
Evaluating the Impact of
Automated Intrusion Response Mechanisms

Thomas Toth and Christopher Kruegel
Technical University Vienna, Austria

Institute for Information Systems
Argentinierstrasse 8, A-1040 Vienna, Austria

fttoth, chrisg@infosys.tuwien.ac.at

Abstract

Intrusion detection systems (IDSs) have reached a high
level of sophistication and are able to detect intrusions with
a variety of methods. Unfortunately, system administrators
neither can keep up with the pace that an IDS is deliver-
ing alerts, nor can they react upon these within adequate
time limits. Automatic response systems have to take over
that task. In case of an identified intrusion, these compo-
nents have to initiate appropriate actions to counter emerg-
ing threats. Most current intrusion response systems (IRSs)
utilize static mappings to determine adequate response ac-
tions in reaction to detected intrusions. The problem with
this approach is its inherent inflexibility. Countermeasures
(such as changes of firewall rules) often do not only defend
against the detected attack but may also have negative ef-
fects on legitimate users of the network and its services. To
prevent a situation where a response action causes more
damage that the actual attack, a mechanism is needed that
compares the severity of an attack to the effects of a possible
response mechanism. In this paper, we present a network
model and an algorithm to evaluate the impact of response
actions on the entities of a network. This allows the IRS to
select the response among several alternatives which fulfills
the security requirements and has a minimal negative effect
on legitimate users.

1. Introduction

The constant increase of attacks against networks and
their resources causes the necessity to protect these valuable
assets. Although well-configured firewalls provide good
protection against many attacks, some services (like HTTP
or DNS) have to be publicly available. In such cases, a fire-
wall has to allow incoming traffic from the Internet to these
services without restrictions. As a matter of fact, the pro-

grams implementing these services are often complex and
old pieces of software. This inevitably leads to the existence
of programming bugs which can be exploited by skilled in-
truders.

Intrusion detection systems (IDSs) are security tools that
are used to detect traces of malicious activities which are
targeted against networks and their resources. IDSs are tra-
ditionally classified as anomaly or signature based. Signa-
ture based systems like Snort [10], STAT [12] or NetSTAT
[13, 14] act similar to virus scanners and look for known,
suspicious patterns in their input data. Anomaly based sys-
tems watch for deviations of actual from expected behavior
and classify all ‘abnormal’ activities as malicious.

As signature based designs compare their input to
known, hostile scenarios they have the advantage of rais-
ing virtually no false alarms (i.e. classifying an action as
malicious when in fact it is not). For the same reason, they
have the significant drawback of failing to detect variations
of known attacks or entirely new intrusions.

Because of the ability to detect previously unknown in-
trusions a number of different anomaly based systems have
been proposed. Depending on their source of input data,
they are divided into host based and network based designs.

Host based anomaly detection systems can focus on user
or program behavior. User profiles are built from login
times and accessed resources (e.g. files, programs) or from
timing analysis of keystrokes [4, 1]. Unfortunately, user be-
havior is hard to predict and can change frequently. Addi-
tionally, such systems cannot react properly when network
services get compromised as no single user profile can be
associated to a daemon program.

As a consequence, the focus was shifted from user to
program behavior. The execution of a program is modeled
as a set of system call sequences [6, 5] which occur during
‘normal’ program execution. When the observed sequences
deviate from the expected behavior the program is assumed
to perform something unintended, possibly because of a



successful attack (e.g. buffer overflow).
Most network based anomaly detection systems [8, 9]

only model the flow of packets. The source and destination
IP addresses and ports are used to determine parameters like
the number of total connection arrivals in a certain period
of time, the inter-arrival time between packets or the num-
ber of packets to/from a certain machine. These parameters
can be used to reliably detect port scans or denial-of-service
(DOS) attempts. In [7], an anomaly based method has been
introduced that analyzes the packet payload to identify ma-
licious content used in exploits.

Intrusion response systems (IRSs) take over after signs
of an intrusion are identified and either record the attack or
attempt to actively counter it. Although IRSs are tightly
coupled with the ID systems themselves and are as impor-
tant as these in defending against threats, not much research
effort has been put into their study. Therefore, intrusion re-
sponse, in most cases, remains a manual process which has
to be performed by the system administrator [2].

Current intrusion response systems can be divided into
notification, manual response and automatic response sys-
tems.

The majority of IRSs operate as notification systems,
which means that they simply display or forward output de-
livered by the IDS (e.g. incident data) to the system admin-
istrator. Usually, urgent notification is realized via e-mail or
text message services over a mobile phone.

Manual IRS allows the administrator to manually launch
countermeasures against a detected intrusion by choosing
from a predetermined set of response mechanisms. This
might allow the administrator to harden the firewall or to
change router configurations to disallow malicious traffic.
Manual response can help to cut off denial-of-service at-
tacks [11] but is also beneficial in the case that the sys-
tem detects a hacker who has just obtained access to a cer-
tain host. Such systems support an administrator by offer-
ing ready-to-apply reconfiguration mechanisms in order to
quickly secure the system. Nevertheless, a person has to
determine which methods are appropriate.

The two categories listed above are not proactive in
countering an intrusion. Even when signs of an intrusion
have been detected, countermeasures are not triggered au-
tomatically and defending the network remains a task for
the system administrator. This opens a time window of vul-
nerability between the point when the intrusion has been
detected and the point when the first countermeasure is
launched. The size of this time window can range from
seconds to hours (e.g. during night times or weekends).

According to [3], the success rate of an intruder rises
with the time he can work undisturbed. This interesting
study reports that a skilled attacker can perform an intru-
sion with a 80% success rate if he is given 10 hours time
before any response is launched.

In contrast to the two approaches shown above, au-
tomatic response systems attempt to choose appropriate
countermeasures without human intervention. This allows
to dramatically reduce the size of the vulnerability win-
dow. Most current systems implementing automatic re-
sponse mechanisms use simple decision tables to determine
how to react in the case of identified attacks. More sophisti-
cated variants such as Cooperating Security Managers [15]
and Emerald [9] apply expert systems to perform that task.

Decision tables are an inherently inflexible mechanism
because they allow only a static mapping between intrusions
and the corresponding response actions and do not take pos-
sible negative side effects of countermeasures into account.

In order to provide optimal responses, all possible situa-
tions would have to be encoded in that static table. As this
is clearly infeasible (often situations are not known to the
person creating that table), one has to fall back to default
mechanisms when encountering new situations.

Additionally, it is only feasible to build the static map-
ping table for small networks. In such cases, an operator
can perform the analysis of (all) threat scenarios and deter-
mine the table entries manually. If the network is large and
the network services become more and more intertwined,
hidden dependencies cause the generation of the mapping
table to be more and more cumbersome and error prone.

Another severe problem are false positives (i.e. the IDS
raises an unjustified alarm). When the corresponding coun-
termeasure in case of an incorrect alert is executed by the
IRS, legitimate users may be negatively effected. Consider
a firewall reconfiguration which prohibits incoming connec-
tions to a certain service which is needed by users outside
the network (a nightmare for e-commerce sites).

Emerald and CSM mitigate the drawbacks of a static
mapping table in case of a false alarm by including sever-
ity and confidence metrics into their response process. The
confidence metrics describes the belief of the system that
detected evidence is the indication of a real intrusion. The
severity metrics rates all response mechanism according
to their (potential) negative side effects on legitimate net-
work operations. Measurements with a high severity level
are only allowed when the confidence in an attack is high
enough. A quite similar idea is described in [2] where the
determination of an appropriate response function is done
with the consideration of the expected false positive rate of
the underlying IDS. If the IDS is expected to have a low
false positive rate, the IRS is more likely to invoke severe
response actions.

Such metrics work well when the response action does
not interfere with many other services or when the response
does not last longer than a reasonable small amount of time.
Unfortunately, responses with long-term effects may se-
riously hamper regular users from performing their tasks.
Current response systems do not take normal operation into
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account and have no notion of dependencies of services be-
tween each other. Large networks contain many hosts, each
running several services which might require other services,
making a thorough manual analysis very difficult. The de-
pendencies among the services are usually very complex,
involving a number of different protocols. While some ser-
vices are critical for remote services or users, others may be
unavailable for some time without causing problems.

The proposed severity and confidence metrics are a first
step into the right direction, as they attempt to estimate the
negative side effects of response mechanism. Nevertheless,
they do not include the analysis of the actual network topol-
ogy or services. In addition, these mechanisms are not flex-
ible in assigning priorities to certain services according to
their importance for regular tasks. While the webserver of
an e-commerce site has to remain operational at all times,
this might not be necessary for normal companies. The cost
of having a service off-line due to a response action might
be higher than the threat of the attack. Current models do
not allow to model such requirements.

In this paper, we present a network model to evaluate the
effect of intrusion response mechanisms to the operation of
network services, thus enabling the IRS to choose the best
alternative from a set of possible alternatives. Our model
takes into account the network topology and the dependen-
cies between different entities to capture the consequences
of responses more accurately. Based on this model, an eval-
uation function can estimate the impact of various responses
and select the one with the expected minimal negative con-
sequences.

We define a modeling language to specify the resources
with their dependencies as well as response actions and their
impact on the availability of resources. By including user
requirements into our network model, different sites can tai-
lor the responses according to their needs.

The next two chapters discuss our requirements and the
network model itself. Section 4 describes the evaluation
function to calculate the effects of responses, while Sec-
tion 5 presents details about the implementation. Then we
provide some measurements obtained from our prototype.
Finally, we outline further research and conclude.

2. Model Requirements

This section elaborates on the requirements that we have
identified for our network model to be able to accurately
calculate the effects of responses. In the following sections,
we focus on responses that can reconfigure the firewall, en-
able or disable user accounts and modify the status of pro-
cesses running on a host (i.e. restarting network services,
terminating malicious programs).

� Flexibility The model has to be able to cope with dif-
ferent network topologies and must be able to express

the dependencies among resources themselves and be-
tween services and users. As there should be no ar-
tificial restrictions, our model should not have to rely
on simple mapping tables for calculating response ef-
fects. Instead, the actual situation of the network needs
to be reflected in the model to be able to determine the
effects of response actions accurately.

Not all resources or users have the same relevance for
the operation of the network – this fact has to be ex-
pressible in our model. A resource that is only utilized
by low priority entities is obviously less important than
one used by a mission critical entity. The importance
of a resource can vary dynamically - even by the time
of day.

� Dynamic Model The model has to be dynamic to be
able to track changes in the environment (caused by
response actions). A reconfiguration of the firewall has
to be reflected in the model, as well as changes in the
availability of services due to their (de)activation by a
response.

� Efficiency In order to be useful, the evaluation func-
tion needs to be evaluated quickly. IRSs have to re-
spond fast in order to keep the time window of vulner-
ability small. The model should make the design of an
efficient evaluation function possible.

� Ease of Use In a large network, there are many depen-
dencies between different entities. In order to make
administration of our proposed system easy, not all of
them should have to be entered explicitly by an admin-
istrator. The majority of dependencies can be deter-
mined automatically by the analysis of transitive rela-
tions and the network topology. Only basic relation-
ships at a high level (e.g. this host needs access to a
DNS server) should have to be specified.

The model should be intuitive and comprehensive in
the sense that it resembles the facts of the real world.
A smooth integration of entities and their dependencies
is necessary to achieve this goal.

� Minimization of Negative Impact The model should
be able to help the IRS determine which response ac-
tion to use. In the case that more than one response
action is available, the one which has the least nega-
tive effects on the whole system should be chosen.

3. Network Model

The following section introduces our network model that
is used to calculate the effects of response actions. First, the
elements, which are included in our model, are identified.
The basic elements, as explained in more detail below, are
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services provided by hosts, users of the network, the under-
lying communication infrastructure and firewall rules that
are currently in effect.

Then, we specify how direct and indirect dependencies
between entities are represented. After that the algorithm
that operates on this model to determine the effects of re-
sponses is explained.

3.1. Modeled Elements

Networks are complex structures that include many el-
ements which are heavily related and dependent on each
other. For our model, the following elements are relevant
(in the following explanation, system users and resources
are together referred to as entities).

� Resources Resources describe network services of-
fered by hosts. They build the basic building blocks of
our network model and can depend on other resources
to various degrees. A resource is a network service
which is provided by a process on a host. Examples of
resources/services are DNS, NFS, NIS, HTTP or FTP.
A process provides resources to others by listening on
a predefined port to which other processes or users can
submit requests. Requests are processed and a reply is
sent back to the originator of the query. In our model,
only resources that are used by other entities have to be
included, and processes running at a host without pro-
viding services to external entities are not considered
to be resources.

� System Users Users have to perform their tasks by uti-
lizing the provided resources, therefore they have to be
part of the model as well. Users can assign different
levels of importance to resources.

� Network Topology The network topology has an im-
portant role for the evaluation process because it deter-
mines the communication framework utilized between
different resources.

� Firewall Rules The installed firewall rules effect the
availability of resources/services of the protected net-
work. Dependencies between two resources located in
the same subnet are not affected by response effects
that modify firewall rules. In the case that the com-
munication path from one resource to another leads
through a firewall, its rules obviously influence the
availability of that resource.

3.2. Entity Dependencies

This section explains the different types of dependencies
between entities.

Definition: An entity, which needs a service that is pro-
vided by another entity to be fully operational, is called de-
pendent on that entity. The relation between these two en-
tities is called a dependency. Among the different entities
which are distributed over the hosts of a network, there are
many dependency relationships. While some entities do not
need other ones to be fully operational (stand alone machine
without network connections for running editors), most do
(e.g. a mail-server to let the user send and receive e-mail, a
DNS server to allow DNS name resolution or an HTTP server
for accessing web pages).

An entity is considered to be available for a dependent
one if (a) communication between both is possible and (b)
the entity providing the service is functional (i.e. the pro-
cess providing the service is running). Communication be-
tween two entities is possible if (i) there is a route provided
by the underlying network topology between both and (ii)
all hosts on the route permit the traffic between them.

Figure 1 shows the dependencies between the two users
Anne and Customer, two HTTP servers and a DNS as well
as an NFS server. The entities are expressed as annotated
boxes while the dependency relationships are expressed as
arrows.

DNS

HTTP NFS

AnneCustomer

HTTP

Figure 1. Resource Dependencies

Definition: The dependency between two entities might
be direct or indirect.

A direct dependency is a dependency that is given to the
model manually (via configuration files - the grammar to
model direct dependencies as well as an example are given
in the Appendix). These are the dependencies of entities
on various services. An example would be a user that uses
the DNS service to resolve DNS names (e.g. user Anne in
Figure 1).

As described above, we consider the network topology
and the firewall rules as part of our network model. While
the network topology is the glue between the resources by
providing communication paths, the firewall rules can be
viewed as a method for imposing constraints on these paths
by (dis)allowing certain traffic. The network topology and
the firewall rules introduce new artificial dependencies be-
tween entities and their needed resources. This is caused
by the fact that information exchange has to take place over
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routers and must be allowed by all firewall rules that are in
effect on the communication path (i.e. host personal fire-
walls, router firewalls). These artificial dependencies are
called indirect dependencies. Indirect dependencies are de-
termined automatically by analyzing the network topology
(which is encoded in routing tables) as well as firewall rules.
Indirect dependencies are identified and evaluated during
the phase in which the propagation of network traffic is sim-
ulated. They can be seen as a precondition for fulfilling a
direct dependency. All the indirect dependencies that are
imposed by nodes being on the path between the depending
hosts have to be fulfilled to fulfill the direct dependency. If a
node creates an indirect dependency that is not fulfilled (e.g.
the packet is filtered at this node), a direct dependency re-
lying on it can never be fulfilled too. Indirect dependencies
would be immediately introduced in the example shown in
Figure 1 if the DNS server is located in a different subnet
than Anne or if personal firewalls are installed on any of the
just mentioned hosts.

The example in Figure 2 shows a network that consists
of four subnets and the external Internet (in the top left cor-
ner). The direct dependencies are identical to those shown
in Figure 1. However, note the indirect dependencies be-
tween the gateways that connect the different subnets. In
this figure, routing information as well as firewall rules are
omitted for the sake of simplicity.

Anne

(132.100.100.27)

Subnet 132.100.100.0

GW

(132.100.100.1)

NFS

(132.100.100.4)

Subnet 132.100.99.0

Subnet 132.100.98.0

GW

(132.100.98.1)

HTTPD

(132.100.98.15)

Customer

(x.x.x.x)

DNS

(132.100.98.11)

GW

(132.100.99.1)

Subnet 132.100.101.0

GW

(132.100.

101.1)

HTTPD

(132.100.101.4)

Dependency

Routing path

Figure 2. Topology and Entity Dependencies

4. Impact Evaluation

A response action is a set of operations that can be uti-
lized to avert a certain threat. The basic operations, called
response items, are basic steps like installing or removing
firewall rules, killing and restarting processes or user ac-
count en-/disabling. Response actions are initiated by the
IRS in response to an intrusion which is detected by an
IDS. Because a number of different response actions might
achieve the desired result, it is the task of the IRS to choose
the one with the least impact. The determination of the im-
pact (or effect) of response actions is done with the help of
the current network model by an impact evaluation func-
tion. The set of response actions that have already been
applied (and which have lead to the current state of the net-
work) are called response configuration.

A single response action can affect entities either directly
or indirectly. A direct effect is witnessed when a needed
service becomes unavailable (e.g. due to stopping of ser-
vices or disabling of user accounts). An indirect effect is
experienced when the direct effect on one entity reduces the
service that this entity can provide to another one, thereby
affecting entities that are unrelated at first glance but which
are indirectly dependent.

If a response action hits an entity, it will not be able to
perform its task with the same quality or speed as before.
The degree of a dependency describes in how far the opera-
tion of an entity is affected if the resource, which it depends
on, is no longer available. The introduction of a degree of
dependency can be best motivated by the following exam-
ple. Consider a user that uses his machine mainly to surf the
Internet. In our network model, the entity (representing this
user) will depend a lot on the availability of the DNS server
and the HTTP server (dependencies with high degrees), but
not on the NFS server. On the other hand, a user editing files
on the remote NFS machine will mainly need this service to
accomplish his work (dependency with a high degree).

An entity will usually depend on several resources in
the network. These relationships do not necessarily have
to be trivial. For some entities, it is sufficient to have access
to at least one of a set of (similar) services (called ‘OR-
dependency’) while others need access to all of them (called
‘AND-dependency’). Our model is capable of expressing
both types of relationship as well as combinations of them.

The following example describes a user with her depen-
dencies. User Anne requires access to the NFS server as
well as to the HTTP server. Additionally, she needs access
to one of the two domain name servers DNS1 and DNS2.
These relationships can be denoted in a dependency tree as
shown in Figure 3.

The capability c(r) of an entity r is a value ranging from
0.0 to 1.0 and describes in how far a resource can perform its
work given the current response configuration, compared to
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Figure 3. Dependency tree

the situation where all needed resources are available. The
calculation of this value is based on the underlying network
model given its current state (with services that might have
already been disabled) and the entity’s dependency tree.
When the capability value is determined for an entity, the
communication paths to all the resources that it depends on
are examined. This allows the evaluation function to take
the current routing and packet filter (firewall) rules into ac-
count. When specifying a dependency tree for a certain en-
tity, one must make sure that the capability of the entity is
1.0 when all resources are available. The following para-
graphs explain how a capability value is determined for an
entity.

4.1. Capability Calculation

� Entity does not depend on other entities: In this case
only the current condition of the entity determines its
capability.

– Entity provides service: In this case the capabil-
ity is set to 1.0.

– Entity does not provide service: The capability is
set to 0.0.

� Entity depends on other entities: Here, a recursive
algorithm that performs a depth-first search on the de-
pendency tree is utilized to determine its capability.
The types of the nodes of the dependency tree deter-
mine which formulas are used to aggregate the capa-
bility values obtained from the subtrees below. The
intermediate nodes of the graph can be either of the
type AND or OR, while the leafs represent entities.
func(left) and func(left) denotes the capability of
the left/right link of a node, multiplied with the depen-
dency degree. c describes the capability value that is
derived for the intermediate node. The items of the
following list denote the different node types.

– Entity In this case, the value c for the leaf node
is set to the current capability of this entity.

– OR c = max(func(left); func(right))

– AND c = func(left) + func(right)

To make this evaluation process efficient, no cyclic de-
pendencies may be present which makes it possible to de-
termine a fixed evaluation order in which each entity has
to be evaluated only once. The order can simply be gener-
ated through expanding all dependency trees. During this
operation, all leaves in a dependency trees are substituted
with their dependency trees. No cyclic dependencies are
allowed, therefore the trees have a bounded size. The eval-
uation order is then determined by the trees themselves. The
elements at the bottom of the trees have to be evaluated first,
and then the ones one level up in the tree can be evaluated.

The capability reduction cr(r) of a resource r is the
value 1� c(r).

The penalty cost for an entity is a value representing the
cost when this entity becomes unavailable. The penalty-cost
p(r) of a resource can be calculated with the formula below.

p(r) = cr(r) � penalty (1)

where the penalty is a user-defined constant that reflects
the importance of an entity.

As an example, consider the penalty for the web server
of an e-commerce site. Here, the penalty will be extremely
high as it is necessary to have a running web server to stay
in business. On the other hand, the penalty for the same
service (web service) of a normal company will be usually
lower. Downtimes are clearly acceptable in that case.

4.2. Cost Optimization

Consider the situation where a threat or an intrusion is
identified. There are often a variety of possibilities where
and how a response action can be deployed. Nevertheless,
the choice of the actual response item or response locations
can have tremendous impact on the usability of the whole
system.

Response actions that effect the system’s security in sim-
ilar ways (i.e. that counter a certain threat) are called alter-
natives. Ideally, a response system can determine a num-
ber of adequate response actions which all provide the same
level of security. In this case, the response action with the
least impact should be chosen. Assume a situation in which
a denial-of-service (DOS) attack against the HTTP server
132.100.101.4 in Figure 2 is detected. The response
system might then decide to prevent outside traffic to this
machine either at the gateway to the Internet or at the gate-
way located on the same subnet as the HTTP server.

Usually, choosing the best alternative is a difficult task.
But by determining the impact (i.e. penalty cost) of a re-
sponse action on all entities of the network (using our model
and evaluation function), the one with the lowest negative
effect can be selected.
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Minimizing the penalty cost of new response actions:
This can be easily done when the IRS determines and
presents appropriate response actions to our system. Each
response action is simply added temporary to the model, the
model is evaluated and the overall penalty cost (which is the
sum of all penalty costs) is determined. The response action
with the lowest penalty cost can then be chosen by the IRS,
as shown in Figure 4. Obviously, the actually launched re-
sponse actions have to be added permanently to the model
(more precisely, to the response configuration) in order to
keep it up-to-date with the actual state.

Response-

Configuration

n

Alt. 1

N+1

Response-

Configuration

n+1

Response

Action

with minimal

cost is chosen

Alt. 2

N+1

Alt. 3

N+1

Alt. 4

N+1

Figure 4. Response Configurations

Minimizing the overall penalty cost: When the re-
sponse with the least impact is chosen in every step (the lo-
cal optimum), the overall response configuration might not
be globally optimal (see the example from the Appendix).
Finding a globally optimal response configuration is not
trivial and a number of previous actions might have to be
‘rolled’ back. All alternative combinations of response ac-
tions (stored in the history) have to be re-evaluated to find
the scenario which has the least overall penalty cost.

5. Implementation

We implemented a prototype of the network model and
the evaluation function on Linux 2.4.18 using C. The parser
to process the grammar used to specify direct dependencies
(as shown in the Appendix) has been realized using flex
and bison. The routing tables from all relevant routers of
the network as well as the firewall rules are imported into
the model at startup time.

In addition, the paths from each entities to all entities that
it depends on are pre-calculated. These paths are stored as a
list of hosts where only the permissions (rules) of interme-
diate firewalls have to be checked. This is possible, because
we assume that routing tables remain unchanged during reg-
ular network operation. Also the order in which entities

have to be evaluated is pre-calculated using the method ex-
plained in Section 4.1.

After this initialization phase the prototype is then able
to process the requests of an external IRS component or re-
quests stored in files. We provide an API to the IRS compo-
nent to evaluate the effects of response actions and to mod-
ify and update the response configurations.

Usually, the model is re-evaluated completely (i.e. the
capabilities for all entities are recalculated) when a new re-
sponse is examined. The evaluation of the model can be op-
timized, however, when only a simple firewall rule should
be added. In this case, only a small part of the whole model
is affected by the response action, and therefore only en-
tities which have dependencies that lead over the modified
firewall have to be evaluated. The rest of the model remains
untouched and needs no re-evaluation.

As mentioned before, we currently support the update of
firewall rules, the killing and restarting of processes and the
disabling/enabling of user profiles at hosts. These are the
most important long-term response actions and our network
model can be utilized to calculate their impact.

6. Evaluation

The presented model allows us to determine the effects
of firewall and process based intrusion responses. We pro-
posed an evaluation mechanism that utilizes external infor-
mation describing dependencies between resources in a net-
work as well as their importance to different users to obtain
an impact value for different response actions. In this sec-
tion the computational complexity of the evaluation is in-
vestigated.

6.1. Theoretical Considerations

In order to evaluate the efficiency of this model, we have
to investigate the different operations that are involved.

An optimized data structure is built during the initial-
ization phase. Each resource contains information about
the resources that it depends on their respective dependen-
cies. The fixed evaluation order of the entities and the pre-
calculated paths between entities allow a fast evaluation of
the complete model.

The insertion and removal of a temporary response ac-
tions (the one which is currently examined) into the model
is a crucial step because it has to be performed every time
the impact of new a response action needs to be calcu-
lated. For the actual evaluation of the impact itself, the pre-
calculated paths are utilized. This allows one to only take
the effects of firewall rules and the availability of resources
into account, making local optimization (i.e. finding the
best response action among a set of alternatives) very effi-
cient.
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Finding a globally optimal response configuration is
harder. It requires an exhaustive search of all possible com-
binations of alternatives in the response history, which is
comprised by all response actions that have been suggested
by the IRS. Although this search can be optimized too, it is
still an expensive operation where the number of possibili-
ties increases exponentially with the length of the history of
the response actions that have been evaluated so far (shown
in Figure 5).

Alt. 1

1

Alt. 2

1

Alt. 3

1

Alt. 1

2

Alt. 2

2

Alt. 2

N

Alt. 1

N

Alt. 3

N

........

Optimal

Response

Configuration

Alt. 2

N+1

Alt. 1

N+1

Alt. 3

N+1

Alt. 4

N

Figure 5. Response history and globally opti-
mal response configuration

6.2. Performance Results

We obtained performance measurements to support the
claims of our theoretical results. The execution times of dif-
ferent tasks performed by our prototype evaluation engine
have been determined. We used a model with 35 resources
which were heavily depended on each other - the depen-
dency trees had a depth of up to eight. These resources
were distributed over five subnets. We evaluated the impact
of thirteen different response actions that consisted of up to
ten firewall rule changes, user accounts and process status
modifications.

The average number of alternatives in each test was
2.5384. The performance measurements ( listed in Table 1
below) have been collected on a Pentium III machine with
550 MHz and 512 MB RAM. For each local optimization
step, only up to eight scenarios had to be evaluated where
we could make use of partial evaluation. The global eval-
uation, on the other hand, had to completely evaluate 5184
response configurations in order to determine an optimal so-
lution.

The results show that evaluating different response ac-
tions can be done quickly. This is caused by the fact that
only crucial resources are modeled and that optimized data
structures are used during the evaluation process. While

Insertion and deletion 0.0255 ms

Complete entity
capability evaluation 0.915 ms

Global optimization step 34.358 s

Table 1. Performance Results

the complete entity capability evaluation is suitable for real
time response, a complete global optimization may take
longer, depending on the length of the response history and
the number of alternative response actions. This is caused
by the fact that many alternatives in a long history of re-
sponse actions lead to an explosion of the number of se-
quences that have to be tried. While this seems to be un-
desirable at first glance, one has to realize that no real time
performance is needed for this task. Even if the model re-
quires a minute to find a globally optimal response config-
uration with an adequate level of security, the result is still
beneficial. The security of the system has to be achieved
first, then, in a second step, the usability can be improved.

7. Conclusion and Future Work

We have presented a network model together with an
evaluation function that can be consulted by an intrusion re-
sponse component to determine the response action which
yields the minimal negative impact on deployed network
resources and their users. The effects of ‘severe’ responses
and their impact on the usability of the whole system can be
estimated.

We propose a network model that takes network topol-
ogy, firewall rules, services and users into account and sup-
ports both, dependencies among entities within the network
and those to and from outside users. This allows us to deter-
mine the costs of disabling crucial resources in a response
function. The evaluation mechanism which determines the
negative impact exhibits good performance properties, es-
pecially the variant that determines the best action among a
set of possible alternatives.

Future work will extend the network model and the cost
functions. Instead of deriving the capability of an entity
from static dependency weights on various services, more
sophisticated functions could be utilized. Usually penalty
costs are not constants, but they are a function of time, and
our model could be extended to do so. Work will also con-
centrate on improving the global optimization step which
is computationally expensive now (because an exhaustive
search is performed). Priority queues and dynamic pro-
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gramming might help in speeding up that process.
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8. Appendix

8.1. Model Language Grammar

Resource: <header> <properties>
’requires’ [<depends>] ’;’

header: resourceName ’is’ <type>
[number] <locations>

type: ( ’SERVICE’ | ’USER’ )
locations: ’at’ (IPAddress/subnetmask

| Hostname)
properties: ’{’ (<property> ’;’)+ ’}’
property: Attribute ’=’ Value
depends: ( <compounddepend> [’or’])+
compounddepend: ’(’ resourceName <location>

[<degree>][’and’
<depends>]+ ’)’

degree: <number>

The grammars for importing router configurations and
firewall rules as well as the API for the IRS have been omit-
ted here because of lack of space.

8.2. Example

This section shows the network model of the simple ex-
ample that has been introduced above in Figure 2 written in
our grammar.

After that, we describe how the effects for the two differ-
ent response actions are calculated and demonstrate that the
order in which response actions are selected is crucial for
the final result. Our example presents a situation where the
selected responses, though locally optimal, do not lead to
the best global result. Only an expensive global optimiza-
tion which involves brute forcing all possible combinations
can assert that a setup with a minimal global penalty cost is
reached.

DNS is service at 132.100.98.11 53 udp
{ processName="bind";};

HTTP is service at 132.100.98.15 80,
at 132.100.101.4 80
{ processName="httpd"; };

NFS is service at 132.100.100.4 2049
{ processName="nfsd"; };

anne is user at 132.100.100.27 { cost=5000; }
requires (DNS at 132.100.98.11 53 udp 0.4)
and

( NFS at 132.100.100.4 2049 0.4
and HTTP at 132.100.101.4 80 0.2 ));
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customer is user at !132.100.0.0/255.255.0.0
tcp { cost= 100000; }
requires (HTTP at 132.100.101.4 80 1.0

or HTTP at 132.100.98.15 80 1.0 );

// here routing entries & fw rules start
// subnet *.98
{
132.100.98.1 132.100.98.0 0.0.0.0
255.255.255.0 eth1;

132.100.99.16 132.100.99.0 0.0.0.0
255.255.255.0 eth0;

132.100.98.1 0.0.0.0 132.100.99.1
255.255.255.0;

}
// subnet *.99
{
132.100.99.1 132.100.99.0 0.0.0.0
255.255.255.0 eth0;

132.100.99.1 0.0.0.0 132.101.27.1
255.255.255.0;

132.100.98.1 132.100.98.0 0.0.0.0
255.255.255.0 eth1;

132.100.101.1 132.100.100.0
132.100.101.79 255.255.255.0 ;

132.101.27.34 132.101.27.0 external
0.0.0.0 255.255.255.0 eth3;

}
// subnet *.100
{
132.100.100.1 132.100.100.0 0.0.0.0
255.255.255.0 eth1;

132.100.100.1 0.0.0.0 132.100.101.1
255.255.255.0;

132.100.101.14 132.100.101.0 0.0.0.0
255.255.255.0 eth0;

}
// subnet *.101
{
132.100.101.1 132.100.101.0 0.0.0.0
255.255.255.0 eth0;

132.100.100.27 132.100.100.0 0.0.0.0
255.255.255.0 eth1;

132.100.99.34 132.100.99.0 0.0.0.0
255.255.255.0 eth2;

132.100.101.79 0.0.0.0 132.100.99.1
255.255.255.0;

}

// Response actions to check
// First response action
{
// Alternative 1-A
{ insertfwrule at 132.100.101.1:

fw forward -i eth2 -j deny;
}

// Alternative 1-B
{ insertfwrule at 132.100.99.1:

fw forward -sourceIP !132.100.0.0
-sourceNm 255.255.0.0 -destIP
132.100.100.0 -destNm 255.255.255.0
-j deny;

insertfwrule at 132.100.99.1:
fw forward -sourceIP !132.100.0.0
-sourceNm 255.255.0.0 -destIP
132.100.101.0 -destNm 255.255.255.0
-j deny;

}
}
{ // Second response action
// Alternative 2-A
{ insertfwrule at 132.100.99.1:

fw forward -destIP 132.100.98.0
-destNm 255.255.255.0 -j deny;

}
}

Initially the response configuration does not contain any
firewall rules (for the sake of simplicity). An ID sys-
tem detects an attack coming from the Internet towards the
machine 132.100.101.4, which is running the HTTP-
server. The IRS finds out that there are two ways to pro-
tect this server (labeled alternative 1-A and alternative 1-B).
The IRS then requests the evaluation function to calculate
the effects of both response actions. Alternative 1-A is in-
serted temporary into the model and the capability of all
entities is determined, finding that it results in a reduced ca-
pability for the user Anne (because she will not be able to
access the DNS server anymore) leading to a penalty cost of
2000. The capability for the entity Customer is not reduced
because it can use one of two alternative HTTP servers.
Even if one of them is not accessible the availability of the
other one is sufficient and no penalty cost has to be assigned
to this resource. The total penalty cost for this alternative is
therefore 2000.

The evaluation of alternative B reveals that the capability
of both, the customer and Anne are not reduced, resulting
in a total penalty cost of 0.0. This means that the IRS will
clearly use this variant, because it has a lower penalty value.

The ID system then detects another attack in the network
132.100.98.0/24, for which the IRS finds only one re-
sponse action (namely alternative 2-A). As there are no al-
ternatives to this response action, the optimal choice can be
determined easily. Unfortunately, together with alternative
1-B, the capability of the customer drops to 0.0 which re-
sults in a total penalty cost of 100000 for this variant.

When alternatives 1-A and 2-A would have been cho-
sen, the total penalty cost would have been only 2000. This
emphasizes the importance of global optimization. Notice
that the reconfiguration will not change the security but in-
creases the availability of important services.
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