87.0 80.2 82.0

4. BERT ESIM E / E 88.6 87.0 88.5 86.8 80.8 82.2

5. BERT ESIM E / L 89.3 87.5 88.5 87.4 81.0 83.0

6. BERT ESIM L / E 88.0 87.0 88.2 86.5 79.8 81.8

7.
Ours

BERT BLM L 87.4 88.0 88.1 84.8 80.4 80.1

8. BERT BLM E 87.8 88.5 88.7 85.5 82.8 83.3

9.

Ours

Glove ESIM L / L 88.6 79.9 83.3 86.1 73.7 75.5

10. Glove ESIM E / E 88.2 76.0 83.3 85.1 69.0 75.3

11. Glove ESIM E / L 88.7 77.2 83.0 85.7 71.0 72.7

12. Glove ESIM L / E 88.2 78.2 83.0 85.2 72.5 76.0

13.
Ours

Glove BLM L 86.3 78.4 79.7 82.5 71.8 73.0

14. Glove BLM E 87.0 78.4 81.6 84.1 73.4 74.8

Table 1: Dev & Test set performances for LSTM and ENAS-RNN based models. Following Peters et al. (2019),

we report pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, “E” stands

for ENAS-RNN and “L” stands for LSTM. For ESIM there can be different of cells in different layers, e.g. E / L

stands for ENAS-RNN in the 1st layer and LSTM in the 2nd layer.
Dev Performance Test Performance

Embedding Model RNN RNN Optimized For SICK-R MRPC STS-B SICK-R MRPC STS-B

1. BERT ESIM E / L SICK-R 89.3 87.0 – 87.4 81.3 –

2. BERT ESIM E / L MRPC 89.0 87.5 – 86.9 81.0 –

3. BERT ESIM E / L STS-B – – 88.5 – – 83.0

4. BERT ESIM RND / L Random 88.9 87.0 88.4 87.2 79.0 81.2

5. Glove BLM E SICK-R 87.0 77.5 – 84.1 71.9 –

6. Glove BLM E MRPC 87.3 78.4 – 83.5 73.4 –

7. Glove BLM E STS-B – – 81.6 – – 74.8

8. Glove BLM RND Random 87.6 79.9 81.1 84.7 75.5 74.8

Table 2: Evaluation of how well ENAS-RNNs transfer to other datasets and compare to random search. We report

pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, “E” stands for ENAS-

RNN, “L” stands for LSTM, and “RND” for random RNN. For ESIM we use an ENAS or random RNN in the 1st

layer and an LSTM in the 2nd layer.

over multiple architectures and performing exten-

sive HPT for all models and settings.

For claim #2, we find that transfer architectures

underperform dataset-specific ENAS architectures

by 0.58% and random architectures by 0.7%, on

average. Only one architecture (row 1, SICK to

MRPC) outperforms either of the corresponding

random or dataset-specific architectures. Together

with our findings for claim #1, these results cast

further doubt on the ability of ENAS to find the

best architecture for a specific task, its superiority

to well-tuned random architectures, and the trans-

ferability of its discovered architectures.

5 Conclusion

Unlike prior work applying ENAS to NLP, we

find that ENAS-RNNs only outperform LSTMs

and random search on some 〈dataset, embedding,

model) configurations. Our findings parallel re-

cent work (Li and Talwalkar, 2019; Sciuto et al.,

2020) which question the effectiveness of cur-

rent NAS methods and their superiority to ran-

dom architecture search and SOTA HPT meth-

ods. Given our mixed results, we recommend

researchers: (i) extensively tune hyperparameters

for standard (e.g. LSTM) and randomly sampled

architectures to create strong baselines; (ii) bench-

mark ENAS performance across multiple simple

and complex model architectures (e.g. BLM &

ESIM); (iii) present computational requirements

alongside gains observed with ENAS methods.
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A Implementation Details

All models were implemented with Pytorch and

run on Amazon p3 instances (16GB Nvidia V100).

A.1 Embeddings

Experiments with BERT used the Huggingface

Transformers library (Wolf et al., 2019). Experi-

ments with Glove vectors used 300 dimensional

vectors trained on Wikipedia 2014 + Gigaword 54.

Glove vectors weren’t updated training, and out-

of-vocabulary tokens were replaced with the token

“[UNK]” with an embedding of all 0s (≈ 6% of to-

kens are OOV). In initial experiments, we found

no differences between our all-0 embeddings and

embeddings randomly initialized according to a

Gaussian distribution.

A.2 Hyperparameter Tuning

All HPT was run using Microsoft NNI’s paral-

lel implementation of TPE5 with concurrency 8.

Table 3 contains the search space for our experi-

ments. Table 5 contains the best hyperparameter

settings for all of our experiments.

A.2.1 Memory Limitations for HPT with

ENAS-RNNs

In order for a model to fit on a single GPU (16GB

Nvidia V100), we had to limit the search space

slightly for models using both ENAS-RNNs and

BERT embeddings. This is because the ENAS-

RNN search space contains weight matrices W h
ℓ,j

between each pair of nodes ℓ, j in the RNN search

space DAG, which greatly expands memory usage

4http://nlp.stanford.edu/data/glove.6B.zip
5
https://nni.readthedocs.io/en/latest/CommunitySharings/ParallelizingTpeSearch.html

Hyperparameter Search Space

batch size [16, 32, 64]

learning rate 0.0001 - 0.01

loss function classification: cross entropy

regression: [mae, mse]

weight decay 0.001 - 0.1

grad norm 0.25 - 20.0

hidden dimensions w/ bert: [384, 512, 768, 1152, 1536]

w/ glove: [150, 200, 300, 450, 600]

dropouts 0.25 - 0.75

random seed [0, 1, 2, 3, 4, 5]

epochs 75 (with early stopping)

RNN Architecture Choice of 10 unique architectures

(only for models with ENAS-RNNs)

Table 3: Hyperparameter search space for all experi-

ments.

(see Pham et al. (2018), sections 2.1 and Appendix

A). For both BLM and ESIM models, hidden di-

mensions were limited to [384, 512, 768]. Further,

for ESIM models with ENAS-RNNs in both lay-

ers, the batch size was also limited to [16, 32].

A.2.2 Timing limitations for HPT with

ENAS-RNNs

Since our ENAS-RNNs are, similar to prior NAS

research code, implemented using a Python for-

loop over time steps, the implementation is sig-

nificantly slower (≈ 25x) than the cuda-optimized

LSTM equivalent. Thus, due to computational lim-

its, we only perform 200 trials of HPT for the

models with ENAS-RNNs (vs. 500 for models

with LSTMs). Though the number of HPT tri-

als is lower than for LSTMs, due to their slow

speed, the total compute time devoted to tuning

the ENAS-RNN models is roughly 10x+ higher.

As an example, Table 4 shows the total compute

time dedicated to HPT for BLM models (both

LSTM-based models and ENAS-RNN based mod-

els), measured as the total number of hours spent

on a single p3.16xlarge instance6 to finish all HPT

trials. Note, the models with ENAS-RNNs are not

always exactly 10x slower than the LSTM equiva-

lent – since we are also searching over batch size

during HPT, runtimes can vary significantly.

A.3 Memory Limitations for Training ENAS

As noted in §3.3, we train the ENAS child mod-

els 〈BLM, ESIM〉 using the same parameters as

the corresponding best LSTM model for the given

configuration 〈dataset, embeddings, model〉. For

the configuration 〈STS-B, BERT, ESIM〉, the cor-

responding ENAS child models would not fit on a

single GPU (16GB Nvidia V100). This is due to

the large memory footprint of ENAS as discussed

6
https://aws.amazon.com/ec2/instance-types/p3/
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http://nlp.stanford.edu/data/glove.6B.zip
https://nni.readthedocs.io/en/latest/CommunitySharings/ParallelizingTpeSearch.html
https://aws.amazon.com/ec2/instance-types/p3/


Configuration # HPT Trials Runtime (hours)

(BLM, BERT, LSTM, SICK) 500 19.14

(BLM, BERT, LSTM, MRPC) 500 23.99

(BLM, BERT, LSTM, STS-B) 500 47.30

(BLM, BERT, ENAS, SICK) 200 79.21

(BLM, BERT, ENAS, MRPC) 200 67.29

(BLM, BERT, ENAS, STS-B) 200 141.09

(BLM, Glove, LSTM, SICK) 500 5.35

(BLM, Glove, LSTM, MRPC) 500 4.90

(BLM, Glove, LSTM, STS-B) 500 9.36

(BLM, Glove, ENAS, SICK) 200 78.65

(BLM, Glove, ENAS, MRPC) 200 113.33

(BLM, Glove, ENAS, STS-B) 200 193.93

Table 4: Compute time spent on HPT for BLM mod-

els (both LSTM-based models and ENAS-RNN based

models). Compute time measured as total number of

hours on a single p3.16xlarge instance. All HPT was

run using Microsoft NNI’s parallel implementation of

TPE7 with concurrency 8 (one trial running on each of

the 8 GPUs in the p3.16xlarge instance).

in A.2. Thus, for 〈STS-B, BERT, ESIM〉 we de-

crease the batch size from 64 to 32 and the hidden

dimensions from 1152 to 768.

A.4 ESIM: Differences Between Training

Child Models with ENAS and Training

Models from Scratch

As described in §3.3, when training the ESIM

child models jointly with the ENAS controller, we

replace both of ESIM’s BiLSTMs with the sam-

pled ENAS-RNN architectures. We do this for

each 〈dataset, embedding〉 configuration, thus run-

ning 6 total instances of ENAS (3 datasets * 2 em-

beddings). After the ENAS training is complete,

we sample 10 ENAS-RNN architectures from the

trained controller.

However, when training ESIM models from

scratch, as described in §3.4, we experiment with

1) replacing both LSTM layers with the ENAS-

RNN architecture (same as during ENAS training)

2) only replacing the 1st layer 3) only replacing the

2nd layer. We treat each ESIM layer configuration

as its own model and tune its hyperparameters sep-

arately. Thus, for example, for the configuration

(SICK-R, BERT, ESIM) we perform 200 trails of

HPT for the configuration with ENAS-RNNs in

both layers, 200 trials of HPT for the configura-

tion with an ENAS-RNN in layer 1 and an LSTM

in layer 2, and finally 200 trials of HPT for the con-

figuration with an LSTM in layer 1 and an ENAS-

RNN in layer 2. Note, however, that these three

separate instances of HPT share the same search

space over ENAS-RNN architectures – all three

are searching over the same 10 ENAS-RNNs sam-

pled from the same controller. In total, we run 18

different instances of HPT (3 datasets * 2 embed-

dings * 3 layer configs). The results from each

configuration are presented separately in Table 1

(in the main portion of the paper).

A.5 RNN Architectures Sampled from ENAS

Search Space

Table 6 shows the architectures of all RNNs

used in our experiments (ENAS-RNNs, trans-

ferred ENAS-RNNs, random RNNs). Each archi-

tecture is numbered 1-26. Table 5, which displays

the hyperparameter settings for each model and

configuration, lists which RNN architecture each

configuration uses.

Note, some of the architectures are the same

across different model configurations. This is due

to two reasons:

• As discussed in §3.4 and §A.4, we experi-

ment with mixing ENAS-RNN and LSTM

layers in the multi-layer ESIM model. The

ESIM models with ENAS RNNs in both lay-

ers share the same possible ENAS-RNN ar-

chitectures as the corresponding ESIM mod-

els with an ENAS-RNN only in the 1st layer

or 2nd layer.

• We sampled 10 total random architectures

from the ENAS-RNN search space then used

those same 10 architectures in the search

spaces for all 〈dataset, model, embedding〉
configurations. Thus, some configurations

might use the same architecture.

A.6 Datasets

For MRPC and STS-B, we use the data provided

by Glue8. For SICK-R, we use the data provided

by SemEval-2014 Task 19. We use scikit-learn10

to split the provided SICK-R training data into

train and dev splits.

For our experiments with BERT, we use the

BertTokenizer from the Huggingface Transform-

ers library (Wolf et al., 2019). We cap each

sentence-pair at a certain number of total word-

piece tokens (SICK: 64, MRPC: 128, STS-B: 128).

For our experiments with Glove, we use spacy11

(Honnibal and Montani, 2017) to tokenize each

sentence. We cap each sentence at a certain num-

ber of tokens (SICK: 30, MRPC: 46, STS-B: 39).
8
https://gluebenchmark.com/faq

9
http://alt.qcri.org/semeval2014/task1/

10https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html,
dev size: 0.1, random state: 0

11
https://spacy.io/models/en#en_core_web_md

https://gluebenchmark.com/faq
http://alt.qcri.org/semeval2014/task1/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://spacy.io/models/en#en_core_web_md


Model Embedding RNN Dataset Batch Size Learning Rate Loss Weight Decay Grad Norm Hidden Dim Dropout Variational Dropout Rnd Seed Architecture #

BLM BERT L SICK 32 0.0046 mse 0.0514 12.3656 512 (0.3782, 0.3474) 0.4088 3 –

BLM BERT L MRPC 64 0.0021 cross entropy 0.0637 12.8279 384 (0.6355, 0.4388) 0.6804 2 –

BLM BERT L STS-B 32 0.0075 mse 0.0407 16.8742 512 (0.2702, 0.4525) 0.6783 2 –

BLM Glove L SICK 64 0.0007 mse 0.0040 10.2636 300 (0.3555, 0.2937) 0.2774 1 –

BLM Glove L MRPC 32 0.0017 cross entropy 0.0301 8.1649 450 (0.3346, 0.3751) 0.2986 5 –

BLM Glove L STS-B 32 0.0004 mse 0.0201 4.9461 200 (0.2597, 0.5924) 0.4516 0 –

BLM BERT E SICK 32 0.0074 mse 0.0226 11.2817 384 (0.3372, 0.5304) 0.3009 5 17

BLM BERT E MRPC 32 0.0031 cross entropy 0.0670 9.4340 384 (0.5310, 0.6235) 0.4676 1 15

BLM BERT E STS-B 32 0.0019 mae 0.0382 6.7670 512 (0.2507, 0.4492) 0.6193 1 19

BLM Glove E SICK 64 0.0007 mse 0.0729 11.7080 450 (0.3199, 0.2711) 0.3911 5 18

BLM Glove E MRPC 64 0.0001 cross entropy 0.0637 15.5210 450 (0.3352, 0.3993) 0.2948 4 16

BLM Glove E STS-B 16 0.0007 mae 0.0258 2.9847 450 (0.2584, 0.6419) 0.2508 4 20

BLM Glove R SICK 64 0.0016 mse 0.0647 15.0969 450 (0.2505, 0.3945) 0.2589 0 24

BLM Glove R MRPC 64 0.0015 cross entropy 0.0956 12.2487 300 (0.2956, 0.3971) 0.3304 0 22

BLM Glove R STS-B 64 0.0004 mse 0.0257 1.2826 600 (0.3355, 0.4312) 0.3392 3 24

BLM Glove T SICK 32 0.0003 mse 0.0058 6.1308 300 (0.3809, 0.3487) 0.3273 2 25

BLM Glove T MRPC 32 0.0005 cross entropy 0.0341 14.0270 200 (0.4586, 0.6012) 0.4123 0 26

ESIM BERT L/L SICK 32 0.0011 mae 0.0299 12.9599 (512 1152) (0.3171, 0.6050) (0.6962, 0.4123) 4 –

ESIM BERT L/L MRPC 64 0.0048 cross entropy 0.0448 16.0686 (384 512) (0.2806, 0.4960) (0.5453, 0.3357) 1 –

ESIM BERT L/L STS-B 64 0.0011 mae 0.0855 18.4787 (1152 1152) (0.4213, 0.4769) (0.5011, 0.5806) 3 –

ESIM Glove L/L SICK 32 0.0018 mse 0.0804 12.3511 (200 300) (0.4369, 0.5705) (0.4491, 0.3239) 1 –

ESIM Glove L/L MRPC 64 0.0006 cross entropy 0.0415 16.6595 (600 200) (0.4089, 0.7434) (0.2795, 0.4438) 3 –

ESIM Glove L/L STS-B 64 0.0027 mse 0.0741 12.3487 (300 600) (0.2822, 0.4862) (0.2867, 0.5283) 1 –

ESIM BERT E/E SICK 16 0.0002 mae 0.0572 4.5861 (512 768) (0.3362, 0.6338) (0.6415, 0.3806) 1 7

ESIM BERT E/E MRPC 32 0.0005 cross entropy 0.0808 15.6688 (384 768) (0.7098, 0.6014) (0.6504, 0.3573) 2 5

ESIM BERT E/E STS-B 32 0.0024 mse 0.0684 17.1467 (384 512) (0.4992, 0.6578) (0.7135, 0.4686) 5 12

ESIM Glove E/E SICK 64 0.0005 mse 0.0673 11.2588 (450 200) (0.5421, 0.6383) (0.4262, 0.4960) 1 11

ESIM Glove E/E MRPC 64 0.0019 cross entropy 0.0544 16.2351 (150 600) (0.4805, 0.6752) (0.4711, 0.5483) 3 6

ESIM Glove E/E STS-B 64 0.0005 mae 0.0579 11.3040 (450 200) (0.3348, 0.5270) (0.2846, 0.4997) 0 13

ESIM BERT E/L SICK 16 0.0008 mse 0.0835 14.1718 (512 768) (0.3996, 0.4231) (0.3149, 0.3665) 0 9

ESIM BERT E/L MRPC 32 0.0005 cross entropy 0.0525 13.0402 (768 512) (0.5491, 0.2819) (0.4482, 0.3430) 5 3

ESIM BERT E/L STS-B 32 0.0008 mae 0.0995 5.6442 (384 384) (0.6291, 0.6221) (0.3899, 0.6917) 5 14

ESIM Glove E/L SICK 32 0.0004 mse 0.0337 0.7994 (600 600) (0.4193, 0.6904) (0.4331, 0.6221) 2 10

ESIM Glove E/L MRPC 64 0.0011 cross entropy 0.0549 5.7392 (200 150) (0.5909, 0.4142) (0.4288, 0.2503) 4 4

ESIM Glove E/L STS-B 64 0.0003 mse 0.0302 13.5390 (450 600) (0.4538, 0.2828) (0.4641, 0.6847) 0 13

ESIM BERT R/L SICK 64 0.0007 mse 0.0135 3.3407 (384 512) (0.3738, 0.4779) (0.6879, 0.3507) 2 23

ESIM BERT R/L MRPC 64 0.0007 cross entropy 0.0747 12.8833 (384 768) (0.3532, 0.6506) (0.6440, 0.6599) 0 21

ESIM BERT R/L STS-B 32 0.0014 mse 0.0240 0.3344 (512 384) (0.6102, 0.2993) (0.5616, 0.3264) 4 24

ESIM BERT T/L SICK 64 0.0025 mse 0.0623 6.0643 (384 384) (0.4455, 0.3305) (0.6036, 0.4636) 3 5

ESIM BERT T/L MRPC 32 0.0003 cross entropy 0.0989 19.2888 (512 768) (0.3023, 0.2515) (0.6723, 0.4313) 3 7

ESIM BERT L/E SICK 32 0.0024 mse 0.0690 6.5209 (384 384) (0.2935, 0.3905) (0.5975, 0.3623) 2 7

ESIM BERT L/E MRPC 32 0.0020 cross entropy 0.0637 12.9123 (768 768) (0.3302, 0.5489) (0.7050, 0.5593) 0 1

ESIM BERT L/E STS-B 16 0.0014 mae 0.0294 19.7594 (384 384) (0.3857, 0.5279) (0.5551, 0.3715) 3 12

ESIM Glove L/E SICK 32 0.0028 mse 0.0360 16.7776 (150 200) (0.3367, 0.7101) (0.3469, 0.3811) 3 8

ESIM Glove L/E MRPC 64 0.0013 cross entropy 0.0151 3.7091 (300 300) (0.4849, 0.6060) (0.5526, 0.4104) 0 2

ESIM Glove L/E STS-B 32 0.0017 mse 0.0814 0.2999 (150 200) (0.2829, 0.3279) (0.2622, 0.2951) 5 13

Table 5: Hyperparameter values used for all experiments. In the RNN collumn, “E” stands for ENAS-RNN, “L”

stands for LSTM, “R” for random RNN, and “T” for transfer. All floating point values have been rounded to 4

significant figures after the decimal point. Variational dropout is applied before each RNN layer. For models with

RNNs from the ENAS search space (all models except those with LSTMs), the column ‘Architecture #’ displays

which RNN architecture it uses. The number corresponds to the row number in Table 6. For ESIM models, the

two hidden dimension values refer to (RNN layer 1, RNN layer 2) and the two dropout numbers refer to standard

dropout (applied after the ’enhancement’ layer, in the final MLP layer). For BLM models, the two dropout numbers

refer to standard dropout applied (after the RNN layer, before the final projection)



Node 0 Op Node 1 Input Node 1 Op Node 2 Input Node 2 Op Node 3 Input Node 3 Op Node 4 Input Node 4 Op Node 5 Input Node 5 Op

1. Tanh 0 Relu 0 Relu 0 Relu 0 Relu 0 Relu

2. Tanh 0 Relu 1 Relu 2 Relu 0 Relu 2 Relu

3. Tanh 0 Relu 1 Relu 0 Identity 0 Identity 0 Identity

4. Identity 0 Relu 0 Sigmoid 0 Relu 2 Relu 1 Relu

5. Tanh 0 Relu 0 Relu 0 Identity 0 Identity 4 Relu

6. Identity 0 Sigmoid 0 Relu 0 Relu 2 Relu 3 Relu

7. Tanh 0 Tanh 0 Relu 0 Tanh 3 Tanh 0 Tanh

8. Tanh 0 Identity 0 Tanh 0 Identity 0 Identity 0 Tanh

9. Tanh 0 Tanh 0 Relu 0 Tanh 0 Tanh 0 Tanh

10. Tanh 0 Identity 0 Tanh 0 Identity 0 Tanh 0 Identity

11. Tanh 0 Tanh 0 Identity 0 Tanh 0 Identity 0 Identity

12. Relu 0 Tanh 1 Sigmoid 0 Relu 0 Sigmoid 0 Relu

13. Identity 0 Identity 1 Identity 0 Sigmoid 3 Identity 0 Sigmoid

14. Sigmoid 0 Relu 0 Sigmoid 0 Relu 0 Relu 0 Sigmoid

15. Sigmoid 0 Identity 0 Tanh 0 Tanh 0 Tanh 0 Tanh

16. Sigmoid 0 Tanh 0 Tanh 0 Identity 0 Identity 0 Identity

17. Tanh 0 Sigmoid 1 Sigmoid 2 Relu 3 Sigmoid 1 Sigmoid

18. Tanh 0 Sigmoid 1 Sigmoid 0 Sigmoid 1 Sigmoid 2 Sigmoid

19. Sigmoid 0 Sigmoid 0 Sigmoid 0 Relu 0 Relu 0 Sigmoid

20. Relu 0 Sigmoid 1 Sigmoid 0 Sigmoid 0 Sigmoid 0 Sigmoid

21. Tanh 0 Identity 0 Sigmoid 1 Tanh 2 Sigmoid 0 Tanh

22. Sigmoid 0 Relu 0 Sigmoid 0 Sigmoid 2 Identity 0 Identity

23. Tanh 0 Sigmoid 0 Relu 0 Relu 2 Tanh 1 Identity

24. Sigmoid 0 Sigmoid 1 Tanh 1 Sigmoid 1 Sigmoid 1 Relu

25. Sigmoid 0 Tanh 0 Tanh 0 Identity 0 Tanh 1 Identity

26. Identity 0 Sigmoid 0 Identity 0 Sigmoid 0 Sigmoid 4 Sigmoid

Table 6: RNN Architectures (from the ENAS RNN search space) used across all experiments (including ENAS-

RNNs, random RNNs and transfer architectures). These architectures are matched with their corresponding model

configuration in Table 5 by the column ‘Architecture #’. Node # Input refers to the index of the previous node

used as input to the current node. Node # Op refers to the elementwise operation applied at each node (Relu, Tanh,

Sigmoid, Identity). Please see Pham et al. (2018) for more details on the ENAS RNN search space.


