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SUMMARY 

Web services transactions are used to build efficient and reliable web applications 

which are distributed across the Internet and are accessed by multiple simultaneous 

users. Current research develops various models and protocols in order to improve the 

performance and reliability of web services transactions. However, there is little 

research on testing the different models and protocols of web services transactions. This 

paper presents an abstract transaction model that patterns different web services 

transactions standards.  This model is capable of deriving concrete models in order to 

automatically generate test cases for different web services transactions standards. The 

proposed model is implemented as a prototype system and is evaluated using a case of 

the Jboss Transaction. The evaluation shows that the proposed system has the capability 

to automatically generate test cases and detect possible failures of transactions running 

under different web services transactions standards.  

KEY WORDS:  transactions; web services; testing, failure detection, reliability; 

1. INTRODUCTION 

Web services (WS) are software applications which provide uniform interfaces for 

interaction and communication with other web applications in a dynamic manner. They 

also provide compositional facilities such that different web services can be composed 

to enact an integrated service that provides enhanced functionalities. Web services 

transactions (or WS Transactions) are defined as sequences of operations that are 

executed under certain constraints in order to maintain application correctness and data 

consistency. The fundamental principle of WS Transactions is to provide web services 

applications with reliability and efficiency. In order to ensure reliable execution of web 

services it is crucial that their activities are modelled as transactions such that they 

achieve an mutually agreed outcome [1].  

Numerous models and protocols have been developed for WS Transactions. These 

include standard models and protocols such as Business Transaction Protocol (BTP) [2], 

Web Services Business Activity (WS-BA) [3] and Web Services Transaction 
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Management (WS-TXM) [4]. However they fall short of testing WS Transactions, for 

instance, in terms of reliability and failures [5]. The process of testing WS Transactions 

is not trivial due to several reasons. First, WS Transactions are more complex compared 

to classical transactions as they involve cooperation among multiple parties, span 

autonomous and independent partners, and may have long duration. Thus WS 

Transactions have more intricate sequence of operations and execution environment. 

Second, WS Transactions do not have a homogeneous transaction model such as the 

ACID (Atomicity, Consistency, Isolation and Durability) model. Instead they are 

characterized by a diversity of transaction models such as BTP, WS-BA and WS-TXM. 

Such diversity of models also complicates the process of testing WS Transactions. 

Third, various kinds of failures may happen during the processing of WS Transactions, 

including: (i) technical failures such as communication, system and software failures 

can occur. Such failures result in loss of messages, processing of services, etc (ii) 

service level failures such as service acquisition failures wherein services cannot be 

acquired due to unavailability of the desired services, payment problems, or service 

cancellation. 

In [6, 7] we proposed the Abstract Transaction Model (AbTM) for testing the WS 

Transactions. AbTM serves as a template for modelling different WS Transactions 

standards. AbTM identifies the different roles involved in a WS Transaction, the 

relationship between them and also models the behaviour of each one during the 

transaction life cycle. In this paper we extend the AbTM in order to automatically 

generate test cases for WS Transactions. We also evaluate the AbTM through the 

development of a prototype system using a case study of the Jboss Transaction [8]. The 

novel features and contributions of the work presented in this paper are as follows:  

(i) To automatically generate the abstract test cases and map them to different WS 

Transactions standard (such as BTP, WS-BA, etc).  

(ii) To automatically compare the expected and actual outcomes in order to identify 

failures in WS Transactions running under different WS Transactions standards. 

(iii) To perform testing and evaluation using the standard case study of Night Out, 

which is provided by Jboss [8] in their implementation of the WS-BA standard. 

The rest of the paper is organized as follows. Section 2 gives an analysis of WS 

Transaction models and standards. Section 3 presents the Abstract Transaction Model. 

Section 4 illustrates the process of modelling WS Transaction standards. Section 5 

presents the AbTM-based approach for testing WS Transactions. The evaluation of our 

approach is discussed in Section 6. Section 7 reviews existing work on WS 

Transactions. Conclusions are presented in Section 8. 

2. WS TRANSACTION STANDARDS 

WS Transactions are based on various models ranging from classical ACID models to 

advanced or extended transaction models. Two Phase Commit (2PC) protocol and its 



variants [10] have commonly been used for maintaining ACID properties. ACID 

properties are vital for WS Transactions that need strict data consistency. However, they 

are not suitable for long running applications due to resource locking/blocking 

problems. Advanced transaction models have been developed to address 2PC and ACID 

related issues. These includes, nested transaction model [11], SAGA model [12], open-

nested [13], Split-join [14], Contracts [15], Flex [16], and WebTram [17]. The 

underlying strategy of these models is to allow compensation of partially completed 

transactions in order to maintain data consistency and reliability. 

Based on the above transaction models several standard specifications have been 

developed for WS Transactions. For instance, BTP [2] adapts 2PC for short lived 

transactions and nested transaction model for long-lived transactions. WS-CAF [4] is a 

set of WS specifications for applications composed of multiple WS used in 

combination. WS-CAF uses WT-TXM to manage the transactions. WT-TXM defines 

three models, ACID Transaction (TXACID), Long Running Transaction (TXLRA) and 

Business Transaction Process (TXBP) that address different scenarios. Web Services 

Atomic Transactions (WS-AT) [18] and WS-BA [3] are built on top of Web Services 

Coordination (WS-COOR) [19] and they follow its coordination mechanism. WS-AT 

follows 2PC protocol while WS-BA uses the SAGA model. 

The above standards are summarized and analysed in Table I. ‘Coordination’ 

represents whether a particular standard provides coordination facilities. ‘Short’ and 

‘Long’ represent that the underlying model is respectively based on ACID properties 

and advanced transaction models. ‘Related’ represents the remaining standards which 

belong to a same family.  

Table I. WS Transaction standards 

Standards Coordination Short Long Related 

BTP � 2PC Nested � 

WS-CAF � � � WS-TXM 

WS-TXM � � � TXACD, TXLRA, TXBP 

TXACID � 2PC � WS-TXM 

TXLRA � � SAGA WS-TXM 

TXBP � � Open WS-TXM 

WS-COOR � � � WS-AT, WS-BA 

WS-AT � 2PC � WS-COOR 

WS-BA � � SAGA WS-COOR 

 



It is observed that all standards separate the coordination and the management of the 

subtransactions and also distinguish short-lived transactions from long-lived 

transactions. It is also observed that these standards have proprietary definitions of their 

underlying transaction models despite the fact they are based on similar concepts. This 

makes it difficult to use them in a uniform way. Our analysis shows that WS 

Transactions standards are not homogenous and have different processing and testing 

requirements. Thus it is not practical (nor easier) to test just a single WS Transaction 

model and evaluate its reliability. In the next section we present the proposed model that 

automatically represents and tests different WS transactions standards. 

3. THE ABSTRACT TRANSACTION MODEL 

A WS Transaction is a service composition where the participants collaborate to create 

a new and more functional unit of work. Some activities are always presented in the 

transaction management, such as creation or termination. For example, in an application 

that allow booking different services for a night out (e.g., theatre tickets, restaurant and 

taxi), the client side of the application starts the transaction since it has the customer 

information. Also it finishes the transaction due to it knows the customer´s requirements 

about the whole reservation process. A WS Transaction has a hierarchical structure, i.e., 

is composed by partially independent activities (e.g. theatre tickets and restaurant 

reservation) where each activity may be a compound activity (e.g. the payment activity 

where the money transfer is a classic ACID transaction). Different standards can be 

used to manage the WS Transactions. 

The abstract model aims to model (or pattern) different WS Transaction standards 

discussed above. It is designed using the well-known Unified Modeling Language 

(UML) statecharts notations which reflect the event-driven (message communication) 

nature of WS Transactions.  

Definition of WS Transaction 

A WS Transaction, wT, is defined as a set S={s1,… ,sn} of activities (or subtransactions) 

which are executed in order to achieve an agreed outcome in a WS application. Each wT 

is associated with one Coordinator, k, while each subtransaction, si, is executed by an 

Executor, ei, as defined below. Transaction context is defined as the set of functional 

information and transaction configuration shared by the activities. Each si could be a 

single level subtransaction or it may have nested subtransactions, denoted  wTc. In the 

proposed model, nested transactions are related in a parent:child relationship. Figure 1 

shows such relationship wherein wTp, is a parent of s1, s2 and s3. s1 (or wTc) is in turn a 

parent of sc1 and sc2.  



 

Figure 1.  Abstract model relationships 

The outcome of wT is called atomic if all its subtransactions are either successfully 

completed or compensated. Alternatively, if subtransactions can differ (some completed 

and some not), then the outcome is called mixed. 

Subtransactions 

Subtransactions can have different types. A subtransaction, si, is lockable if the 

resources (or data) that it uses can be locked until the completion of the parent 

transaction (wTp or wTc). A subtransaction is compensatable if its effect can be 

semantically undone through a compensating transaction. If a subtransaction is neither 

lockable nor compensatable then it is said to be pivot. Any compensatable 

subtransaction si has a compensation denoted by ci that undoes, from a semantic point of 

view, the actions performed by si. A subtransaction is retriable if it can be re-executed 

without causing any data inconsistency. A subtransaction is replaceable if there is an 

alternative that can perform the same task.  

Roles 

The execution of a wT involves different participants, each of which plays a certain role. 

As shown in Figure 2, we identify four different roles of the participants involved in 

processing wT: 

- Executor: It represents a participant which is responsible for executing and 

terminating a subtransaction. 

- Coordinator: It coordinates wT and manages failures and compensations. It also 

collects the results from the participants in order to maintain consistency of data 

after the execution of wT. 

- Initiator: It represents a participant which starts wT. First it requests the coordinator 

for a transaction context. Then it asks others participants to participate in wT. 



- Terminator: It represents a participant which decides when and how wT has to be 

terminated. It also participates in the coordination tasks.  In some situations, it can 

play the role of a sub-coordinator. 

The purpose of defining the above roles is to automatically and uniformly model the 

roles of participants in different WS Transactions standards. Figure 2 represents the 

roles and relationships of the proposed model. Figures 4 and 5 further expand the roles 

of Executor and Coordinator and show their state transitions and message 

communication. 

 

Figure 2.  Roles and Relationships in the Abstract Transaction Model 

4. MODELING WS TRANSACTIONS STANDARDS 

This section shows how different WS Transaction standards can be modelled using the 

proposed model. As a proof of concept, we present the processes of modelling the BTP 

and WS-BA standards as these are the most widely accepted standards in WS 

Transactions. The modelling process is composed by the following activities: 

- Role identification and modelling: it identifies the roles of participants in a target 

WS Transaction standard and models it using the roles defined in the abstract 

transaction model. 

- State transitioning: it captures the important states of a target WS Transaction 

standard and maps them to the state transitions of the abstract transaction model. 

- Messages syntax: it maps the messages between the abstract transaction model and 

a specific WS Transaction standard. 



4.1 Modelling of Business Transaction Protocol 

BTP allows coordinating multiple autonomous, cooperating services to ensure that the 

overall application achieves a consistent result. This consistency can be defined a priori: 

all the work is confirmed or none; or it can be determined by user’s application 

intervention in the selection of the work to be confirmed. The protocol coordinates the 

state changes caused by the exchange of messages.  

4.1.1 Roles identification and modelling 

This activity models the roles of the BTP participants involved in executing wT and its 

subtransactions (as defined in section 3). BTP implements nested transaction model 

[11], wherein a parent transaction, wT, is composed of subtransactions, si. BTP defines 

Superior:Inferior relationship between the parent and subtransactions. Fig. 3 depicts the 

modelling of BTP using the abstract transaction model. Fig. 3 (a) represents the BTP 

coordination of wT and its subtransactions using the Superior:Inferior relationship, and 

(b) represents the coordination of the same wT using the abstract transaction model. In 

BTP the superior makes the decision and the inferior abides such decision in order to 

complete the transaction. In BTP the Superior:Inferior relationship can be recursively 

extended to define a transaction tree having intermediates nodes as superior and 

inferior. The superior (of BTP) is modelled as Initiator (in the abstract model). Also the 

superior can be modelled as Coordinator and Terminator as it decides on the outcome 

of the subtransactions. Inferior (in BTP) executes a subtransaction and is therefore 

modelled as Executor (in the abstract model). 

 

Figure 3.  BTP relationships modeling 

4.1.2 State transitioning 

Figures 4 and 5 show the states and transitions during the processing of wT. The 

abstract model uses these to model the BTP (as well as WS-BA) states and transitions. 

When a wT is started at the initiative of an initiator it causes the creation of a context for 

a new transaction. It moves from START state to FINISH state through creation. The 

coordinator replies the context and moves from INITIAL state to ACTIVE state. 

Executor receives a context, enrols with the Coordinator and moves from READY to 

ACTIVE state. The Executor moves to COMPLETED state after processing its 



subtransaction. Coordinator moves to PREPARE state awaiting decisions from 

Executors. The Executor sends its outcome to Coordinator and moves to DECISION 

state. The Coordinator collects the outcomes from all Executors and takes the final 

decision. It moves from PREPARE state to DECISION state. The final decision is sent 

to each Executor and the Coordinator then moves to CONFIRM state. Executor sends 

acknowledgement and changes its state to END state through the transition (either 

completed rollback or completed successfully) according to the decision. Once the 

Coordinator has received all confirmation, it moves to END state. Note that an Executor 

can leave the wT before confirming the subtransaction. So it can move from ACTIVE 

state to CANCEL state.  

Although BTP uses a 2PC protocol, Executors are not required to lock data on 

becoming prepared (i.e., in prepared state). This can produce a contradicted decision 

since the Coordinator could take a decision for all the Executors but some Executors 

may take their own decisions. When the Coordinator detects a contradiction it notifies 

the concerned Executor and moves to the END state. If the coordinator wants to cancel, 

the Executor uses completed_pivot. In some cases, it uses completed_rollback. Further, 

BTP allows replaceable subtransactions. Thus if an Executor is not able to start or carry 

on with its subtransaction, it moves to FAILED state. A new Executor is selected and 

the previous one moves to END state. 

 

Figure 4.  Abstract executor 



 

Figure 5.  Abstract coordinator 

4.1.3 Messages syntax 

Table II presents the transformation of messages from the abstract transitions to BTP 

specific message syntax. The table shows that the abstract model captures all the 

messages required to complete a transaction using BTP.  

Table II. BTP message mapping 

Abstract model BTP 

Creation Initiator sends BEGIN to coordinator. 

Created Coordinator sends BEGUN to initiator. 

Setup Initiator sends the context to the executors 

Execution 
Execuntor sends ENROL to coordinator. It responses with ENROLLED. 
If the exeuctor is a superior of a new wT, it response with 
CONTEXT_REPLY. 

Local commited 
Coordinator sends PREPARE to executor. Due a protocol optimization, 
this transiction could be omitted. 

Local completed Executor sends PREPARED to coordinator 

Local cancel Executur sends CANCEL to coordinator 

Completed 
successfully 

Coordinator sends CONFIRM to executor and it responses with 
CONFIRMED. 

Completed rollback 
Coordinator sends CANCEL to executor and it responses with 
CANCELLED. 

Preparing 
It receives CONFIRM_TRANSACTION from the terminator and sends 
PREPARE to all executors. 

General_decision Coordinator receives all executor messages 



Global veredict Coordinator sends the suitable message for each executor. 

Close The coordinator receives all the responses from executors and send 
TRANSACTION_CONFIRMED/ TRANSACTION_CANCELLED to 
initiator. 

Cancel Executor sends RESIGN to coordinator. 

Ended cancelled Coordinator sends RESIGNED to executor. 

Completed rollback 
Coordinator wants confirm but there is a contradiction. Coordinator 
sends CONTRADICTION to executor, and/or executor sends HAZARD 
to coordinator. 

Completed pivot 
Coordinator cancels but there is a contradiction. Coordinator sends 
CONTRADICTION to executor, and/or executor sends HAZARD to 
coordinator. 

Processing failure 
The executor is not working. Coordinator knows it receiving a FAIL 
message or throw a non response message. 

Ended replaceablity Coordinator sends REDIRECT with the address of the new executor. 

4.2 Modelling of Web Services Business Activity (WS-BA) 

WS-BA manages activities (transactions) that apply compensations to handle exceptions 

which occur during the execution of activities. WS-BA works with WS-COOR 

coordination protocol. WS-BA supports two coordination types, MixedOutcome, and 

AtomicOutcome, and two protocol types. MixedOutcome allows each activity to achieve 

a specific outcome while AtomicOutcome requires all the activities to finish in the same 

way. The protocols types differ according to the participant’s roles in processing 

subtransactions; Executor (BusinessAgreementWithParticipantCompletion, BAWPC) or 

Coordinator (BusinessAgreementWithCoordinatorCompletion, BAWCC).  

4.2.1 Roles identification 

Figure 6 depicts the modelling of WS-BA using the abstract transaction model. Figure 6 

(a) shows the AtomicOutcome protocol, whilst (b) shows MixedOutcome protocol. In 

both protocols the role of Initiator is taken by the first participant who interacts with a 

Coordinator. In AtomicOutcome the role of Terminator is taken by the Coordinator. This 

is due to the fact that coordinator is the participant that knows all Executors’s output 

and, therefore, it knows the final outcome: close or terminate if all executors have 

successfully executed their activities, or compensate otherwise. In MixedOutcome, the 

Initiator is the Terminator since each Executor may have its specific decision so the 

outcome depends on the business logic. 



 

Figure 6.  WS-BA relationships modeling 

4.2.2 State transitioning  

Similar to BTP the abstract transaction model uses the state transitions of Figures 4 and 

5 to model the WS-BA. The Initiator requests a context and moves from START to 

FINISH. The Coordinator responds with a context (from INITIAL to ACTIVE state). 

That context is sent to the Executors by the Initiator. The Executor joins the current wT 

and moves from READY to ACTIVE state. After making a decision an Executor moves 

from ACTIVE to COMPLETED state and the Coordinator moves from ACTIVE to 

PREPARE state. When the transaction is MixedOutcome, the decision for each 

subtransaction is taken alone. The Coordinator moves from PREPARE to DECISION 

state when it receives an Executor’s notification. The Coordinator decides about its 

outcome and moves from DECISION to CONFIRM. The Coordinator receives the 

confirmation and goes back to wait for the rest of Executor’s notifications (from 

CONFIRM to ACTIVE state). In the AtomicOutcome type, the Coordinator moves from 

PREPARE to DECISION state when it has a global outcome about the transaction. The 

Coordinator then sends the global decision and moves from DECISION to CONFRIM 

state. Finally it waits for the confirmations and moves to END state. When an Executor 

is not able to start executing its subtransaction it moves from READY to ABORTED 

state. If the subtransaction was cancelled while it was under execution, the Executor 

moves from ACTIVE to CANCELLED state. In case of failure it moves from ACTIVE 

to FAILED state. 

4.2.3 Messages syntax 

Table III presents the transformation from the abstract transitions to WS-BA specific 

message syntax. 

Table III. WS-BA message mapping 

Abstract model WS-BA 

Creation Initiator sends CREATECOORDINATIONCONTEXT to coordinator. 

Created 
Coordinator sends 
CREATECOORDINATIONCONTEXTRESPONSE to initiator. The 
initiator sends the context for the executors. 



Setup Initator sends the context to the participants 

Execution 
Each executor, after reciving the context, sends a REGISTER 
message to its chosen coordinator. The coordinator responses with a 
REGISTERRESPONSE message. 

Local commited 
If the coordination type is BAWCC, coordinator sends COMPLETE to 
executor. In the other coordination type this transition is omitted. 

Local completed Executor sends COMPLETED to the coordinator. 

Local cancel Exectur sends CANNOTCOMPLETE to the coordinator 

Completed sucesffully 
Coordinator sends CLOSE to executor and it responses with 
CLOSED. 

Compensatable Coordinator sends COMPENSATE to executor. 

Confirm compensation 
Executor executes the compensation. There is no WS-BA message 
for this transition. 

Completed 
compensated 

Participant sends COMPENSATED to coordinator. 

Preparing 
If the coordination type is BAWCC, coordinator sends COMPLETE to 
executor. In the other coordination type this transition is omitted. 

General decision 
It is an AtomicOutcome transaction and the coordinator has received 
either a FAIL message or all Completed messages..  

Global veredict 
It is an AtomicOutcome and the coordinator sends CLOSE / 
COMPENSATE message for all completed executors.  

Subdecision The coordinator receives a COMPLETED message. 

Partial veredict 
The coordinator sends CLOSE / COMPENSATE message to a 
specific executor. 

Subnotification The coordinator receives the confirmation of a subtransaction. 

Close 
The coordinator receives all the confirmation messages (CLOSED / 
COMPENSATED) from the executors. 

No execution Executor sends EXIT to coordinator. 

Ended abortively Coordinator sends EXITED to executor. 

Cancel Participant sends CANCEL to coordinator.  

Ended cancelled Coordinator sends CANCELLED to participant. 

Processing failure Participant sends FAIL to coordinator. 

Ended faultily Coordinator sends FAILED to executor. 

Compensating failure Executor sends FAIL to coordinator. 

Completed erroneously Coordinator sends FAILED message to executor. 

5. TEST DESIGN AND EXECUTION PROCESSES 

In general, testing aims at showing that the intended and actual behaviours of a system 

differ, or at gaining confidence that they do not. The main goal of testing is failure 

detection, i.e., the observable differences between the behaviours of implementation and 

what is expected on the basis of the specifications of WS Transaction standards. We 

exploit the model-based testing approach that encodes the intended behaviour of a 

system and the behaviour of its environment. Model-based testing is capable of 

generating suitable test cases and it has also been successfully used in others WS 



domains [20]. In order to evaluate our approach we have designed a test process which 

comprises test design, test implementation, test execution and outcome evaluation. 

These phases are described in the following subsections. A prototype system has been 

developed in order to automate these steps.  

5.1 Definitions 

The abstract model can be used to generate test cases for different WS Transactions. 

The first step is to define a test criterion. Since the model is based on states and 

transitions, we use the well known criterion of transition coverage [21]. By applying a 

test criterion over the proposed model, AbTM, we obtain a set of abstract test cases. 

Each abstract test case is mapped to a concrete test case which is composed by the test 

scenario and the expected system outcome. The basic concepts used in the test process 

are defined as follows. 

- Test criterion: A rule or a collection that imposes constraints (or requirements) on a 

set of test cases.  

- Transition coverage criterion: The set of test cases must include tests that cause 

every transition between states in a state-based model. 

- Abstract test case: A sequence of states and transitions of a participant using the 

abstract transaction model. The notation Si S’i is used to denote that the participant 

pi changes its current state S to S’ executing the transition labelled, t. If the 

participant is the Coordinator, it is denoted by Κ. We use S
a

i S
b

i – … – S
c
i S

d
i  to 

denote a sequence of states/transitions. 

- Test scenario: A sequence of actions in a human-understandable way to provide 

guidance to the tester to execute a test case. 

- System outcome: The internal state of the process defined by a sequence of 

exchanged messages between participants using a specific WS Transaction 

standard. The notation i[m1]j is used to denote that the participant pi sends message 

m1 to participant pj. We use i [m1]j – l[m2]o – … – v [mn]z  to denote a sequence of 

messages. 

5.2 Test design 

This phase defines the test requirements for an item and, then, derives the logical 

(abstract) test cases. At this level the test cases do not have concrete values for input and 

the expected results. The abstract test cases are automatically generated by applying 

transition coverage criterion over the abstract model. It is obtained from a set of 

different paths where each path defines an abstract test case. Thus the tests reached 

using this criterion are a set of paths that cover all states and transitions of a model. 



5.3 Test implementation 

The sequence of states and transitions specified by the abstract test cases generated in 

the test design phase are mapped to a specific WS Transaction standard as is shown in 

Section 4. As discussed above the proposed AbTM has the ability to capture the 

behaviour of a WS Transaction standard as well as mapping the abstract cases to a 

specific WS Transaction standard. These features provide the capability of 

automatically obtaining the test scenario and the expected system output. 

5.4 Test execution and outcome evaluation 

Once the test cases are implemented, they are executed over the system under test (i.e. 

an application that uses a specific WS Transaction standard) and the actual outcome is 

obtained. Finally, for each test case, the expected outcome is compared to the actual 

outcome to find differences in behaviour and to detect failures. Two outcomes are 

considered: (i) the user outcome refers to what the user perceives, for instance, to 

reserve theatre tickets whether the number of booked tickets is correct. (ii) the system 

outcome refers to the non-visible process that the system has carried out to achieve the 

requirements - in this case, the correct exchange of messages between the services 

according to the transaction standard.  

Both outcomes are necessary to detect differences from the correct behaviour of the web 

services application. Let us consider that the application for booking theatre tickets has 

a fault in creating messages and has an incorrect format of confirmation messages. In a 

test scenario where the user confirms a reservation, the system outcome would inform 

the user that a booking was successfully completed because the application sent the 

confirmation message to the service. Since the message was incorrectly created, the 

theatre service would reject the reservation and, as a result, the tickets would not be 

booked. Thus, the tester needs not only the user outcome, but also the internal state of 

the process to know whether a test case has detected a failure or not. In this work we 

focus on executors’ internal behaviours related to the transaction management of their 

activities. Thus we only need to evaluate the system outcome  

5.5 Prototype system 

We have developed a prototype system that implements the proposed AbTM and the 

different steps of the test processes (Figure 7). These steps are as follows:  

• Modelling: the tester models the transaction according to the roles specified by the 

AbTM (see Section 3).  

• Abstract test case generation: the abstract test cases for all the participants are 

automatically generated from the model.  

• Test case mapping: the specific standard is selected and the tool asks for the 

necessary information (e.g. the coordinator URL). The tool automatically generates 



the concrete test cases composed by the test scenario and the expected system 

outcome.  

• Test execution: the tester executes those test cases in the application producing the 

actual system outcome. 

• Outcomes comparison: the prototype system compares the actual system outcome 

to the expected system outcome in order to detect failures. 

 

Figure 7.  Test process using the AbTM 

6. EVALUATION OF THE PROPOSED APPROACH 

In order to evaluate the proposed AbTM-based testing approach, we utilise the Night 

Out case study of the Jboss WS-BA standard [8]. The specification of the application is 

described in subsection 6.1. The test design process for such application is described in 

subsection 6.2. Subsection 6.3 briefly describes the test implementation process and the 

result of their execution is discussed in subsection 6.4. Finally, subsection 6.5 explains 

in detail a test case as an example of test case and detected failure. 

6.1 Night Out specification 

The Night Out is an application based around booking independent services for night 

time leisure. It is composed of three services. Restaurant service allows customers to 

reserve a table for a specified number of dinner guests. Theatre service provides 

automatic reservation of seats in a theatre. There are three kinds of seats (circle, stalls, 

and balcony) and the service allows customer to book a specified number of tickets for 

each kind of seat. Taxi service provides the facility to reserve a taxi. 

Night Out is implemented in a client/server architecture. The client provides an 

interface to select the nature and quantity of the services reservations. The server 

components consist of three services (Restaurant, Theatre, Taxi) which are 



implemented as transactional web services. The client side of the application is 

implemented as a servlet which allows users to select the reservations and then book a 

night out by invoking each of the services within the scope of a WS Transaction. For 

example, if seats are not available in  the restaurant or the theatre, the taxi will not be 

necessary. Each service, exposed as Java API for XML Web Services (JAX-WS) [9] 

endpoint, has a GUI with state information and an event trace log. The application 

provides logs for step of its activity. As the transaction proceeds, each of the WS pops 

up a window of its own in which its state and activity log can be seen. Some events in 

the service code are also logged.  

The client obtains service endpoint proxies from JAX-WS and uses them to invoke 

the remote service methods. The client begins a transaction that may involve three 

services: reserve theatre tickets, a restaurant table and a taxi according to the selected 

parameters. Night Out notifies the final outcome of the transactional process, i.e., 

whether the reservations were confirmed or not.  

6.2 Test design 

The transactional process included in the Night Out application has been modelled 

according to the roles identified in the abstract transaction model as is shown in Figure 

8. Night Out (client side) takes the role of Initiator since it starts the transaction and asks 

the other web services to participate. Restaurant, Theatre and Taxi services are 

modelled as Executors since they execute a specific activity. The role of Terminator is 

taken by the Night Out application since some activities (e.g. Theatre) are independent 

of others services (e.g. Restaurant). Thus even if one service can not complete its action 

the others are allowed to commit. The Taxi activity is dependent. For instance, if a table 

is not available in the restaurant, the customer still needs a taxi to go to the theatre. The 

role of Coordinator is taken by an external service, WSCoor11, provided by the server. 

It follows the WS-COO [19] and WS-BA[3] standards to exchange suitable messages.  

 



Figure 8.  Night Out case study modeling 

6.3 Test implementation 

In this paper we focus on testing the role of Executor: Restaurant, Theatre and Taxi. 

According to testing approach explained in Section 5, eight abstract test cases are 

generated for each Executor. Those abstract test cases were automatically mapped to 

generate test cases, i.e., the test scenario and the expected system outcome for 

Restaurant, Theatre and Taxi services. As an example we summarize the eight test cases 

for Theatre service in Table IV. The_1 means test case 1 for a Theatre service. The_2 

means test case 2 and so on. 

Table IV. Test cases for the Theatre service 

ID Description 

The_1 To cancel the theatre booking once it has started but before it has confirmed 

the reservation 

The_2 To force the theatre to be not able to book because there is no available seats 

The_3 To undone a tickets booking by executing the compensation 

The_4 To confirm successfully a tickets booking when the transaction has to 

commit 

The_5 To confirm successfully a tickets booking when the transaction has to be 

compensated 

The_6 To abort a tickets booking before it has started 

The_7 To force a failure during the theatre compensating booking process 

The_8 To force a failure during the theatre booking process. To retry the request. 

6.4 Test execution and outcome evaluation 

The generated test cases have been executed over the case study and Table V 

summarizes the results. ‘Pass’ means that a test case did not detect any failure. ‘Fails’ 

means that the actual outcome differs from the expected outcome (i.e. a failure has been 

detected). ‘Blocked’ means that a test case cannot be executed. In this section we use a 

number to identify each test case according to the Table IV. For each number there are 

actually three test cases, one for each executor (e.g. Rest_3, The_3, Tax_3).  

Two of the designed test cases were blocked due to the following reasons; test case 1 

requires cancelling the activity (Cancel message) once the Executor has started and 

has not finished yet, but the application does not allow cancelling a booking. Test case 8 

requires the Executor to retry its activity once it has notified that it was not able to 

complete the activity before (CanNotComplete message), and the application neither 



allows resending the data nor registering again the Executor without starting a new 

transaction. 

Table V. Test execution results 

Executor Test cases 
generated 

Pass Fails Blocked 

Restaurant 8  3 3 2 

Theatre 8 3 3 2 

Taxi 8 3 3 2 

The test case 5 detected an important transaction-related failure in the compensation 

process. This test case and the detected failure are further explained in subsection 6.5. 

During the execution of test cases 3 and 4 interface-related failures were detected: the 

application, which shall allow changing manually the capacity of each resource (i.e. 

number of tables and number of seats in the theatre), either crashes or does not update 

the capacity when the button is pressed.  

6.5 A test case in detail 

As an example of test case and detected failure we consider the test case generated 

using the following abstract test which was obtained applying the transition coverage 

criterion over the executor abstract model: 

.  

The abstract test case was mapped (see section 4) to a specific sequence of WS-BA 

message as depicted in Figure 9. From this sequence of messages, our prototype system 

automatically generates the test scenario shown in Figure 10. Note that the transaction 

creation and participant register processes are defined by the Initiator as was shows in 

Figure 2 (creation and setup transitions).  
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Figure 9.  Sequence diagraam of a test scenario for Theatre service 

STEP 1: NighOut starts the process. It sends a context request 

(CreateCoordinationContext message) to the coordinator WScorr11 

STEP 2: WScorr11 sends the transaction context 

(CreationCoordinationContextResponse message) to NighOut 

STEP 3: Theatre receives a transaction context from the initiator NighOut 

STEP 4: Theatre accepts to participate in the process. It requests to be registered in 

the transaction, thus it sends Register message to WScorr11 

STEP 5: WScorr11 receives Register message from Theatre and registers Theatre 

in the transaction. It sends RegisterResponse message to Theatre 

STEP 6: NighOut sends the application data to Theatre 

STEP 7: Theatre completes successfully its activity. Theatre sends Completed 

message to notifies its outcome to the coordinator WScorr11 

STEP 8: Theatre has successfully completed its activity. Theatre notifies the results 

and leaves the transaction. Theatre sends Close message to notifies to the 

coordinator WScorr11 and it responses with a Closed message 

Figure 10.  Test scenario for test case The_5 

As described in Table IV, the goal of the test case The_5 is to successfully confirm 

the theatre tickets booking when the other services reservations have been undone 

through compensating transactions.  

After the execution of the test case, we obtain the expected system outcome. By 

comparing the expected system outcome and the actual system outcome, a failure is 

detected by the prototype system (Figure 11). The expected system outcome requires 

receiving a CLOSE message once the Theatre service has successfully completed its 

activity. However, the actual outcome has a COMPENSATED message since 

Restaurant service was not able to commit. As a result, the Theatre reservations were 

automatically undone. The fault which causes such failure is also found by the 

prototype system since there is a difference in the register message: the Nigh Out 

application registers the Theatre service as an atomic outcome when a mixed outcome 

was expected. In other words, if Taxi or Restaurant services are not able to make their 

reservations, the Theatre service will automatically undo the reservation even if the 

customer would wish to keep the tickets. 



<soap:Envelope 
xmlns:soap="http://schemas.xmls
oap.org/soap/envelope/">  
<soap:Header> 
<Action 
xmlns="http://www.w3.org/2005/0
8/addressing">  
http://docs.oasis-open.org/ws-
tx/wsba/2006/06/Close 
</Action> 

<soap:Envelope 
xmlns:soap="http://schemas.xmlsoa
p.org/soap/envelope/">  
<soap:Header> 
<Action 
xmlns="http://www.w3.org/2005/08/
addressing">  
 http://docs.oasis-
open.org/ws-
tx/wsba/2006/06/Compensate 
</Action>> 

(a) Expected outcome (b) Actual  outcome 

Figure 11.  Outcomes comparation 

7. RELATED WORKS 

Current work on WS transactions mainly deals with transaction modelling from a 

design perspective. A theoretical approach is proposed in [22] in order to specify, 

analyze and synthesize advanced transaction models. Transactional patterns that 

combine workflow process adequacy and the transactional processing reliability are 

identified in [23]. In [24] the authors present a high level UML-based language to 

design transaction process with diverse transactional semantics. An XML representation 

is proposed in [25]. Unlike these approaches, we propose a generic model to model the 

existing approaches to manage WS Transactions. 

Though there exists literature on verification and validation of web services, testing 

of WS transactions has not been addressed so far. In our previous work [26], a risk-

based approach is used to define general test scenarios for compensatable transactions. 

Further in [27] we present test criteria for transactional web services composition. The 

approach is based on the dependencies which are defined between participants of a 

transaction. Other work focused on verifying long-lived transactions from a theoretical 

point of view. In [28], authors have developed a model of communicating hierarchical 

timed automata in order to describe long-running transactions. This approach allows the 

verification of properties by model checking. The work presented in [29] translates 

programs with compensations to tree automata in order to verify compensating 

transactions. In addition [30] proposes a formal model to verify the requirement of 

relaxed atomicity with temporal constraints whilst [31] uses event calculus to validate 

the transactional behaviour of WS compositions. In summary, current research work 

does not address the issue of testing the reliability and failures of different WS 

Transactions. 

8. CONCLUSIONS 

This paper investigated into the issue of testing the WS Transactions. In it we developed 

and evaluated the Abstract Transaction Model which is capable of dynamically 

modelling different WS Transaction standards such as BTP and WA-BA. The model 

exploits model-based testing technique in order to automatically generate test cases for 



testing the failures and reliability of WS Transaction standards. The proposed model is 

implemented as a prototype system with which various test cases were automatically 

generated and mapped to WS Transaction standards. The evaluation was performed 

using the case study of Nigh Out, which is an open source WS-BA-based application 

provided by Jboss. The experiments show that our approach can be used to define 

different test cases as well as test the reliability and failures of different WS 

Transactions Standards.  
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