
Evaluating the effectiveness of the abstract transaction model

in testing web services transactions

Rubén Casado
1, ∗, †, Javier Tuya

1
 and Muhammad Younas

2

1
Department of Computing, University of Oviedo, Asturias, Spain
2
Department of Computing and Communication Technologies, Oxford Brookes University, Oxford, UK

∗ Correspondence to: Rubén Casado, Campus Universitario de Gijón, edificio polivalente, 2.7.12, 33204

Gijón, Spain

†
E-mail: rcasado@uniovi.es

SUMMARY

Web services transactions are used to build efficient and reliable web applications

which are distributed across the Internet and are accessed by multiple simultaneous

users. Current research develops various models and protocols in order to improve the

performance and reliability of web services transactions. However, there is little

research on testing the different models and protocols of web services transactions. This

paper presents an abstract transaction model that patterns different web services

transactions standards. This model is capable of deriving concrete models in order to

automatically generate test cases for different web services transactions standards. The

proposed model is implemented as a prototype system and is evaluated using a case of

the Jboss Transaction. The evaluation shows that the proposed system has the capability

to automatically generate test cases and detect possible failures of transactions running

under different web services transactions standards.

KEY WORDS: transactions; web services; testing, failure detection, reliability;

1. INTRODUCTION

Web services (WS) are software applications which provide uniform interfaces for

interaction and communication with other web applications in a dynamic manner. They

also provide compositional facilities such that different web services can be composed

to enact an integrated service that provides enhanced functionalities. Web services

transactions (or WS Transactions) are defined as sequences of operations that are

executed under certain constraints in order to maintain application correctness and data

consistency. The fundamental principle of WS Transactions is to provide web services

applications with reliability and efficiency. In order to ensure reliable execution of web

services it is crucial that their activities are modelled as transactions such that they

achieve an mutually agreed outcome [1].

Numerous models and protocols have been developed for WS Transactions. These

include standard models and protocols such as Business Transaction Protocol (BTP) [2],

Web Services Business Activity (WS-BA) [3] and Web Services Transaction

This is the submitted version of the article Evaluating the effectiveness of the abstract transaction model in testing
web services transactions, Casado R., Tuya, J., Younas, M., Concurrency and Computation: Practice and
Experience, Copyright © 2015. DOI: 10.1002/cpe.2851. Volume 27, Issue 4, 25 March 2015. Pages 765-781

Management (WS-TXM) [4]. However they fall short of testing WS Transactions, for

instance, in terms of reliability and failures [5]. The process of testing WS Transactions

is not trivial due to several reasons. First, WS Transactions are more complex compared

to classical transactions as they involve cooperation among multiple parties, span

autonomous and independent partners, and may have long duration. Thus WS

Transactions have more intricate sequence of operations and execution environment.

Second, WS Transactions do not have a homogeneous transaction model such as the

ACID (Atomicity, Consistency, Isolation and Durability) model. Instead they are

characterized by a diversity of transaction models such as BTP, WS-BA and WS-TXM.

Such diversity of models also complicates the process of testing WS Transactions.

Third, various kinds of failures may happen during the processing of WS Transactions,

including: (i) technical failures such as communication, system and software failures

can occur. Such failures result in loss of messages, processing of services, etc (ii)

service level failures such as service acquisition failures wherein services cannot be

acquired due to unavailability of the desired services, payment problems, or service

cancellation.

In [6, 7] we proposed the Abstract Transaction Model (AbTM) for testing the WS

Transactions. AbTM serves as a template for modelling different WS Transactions

standards. AbTM identifies the different roles involved in a WS Transaction, the

relationship between them and also models the behaviour of each one during the

transaction life cycle. In this paper we extend the AbTM in order to automatically

generate test cases for WS Transactions. We also evaluate the AbTM through the

development of a prototype system using a case study of the Jboss Transaction [8]. The

novel features and contributions of the work presented in this paper are as follows:

(i) To automatically generate the abstract test cases and map them to different WS

Transactions standard (such as BTP, WS-BA, etc).

(ii) To automatically compare the expected and actual outcomes in order to identify

failures in WS Transactions running under different WS Transactions standards.

(iii) To perform testing and evaluation using the standard case study of Night Out,

which is provided by Jboss [8] in their implementation of the WS-BA standard.

The rest of the paper is organized as follows. Section 2 gives an analysis of WS

Transaction models and standards. Section 3 presents the Abstract Transaction Model.

Section 4 illustrates the process of modelling WS Transaction standards. Section 5

presents the AbTM-based approach for testing WS Transactions. The evaluation of our

approach is discussed in Section 6. Section 7 reviews existing work on WS

Transactions. Conclusions are presented in Section 8.

2. WS TRANSACTION STANDARDS

WS Transactions are based on various models ranging from classical ACID models to

advanced or extended transaction models. Two Phase Commit (2PC) protocol and its

variants [10] have commonly been used for maintaining ACID properties. ACID

properties are vital for WS Transactions that need strict data consistency. However, they

are not suitable for long running applications due to resource locking/blocking

problems. Advanced transaction models have been developed to address 2PC and ACID

related issues. These includes, nested transaction model [11], SAGA model [12], open-

nested [13], Split-join [14], Contracts [15], Flex [16], and WebTram [17]. The

underlying strategy of these models is to allow compensation of partially completed

transactions in order to maintain data consistency and reliability.

Based on the above transaction models several standard specifications have been

developed for WS Transactions. For instance, BTP [2] adapts 2PC for short lived

transactions and nested transaction model for long-lived transactions. WS-CAF [4] is a

set of WS specifications for applications composed of multiple WS used in

combination. WS-CAF uses WT-TXM to manage the transactions. WT-TXM defines

three models, ACID Transaction (TXACID), Long Running Transaction (TXLRA) and

Business Transaction Process (TXBP) that address different scenarios. Web Services

Atomic Transactions (WS-AT) [18] and WS-BA [3] are built on top of Web Services

Coordination (WS-COOR) [19] and they follow its coordination mechanism. WS-AT

follows 2PC protocol while WS-BA uses the SAGA model.

The above standards are summarized and analysed in Table I. ‘Coordination’

represents whether a particular standard provides coordination facilities. ‘Short’ and

‘Long’ represent that the underlying model is respectively based on ACID properties

and advanced transaction models. ‘Related’ represents the remaining standards which

belong to a same family.

Table I. WS Transaction standards

Standards Coordination Short Long Related

BTP � 2PC Nested �

WS-CAF � � � WS-TXM

WS-TXM � � � TXACD, TXLRA, TXBP

TXACID � 2PC � WS-TXM

TXLRA � � SAGA WS-TXM

TXBP � � Open WS-TXM

WS-COOR � � � WS-AT, WS-BA

WS-AT � 2PC � WS-COOR

WS-BA � � SAGA WS-COOR

It is observed that all standards separate the coordination and the management of the

subtransactions and also distinguish short-lived transactions from long-lived

transactions. It is also observed that these standards have proprietary definitions of their

underlying transaction models despite the fact they are based on similar concepts. This

makes it difficult to use them in a uniform way. Our analysis shows that WS

Transactions standards are not homogenous and have different processing and testing

requirements. Thus it is not practical (nor easier) to test just a single WS Transaction

model and evaluate its reliability. In the next section we present the proposed model that

automatically represents and tests different WS transactions standards.

3. THE ABSTRACT TRANSACTION MODEL

A WS Transaction is a service composition where the participants collaborate to create

a new and more functional unit of work. Some activities are always presented in the

transaction management, such as creation or termination. For example, in an application

that allow booking different services for a night out (e.g., theatre tickets, restaurant and

taxi), the client side of the application starts the transaction since it has the customer

information. Also it finishes the transaction due to it knows the customer´s requirements

about the whole reservation process. A WS Transaction has a hierarchical structure, i.e.,

is composed by partially independent activities (e.g. theatre tickets and restaurant

reservation) where each activity may be a compound activity (e.g. the payment activity

where the money transfer is a classic ACID transaction). Different standards can be

used to manage the WS Transactions.

The abstract model aims to model (or pattern) different WS Transaction standards

discussed above. It is designed using the well-known Unified Modeling Language

(UML) statecharts notations which reflect the event-driven (message communication)

nature of WS Transactions.

Definition of WS Transaction

A WS Transaction, wT, is defined as a set S={s1,… ,sn} of activities (or subtransactions)

which are executed in order to achieve an agreed outcome in a WS application. Each wT

is associated with one Coordinator, k, while each subtransaction, si, is executed by an

Executor, ei, as defined below. Transaction context is defined as the set of functional

information and transaction configuration shared by the activities. Each si could be a

single level subtransaction or it may have nested subtransactions, denoted wTc. In the

proposed model, nested transactions are related in a parent:child relationship. Figure 1

shows such relationship wherein wTp, is a parent of s1, s2 and s3. s1 (or wTc) is in turn a

parent of sc1 and sc2.

Figure 1. Abstract model relationships

The outcome of wT is called atomic if all its subtransactions are either successfully

completed or compensated. Alternatively, if subtransactions can differ (some completed

and some not), then the outcome is called mixed.

Subtransactions

Subtransactions can have different types. A subtransaction, si, is lockable if the

resources (or data) that it uses can be locked until the completion of the parent

transaction (wTp or wTc). A subtransaction is compensatable if its effect can be

semantically undone through a compensating transaction. If a subtransaction is neither

lockable nor compensatable then it is said to be pivot. Any compensatable

subtransaction si has a compensation denoted by ci that undoes, from a semantic point of

view, the actions performed by si. A subtransaction is retriable if it can be re-executed

without causing any data inconsistency. A subtransaction is replaceable if there is an

alternative that can perform the same task.

Roles

The execution of a wT involves different participants, each of which plays a certain role.

As shown in Figure 2, we identify four different roles of the participants involved in

processing wT:

- Executor: It represents a participant which is responsible for executing and

terminating a subtransaction.

- Coordinator: It coordinates wT and manages failures and compensations. It also

collects the results from the participants in order to maintain consistency of data

after the execution of wT.

- Initiator: It represents a participant which starts wT. First it requests the coordinator

for a transaction context. Then it asks others participants to participate in wT.

- Terminator: It represents a participant which decides when and how wT has to be

terminated. It also participates in the coordination tasks. In some situations, it can

play the role of a sub-coordinator.

The purpose of defining the above roles is to automatically and uniformly model the

roles of participants in different WS Transactions standards. Figure 2 represents the

roles and relationships of the proposed model. Figures 4 and 5 further expand the roles

of Executor and Coordinator and show their state transitions and message

communication.

Figure 2. Roles and Relationships in the Abstract Transaction Model

4. MODELING WS TRANSACTIONS STANDARDS

This section shows how different WS Transaction standards can be modelled using the

proposed model. As a proof of concept, we present the processes of modelling the BTP

and WS-BA standards as these are the most widely accepted standards in WS

Transactions. The modelling process is composed by the following activities:

- Role identification and modelling: it identifies the roles of participants in a target

WS Transaction standard and models it using the roles defined in the abstract

transaction model.

- State transitioning: it captures the important states of a target WS Transaction

standard and maps them to the state transitions of the abstract transaction model.

- Messages syntax: it maps the messages between the abstract transaction model and

a specific WS Transaction standard.

4.1 Modelling of Business Transaction Protocol

BTP allows coordinating multiple autonomous, cooperating services to ensure that the

overall application achieves a consistent result. This consistency can be defined a priori:

all the work is confirmed or none; or it can be determined by user’s application

intervention in the selection of the work to be confirmed. The protocol coordinates the

state changes caused by the exchange of messages.

4.1.1 Roles identification and modelling

This activity models the roles of the BTP participants involved in executing wT and its

subtransactions (as defined in section 3). BTP implements nested transaction model

[11], wherein a parent transaction, wT, is composed of subtransactions, si. BTP defines

Superior:Inferior relationship between the parent and subtransactions. Fig. 3 depicts the

modelling of BTP using the abstract transaction model. Fig. 3 (a) represents the BTP

coordination of wT and its subtransactions using the Superior:Inferior relationship, and

(b) represents the coordination of the same wT using the abstract transaction model. In

BTP the superior makes the decision and the inferior abides such decision in order to

complete the transaction. In BTP the Superior:Inferior relationship can be recursively

extended to define a transaction tree having intermediates nodes as superior and

inferior. The superior (of BTP) is modelled as Initiator (in the abstract model). Also the

superior can be modelled as Coordinator and Terminator as it decides on the outcome

of the subtransactions. Inferior (in BTP) executes a subtransaction and is therefore

modelled as Executor (in the abstract model).

Figure 3. BTP relationships modeling

4.1.2 State transitioning

Figures 4 and 5 show the states and transitions during the processing of wT. The

abstract model uses these to model the BTP (as well as WS-BA) states and transitions.

When a wT is started at the initiative of an initiator it causes the creation of a context for

a new transaction. It moves from START state to FINISH state through creation. The

coordinator replies the context and moves from INITIAL state to ACTIVE state.

Executor receives a context, enrols with the Coordinator and moves from READY to

ACTIVE state. The Executor moves to COMPLETED state after processing its

subtransaction. Coordinator moves to PREPARE state awaiting decisions from

Executors. The Executor sends its outcome to Coordinator and moves to DECISION

state. The Coordinator collects the outcomes from all Executors and takes the final

decision. It moves from PREPARE state to DECISION state. The final decision is sent

to each Executor and the Coordinator then moves to CONFIRM state. Executor sends

acknowledgement and changes its state to END state through the transition (either

completed rollback or completed successfully) according to the decision. Once the

Coordinator has received all confirmation, it moves to END state. Note that an Executor

can leave the wT before confirming the subtransaction. So it can move from ACTIVE

state to CANCEL state.

Although BTP uses a 2PC protocol, Executors are not required to lock data on

becoming prepared (i.e., in prepared state). This can produce a contradicted decision

since the Coordinator could take a decision for all the Executors but some Executors

may take their own decisions. When the Coordinator detects a contradiction it notifies

the concerned Executor and moves to the END state. If the coordinator wants to cancel,

the Executor uses completed_pivot. In some cases, it uses completed_rollback. Further,

BTP allows replaceable subtransactions. Thus if an Executor is not able to start or carry

on with its subtransaction, it moves to FAILED state. A new Executor is selected and

the previous one moves to END state.

Figure 4. Abstract executor

Figure 5. Abstract coordinator

4.1.3 Messages syntax

Table II presents the transformation of messages from the abstract transitions to BTP

specific message syntax. The table shows that the abstract model captures all the

messages required to complete a transaction using BTP.

Table II. BTP message mapping

Abstract model BTP

Creation Initiator sends BEGIN to coordinator.

Created Coordinator sends BEGUN to initiator.

Setup Initiator sends the context to the executors

Execution
Execuntor sends ENROL to coordinator. It responses with ENROLLED.
If the exeuctor is a superior of a new wT, it response with
CONTEXT_REPLY.

Local commited
Coordinator sends PREPARE to executor. Due a protocol optimization,
this transiction could be omitted.

Local completed Executor sends PREPARED to coordinator

Local cancel Executur sends CANCEL to coordinator

Completed
successfully

Coordinator sends CONFIRM to executor and it responses with
CONFIRMED.

Completed rollback
Coordinator sends CANCEL to executor and it responses with
CANCELLED.

Preparing
It receives CONFIRM_TRANSACTION from the terminator and sends
PREPARE to all executors.

General_decision Coordinator receives all executor messages

Global veredict Coordinator sends the suitable message for each executor.

Close The coordinator receives all the responses from executors and send
TRANSACTION_CONFIRMED/ TRANSACTION_CANCELLED to
initiator.

Cancel Executor sends RESIGN to coordinator.

Ended cancelled Coordinator sends RESIGNED to executor.

Completed rollback
Coordinator wants confirm but there is a contradiction. Coordinator
sends CONTRADICTION to executor, and/or executor sends HAZARD
to coordinator.

Completed pivot
Coordinator cancels but there is a contradiction. Coordinator sends
CONTRADICTION to executor, and/or executor sends HAZARD to
coordinator.

Processing failure
The executor is not working. Coordinator knows it receiving a FAIL
message or throw a non response message.

Ended replaceablity Coordinator sends REDIRECT with the address of the new executor.

4.2 Modelling of Web Services Business Activity (WS-BA)

WS-BA manages activities (transactions) that apply compensations to handle exceptions

which occur during the execution of activities. WS-BA works with WS-COOR

coordination protocol. WS-BA supports two coordination types, MixedOutcome, and

AtomicOutcome, and two protocol types. MixedOutcome allows each activity to achieve

a specific outcome while AtomicOutcome requires all the activities to finish in the same

way. The protocols types differ according to the participant’s roles in processing

subtransactions; Executor (BusinessAgreementWithParticipantCompletion, BAWPC) or

Coordinator (BusinessAgreementWithCoordinatorCompletion, BAWCC).

4.2.1 Roles identification

Figure 6 depicts the modelling of WS-BA using the abstract transaction model. Figure 6

(a) shows the AtomicOutcome protocol, whilst (b) shows MixedOutcome protocol. In

both protocols the role of Initiator is taken by the first participant who interacts with a

Coordinator. In AtomicOutcome the role of Terminator is taken by the Coordinator. This

is due to the fact that coordinator is the participant that knows all Executors’s output

and, therefore, it knows the final outcome: close or terminate if all executors have

successfully executed their activities, or compensate otherwise. In MixedOutcome, the

Initiator is the Terminator since each Executor may have its specific decision so the

outcome depends on the business logic.

Figure 6. WS-BA relationships modeling

4.2.2 State transitioning

Similar to BTP the abstract transaction model uses the state transitions of Figures 4 and

5 to model the WS-BA. The Initiator requests a context and moves from START to

FINISH. The Coordinator responds with a context (from INITIAL to ACTIVE state).

That context is sent to the Executors by the Initiator. The Executor joins the current wT

and moves from READY to ACTIVE state. After making a decision an Executor moves

from ACTIVE to COMPLETED state and the Coordinator moves from ACTIVE to

PREPARE state. When the transaction is MixedOutcome, the decision for each

subtransaction is taken alone. The Coordinator moves from PREPARE to DECISION

state when it receives an Executor’s notification. The Coordinator decides about its

outcome and moves from DECISION to CONFIRM. The Coordinator receives the

confirmation and goes back to wait for the rest of Executor’s notifications (from

CONFIRM to ACTIVE state). In the AtomicOutcome type, the Coordinator moves from

PREPARE to DECISION state when it has a global outcome about the transaction. The

Coordinator then sends the global decision and moves from DECISION to CONFRIM

state. Finally it waits for the confirmations and moves to END state. When an Executor

is not able to start executing its subtransaction it moves from READY to ABORTED

state. If the subtransaction was cancelled while it was under execution, the Executor

moves from ACTIVE to CANCELLED state. In case of failure it moves from ACTIVE

to FAILED state.

4.2.3 Messages syntax

Table III presents the transformation from the abstract transitions to WS-BA specific

message syntax.

Table III. WS-BA message mapping

Abstract model WS-BA

Creation Initiator sends CREATECOORDINATIONCONTEXT to coordinator.

Created
Coordinator sends
CREATECOORDINATIONCONTEXTRESPONSE to initiator. The
initiator sends the context for the executors.

Setup Initator sends the context to the participants

Execution
Each executor, after reciving the context, sends a REGISTER
message to its chosen coordinator. The coordinator responses with a
REGISTERRESPONSE message.

Local commited
If the coordination type is BAWCC, coordinator sends COMPLETE to
executor. In the other coordination type this transition is omitted.

Local completed Executor sends COMPLETED to the coordinator.

Local cancel Exectur sends CANNOTCOMPLETE to the coordinator

Completed sucesffully
Coordinator sends CLOSE to executor and it responses with
CLOSED.

Compensatable Coordinator sends COMPENSATE to executor.

Confirm compensation
Executor executes the compensation. There is no WS-BA message
for this transition.

Completed
compensated

Participant sends COMPENSATED to coordinator.

Preparing
If the coordination type is BAWCC, coordinator sends COMPLETE to
executor. In the other coordination type this transition is omitted.

General decision
It is an AtomicOutcome transaction and the coordinator has received
either a FAIL message or all Completed messages..

Global veredict
It is an AtomicOutcome and the coordinator sends CLOSE /
COMPENSATE message for all completed executors.

Subdecision The coordinator receives a COMPLETED message.

Partial veredict
The coordinator sends CLOSE / COMPENSATE message to a
specific executor.

Subnotification The coordinator receives the confirmation of a subtransaction.

Close
The coordinator receives all the confirmation messages (CLOSED /
COMPENSATED) from the executors.

No execution Executor sends EXIT to coordinator.

Ended abortively Coordinator sends EXITED to executor.

Cancel Participant sends CANCEL to coordinator.

Ended cancelled Coordinator sends CANCELLED to participant.

Processing failure Participant sends FAIL to coordinator.

Ended faultily Coordinator sends FAILED to executor.

Compensating failure Executor sends FAIL to coordinator.

Completed erroneously Coordinator sends FAILED message to executor.

5. TEST DESIGN AND EXECUTION PROCESSES

In general, testing aims at showing that the intended and actual behaviours of a system

differ, or at gaining confidence that they do not. The main goal of testing is failure

detection, i.e., the observable differences between the behaviours of implementation and

what is expected on the basis of the specifications of WS Transaction standards. We

exploit the model-based testing approach that encodes the intended behaviour of a

system and the behaviour of its environment. Model-based testing is capable of

generating suitable test cases and it has also been successfully used in others WS

domains [20]. In order to evaluate our approach we have designed a test process which

comprises test design, test implementation, test execution and outcome evaluation.

These phases are described in the following subsections. A prototype system has been

developed in order to automate these steps.

5.1 Definitions

The abstract model can be used to generate test cases for different WS Transactions.

The first step is to define a test criterion. Since the model is based on states and

transitions, we use the well known criterion of transition coverage [21]. By applying a

test criterion over the proposed model, AbTM, we obtain a set of abstract test cases.

Each abstract test case is mapped to a concrete test case which is composed by the test

scenario and the expected system outcome. The basic concepts used in the test process

are defined as follows.

- Test criterion: A rule or a collection that imposes constraints (or requirements) on a

set of test cases.

- Transition coverage criterion: The set of test cases must include tests that cause

every transition between states in a state-based model.

- Abstract test case: A sequence of states and transitions of a participant using the

abstract transaction model. The notation Si S’i is used to denote that the participant

pi changes its current state S to S’ executing the transition labelled, t. If the

participant is the Coordinator, it is denoted by Κ. We use S
a

i S
b

i – … – S
c
i S

d
i to

denote a sequence of states/transitions.

- Test scenario: A sequence of actions in a human-understandable way to provide

guidance to the tester to execute a test case.

- System outcome: The internal state of the process defined by a sequence of

exchanged messages between participants using a specific WS Transaction

standard. The notation i[m1]j is used to denote that the participant pi sends message

m1 to participant pj. We use i [m1]j – l[m2]o – … – v [mn]z to denote a sequence of

messages.

5.2 Test design

This phase defines the test requirements for an item and, then, derives the logical

(abstract) test cases. At this level the test cases do not have concrete values for input and

the expected results. The abstract test cases are automatically generated by applying

transition coverage criterion over the abstract model. It is obtained from a set of

different paths where each path defines an abstract test case. Thus the tests reached

using this criterion are a set of paths that cover all states and transitions of a model.

5.3 Test implementation

The sequence of states and transitions specified by the abstract test cases generated in

the test design phase are mapped to a specific WS Transaction standard as is shown in

Section 4. As discussed above the proposed AbTM has the ability to capture the

behaviour of a WS Transaction standard as well as mapping the abstract cases to a

specific WS Transaction standard. These features provide the capability of

automatically obtaining the test scenario and the expected system output.

5.4 Test execution and outcome evaluation

Once the test cases are implemented, they are executed over the system under test (i.e.

an application that uses a specific WS Transaction standard) and the actual outcome is

obtained. Finally, for each test case, the expected outcome is compared to the actual

outcome to find differences in behaviour and to detect failures. Two outcomes are

considered: (i) the user outcome refers to what the user perceives, for instance, to

reserve theatre tickets whether the number of booked tickets is correct. (ii) the system

outcome refers to the non-visible process that the system has carried out to achieve the

requirements - in this case, the correct exchange of messages between the services

according to the transaction standard.

Both outcomes are necessary to detect differences from the correct behaviour of the web

services application. Let us consider that the application for booking theatre tickets has

a fault in creating messages and has an incorrect format of confirmation messages. In a

test scenario where the user confirms a reservation, the system outcome would inform

the user that a booking was successfully completed because the application sent the

confirmation message to the service. Since the message was incorrectly created, the

theatre service would reject the reservation and, as a result, the tickets would not be

booked. Thus, the tester needs not only the user outcome, but also the internal state of

the process to know whether a test case has detected a failure or not. In this work we

focus on executors’ internal behaviours related to the transaction management of their

activities. Thus we only need to evaluate the system outcome

5.5 Prototype system

We have developed a prototype system that implements the proposed AbTM and the

different steps of the test processes (Figure 7). These steps are as follows:

• Modelling: the tester models the transaction according to the roles specified by the

AbTM (see Section 3).

• Abstract test case generation: the abstract test cases for all the participants are

automatically generated from the model.

• Test case mapping: the specific standard is selected and the tool asks for the

necessary information (e.g. the coordinator URL). The tool automatically generates

the concrete test cases composed by the test scenario and the expected system

outcome.

• Test execution: the tester executes those test cases in the application producing the

actual system outcome.

• Outcomes comparison: the prototype system compares the actual system outcome

to the expected system outcome in order to detect failures.

Figure 7. Test process using the AbTM

6. EVALUATION OF THE PROPOSED APPROACH

In order to evaluate the proposed AbTM-based testing approach, we utilise the Night

Out case study of the Jboss WS-BA standard [8]. The specification of the application is

described in subsection 6.1. The test design process for such application is described in

subsection 6.2. Subsection 6.3 briefly describes the test implementation process and the

result of their execution is discussed in subsection 6.4. Finally, subsection 6.5 explains

in detail a test case as an example of test case and detected failure.

6.1 Night Out specification

The Night Out is an application based around booking independent services for night

time leisure. It is composed of three services. Restaurant service allows customers to

reserve a table for a specified number of dinner guests. Theatre service provides

automatic reservation of seats in a theatre. There are three kinds of seats (circle, stalls,

and balcony) and the service allows customer to book a specified number of tickets for

each kind of seat. Taxi service provides the facility to reserve a taxi.

Night Out is implemented in a client/server architecture. The client provides an

interface to select the nature and quantity of the services reservations. The server

components consist of three services (Restaurant, Theatre, Taxi) which are

implemented as transactional web services. The client side of the application is

implemented as a servlet which allows users to select the reservations and then book a

night out by invoking each of the services within the scope of a WS Transaction. For

example, if seats are not available in the restaurant or the theatre, the taxi will not be

necessary. Each service, exposed as Java API for XML Web Services (JAX-WS) [9]

endpoint, has a GUI with state information and an event trace log. The application

provides logs for step of its activity. As the transaction proceeds, each of the WS pops

up a window of its own in which its state and activity log can be seen. Some events in

the service code are also logged.

The client obtains service endpoint proxies from JAX-WS and uses them to invoke

the remote service methods. The client begins a transaction that may involve three

services: reserve theatre tickets, a restaurant table and a taxi according to the selected

parameters. Night Out notifies the final outcome of the transactional process, i.e.,

whether the reservations were confirmed or not.

6.2 Test design

The transactional process included in the Night Out application has been modelled

according to the roles identified in the abstract transaction model as is shown in Figure

8. Night Out (client side) takes the role of Initiator since it starts the transaction and asks

the other web services to participate. Restaurant, Theatre and Taxi services are

modelled as Executors since they execute a specific activity. The role of Terminator is

taken by the Night Out application since some activities (e.g. Theatre) are independent

of others services (e.g. Restaurant). Thus even if one service can not complete its action

the others are allowed to commit. The Taxi activity is dependent. For instance, if a table

is not available in the restaurant, the customer still needs a taxi to go to the theatre. The

role of Coordinator is taken by an external service, WSCoor11, provided by the server.

It follows the WS-COO [19] and WS-BA[3] standards to exchange suitable messages.

Figure 8. Night Out case study modeling

6.3 Test implementation

In this paper we focus on testing the role of Executor: Restaurant, Theatre and Taxi.

According to testing approach explained in Section 5, eight abstract test cases are

generated for each Executor. Those abstract test cases were automatically mapped to

generate test cases, i.e., the test scenario and the expected system outcome for

Restaurant, Theatre and Taxi services. As an example we summarize the eight test cases

for Theatre service in Table IV. The_1 means test case 1 for a Theatre service. The_2

means test case 2 and so on.

Table IV. Test cases for the Theatre service

ID Description

The_1 To cancel the theatre booking once it has started but before it has confirmed

the reservation

The_2 To force the theatre to be not able to book because there is no available seats

The_3 To undone a tickets booking by executing the compensation

The_4 To confirm successfully a tickets booking when the transaction has to

commit

The_5 To confirm successfully a tickets booking when the transaction has to be

compensated

The_6 To abort a tickets booking before it has started

The_7 To force a failure during the theatre compensating booking process

The_8 To force a failure during the theatre booking process. To retry the request.

6.4 Test execution and outcome evaluation

The generated test cases have been executed over the case study and Table V

summarizes the results. ‘Pass’ means that a test case did not detect any failure. ‘Fails’

means that the actual outcome differs from the expected outcome (i.e. a failure has been

detected). ‘Blocked’ means that a test case cannot be executed. In this section we use a

number to identify each test case according to the Table IV. For each number there are

actually three test cases, one for each executor (e.g. Rest_3, The_3, Tax_3).

Two of the designed test cases were blocked due to the following reasons; test case 1

requires cancelling the activity (Cancel message) once the Executor has started and

has not finished yet, but the application does not allow cancelling a booking. Test case 8

requires the Executor to retry its activity once it has notified that it was not able to

complete the activity before (CanNotComplete message), and the application neither

allows resending the data nor registering again the Executor without starting a new

transaction.

Table V. Test execution results

Executor Test cases
generated

Pass Fails Blocked

Restaurant 8 3 3 2

Theatre 8 3 3 2

Taxi 8 3 3 2

The test case 5 detected an important transaction-related failure in the compensation

process. This test case and the detected failure are further explained in subsection 6.5.

During the execution of test cases 3 and 4 interface-related failures were detected: the

application, which shall allow changing manually the capacity of each resource (i.e.

number of tables and number of seats in the theatre), either crashes or does not update

the capacity when the button is pressed.

6.5 A test case in detail

As an example of test case and detected failure we consider the test case generated

using the following abstract test which was obtained applying the transition coverage

criterion over the executor abstract model:

.

The abstract test case was mapped (see section 4) to a specific sequence of WS-BA

message as depicted in Figure 9. From this sequence of messages, our prototype system

automatically generates the test scenario shown in Figure 10. Note that the transaction

creation and participant register processes are defined by the Initiator as was shows in

Figure 2 (creation and setup transitions).

Tester Nigh Out application Theatre service WScoord11 service

Start

Set transaction up Transaction context

Involve participants Receive context Register participant

Application data

Activity Coordination

Transacion end
Outcome

End result

Transaction details CreateCoordinationContext

CreateCoordinationContextResponse

Context
Register

RegisterResponse

Completed

Close

Closed

Input

Output
Result

Figure 9. Sequence diagraam of a test scenario for Theatre service

STEP 1: NighOut starts the process. It sends a context request

(CreateCoordinationContext message) to the coordinator WScorr11

STEP 2: WScorr11 sends the transaction context

(CreationCoordinationContextResponse message) to NighOut

STEP 3: Theatre receives a transaction context from the initiator NighOut

STEP 4: Theatre accepts to participate in the process. It requests to be registered in

the transaction, thus it sends Register message to WScorr11

STEP 5: WScorr11 receives Register message from Theatre and registers Theatre

in the transaction. It sends RegisterResponse message to Theatre

STEP 6: NighOut sends the application data to Theatre

STEP 7: Theatre completes successfully its activity. Theatre sends Completed

message to notifies its outcome to the coordinator WScorr11

STEP 8: Theatre has successfully completed its activity. Theatre notifies the results

and leaves the transaction. Theatre sends Close message to notifies to the

coordinator WScorr11 and it responses with a Closed message

Figure 10. Test scenario for test case The_5

As described in Table IV, the goal of the test case The_5 is to successfully confirm

the theatre tickets booking when the other services reservations have been undone

through compensating transactions.

After the execution of the test case, we obtain the expected system outcome. By

comparing the expected system outcome and the actual system outcome, a failure is

detected by the prototype system (Figure 11). The expected system outcome requires

receiving a CLOSE message once the Theatre service has successfully completed its

activity. However, the actual outcome has a COMPENSATED message since

Restaurant service was not able to commit. As a result, the Theatre reservations were

automatically undone. The fault which causes such failure is also found by the

prototype system since there is a difference in the register message: the Nigh Out

application registers the Theatre service as an atomic outcome when a mixed outcome

was expected. In other words, if Taxi or Restaurant services are not able to make their

reservations, the Theatre service will automatically undo the reservation even if the

customer would wish to keep the tickets.

<soap:Envelope
xmlns:soap="http://schemas.xmls
oap.org/soap/envelope/">
<soap:Header>
<Action
xmlns="http://www.w3.org/2005/0
8/addressing">
http://docs.oasis-open.org/ws-
tx/wsba/2006/06/Close
</Action>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoa
p.org/soap/envelope/">
<soap:Header>
<Action
xmlns="http://www.w3.org/2005/08/
addressing">
 http://docs.oasis-
open.org/ws-
tx/wsba/2006/06/Compensate
</Action>>

(a) Expected outcome (b) Actual outcome

Figure 11. Outcomes comparation

7. RELATED WORKS

Current work on WS transactions mainly deals with transaction modelling from a

design perspective. A theoretical approach is proposed in [22] in order to specify,

analyze and synthesize advanced transaction models. Transactional patterns that

combine workflow process adequacy and the transactional processing reliability are

identified in [23]. In [24] the authors present a high level UML-based language to

design transaction process with diverse transactional semantics. An XML representation

is proposed in [25]. Unlike these approaches, we propose a generic model to model the

existing approaches to manage WS Transactions.

Though there exists literature on verification and validation of web services, testing

of WS transactions has not been addressed so far. In our previous work [26], a risk-

based approach is used to define general test scenarios for compensatable transactions.

Further in [27] we present test criteria for transactional web services composition. The

approach is based on the dependencies which are defined between participants of a

transaction. Other work focused on verifying long-lived transactions from a theoretical

point of view. In [28], authors have developed a model of communicating hierarchical

timed automata in order to describe long-running transactions. This approach allows the

verification of properties by model checking. The work presented in [29] translates

programs with compensations to tree automata in order to verify compensating

transactions. In addition [30] proposes a formal model to verify the requirement of

relaxed atomicity with temporal constraints whilst [31] uses event calculus to validate

the transactional behaviour of WS compositions. In summary, current research work

does not address the issue of testing the reliability and failures of different WS

Transactions.

8. CONCLUSIONS

This paper investigated into the issue of testing the WS Transactions. In it we developed

and evaluated the Abstract Transaction Model which is capable of dynamically

modelling different WS Transaction standards such as BTP and WA-BA. The model

exploits model-based testing technique in order to automatically generate test cases for

testing the failures and reliability of WS Transaction standards. The proposed model is

implemented as a prototype system with which various test cases were automatically

generated and mapped to WS Transaction standards. The evaluation was performed

using the case study of Nigh Out, which is an open source WS-BA-based application

provided by Jboss. The experiments show that our approach can be used to define

different test cases as well as test the reliability and failures of different WS

Transactions Standards.

ACKNOWLEDGEMENTS

This work has been performed under the research project TIN2010-20057-C03-01,

funded by the Spanish Ministry of Science and Technology. This work has also been

funded by the research grant BES-2008-004355.

REFERENCES

1. Younas M, Chao K-M, Wang P, and Huang C-L. QoS-aware mobile service transactions in a

wireless environment. Concurrency and Computation: Practice and Experience 2007; 19

(8): 1219-1236. DOI:10.1002/cpe.1157

2. OASIS. Business Transaction Protocol, 2004. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=business-transaction [29 Nov 2011].

3. OASIS. Web Services Business Activity, 2009. http://docs.oasis-open.org/ws-

tx/wsba/2006/06 [29 Nov 2011].

4. OASIS. Web Services Composite Application Framework, 2005. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-caf [29 Nov 2011].

5. Canfora G, and Penta M. Service-Oriented Architectures Testing: A Survey. Prooceedings

of the Software Engineering: International Summer Schools, ISSSE 2006-2008, Salerno,

Italy, Revised Tutorial Lectures, 2009. Springer-Verlag: 78-105. DOI:10.1007/978-3-540-

95888-8_4

6. Casado R, Tuya J, and Younas M. An Abstract Transaction Model for Testing the Web

Services Transactions. Prooceedings of the IEEE International Conference on Web Services,

2011. Washington, USA, DOI:10.1109/ICWS.2011.98

7. Casado R, Tuya J, and Younas M. Testing the Reliability of Web Services Transactions in

Cooperative Applications. Prooceedings of the Symposium On Applied Computing (SAC),

2012. ACM: Riva del Garda, Trento, Italy,

8. Jboss. Jboss Transactions. 2006. http://www.jboss.org/jbosstm [29 Nov 2011]

9. GlassFish. JAX-WS. 2005. http://jax-ws.java.net/ [29 Nov 2011]

10. Elmagarmid AK.Database transaction models for advanced applications. Morgan

Kaufmann Publishers: 1992

11. Moss EB. Nested Transactions: An Approach to Reliable Distributed Computing.

Massachusetts Institute of Technology 1981.

12. Garcia-Molina H, and Salem K. Sagas. Prooceedings of the SIGMOD 87, 1987. 249-259.

DOI:10.1145/38713.38742

13. Weikum G, and Schek H-J. Concepts and applications of multilevel transactions and open

nested transactions. Morgan Kaufmann Publishers Inc.: 1992

14. Pu C, Kaiser GE, and Hutchinson NC. Split-Transactions for Open-Ended Activities.

Prooceedings of the 14th International Conference on Very Large Data Bases, 1988.

Morgan Kaufmann Publishers Inc.: 26-37.

15. Reuter. ConTracts: A Means for Extending Control Beyond Transaction Boundaries.

Prooceedings of the 3rd International Workshop on High Performance Transaction

Systems, 1989.

16. Zhang A, Nodine M, Bhargava B, and Bukhres O. Ensuring relaxed atomicity for flexible

transactions in multidatabase systems. ACM SIGMOD Record 1994.

DOI:10.1145/191839.191850

17. Younas M, Eaglestone B, and Holton R. A formal treatment of a SACRED Protocol for

Multidatabase Web Transactions. Database and Expert Systems Applications 2000; 1873

899-908.

18. OASIS. Web Services Atomic Transaction, 2009. http://docs.oasis-open.org/ws-

tx/wsat/2006/06 [29 Nov 2011].

19. OASIS. Web Services Coordination, 2009. http://docs.oasis-open.org/ws-

tx/wscoor/2006/06 [29 Nov 2011].

20. Cavalli A, Cao T-D, Mallouli W, Martins E, Sadovykh A, Salva S, and Zaïdi F. WebMov: A

Dedicated Framework for the Modelling and Testing of Web Services Composition.

Prooceedings of the IEEE International Conference on Web Services, 2010. Florida, USA,

DOI:10.1109/ICWS.2010.24

21. Offutt J, Liu S, Abdurazik A, and Ammann P. Generating Test Data From State-based

Specifications. Journal of Software Testing, Verification and Reliability 2003; 13 (13): 25-

53. DOI:10.1002/stvr.264

22. Chrysanthis PK, and Ramamritham K. Synthesis of extended transaction models using

ACTA. ACM Trans. Database Syst. 1994; 19 (3): 450-491. DOI:10.1145/185827.185843

23. Bhiri S, Godart C, and Perrin O. Transactional patterns for reliable web services

compositions. Prooceedings of the 6th International Conference on Web Engineering,

2006. ACM: Palo Alto, California, USA, 137-144. DOI:10.1145/1145581.1145613

24. Gioldasis N, and Christodoulakis S. UTML: Unified Transaction Modeling Language.

Prooceedings of the The Third International Conference on Web Information Systems

Engineering 2002. DOI:10.1109/WISE.2002.1181649

25. Hrastnik P, and Winiwarter W. Using advanced transaction meta-models for creating

transaction-aware web service environments. International Journal of Web Information

Systems 2005. DOI:10.1108/17440080580000086

26. Casado R, Tuya J, and Younas M. Testing Long-Lived Web Services Transactions Using a

Risk-Based Approach. Prooceedings of the 10th International Conference on Quality

Software, 2010. IEEE Computer Society: 337-340. DOI:10.1109/QSIC.2010.46

27. Casado R, Tuya J, and Godart C. Dependency-based criteria for testing web services

transactional workflows. Prooceedings of the Next Generation on Web Services Practices,

2011. IEEE: Salamanca, Spain,

28. Lanotte R, Maggiolo-Schettini A, Milazzo P, and Troina A. Design and verification of long-

running transactions in a timed framework. Science of Computer Programming 2008; 76-

94.

29. Emmi M, and Majumdar R. Verifying Compensating Transactions. Prooceedings of the

International Conference Verification, Model Checking, and Abstract Interpretation, 2007.

30. Li J, Zhu H, and He J. Specifying and Verifying Web Transactions. Prooceedings of the

International Conference on Formal Techniques for Networked and Distributed Systems,

2008. DOI:10.1007/978-3-540-68855-6_10

31. Gaaloul W, Rouached M, Godart C, and Hauswirth M. Verifying composite service

transactional behavior using event calculus. Prooceedings of the OTM Confederated

international conference on On the move to meaningful internet systems: CoopIS, DOA,

ODBASE, GADA, and IS - Volume Part I, 2007. Springer-Verlag: Vilamoura, Portugal, 353-

370. DOI:10.1007/978-3-540-76848-7_23

