
Citation: Chen, M.; Wang, J.; Xue, P.;

Li, Q.; Jiang, Y.; Qiao, Y. Evaluating

the Feasibility of

Machine-Learning-Based Predictive

Models for Precancerous Cervical

Lesions in Patients Referred for

Colposcopy. Diagnostics 2022, 12,

3066. https://doi.org/10.3390/

diagnostics12123066

Academic Editors: Jasjit S. Suri and

Sanjay Saxena

Received: 2 November 2022

Accepted: 3 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Evaluating the Feasibility of Machine-Learning-Based
Predictive Models for Precancerous Cervical Lesions in Patients
Referred for Colposcopy
Mingyang Chen 1,†, Jiaxu Wang 1,†, Peng Xue 1,* , Qing Li 2, Yu Jiang 1,* and Youlin Qiao 1,*

1 School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100005, China

2 Diagnosis and Treatment for Cervical Lesions Center, Shenzhen Maternity & Child Healthcare Hospital,
Shenzhen 518028, China

* Correspondence: xuepeng_pumc@foxmail.com (P.X.); jiangyu@pumc.edu.cn (Y.J.); qiaoy@cicams.ac.cn (Y.Q.);
Tel.: +86-10-8778-8489 (P.X. & Y.J. & Y.Q.); Fax: +86-10-6771-3648 (P.X. & Y.J. & Y.Q.)

† These authors contributed equally to this work.

Abstract: Background: Colposcopy plays an essential role in cervical cancer control, but its perfor-
mance remains unsatisfactory. This study evaluates the feasibility of machine learning (ML) models
for predicting high-grade squamous intraepithelial lesions or worse (HSIL+) in patients referred for
colposcopy by combining colposcopic findings with demographic and screening results. Methods: In
total, 7485 patients who underwent colposcopy examination in seven hospitals in mainland China
were used to train, internally validate, and externally validate six commonly used ML models, in-
cluding logistic regression, decision tree, naïve bayes, support vector machine, random forest, and
extreme gradient boosting. Nine variables, including age, gravidity, parity, menopause status, cyto-
logical results, high-risk human papillomavirus (HR-HPV) infection type, HR-HPV multi-infection,
transformation zone (TZ) type, and colposcopic impression, were used for model construction.
Results: Colposcopic impression, HR-HPV results, and cytology results were the top three variables
that determined model performance among all included variables. In the internal validation set, six
ML models that integrated demographics, screening results, and colposcopic impression showed
significant improvements in the area under the curve (AUC) (0.067 to 0.099) and sensitivity (11.55%
to 14.88%) compared with colposcopists. Greater increases in AUC (0.087 to 0.119) and sensitivity
(17.17% to 22.08%) were observed in the six models with the external validation set. Conclusions: By
incorporating demographics, screening results, and colposcopic impressions, ML improved the AUC
and sensitivity for detecting HSIL+ in patients referred for colposcopy. Such models could transform
the subjective experience into objective judgments to help clinicians make decisions at the time of
colposcopy examinations.

Keywords: machine learning; cervical precancers; colposcopy; predictive model

1. Introduction

Although cervical cancer is a preventable disease, it remains one of the most common
cancers and causes of cancer-related death among women worldwide [1]. Cervical cancer
also reflects global inequities, as its incidence and mortality rates in low- and middle-
income countries (LMICs) are nearly twice and three times those in high-income countries,
respectively. The World Health Organization (WHO) set a target that by 2030, 70% of
women will be screened with a high-performance test by 35 years of age and again by
45 years of age [2]. Colposcopy-guided biopsy is crucial for detecting cervical precancers
and determining treatment or further observation, but it is also the main bottleneck limiting
screening performance. The diagnostic ability of many colposcopists is not favorable, as up
to 40% of high-grade squamous intraepithelial lesions or worse (HSIL+) cases are missed
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in LMICs [3]. The consistency rate between colposcopic impressions and histopathological
results varies widely, ranging from 52% to 66% [4–6]. As the screening modality gradually
changes from cytology to primary HPV screening, cervical abnormalities are likely to be
mild and difficult to identify, which aggravates the difficulty of the colposcopy diagnosis.

The American Society for Colposcopy and Cervical Pathology (ASCCP) has recom-
mended modifying colposcopy practice on the basis of cytology, human papillomavirus
(HPV) genotyping, and colposcopic impression [7,8]. However, the guidelines do not cover
all situations. For instance, there are no uniform standards to determine follow-up or biopsy
or direct treatment when facing non-16/18 high-risk HPV infections with mild cytological
abnormalities. Colposcopists need to integrate more clinical information, such as age
and reproductive history, to make such decisions, which inevitably depend on subjective
experience. As women with a wide range of underlying precancer risks are referred for
colposcopy every day [9], experience alone is not a long-term solution, especially for junior
colposcopists. Thus, it is particularly important to establish an objective model that can
predict the risk of HSIL+.

Recently, the application of machine learning (ML) methods to healthcare has been
rapidly growing because of the increasing availability of large databases and computing
power [10–13]. ML algorithms are often used to process multi-dimensional data, bringing
new hope to solving clinical dilemmas. Previous ML studies that used screening results and
demographics to predict cervical precancers performed well in screening scenarios [14–17].
However, there has been a lack of research into integrating colposcopic impressions with
predicting HSIL+ among patients referred for coloscopies. Furthermore, relevant predictive
models have always been developed on the basis of single-center data without external
validation, which inevitably leads to model overfitting.

Therefore, this study integrates demographics, screening results, and colposcopic
impressions to evaluate the feasibility of different ML models for predicting HSIL+ in pa-
tients referred for colposcopy. We aim to transform the subjective experience into objective
predictive models for clinical use.

2. Materials and Methods
2.1. Study Design and Population

This is a multicenter, retrospective diagnostic study. The clinical records of patients
who underwent colposcopic examination at seven hospitals in mainland China between
January 2019 and October 2021 were collected. Women referred for colposcopy owing
to abnormal screening results, clinical symptoms, or concerns about their own health
were included, and those aged 24 to 65 with histopathological results were selected for
further analysis. Demographic and clinical data were obtained, including age, gravidity,
parity, menopause status, cytological results, HPV results, transformation zone (TZ) type,
colposcopic impression, and histological diagnosis.

This study was approved by the Institutional Review Board of the Chinese Academy of
Medical Sciences and Peking Union Medical College (No. CAMS and PUMC-IEC-2022-022).
Informed consent was waived owing to the retrospective nature of this study and the
anonymization of patient information.

2.2. Screening Tests, Colposcopy, and Histology Diagnosis

Cytology results were classified into five categories in accordance with the Bethesda
system, including negative for intraepithelial lesion or malignancy (NILM), atypical squa-
mous cells of undetermined significance (ASC-US), low-grade squamous intraepithelial
lesion (LSIL), atypical squamous cells—cannot exclude high-grade squamous intraepithe-
lial lesion (ASC-H), and HSIL+. HPV results were categorized as HPV 16/18 positive, other
HR-HPV positive, and HR-HPV negative.

Experienced colposcopists assessed the type of TZ and gave a colposcopic impression
(normal, LSIL, HSIL, or cancer) following the 2011 IFCPC colposcopic terminology for the
cervix [18]. All abnormalities were biopsied, and endocervical curettage was performed
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if necessary. Histological diagnosis performed by experienced pathologists from local
hospitals was considered the gold standard. Histological results were classified as normal,
LSIL, and HSIL+ in accordance with the Lower Anogenital Squamous Terminology (LAST)
system. Any disagreements were resolved by discussion. The worst grade of the dysplasia
present was taken as the final diagnosis.

2.3. Development and Validation of ML Models

Features were selected on the basis of literature reviews and expert discussion. Age,
gravidity, and parity have been identified as risk factors for cervical cancer in previous
studies and were included in our ML models [19,20]. The ASCCP guidelines recommend
that colposcopy practice should be performed on the basis of cytology, HPV results, and
colposcopic impression [7]. Thus, these variables were also used for model construction.
Although the influence of menopause status and TZ type on the development of HSIL+
is not consistent, these variables play important roles in colposcopy practice and are
recommended by experts to be included in the model [6,21,22].

The complete data were divided into internal and external sets on the basis of hos-
pital site. Individuals collected from five hospitals were used as the internal set. The
synthetic minority oversampling technique (SMOTE) was adopted to eliminate the impact
of imbalanced data. In the oversampling process, the number of minority samples was
randomly filled to the same number as that of the majority samples. The internal set was
then randomly divided into the training and internal validation sets at a ratio of 8:2. The
other two hospitals were used as the external validation set to assess the generalization of
the model. We also used five-fold cross-validation to test the accuracy of models on the
whole dataset from seven hospitals.

Six commonly used ML models were selected in this study, including logistic regres-
sion (LR), decision tree (DT), naïve bayes (NB), support vector machine (SVM), random
forest (RF), and extreme gradient boosting (XGBoost). As a classical statistical model,
the LR model performs well in a variety of statistical prediction and regression scenarios.
The DT model divides the search space into smaller parts and searches for each part by
asking yes or no questions. The NB model, based on the Bayesian inference theorem, can
demonstrate the importance of different variables in the prediction process from another
perspective. SVM with a radial basis function (RBF) maps input variables into a nonlinear
hyperplane with higher feature spaces and can classify both linear and nonlinear data. The
RF is an ensemble learning algorithm based on bagging. It uses different random samples
to train multiple decision trees and the voting method to obtain the final classification result.
XGBoost is an efficient and extensible learning classifier that is based on boosting. The
objective function of XGBoost is regularized, which is beneficial to control overfitting and
further improve model performance. The development of these models was operated on a
Jupyter Notebook in Anaconda based on python 3.8.5. We used the sk-learn.tree decision
tree classifier function to develop the DT model. The NB model was developed using
sk-learn.naive.bayes, and the SVM model was built using the sk-learn.svm.SVC function.
The random forest model was established by the RandomForestClassifier function in the
sklearn.ensemble package. Additionally, the XGBoost model was developed through the
XGBClassifier function in the XGBoost package. The model parameters were optimized by
comparing the average accuracy in a five-fold cross-validation. The prediction function
was used to generate the probability predicted by each model. We chose the optimal cut-off
point, with excellent sensitivity and good specificity, for every model.

2.4. Statistical Analysis

Data analysis was performed using SAS version 9.4 (Cary, NC, USA). The chi-square
test was used to compare differences in the distribution of variables between HSIL+
and <HSIL cases in the training and validation datasets. A two-sided p < 0.05 was re-
garded as statistically significant. Sensitivity, specificity, accuracy, the Matthews correlation
coefficient (MCC), receiver operating characteristic (ROC) curves, and the area under the
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curve (AUC) were used to evaluate the diagnostic performance of different ML models
and colposcopists at detecting HSIL+. The importance of variables in the SVM and NB
models was calculated by estimating the decrease in AUC when the variable was removed
from the model. The importance of variables in the LR, DT, RF, and XGBoost models was
reflected by coefficients in the models. The overall-importance of the variable is obtained
by averaging the variable ranking in six models.

3. Results
3.1. Characteristics of Study Population

Figure 1 shows the process of model development and validation. We identified
7583 patients who had undergone colposcopy during the study period, 125 of whom were
excluded according to our predefined selection criteria. The data of 7485 patients were
used to develop and validate the ML models. The training and internal validation set
consisted of 1632 HSIL+ patients and 4932 <HSIL patients. The external validation set
consisted of 163 HSIL+ patients and 731 <HSIL patients. Among the whole population,
4135 (55.4%) were aged between 30 and 45; most had one or two pregnancies (5079,
68.1%), one or two deliveries (6018, 80.7%), and no menopause (6287, 84.3%). There
were 4073 (54.6%) patients with cytological ASC-US or above, 2479 (33.2%) with HPV
16/18 positivity, 3587 (48.1%) with other HR-HPV positivity; 38.2% (2013) of the women
were infected by multiple HPV subtypes. In total, 2847 (38.2%) participants had type 3
TZ, while 3695 (49.5%) and 1629 (21.8%) had colposcopic impressions of LSIL and HSIL+,
respectively. The characteristics of the study population in different datasets are displayed
in Table 1. Compared with <HSIL controls, HSIL+ patients were more likely to be between
30 to 45 years old (p = 0.003), had more gravidities and parities, were more likely to be
cytological LSIL+, HPV 16/18 positive, and infected by a single HR-HPV, had an HSIL+
colposcopic impression, and were less likely to have type 3 TZ (all p < 0.001).

Table 1. Characteristics of the study population.

Variables
Total (n = 7458) Training and Internal Validation Set

(n = 6564) External Validation Set (n = 894)

<HSIL † HSIL+ ‡ p <HSIL † HSIL+ ‡ p <HSIL † HSIL+ ‡ p

Numbers 5663 (75.9) 1795 (24.1) 4932 (75.1) 1632 (24.9) 731 (81.8) 163 (18.2)
Age 0.003 0.02 0.031
<30 984 (17.4) 251 (14.0) 850 (17.2) 233 (14.3) 134 (18.3) 18 (11.0)

30–45 3099 (54.7) 1036 (57.7) 2761 (56.0) 945 (57.9) 338 (46.2) 91 (55.8)
>45 1580 (27.9) 508 (28.3) 1321 (26.8) 454 (27.8) 259 (35.4) 54 (33.1)

Gravidity <0.001 <0.001 0.001
0 681 (12.0) 139 (7.7) 584 (11.8) 133 (8.1) 97 (13.3) 6 (3.7)

1–2 3839 (67.8) 1240 (69.1) 3392 (68.8) 1137 (69.7) 447 (61.1) 103 (63.2)
≥3 1143 (20.2) 416 (23.2) 956 (19.4) 362 (22.2) 187 (25.6) 54 (33.1)

Parity <0.001 <0.001 0.022
0 1029 (18.2) 246 (13.7) 892 (18.1) 226 (13.8) 137 (18.7) 20 (12.3)

1–2 4525 (79.9) 1493 (83.2) 3946 (80.0) 1358 (83.2) 579 (79.2) 135 (82.8)
≥3 109 (1.9) 56 (3.1) 94 (1.9) 48 (2.9) 15 (2.1) 8 (4.9)

Menopause 0.321 0.422 0.863
No 4760 (84.1) 1527 (85.1) 4201 (85.2) 1404 (86.0) 559 (76.5) 123 (75.5)
Yes 903 (15.9) 268 (14.9) 731 (14.8) 228 (14.0) 172 (23.5) 40 (24.5)

Cytology <0.001 <0.001 <0.001
NILM 2931 (51.8) 454 (25.3) 2418 (49.0) 400 (24.5) 513 (70.2) 54 (33.1)

ASC-US 1660 (29.3) 396 (22.1) 1528 (31.0) 364 (22.3) 132 (18.1) 32 (19.6)
LSIL 827 (14.6) 314 (17.5) 768 (15.6) 298 (18.3) 59 (8.1) 16 (9.8)

ASC-H 113 (2.0) 189 (10.5) 96 (1.9) 164 (10.0) 17 (2.3) 25 (15.3)
HSIL 132 (2.3) 442 (24.6) 122 (2.5) 406 (24.9) 10 (1.4) 36 (22.1)

HR-HPV <0.001 <0.001 <0.001
Negative 1311 (23.2) 81 (4.5) 1006 (20.4) 67 (4.1) 305 (41.7) 14 (8.6)

Other HR-HPV
positive 2906 (51.3) 681 (37.9) 2645 (53.6) 624 (38.2) 261 (35.7) 57 (35.0)

HPV16/18
positive 1446 (25.5) 1033 (57.5) 1281 (26.0) 941 (57.7) 165 (22.6) 92 (56.4)
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Table 1. Cont.

Variables
Total (n = 7458) Training and Internal Validation Set

(n = 6564) External Validation Set (n = 894)

<HSIL † HSIL+ ‡ p <HSIL † HSIL+ ‡ p <HSIL † HSIL+ ‡ p

HR-HPV
multi-infection <0.001 <0.001 <0.001

Negative 1311 (23.2) 81 (4.5) 1006 (20.4) 67 (4.1) 305 (41.7) 14 (8.6)
Single infection 2864 (50.5) 1189 (66.3) 2476 (50.2) 1044 (64.0) 388 (53.1) 145 (88.9)

Multiple
infections 1488 (26.3) 525 (29.2) 1450 (29.4) 521 (31.9) 38 (5.2) 4 (2.5)

Transformation
zone <0.001 <0.001 <0.001

Type 1 1646 (29.1) 557 (31.0) 1288 (26.1) 454 (27.8) 358 (49.0) 103 (63.2)
Type 2 1730 (30.5) 678 (37.8) 1632 (33.1) 651 (39.9) 98 (13.4) 27 (16.6)
Type 3 2287 (40.4) 560 (31.2) 2012 (40.8) 527 (32.3) 275 (37.6) 33 (20.2)

Colposcopy <0.001 <0.001 <0.001
Normal 2080 (36.7) 54 (3.0) 1775 (36.0) 40 (2.5) 305 (41.7) 14 (8.6)

LSIL 3262 (57.6) 433 (24.1) 2893 (58.7) 380 (23.3) 369 (50.5) 53 (32.5)
HSIL 318 (5.6) 1249 (69.6) 264 (5.4) 1172 (71.8) 54 (7.4) 77 (47.2)

Cancer 3 (0.1) 59 (3.3) 0 (0.0) 40 (2.5) 3 (0.4) 19 (11.7)

Category variables are presented as a number (percentage). † Histologically confirmed normal or low-grade
squamous intraepithelial lesion. ‡ Histologically confirmed high-grade squamous intraepithelial lesion or
worse. Abbreviations: NILM, negative for intraepithelial lesion or malignancy; ASC-US, atypical squamous
cells of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; ASC-H, atypical squamous
cells—cannot exclude high-grade squamous intraepithelial lesions; HSIL, high-grade squamous intraepithelial
lesion or worse; HR-HPV, high-risk human papillomavirus.
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Figure 1. Flow chart showing the process of model development and validation. Abbrevia-
tions: <HSIL, normal or low-grade squamous intraepithelial lesion; HSIL+, high-grade squamous
intraepithelial lesion or worse; SMOTE, synthetic minority oversampling technique.
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3.2. Model Performance and Variable Ranking

Table 2 provides the predictive performance of each model and colposcopist for
detecting HSIL+. In the internal validation set, the AUC, accuracy, sensitivity, specificity,
and MCC for diagnosing HSIL+ by colposcopists were 0.830 (95% confidence interval
(CI): 0.810–0.849), 83.27% (95% CI: 81.63–84.92%), 70.86% (95% CI: 67.99–73.74%), 95.06%
(95% CI: 93.72–96.39%), and 0.695 (95% CI: 0.674–0.715), respectively. The six models
that integrated demographics and screening results showed significant improvements in
AUC (0.067 to 0.099) and sensitivity (11.55 to 14.88%). The DT model had a significantly
higher AUC compared with the NB model (0.929 [95% CI: 0.918–0.940] vs. 0.897 [95% CI:
0.883–0.911]). The DT model was also slightly better than the other models in terms of
accuracy, sensitivity, and MCC.

Table 2. Performance of different models and colposcopists for detecting HSIL+.

Model AUC (95% CI) Accuracy %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI) MCC (95% CI)

Internal validation
set
LR 0.909 (0.896–0.922) 82.31 (80.63–83.99) 83.87 (81.55–86.20) 80.83 (78.40–83.26) 0.647 (0.626–0.668)

SVM 0.914 (0.901–0.926) 83.83 (82.21–85.46) 83.66 (81.33–86.00) 83.99 (81.73–86.25) 0.677 (0.656–0.697)
DT 0.929 (0.918–0.940) 84.85 (83.26–86.43) 85.74 (83.53–87.95) 83.99 (81.73–86.25) 0.697 (0.677–0.717)
NB 0.897 (0.883–0.911) 81.65 (79.94–83.36) 83.35 (81.00–85.71) 80.04 (77.58–82.50) 0.634 (0.613–0.655)
RF 0.919 (0.907–0.931) 83.78 (82.15–85.41) 82.41 (80.01–84.82) 85.08 (82.88–87.27) 0.675 (0.655–0.696)

XGBoost 0.919 (0.907–0.930) 82.31 (80.63–83.99) 84.81 (82.54–87.08) 79.94 (77.47–82.41) 0.648 (0.627–0.669)
Colposcopists 0.830 (0.810–0.849) 83.27 (81.63–84.92) 70.86 (67.99–73.74) 95.06 (93.72–96.39) 0.695 (0.674–0.715)

External validation
set
LR 0.862 (0.830–0.895) 78.52 (75.83–81.22) 80.37 (74.27–86.47) 78.11 (75.11–81.11) 0.482 (0.449–0.515)

SVM 0.844 (0.807–0.882) 77.96 (75.25–80.68) 79.75 (73.59–85.92) 77.56 (74.54–80.59) 0.471 (0.438–0.504)
DT 0.842 (0.808–0.876) 74.38 (71.52–77.25) 77.91 (71.55–84.28) 73.60 (70.40–76.79) 0.415 (0.383–0.447)
NB 0.874 (0.843–0.905) 78.19 (75.48–80.90) 80.98 (74.96–87.01) 77.56 (74.54–80.59) 0.480 (0.448–0.513)
RF 0.869 (0.838–0.900) 80.87 (78.29–83.45) 76.07 (69.52–82.62) 81.94 (79.15–84.73) 0.496 (0.463–0.528)

XGBoost 0.847 (0.814–0.881) 77.85 (75.13–80.57) 77.91 (71.55–84.28) 77.84 (74.83–80.85) 0.460 (0.428–0.493)
Colposcopists 0.755 (0.708–0.803) 86.13 (83.86–88.40) 58.90 (51.34–66.45) 92.20 (90.26–94.15) 0.524 (0.491–0.557)

Abbreviations: HSIL+, high-grade squamous intraepithelial lesion or worse; AUC, area under the curve;
MCC, Matthews correlation coefficient; LR, logistic regression; SVM, support vector machine; DT, decision
tree; NB, naïve bayes; RF, random forest; XGBoost, extreme gradient boosting.

In the external validation set, the AUC, accuracy, sensitivity, specificity, and MCC
of colposcopists were 0.755 (95% CI: 0.708–0.803), 86.13% (95% CI: 83.86–88.40%), 58.90%
(95% CI: 51.34–66.45%), 92.20% (95% CI: 90.26–94.15%), and 0.524 (95% CI: 0.491–0.557),
respectively. Greater increases in AUC (0.087 to 0.119) and sensitivity (17.17 to 22.08%)
were observed among the six models than in the internal validation set. In general, the
performance of each model was similar but inferior to that in the internal validation set.
Among them, the NB model showed a slightly higher AUC (0.874 [95% CI: 0.843–0.905])
than the other models, while the DT model performed relatively poorly for all indicators.
The RF model yielded a relatively higher accuracy, specificity, and MCC but lower sensi-
tivity. Figure 2 shows the ROC curves of the different models in the internal and external
validation sets.

The combined confusion matrix and performance of the six models for detecting HSIL+
based on five-fold cross-validation are provided in Tables S1 and S2. The average accuracy,
balanced accuracy, and MCC ranged from 86.56% to 89.13%, 80.94% to 83.48%, and 0.628 to
0.693, respectively.

The rankings of variable importance are shown in Table 3. Overall, colposcopic
impression was the most important predictor, followed by HR-HPV infection and cytology.
TZ type, HR-HPV multi-infection, and age ranked fourth, fifth, and sixth, respectively.
Gravidity, parity, and menopause status all ranked seventh. Colposcopic impression had
the strongest predictive effect in all six models. HR-HPV and cytology results ranked
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second or third in all models except for the LR model. TZ type was important in the
LR, DT, and RF models but ranked lower in the SVM and XGBoost models. HR-HPV
multi-infection ranked higher than fifth in the LR and XGBoost models. Age ranked higher
than sixth in the SVM and NB models.
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Figure 2. Performance of different models for detecting HSIL+. Displayed are receiver operating
characteristic (ROC) curves and the area under the curves (AUC) of different models in detecting high-
grade squamous intraepithelial lesions or worse (HSIL+). Different colors represent different models.
LR, logistic regression; SVM, support vector machine; DT, decision tree; NB, naïve bayes; RF, random
forest; XGBoost, extreme gradient boosting. (A) internal validation; (B) external validation.

Table 3. Ranking of variable importance.

Model Age Gravidity Parity Menopause Cytology HR-HPV
HR-HPV

Multi-
Infection

Transformation
Zone Colposcopy

LR 8 9 7 6 5 2 3 4 1
SVM 4 7 5 6 2 3 8 9 1
DT 6 5 8 9 2 3 7 4 1
NB 4 6 7 8 2 3 9 5 1
RF 7 9 6 8 3 2 5 4 1

XGBoost 8 6 9 5 3 2 4 7 1
Overall † 6 7 7 7 3 2 5 4 1

The number 1 indicates that the variable ranks first in terms of importance, and 9 indicates that the variable ranks
last among all variables. † The overall-importance of the variable is obtained by averaging the variable ranking
in six models. Abbreviations: HR-HPV, high-risk human papillomavirus; LR, logistic regression; SVM, support
vector machine; DT, decision tree; NB, naïve bayes; RF, random forest; XGBoost, extreme gradient boosting.

3.3. Subgroup Analysis

Subgroup analysis was conducted to evaluate the predictive performance of different
models in 487 HSIL+ patients who were diagnosed as <HSIL by colposcopists. As shown in
Table 4, the DT model yielded the highest AUC (0.836 [95% CI: 0.819–0.854]) and sensitivity
(87.38% [95% CI: 84.21–90.56%]) in the internal validation set, while it performed poorly
in the external validation set, with an AUC of 0.714 (95% CI: 0.656–0.772) and sensitivity
of 56.72% (95% CI: 44.85–68.58%). Although the NB model yielded relatively poor AUC
(0.741 [95% CI: 0.718–0.764]) and sensitivity (74.29% [95% CI: 70.11–78.47%]) in the internal
validation set, it performed the best in the external validation set, with an AUC of 0.781
(95% CI: 0.725–0.837) and sensitivity of 76.12% (95% CI: 65.91–86.33%). MCCs were low
from 0.120 (95% CI: 0.096–0.143) to 0.277 (95% CI: 0.265–0.289) regardless of ML models and
the validation set. Figure 3 shows the ROC curves of the six models in different datasets.
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Table 4. Performance of different models for detecting HSIL+ among patients diagnosed as <HSIL
by colposcopists.

Model AUC (95% CI) Accuracy %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI) MCC (95% CI)

Internal validation
set
LR 0.755 (0.733–0.777) 63.99 (62.67–65.31) 74.52 (70.36–78.69) 63.05 (61.66–64.43) 0.211 (0.200–0.222)

SVM 0.781 (0.759–0.803) 81.47 (80.40–82.53) 55.24 (50.48–59.99) 83.83 (82.77–84.88) 0.272 (0.260–0.284)
DT 0.836 (0.819–0.854) 64.33 (63.01–65.64) 87.38 (84.21–90.56) 62.25 (60.86–63.64) 0.277 (0.265–0.289)
NB 0.741 (0.718–0.764) 61.97 (60.64–63.30) 74.29 (70.11–78.47) 60.86 (59.46–62.26) 0.196 (0.185–0.207)
RF 0.788 (0.768–0.807) 76.53 (75.37–77.70) 61.90 (57.26–66.55) 77.85 (76.66–79.04) 0.251 (0.239–0.263)

XGBoost 0.789 (0.769–0.809) 73.98 (72.77–75.18) 63.81 (59.21–68.41) 74.89 (73.65–76.14) 0.236 (0.225–0.248)
External validation

set
LR 0.752 (0.693–0.812) 61.67 (58.17–65.17) 71.64 (60.85–82.43) 60.68 (56.99–64.37) 0.188 (0.160–0.216)

SVM 0.714 (0.644–0.784) 77.33 (74.31–80.34) 52.24 (40.28–64.20) 79.82 (76.79–82.85) 0.218 (0.189–0.248)
DT 0.714 (0.656–0.772) 62.89 (59.41–66.37) 56.72 (44.85–68.58) 63.50 (59.87–67.14) 0.120 (0.096–0.143)
NB 0.781 (0.725–0.837) 62.89 (59.41–66.37) 76.12 (65.91–86.33) 61.57 (57.90–65.25) 0.219 (0.189–0.249)
RF 0.773 (0.717–0.828) 75.71 (72.62–78.80) 61.19 (49.53–72.86) 77.15 (73.98–80.32) 0.250 (0.219–0.281)

XGBoost 0.725 (0.667–0.784) 63.97 (60.51–67.42) 64.18 (52.70–75.66) 63.95 (60.32–67.57) 0.166 (0.139–0.193)

Abbreviations: HSIL+, high-grade squamous intraepithelial lesion or worse; <HSIL, normal or low-grade squa-
mous intraepithelial lesion; LR, logistic regression; SVM, support vector machine; DT, decision tree; NB, naïve
bayes; RF, random forest; XGBoost, extreme gradient boosting; MCC, Matthews correlation coefficient.
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Figure 3. Performance of different models for detecting HSIL+ among patients diagnosed as <HSIL
by colposcopists. Displayed are receiver operating characteristic (ROC) curves and the area under
the curves (AUC) of different models in detecting histologically confirmed high-grade squamous
intraepithelial lesions or worse (HSIL+) with colposcopic impression <HSIL. Different colors rep-
resent different models. LR, logistic regression; SVM, support vector machine; DT, decision tree;
NB, naïve bayes; RF, random forest; XGBoost, extreme gradient boosting. (A) internal validation;
(B) external validation.

4. Discussion

In this study, we have developed and validated ML-based models to predict HSIL+
in patients referred to colposcopy. All six ML models that integrated demographics, screen-
ing results, and colposcopic impressions had significantly improved AUC and sensitivity
compared with colposcopists, regardless of testing in the internal or external validation
sets. Colposcopic impressions, HR-HPV results, and cytology results were the top three
variables for determining model performance.

Colposcopy plays a vital role in detecting HSIL+, but its overall performance remains
unsatisfactory. The sensitivity and specificity of colposcopistsfor detecting HSIL+ in our
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study were 70.86% and 95.06%, respectively, which were similar to the sensitivity and
specificity of 71.6% and 98.0%, respectively, achieved by two expert colposcopists in a
previous study [6]. However, the sensitivity was only 54.7% in another study carried out
in China owing to various degrees of colposcopists’ clinical experience [23]. The primary
task for colposcopists is to identify and treat high-grade diseases to reduce the risk of de-
veloping invasive cancer. However, several studies have shown that colposcopic diagnoses
tend to underestimate rather than overestimate the pathology of biopsies [6,23,24]. This
imprecision is partly because colposcopy largely depends upon the subjective experience
of operators. Immaturity and the evolution of colposcopy diagnostic criteria also make
junior colposcopists more confused [25]. Additionally, some potential lesions, visible at
molecular and cellular levels, are not visible under colposcopy, which can be intensified
with a change of screening modality from cytology to primary HPV screening. Therefore,
more information, such as screening results and basic demographics, should be consid-
ered when determining follow-up, biopsy, or immediate treatment for patients referred
for colposcopy.

Different ML models with various variables have been used for cervical cancer screen-
ing in previous studies. For example, Kahng et al. used an SVM model with age, cytology,
and the presence of 15 HR-HPV genotypes to predict progression to cervical lesions, with
an accuracy of 74.41% [14]. Karakitsos et al. developed a neural network classifier based
on cytology, HPV, E6/E7 mRNA, and p16 immunostaining to identify cervical intraep-
ithelial neoplasia grade 2+ (CIN2+), which obtained a significantly improved AUC (0.916)
compared with cytological diagnosis alone (0.866) [16]. Another study reported that the
valuable predictive factors were age, cytology, HR-HPV DNA/mRNA, E6 oncoprotein,
HPV genotyping, and p16/Ki-67, which had an AUC of 0.92 for predicting CIN2+ [26].
Several studies have used epidemiologic risk factors and molecular markers to predict
histologic grade or risk stratification on the basis of logistic regression results. For example,
Rothberg et al. constructed a model using age, race, marital status, insurance, smoking
history, income, and previous HPV results on around 100,000 women, obtaining an AUC
of 0.81 for HSIL+ [17]. Another study used mRNA level, DNA index, parity, and age to
achieve excellent discrimination for HSIL, with an AUC of 0.99 [15]. These studies further
highlight the value of integrating clinical information and reflect the advantages of ML
in processing multi-dimensional data. However, these studies were based on screening
scenarios, and no model has been developed to further combine colposcopic impressions
to predict HSIL+ under a diagnostic context.

All six ML models in our study showed improved AUC and sensitivity for detecting
HSIL+ compared with colposcopists. However, the importance of colposcopy ranked
first among all variables, no matter the model. This finding is consistent with previous
research that showed that colposcopic impression had a stronger association with the final
histological diagnosis of HSIL than pap smears or HPV 16/18 infections [27]. We also found
that HR-HPV infection and cytology ranked second and third in overall variable importance,
in line with colposcopy being a reason for referral, as proposed by the ASCCP [7]. In the 2017
ASCCP guidelines, serial cytology and HPV testing but not biopsy may be recommended
when the risk of precancer is very low (no evidence of HPV 16/18, <HSIL cytology, and
a completely normal colposcopic impression). In contrast, immediate treatment may be
warranted for those at very high risk (at least two of the following: HPV 16/18 positive,
HSIL cytology, and high-grade colposcopy impression). Silver et al. calculated pooled
risk estimates for 32 strata on the basis of cytology, HPV 16/18 results, and colposcopy in
a meta-analysis, and their results also support a risk-based approach to colposcopy and
biopsy practice [28].

We found that TZ type and age ranked fourth and sixth among all variables, respec-
tively. The proportion of HSIL+ in 30- to 45-year-olds was higher than in the other two
age groups, which is consistent with the peak diagnosis age of HSIL being between 30
and 45 years [19]. The precise identification of the squamocolumnar junction (SCJ) and
the evaluation of the TZ are crucial steps during colposcopy. In total, 38.2% of patients
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in our study had type 3 TZ. This proportion fluctuates greatly among different studied
populations [6,29]. Previous studies have suggested that TZ type is associated with col-
poscopic accuracy, as higher accuracy and sensitivity for detecting HSIL+ were found in
women with type 1/2 TZ compared with women with type 3 TZ [24]. In our study, the
proportion of type 3 TZ in women with HSIL+ was less than that in women with <HSIL.
This indicates that TZ type may not be directly related to developing HSIL+ but does affect
the performance of colposcopy, which requires special attention in clinical practice to avoid
the misdiagnosis of CINs.

Moreover, patients with increased gravidity or parity were more likely to have HSIL+.
Previous studies have confirmed a direct relationship between reproductive factors and the
risk of cervical cancer [20,30,31]. The ectopia of cervical columnar epithelium caused by
delivery-related cervical traumas and high concentrations of estrogen and progesterone
during pregnancy make the SCJ more susceptible to HPV infection. The hormonal profile
and immunodepression caused by pregnancy may also favor infection or accelerate cervical
carcinogenesis. Additionally, more pregnancies may represent insufficient condom use, and
subsequently induced abortions may lead to joint infections of bacteria and viruses, which
aggravates damage to the cervix. The impact of menopause status on the development of
HSIL+ is complicated by hormone levels and immune status. Cervical atrophy, decreased
cell detachment, and the contraction of the SCJ in postmenopausal women may result in the
lower accuracy of colposcopy, which should be paid more attention to in clinical practice.

In total, 33.2% of HR-HPV-positive patients were infected with multiple HR-HPVs
in our study, which is within the range of 26.3% and 43.2% that has been previously re-
ported [32,33]. We found that a higher incidence of HSIL+ in patients with single infections
than those with multiple infections. However, the association between multiple HPV
infections and cervical lesions remains inconclusive. Some studies support multiple infec-
tions having no additive or synergistic effects on the development of HSIL+ [33,34], while
other studies suggest that coinfection may act synergistically in cervical carcinogenesis [35].
Other data highlight the importance of the type of HPV infection. For example, a single
infection with HPV 16 is more virulent than a multiple-infection pattern, while for HPVs
52, 53, 56, 51, 39, 66, 59, 68, and 35, a multiple-infection pattern is more likely to develop
into HSIL+ than a single infection [32].

We found that the AUC of the DT model was significantly higher than that of the NB
model in the internal validation set but that the NB model performed best in the external
validation set despite no statistical significance being found. This finding is consistent with
the algorithm, in which DT tends to overfit the training data, while NB is not prone to
overfitting [36]. The DT is based on a hierarchical structure and has the advantage of good
interpretability. However, it tends to overfit unless properly pruned, and it is unsuitable
for all applications as it linearly separates samples. The NB model is easily implemented,
highly scalable, and does not require many data entries to make proper classifications.
Nevertheless, the independence assumption behind NB classifiers is quite bold and usually
never holds in practice, leading to inaccuracies in the calculations of class probabilities.
However, as long as the probability of the correct category is higher than those of the others,
inaccuracies in the probability calculation will not affect outcomes. Both methods are fast
and efficient, and in most cases, both will be tested before deciding. We also used two
ensemble algorithms to construct the predictive model. RF is based on bagging, which fits
many decision trees on different samples of the same dataset and averages the predictions.
XGBoost is based on boosting, which adds ensemble members sequentially that correct
the predictions made by prior models and outputs a weighted average of the predictions.
These two models had no significant improvement in predicting HSIL+ compared to other
base models in our study.

To our knowledge, few studies have developed predictive models for cervical precan-
cers in Chinese women referred for colposcopy. We also conducted internal and external
validation of the ML models in a large set of samples from multiple centers. All variables
we used are clinically easy to obtain. However, the study has some limitations that must
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be considered. First, it was a retrospective study, so prospective follow-up is needed to
explore the long-term predictive performance of our models. Second, some variables that
may improve the predictions of HSIL+, such as HPV infection history, smoking status,
and sexual behavior, were not collected. Nevertheless, we have made the best use of the
information available from existing sources. Third, in our study, colposcopy examinations
were conducted by senior colposcopists, which may not be generalizable to all primary
medical institutions. A way to better extrapolate the models using colposcopic information
from junior colposcopists needs to be evaluated. As colposcopic impression was the vari-
able with the greatest impact on model performance, improving the diagnostic ability of
colposcopists is still a priority in the future. New technology such as artificial intelligence
(AI) colposcopy and innovative forms of colposcopy training could bring exciting changes
to the current situation [37–39]. Our predictive models trained by non-imaging clinical data
could also be integrated with the current image-based AI colposcopy to make colposcopy
practice more intelligent, objective, and comprehensive.

5. Conclusions

This study demonstrates that ML can improve the AUC and sensitivity for detecting
HSIL+ in patients referred for colposcopy by incorporating demographics, screening results,
and colposcopic impressions. These models can transform a subjective experience into an
objective judgment to help clinicians make decisions at the time of colposcopy examinations.
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