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Abstract

Background: Tumour cells show greater dependency on glycolysis so providing a sufficient and rapid energy supply

for fast growth. In many breast cancers, estrogen, progesterone and epidermal growth factor receptor-positive cells

proliferate in response to growth factors and growth factor antagonists are a mainstay of treatment. However, triple

negative breast cancer (TNBC) cells lack receptor expression, are frequently more aggressive and are resistant to

growth factor inhibition. Downstream of growth factor receptors, signal transduction proceeds via phosphatidylinositol

3-kinase (PI3k), Akt and FOXO3a inhibition, the latter being partly responsible for coordinated increases in glycolysis and

apoptosis resistance. FOXO3a may be an attractive therapeutic target for TNBC. Therefore we have undertaken a

systematic review of FOXO3a as a target for breast cancer therapeutics.

Methods: Articles from NCBI were retrieved systematically when reporting primary data about FOXO3a expression in

breast cancer cells after cytotoxic drug treatment.

Results: Increased FOXO3a expression is common following cytotoxic drug treatment and is associated with apoptosis

and cell cycle arrest. There is some evidence that metabolic enzyme expression is also altered and that this effect is also

elicited in TNBC cells. FOXO3a expression serves as a positive prognostic marker, especially in estrogen (ER) receptor

positive cells.

Discussion: FOXO3a is upregulated by a number of receptor-dependent and -independent anti-cancer drugs and

associates with apoptosis. The identification of microRNA that regulate FOXO3a directly suggest that it offers a

tangible therapeutic target that merits wider evaluation.

Keywords: Triple negative breast cancer, Phosphatidylinositol 3-kinase, Metabolism, Glycolysis, Oxidative stress,

Apoptosis

Background
Breast cancer is the third most frequent cancer world-

wide. Amongst women, it is the most common malig-

nancy, making up 21% of all new cancer diagnoses.

Survival rates have been steadily extending over the past

50 years, primarily due to improvements in diagnosis

and treatment.

The drivers of proliferation in breast cancer are also

the phenotypic drug targets; hormone (estrogen, proges-

terone and HER2) receptors are commonly overexpressed.

This knowledge has been harnessed in development of tar-

geted therapies for breast cancer patients which inhibit

hormone receptor activity and can be co-administered with

the conventional, but non-specific, radiation and chemo-

therapy. The earliest approved therapy for endocrine

related breast cancers was tamoxifen, an anti-estrogen re-

ceptor (ER)-targeting compound. These agents are com-

monly used alongside general chemotherapy that induces

DNA damage through agents such as cisplatin which act

to reduce the DNA damage repair response or anti-

angiogenic agents [1,2].

The highly aggressive triple negative breast cancer

(TNBC), with a prevalence of 15% of breast cancer cases

often presenting in younger patients, is characterised by

tumours that lack expression of ER, progesterone recep-

tor and HER2/neu and is associated with a poor clinical

prognosis [3]. There is no targeted treatment regime for

this type of breast cancer and many patients experience
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relapse to cytotoxic chemotherapy within 3 years of diag-

nosis, as well as a higher incidence and probability of

metastasis [4,5].

The forkhead box O (FOXO) family is activated by

and limits the negative consequences of oxidative stress,

metabolic dysregulation, growth factor withdrawal and

DNA damage. At a molecular level, FOXO3a can be

activated by an increased AMP/ATP ratio through phos-

phorylation catalysed by 5′ AMP-activated protein kin-

ase (AMPK) at six conserved sites, five of which are

located within the transactivation domain [6]. In re-

sponse to a reduced energy supply FOXO3a transcrip-

tion factors act as important regulators of cellular

proliferation, cell cycle arrest, apoptosis, autophagy and

metabolism [7,8].

Cancer cells may be distinguished from healthy cells in

part by their metabolic phenotype. Solid tumours are

often hypoxic and so express hypoxia-inducible factor 1

(HIF1), which increases expression of glycolytic en-

zymes, glucose transporters and inhibitors of mitochon-

drial metabolism allowing cellular adaptation through

reliance on glycolysis to produce ATP in low oxygen en-

vironments [9,10]. This is associated with an increased

cellular uptake of glucose in order to maintain energy

homeostasis and is largely mediated upstream through

PI3k-regulated FOXO transcription factors [11]. Re-

moval of growth factors increases nuclear localisation of

FOXO3a. Nuclear FOXO3a binds to P300, which then

detaches from its transcription factor complex with HIF1

so suppresses glycolytic enzyme expression.

Phosphatidylinositol 3-kinase (PI3k)-activated Akt in-

hibits the activity of FOXO3a by phosphorylation of key

residues, Thr32, Ser253 and Ser315; Akt-phosphorylated

FOXO3a is then chaperoned by 14-3-3 proteins so ob-

scuring FOXO3a-DNA binding sites and further pre-

venting its activity within the nucleus [12]. FOXO3a is

subsequently exported into the cytoplasm, ubiquitinated

and degraded via the proteasome. Stress-induced phos-

phorylation of 14-3-3 by c-Jun N-terminal kinase (JNK)

reduces 14-3-3 protein-FOXO3a binding capacity and

directly inhibits nuclear export of FOXO3a thereby in-

creasing transcriptional activity of FOXO3a [13]. Further

metabolic control of FOXO3a activity is achieved following

nuclear shuttling by acetylation and NAD+-dependent

deacetylation.

Genomic analysis of TNBC has revealed frequent asso-

ciations with mutations in class 1 PI3k which lies dir-

ectly upstream of FOXO3a [14]. Mutations within the

tumour suppressor PTEN, a negative regulator of Akt

activation, can result in constitutively active Akt and

inhibit FOXO3a, so promoting HIF1 expression, antioxi-

dant gene expression and an increase membrane transloca-

tion of glucose transporters and rate-limiting enzymes

such as phosphofructokinase-1 [15] (Figure 1).

Down-regulation of FOXO3a activity is often seen in

cancers and ERK- or inhibitor κappa B kinase (IκKβ)-

mediated inhibition of FOXO3a has been shown to pro-

mote tumorigenesis [16,17]. Despite evidence for FOXO3a

down-regulation in breast cancer, the AMPK-FOXO3a

pathway is still inducible, providing a potential therapeutic

target for cancer chemotherapy which is independent

of receptor status [6]. This evidence highlights FOXO3a

as a potentially important target by cytotoxic drugs es-

pecially in receptor-negative cells. To investigate the

validity of this hypothesis, we have undertaken a system-

atic approach to analysis of the published literature which

describes the effects of breast cancer chemotherapeutic

agents on FOXO3a. The goal is to determine whether

FOXO3a represents a critical target of therapeutics used

in the treatment of breast cancer, and therefore whether

the evidence supports direct targeting of FOXO3a in

chemoresistant-resistant disease notably in TNBC.

Results
The systematic search for relevant articles initially re-

trieved 148 articles. The 51 articles that met the inclusion

criteria were then analysed and categorised according

to the drug target (extracellular receptor; PI3k; AKT;

FOXO3a), and assessed for dependency on FOXO3a ac-

tivity. Twenty articles met these conditions and have

been analysed here (Figure 2).

Activation of growth factor receptors signals to pro-

mote tumour progression, cell survival and invasive

characteristics. ER-positive cells are reported to have

higher FOXO3a levels and increased apoptotic activity

with less invasive characteristics than ER-negative cells.

The ER status of breast tumours is an important indica-

tor of prognosis, and although ER signaling plays a

major role in tumour progression, ER-positive cancer is

also associated with better prognosis than ER-negative

breast cancers [18].

Following a systematic review of the literature, five

articles were retrieved which described the effects of

growth factor receptor inhibition on FOXO3a activity

(Table 1). The mechanisms of action of anti-cancer

agent classes upstream from FOXO3a are illustrated in

Figure 3.

Irrespective of the target receptor for each of the in-

hibitors, lapatinib and trastuzumab (epidermal growth

factor receptor; EGFR and/or EGFR2; HER2, respect-

ively), or whether it targeted receptor-associated tyrosine

kinase (gefitinib), FOXO3a was consistently activated

and translocated to the nucleus. Three studies confirmed

an increase in apoptotic gene expression and extent of

apoptosis [19-21] after anti-growth factor receptor anti-

body treatment. Only one study reported effects on meta-

bolic gene expression with a switch away from anabolic

Taylor et al. Cancer Cell International  (2015) 15:1 Page 2 of 9



metabolism [22] while Karadedou reported the inhibition

of angiogenic VEGF expression [23].

Downstream from ligand-receptor binding, receptor-

associated PI3k is activated and catalyses the production

of phosphatidyl inositol (PtdIns) 4,5 bisphosphate and

PtdIns 3,4,5 trisphosphate that act as second messengers,

and via PDK1 activation results in Akt phosphorylation.

The importance of PI3k for signal transduction is evi-

denced by the work of Reagan-Shaw et al. who showed ac-

tivation of FOXO3a and induction of apoptosis when PI3k

is knocked down [24]. The bisphosphonate, zoledronic

acid, originally used for osteoporosis management, is now

in clinical trials as a chemotherapeutic drug; it activates

FOXO3a and inhibits expression of the proangiogenic fac-

tor CCN1 (Table 2) [25]. Zoledronic acid when used as an

adjuvant to endocrine therapy in premenopausal women

with hormone receptor-positive early breast cancer pro-

vides clinical benefit and is cost-effective [26].

The phosphorylation of Akt indirectly via PDK1 acti-

vation by PI3k increases Akt activity which, in turn,

phosphorylates FOXO3a. A number of small molecule

inhibitors of Akt were identified in the review as con-

sistently activating FOXO3a with subsequent arrest of

the cell cycle (via p21 cip1 and p27 kip1 expression, [27,28])

and induction of apoptosis (Bim, [29-33]); Table 3.

The majority of the small molecules did not target

AKT directly but mediated AKT activation via unknown

targets and other kinases such as JNK and P38. Effects

on expression of ER differed between inhibitors treat-

ments [27,34].

A number of regulatory (patho)-physiological microRNA

(miR) and small molecule activators have been shown to

Figure 1 FOXO3a regulation by Akt. Growth factors/hormone stimulate PI3k phosphorylation of Akt, FOXO3a is phosphorylated by Akt, 14-3-3

also binds FOXO3a DNA binding sites, further preventing its activity in the nucleus. It is then tagged for degradation via ubiquitination and then

degraded in a proteasome. Adapted from (Wilson, 2009 [49]).
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target FOXO3a directly and regulate its nuclear localisation

and transcriptional activity (Table 4; [35-40]).

miR155, which is up-regulated in cancer, is a negative

regulator of FOXO3a and subsequently Bim and p27 kip1

expression, but inhibition of miR155 restores sensitivity

to apoptosis [35]. Similarly, miR96 suppressed expres-

sion through the 3′-UTR on the FOXO3a gene, results

in down-regulation of p21cip1, p27kip1 and cyclin dependent

kinases [38]. Modulation of FOXO3a by anti-miR may

prove useful to promote apoptosis. Other small molecules

appear to modulate FOXO3a activity by regulating the ac-

tivity of FOX3a-regulating kinases such as IκKβ and MEK

so preventing FOXO3a phosphorylation, increasing its nu-

clear half-life and transcriptional activity.

Table 1 Growth factor receptor antagonists consistently activated FOXO3a in sensitive breast cancer cells

First author (Year) Treatment Effect on FOXO3a (Activates/Inactivates) Cellular effects

Hegde (2007) [22] Lapatinib Activates in responsive cell lines; measured as Thr32

P-FOXO3a and by microarray, BT474 and SKBr3. No
effect in resistant cell lines; MDA-MB-468 and T47D.

Decreased expression of glyceraldehyde-3-phosphate
dehydrogenase, enolase 1, pyruvate kinase and fatty
acid synthase expression in BT474 and SKBr3

Growth rate reduced in BT474 and SKBr3

Karadedou (2012) [23] Lapatinib Activates in BT474 or SKBR3 measured by FOXO3a
nuclear translocation.

Decreased expression of VEGF.

Real PJ (2005) [20] Trastuzumab Activates in MB231 and SUM159, primary breast
effusions; measured as nuclear translocation
of FOXO3a.

Up-regulation of Bnip1.

Increased sensitivity to apoptosis.

Krol (2007) [19] Gefitinib Activates in BT474 and SKBR3, but no effect in
gefitinib-resistant lines MCF-7, MDA-MB-231, and
MDA-MB-453. Measured as Thr32 P-FOXO3a and
nuclear translocation analysis.

Cell cycle arrest predominantly at the G(0)-G(1) phase
and apoptosis.

McGovern (2009) [21] Gefitinib Activates in BT474 and SKBR3 but not the
gefitinib-resistant lines MCF-7, MDA-MB-231,
and MDA-MB-453. Measured as nuclear FOXO3a
and microarray.

Increase in Bim, p27 kip1

Figure 2 Flowchart showing the retrieval and review of literature according to systematic criteria.

Taylor et al. Cancer Cell International  (2015) 15:1 Page 4 of 9



Discussion
There is a growing need for new drug targets in cancer

treatment. These should efficiently combine fewer side-

effects with lower likelihood of resistance development.

The multi-step growth factor, PI3k/PTEN, Akt and

FOXO3a pathway provides a potentially important target

network. Dysregulation of its components, such as

PTEN, PIK3CA, and AKT (PKB), are common in solid

tumours but despite evidence for FOXO3a down-

regulation in breast cancer, the AMPK-FOXO3a pathway

is still inducible.

This systematic review has highlighted that several dif-

ferent classes of drugs can increase FOXO3a activation

and promote apoptosis by targeting many of the key

steps in the pathway downstream of the receptor in

breast cancer cell lines irrespective of hormone receptor

status. There is some evidence that metabolic pathways

are also affected when FOXO3a is targeted, favouring

oxidative phosphorylation rather than glycolysis. Our

systematic literature approach has largely retrieved pa-

pers published around FOXO3a effects on cell cycle

control and induction of apoptosis. The importance of

metabolic switching as a mechanism for FOXO3a up-

regulation in slowing growth of breast cancer cells has

been reported in one study only, probably because the

published studies have limited their focus to analysis of

death and death pathways.

Recently, a dual network strategy for therapeutic inter-

vention has been proposed to target various diseases

[41]; such an approach inhibits central nodes in disease

Figure 3 Schematic illustration of mechanisms of action of chemotherapeutic agents used in breast cancer therapy upstream of

FOXO3a expression. Chemotherapeutic agents in green boxes increase FOXO3a expression/activity; those in red boxes decrease FOXO3a

expression/activity. CAV1 = caveolin 1, CDK1 = cyclin dependent kinase 1, ERK = Extracellular signal-regulated kinases, FAS-L = FAS ligand,

FAS = fatty acid synthase, FOXO3a – forkhead box O3a, GFR – growth factor receptor IκKβ – inhibitor kappa kinase beta, JNK - Jun N-terminal

kinases, PI3k - phosphatidylinositol 3-kinase, SIRT1 = sirtuin 1.

Table 2 PI3k inhibition causes FOXO3a activation in breast cancer cells

First author (Year) Treatment Effect on FOXO3a (Activates/Inactivates) Cellular effects

Espinoza (2011) [25] Zoledronic acid (ZOL) Activates in MDA-MB-231 and MCF-7 measured by
nuclear translocation of FOXO3a.

Inhibited proangiogenic factor, CCN1 in TNBC

Guo (2004) [34] Wortmannin, EGCG Activates in MCF-7 and ZR-75 cells; and Hs578T and
MDA-MB-231 cells, measured as FOXO3a expression
and nuclear translocation.

Increased ER expression
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and also their influencing networks based on the prem-

ise that during disease progression the importance

of any given target may change and so may be best

approached using sequential multi-target therapy [41]. If

FOXO3a expression changes occur early in the lifecycle

of breast cancer, the metabolic switch through a

FOXO3a node may prove to be an important route to

delaying disease progression.

FOXO3a can inhibit expression of glycolytic enzymes

through HIF-1 inhibition and can regulate mitochondrial

gene expression, ACO2, LARS2, MRPLI2, OXNAP1 and

ATP5G1, which are typically down-regulated in hypoxia

[42]. The combined effect is to starve hypoxic tumours

and prevent further growth ultimately leading to autoph-

agy and death.

FOXO3a expression is a positive prognostic marker

for breast cancer [43]. The activity of FOXO3a, which

regulates ERα expression, is likely to be responsible. The

expression of ERα is associated with a higher degree of

differentiation of tumours and lower speed of tumour

cell proliferation [44], it can activate the cell cycle pro-

gression through either genomic or non-genomic path-

ways [45], and estrogen-inducible genes can suppress

tumour progression [46]. However, ER knockdown results

Table 3 AKT inhibition activates FOXO3a in breast cancer cells

First author (Year) Treatment Effect on FOXO3a (Activates/Inactivates) Cellular effects

Brandi (2013) [27] Indole-3-carbinol cyclic tri- and tetrameric
derivatives, specific target unknown but
inhibits AKT directly or indirectly.

Activates in MCF-7 and MDA-MB-231 breast
cancer cell lines) and in vivo in a tumour
xenograft measured as nuclear translocation
of FOXO3a.

Increased expression of p21 cip1, p27 kip1

and decreased ER expression.

Li (2007) [29] Selenium and Doxorubicin via p38
mediated inhibition of AKT.

Activates in MCF7 measured by P-FOXO3a
and reporter assay.

Increased Bim expression and apoptosis.

Sharma (2012) [33] 18β-glycyrrhetinic acid (GRA) specific
target unknown but inhibits AKT directly
or indirectly.

Activates in MCF7 but not normal breast
cell line MCF-10 measured as increased
expression and nuclear translocation.

Increased Bim expression and
caspase-dependent apoptosis.

Sunters (2006) [32] Paclitaxel inhibits AKT via JNK Activates in MCF7 measured as nuclear
localisation of FOXO3a.

JNK1 activation and apoptosis in MCF7
and also in a panel of other cells lines
MT 3522, 734 B, ZR-75-1, T47-D, CAL-51,
CAMA-1, MDA-MB-231, and SKBR-7.

Xie (2010) [31] SZ-685C (marine anthraquinone) specific
target unknown. Inhibits AKT directly
or indirectly.

Activates in MCF-7 and MDA-MB-435. AKT inhibition.

Increased Bim.

Increased apoptosis.

Increased caspase activity.

Zhao (2013) [30] 5,7-dihydroxy-8-nitrochrysin (NOC)-specific
target unknown. Inhibits AKT directly
or indirectly.

Activates in MDA-MB-453. Increased Bim expression

Increased apoptosis.

Lin (2011) [28] FLOT1 silencing associated with
suppression of Akt activity

Activates in MCF7 and MDA-231 measured
as expression level and P-FOXO3a.

Up-regulation of p21 cip1 and p27 kip1

Table 4 FOXO3a activation in breast cancer cells increases apoptosis

First author (Year) Treatment Effect on FOXO3a (Activates/Inactivates) Cellular effects

Kong (2010) [35] miR-155 Inhibits in BT-474 measured by protein
expression.

Decreased Bim and p27 expression
decreased apoptosis.

Kong (2012) [36] AZD6244, indirectly as an ATP-uncompetitive
inhibitor of MEK ½

Activates FOXO3a in MTDH knock-down,
AZD6244 resistant lines.

Increased apoptosis.

Lam (2012) [37] Aqueous extract of Fagonia Activates FOXO3a measured by Western
blot in MCF7 and MDA231.

Cell cycle arrest and apoptosis.

Lin (2010) [38] miR-96 Inhibits in BT549, ZR-75-30, Bcap37,
MDA-MB231, MDA-MB435, MCF-7, SKBR3
measured as FOXO3a expression and by
reporter assay.

Down-regulation of p21 cip1, p27 kip1,
CDK and cyclin 1.

Liu (2012) [39] Arsenic trioxide Activates in MCF7 measured as nuclear
translocation and expression.

Decreased IKKB.

Increased apoptosis.

Stan (2008) [40] Withaferin. Activates in MCF-7 (estrogen-responsive)
and MDA-MB-231.

Increased Bim expression.

Increased apoptosis.
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in a switch towards increased invasiveness in the presence

of increased FOXO3a expression suggesting that the nu-

clear receptor represents a crucial switch in FOXO3a con-

trol of breast cancer cell aggressiveness [18]. Stratification

of patients according to receptor positivity may be critical

to improve the benefit:risk ratio of targeting FOXO3a.

Low FOXO3a expression is associated with poor prog-

nosis in a number of other cancers including neuroblast-

oma, gastric adrenocarcinoma, hepatocarcinoma and

poor metastasis-free survival in renal cell carcinoma

[47-50]. In common with observations in breast cancer

cells, treatment of colon cancer cells with selenite in-

duced ROS-dependent, FOXO3a-mediated apoptosis [51].

Enhancing FOXO3a expression appears to be a relevant

to treatment for a number of cancers. One emerging

means of modulating FOXO3a expression therapeutically

is post-transcriptionally via specifically targeted miR.

In this review, we have identified two papers that report

the effects of specific miR which affect FOXO3a expres-

sion in breast cancer cells. It has been estimated that

there may be thousands of target genes for miR-155, al-

though significant overlap has been observed between

miR-155 targets and the molecular profile of mutant

p53-expressing breast tumours suggesting that this may

prove to be a particularly useful target with fewer side-

effects [52]. Far fewer genes have been has been de-

scribed as targets for miR-96 although existing works

share the common conclusion that interference with

miR-96 using antisense miRNA (antagomiR) molecules

increase apoptosis in breast cancer cells. More work is

needed before to understand potential off-target effects

before their potential as therapeutic targets for breast

cancer can be appreciated [53].

Chemotherapeutic drug resistance can limit the appli-

cation of many anti-cancer therapies. Acquired resist-

ance to lapatinib and trastuzumab frequently occurs in

breast cancer patients, possibly as a consequence of

FOXO3a de-repression and increased ER signaling [54],

however, this does present an opportunity for adjuvant

therapy with drugs such as tamoxifen that target ER.

Similarly, upregulation of HER3 is induced in a FOXO3a

dependent way which attenuates the beneficial effects of

PI3k inhibitors unless used in combination with HER2/3

antagonists [55]. Indeed preclinical data support the sug-

gestion that targeting of the PI3k/mTOR pathway in com-

bination with trastuzumab is beneficial in trastuzumab-

resistant breast cancer [56]. The studies highlighted here

show the potential for targeting the upregulation of

FOXO3a to overcome resistance to AZD6244 [35].

The clinical trials register lists two studies currently

underway which will assess FOXO3a status (albeit not as

primary endpoints) one using an ER antagonist with a

pan-class I PI3k inhibitor and the other using reparaxin,

an IL-8 receptor antagonist.

Conclusion
The identification of new classes of FOXO3a inhibitors

offers a promising strategy for future anti-cancer drug

design by targeting a downstream node of the PI3k path-

way that is not commonly mutated in cancers. In the

age of personalised medicine and following the identifi-

cation of regulatory miR that target FOXO3a directly,

their inhibition as an adjunct therapy alongside conven-

tional cytotoxic and/or receptor antagonists in stratified

patient groups merits evaluation.

Methods
We have designed a systematic literature review to iden-

tify published studies describing the effects of anti-

cancer drugs on FOXO3a in: human cell lines or primary

cells from breast cancer patients and from immunohisto-

chemical analyses of tissue.

PubMed/Medline, Cochrane and Embase databases

were searched from 1 January 2014 to 1 April 2014.

Neither the Cochrane library nor Embase yielded relevant

results using specific search criteria. Therefore PubMed/

Medline was the database used for information, the

Boolean search terms are listed below: ((FOXO3a[All

Fields] OR (Forkhead[All Fields] AND Box[All Fields] AND

O3[All Fields])) OR (Forkhead[All Fields] AND Box[All

Fields] AND (“proteins”[MeSH Terms] OR “proteins”[All

Fields] OR “protein”[All Fields]) AND 3[All Fields])) AND

(“breast neoplasms”[MeSH Terms] OR (“breast”[All Fields]

AND “neoplasms”[All Fields]) OR “breast neoplasms”[All

Fields] OR (“breast”[All Fields] AND “cancer”[All Fields])

OR “breast cancer”[All Fields]).

Results were limited to peer-reviewed, English language

articles only. Reviews, meta-analyses, case reports, edito-

rials and letters lacking primary data were excluded.
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