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Abstract—In recent years, data center network (DCN) archi-
tectures (e.g., DCell [5], FiConn [6], BCube [4], FatTree [1], and
VL2 [2]) received a surge of interest from both the industry and
academia. However, none of existing efforts provide an in-depth
understanding of the impact of these architectures on applica-
tion performance in practical multi-tier systems under realistic
workload. Moreover, it is also unclear how these architectures
are affected in virtualized environments. In this paper, we fill
this void by conducting an experimental evaluation of FiConn
and FatTree, each respectively as a representative of hierarchical
and flat architectures, in a three-tier transaction system using
virtual machine (VM) based implementation. We observe several
fundamental characteristics that are embedded in both classes
of network topologies and cast a new light on the implication
of virtualization in DCN architectures. Issues observed in this
paper are generic and should be properly addressed by any DCN
architectures before being considered for actual deployment,
especially in mission-critical real-time transaction systems.

I. INTRODUCTION

Driven by the recent proliferation of Cloud services and
trend of consolidating enterprise IT systems, data centers are
experiencing a rapid growth in both scale and complexity.
At the same time, it is widely recognized that traditional
tree-like structures of data center networks (DCN) encounter
a variety of challenges, such as limited server to server
connectivity, vulnerability to single point of failure, lack of
agility, insufficient scalability, and resource fragmentation [2].
To address these problems, in the recent two years several
network architectures [1], [2], [4], [5], [6], [7] have been
proposed for large-scale data centers and gained a significant
amount of attention from both industry practitioners and the
research community.

However, all existing work assumes general-purpose under-
lying systems and does not explicitly consider performance
of complicated (e.g., multi-tier) applications or interactions
between different application components. In contrast, data
centers are usually shared systems hosting a set of applica-
tions and the internal traffic is highly correlated due to the
embedded application logic. Moreover, there does not exist
an experimental comparison of these DCN architectures for
a better understanding of their characteristics in a common
physical setting. Finally, an in-depth study of the impact of

server virtualization on DCN architectures is also missing in
the current picture.

In this paper, we seek to fill the void by conducting an
experimental evaluation of two DCN architectures, FiConn
and FatTree (which are respectively a representative of the
hierarchical and flat architectures), in a three-tier transaction
system with a cluster-based virtualized implementation. To-
wards this end, we first implement FiConn and FatTree in a
fully virtualized testbed and then justify correctness of our
implementation by comparing the experiment results to those
obtained from a non-virtualized testbed. We then deploy RU-
BiS [9], a three-tier eBay-like on-line auction system, on both
FiConn and FatTree and examine application performance
in different scenarios. We focus on two test cases, service
fragmentation and failure resilience, from which we observe
several fundamental properties that are embedded in both
architecture classes and shed a new light on the impact of
server virtualization on DCN’s and application performance.
We believe that issues observed in this paper are generic and
should be properly addressed by any DCN architectures before
being considered for actual deployment, especially in mission-
critical real-time transaction systems.

Main contributions of this paper can be summarized into
the following three aspects. First, we perform an experi-
mental comparison of newly proposed DCN architectures
in a common system setting. Second, this paper employs a
fully virtualized implementation and explicitly examines the
impact of server virtualization on DCN architectures. Third, all
experiments are performed in a cluster-based three-tier system
where application performance (e.g., request throughput and
response latency) is the major measurement metric. At the
time of this writing, we believe that none of the above three
points have been properly studied in existing literature and this
paper is the first to address all of them simultaneously. Even
though our experiments focus on FiConn and FatTree, most
of our results can be generalized and applied as guidelines for
designing any DCN architectures purported to be deployed in
modern virtualized data centers hosting mission-critical real-
time transaction systems. However, we understand that this
work is by no means a comprehensive experimental study of
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Fig. 1. Three-tier Web service.

all existing DCN architectures. Instead, we encourage readers
to consider it as an initial step towards a deeper understanding
of these architectures in a more realistic environment.

II. RELATED WORK

In this section, we briefly review the conventional and
newly proposed data center network architectures. Based on
how networking functionalities are realized, we can classify
existing DCN architectures into two categories, server-centric
and network-centric.

In a server-centric design, servers are not only computing
units but also routing nodes that actively participate in packet
forwarding and load balancing. To the best of our knowledge,
the first server-centric DCN architecture is DCell [5], which is
designed to improve DCN’s robustness to link/server failures
and scales to a large number of servers. In DCell, each server
is equipped with multiple Ethernet ports for packet forwarding.
Guo et al. further propose BCube [4], which uses several layers
of mini-switches to connect different levels of BCube nodes.
Using BCube-based containerized data centers, Wu et al.
[10] develop an inter-container architecture called MDCube.
Another DCN architecture, called FiConn[6], shares the same
design principle as DCell and BCube, but uses only two ports
for each server.

In a network-centric design, network traffic routing and
forwarding is conducted purely in switches/routers. One rep-
resentative of this class is the FatTree architecture introduced
by Al-Fares et al. [1]. FatTree applies the Clos topologies
originally designed for telephone networks and organizes com-
modity switches into a k-ary fat-tree. Bearing the same design
principle as FatTree, VL2 [2] (or its predecessor Monsoon [3])
is another example of network-centric architectures. In VL2,
interconnection topology of switches follows a folded Clos
network [2] where intermediate and aggregation switches are
respectively organized into either side of a bipartite graph.

III. SYSTEM ARCHITECTURE

A. Virtualized Three-Tier Transaction System

In the paper, we conduct experiments in a three-tier trans-
action system running an eBay-like auction service RUBiS [9]

as illustrated in Figure 1. The system is composed of a work-
load generator and a three-tier processing system. We set up
RUBiS workload generator on a separate physical machine to
avoid performance interference with the back-end servers. The
generated workload is represented by a number of concurrent
user sessions with a series of interactions following a pre-
defined Markov transition matrix. This three-tier architecture
is a stereotype for many Web services that consist of a Web
server layer, an application server layer, and a database layer.
We implement each of the three tiers using a cluster of four
virtual machines with load balancing mechanisms.

We employ a fully virtualized implementation of DCN
architectures. Specifically, for each physical machine, we
install a CentOS 5.3 64-bit operating system and Xen 3.1
hypervisor [11]. All physical machines are equipped with Intel
Core 2 Duo 2.33 GHz CPU and 4 GB RAM. In addition, we
install on each physical machine an Intel quad-port Gigabit
network interface card to provide abundant link capacities and
isolated network channels for the VM’s. System monitoring
is accomplished by by combining standard utilities such as
tcpstat, vmstat, and TCPdump. For clients, we utilize
tools provided by RUBiS to monitor various application QoS
metrics, such as response time, throughput, and loss rate.

B. DCN Setup

We implement two DCN architectures, FiConn and FatTree,
which are respectively a representative of the hierarchical and
flat DCN topologies. We implement a level-1 FiConn using
three physical machines (PM), each representing a level-0
FiConn. Each PM hosts four virtual machines and utilizes
three Gigabit Ethernet ports, one of which serves as the
network bridge for inter-connecting the four VM’s and the
other two serve as router ports. The three PM’s are directly
connected with each other using CAT6 cross-over cables.
We implement FiConn’s routing algorithm using statically
configured IP routing table in each VM.

We implement a FatTree topology using 12 servers grouped
into three Pod’s. Each Pod is contained in a single physical
server hosting four virtual machines. The Pod switches and the
corresponding two-level routing algorithm are implemented
using the Click modular router [8] with user-level configura-
tions. The physical machines are equipped with four Gigabit
Ethernet ports, each of which is assigned to one of the four
up-facing links connecting the Pod and Core switches. The
four Core switches are implemented as four separate VLANs
on a single 24-port Gigabit switch.

IV. EXPERIMENTAL EVALUATION

A. System Validation

Before conducting further evaluation, we first need to en-
sure that our virtualized implementation does not introduce
undesirable artifacts and is able to faithfully reveal char-
acteristics of the original DCN architectures. Towards this
end, we implement FiConn and FatTree in a separate non-
virtualized testbed. Then, we conduct on both the virtualized
and physical testbeds the same set of experiments. Experiment
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Fig. 2. Implementation validation.

results are shown in Fig. 2. As seen from the figures, FiConn
and FatTree produce consistent behavior in the virtualized
and non-virtualized testbeds, thereby demonstrating that our
virtualized implementation does not introduce fundamental
artifacts or performance overhead and therefore is able to
faithfully capture properties of DCN architectures with non-
virtualized implementation. As virtualization becomes the
driving technology of today’s data centers, we focus in this
paper on evaluating DCN architectures in fully virtualized
environments. Thus, in the following two subsections, we
examine FiConn and FatTree in more testing scenarios using
only the virtualized implementation.

B. FiConn Experiments

We start with FiConn and evaluate it in two testing cases,
service fragmentation and failure resilience.

1) Service Fragmentation: As mentioned in Section III, a
level-1 FiConn includes three level-0 FiConn’s, each consist-
ing of four servers. At the same time, from the perspective of
application setup, we organize the 12 servers into three tiers
(i.e., Web, application, and database), each of which also has
four servers. Clearly, performance of the system is optimized if
the three tiers are exactly mapped to the three level-0 FiConn’s,
i.e., placing the three clusters of Web servers, application
servers, and database servers in FiConn0[0], FiConn0[1],
and FiConn0[2], respectively. This is because this way intra-
tier network traffic (which is oftentimes data-intensive, such as
in the database layer) is delivered by efficient memory swap-
ping between VM’s residing on the same physical machine.
Experiments performed in the previous subsection (see Fig.
2) follow this VM placement scheme, which we call ideal
placement1 for ease of reference.

In practice, however, it is very difficult to guarantee that
servers with intensive communication are always placed close
to each other. This is especially true in Cloud environments
where applications arrive/depart dynamically and resources are
allocated/recycled on-demand. In such environments, servers
with intensive communication or belonging to the same service
tier are very likely to be scattered into different network
segments. We call this situation service fragmentation and
are interested in understanding its impact on different DCN
architectures. To achieve this goal, we mix together servers

1We keep this naming for ease of reference and note that it may not be the
ideal placement for other application settings or network architectures.
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(b) Service fragmentation

Fig. 3. FiConn service fragmentation test.

of different service tiers and rerun experiments conducted in
Fig. 2(a). We plot results for 256, 512, and 1024 clients in
Fig. 3(b). Comparing these results with those obtained from
ideal placement illustrated in Fig. 3(a), it is clear that under
heavy workloads (i.e., 512 and 1024 clients), throughput in
FiConn exhibits severe fluctuations and low average value
under service fragmentation than under the ideal placement.
The underlying cause is twofold. First, when VM’s belonging
to the same service layer are placed onto different physi-
cal machine, a significant amount of communication traffic
is converted from low-overhead intra-PM memory copying
to high-overhead inter-PM network I/O, which slows down
the system’s performance. Second, placing multiple resource-
consuming VM’s onto the same PM may lead to contention
problems. Particularly, in our setting, two database servers
and one Web server are placed on a single physical server.
Both types of servers are very CPU-intensive and are subject
to competition of CPU under large numbers of concurrent
clients. Specifically, under 512 clients, both the Web and
database servers experience CPU saturation, which slows
down processing of Web requests and database queries and
translates into throughput fluctuation depicted in Fig. 3(b).

2) Failure Resilience: A common feature of both FiConn
and FatTree is that there exist multiple routing paths between
every pair of nodes. As a result, both architectures provide
certain resilience to link/node failures. We consider two failure
patterns as demonstrated in Fig. 4. Specifically, we construct
the first failure scenario (which we call Case I) by bringing
down a non-routing node B (which is a Web server in our case)
in FiConn0[0]. As a consequence of this action, Web requests
will be evenly distributed to the other three Web servers;
but traffic between FiConn0[0] and FiConn0[1] will still go
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Fig. 4. Failure patterns of FiConn.

through VM A. In the second failure scenario (which we call
Case II), we bring down the routing node A. As a consequence,
traffic traveling from FiConn0[0] to FiConn0[1] is no longer
able to directly go through interface eth2 due to failure of its
corresponding routing node. Instead, it takes a detour by first
going to VM C, then to VM D in FiConn0[2] through eth3,
then to the other routing node, and finally to FiConn0[1].

The experiment results in both testing cases are given in
Fig. 5. It can be easily seen from the figures that throughput
of FiConn under 512 and 1024 clients is much lower in Case
II than in Case I. This is because, in Case II, failure of node A
leads to traffic redirection and significantly increases the load
on the other routing node C. Under larger numbers of con-
current clients, the increased traffic load saturates the routing
node and slows down performance of the entire system. The
effect of this traffic redirection can be seen from Fig. 5(d),
where network traffic encountered by node C in Case II is
almost 4 times of that in Case I.

C. FatTree Experiments

We next rerun the above experiments in FatTree.
1) Service Fragmentation: Similar to FiConn, the ideal

placement of FatTree is defined as a setting where servers
belonging to the same service tier (i.e., Web, application, and
database) are placed in the same Pod. Accordingly, service
fragmentation occurs when these servers are blended into
different Pod’s. Fig. 6 illustrates FatTree’s performance in the
ideal placement and service fragmentation. Two observations
can be obtained from the plots. First, comparing Fig. 6(a)
and Fig. 6(b), it is evident that these two server placement
schemes does not impose a significant impact on application
performance in the FatTree architecture. This is in contrast to
FiConn as shown in Fig. 3 (or grey curves in Fig. 6), which
exhibits a noticeable performance degradation due to resource
contention between VM’s under service fragmentation. This
difference is because, compared to FiConn, FatTree servers
are relatively lightly loaded due to isolation of computing and
routing and are less prone to resource contention.

Second, in the ideal placement, FatTree yields lower
throughput under 512 and 1024 clients than FiConn. This can
be partly attributed to the overhead of Click router’s user-level
emulation of FatTree’s two-level routing algorithm. However,
a more fundamental reason lies in the design principle of
FatTree. In FatTree, all network traffic is first aggregated at
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Fig. 5. Failure resilience of FiConn.

and processed by Pod switches, which differentiate intra- and
inter-Pod traffic by maintaining a list of terminating prefixes
for subnets contained in the same Pod. If a packet belongs
to intra-Pod traffic, it is directly sent to the destination by
the Pod switches; otherwise, it is forwarded to Core switches
for further processing. This scheme works well in physical
environments, but may have challenges in virtualized systems.
For instance, if a packet is destined at another VM residing
on the same PM, it has to travel up to the Pod switches
and then come back, even though a much more efficient path
(i.e., memory swapping within a PM) exists. Thus, an extra
amount of traffic is introduced into the network, resulting
in increased network load, reduced goodput, and prolonged
response latency. In comparison, in FiConn, VM’s collocated
in the same PM are connected via a network bridge and are
able to directly communicate with each other.

2) Failure Resilience: We next proceed to examine FatTree
in two failure scenarios. Different from FiConn, FatTree does
not have the concept of routing node and routes network traffic
purely through switches. Thus, we cannot reproduce in FatTree
the same two failure patterns as shown in Fig. 4. Instead, we
create two scenarios each with failure of a single node. In
the first case, we bring down one of the four Web servers.
Then, all Web requests will be evenly distributed to the other
three Web servers. Since these Web servers are all lightly
used, we expect application performance in this case should
not significantly deviate from that illustrated in Fig. 6(a).
Experiment results shown in Fig. 7(a) justifies our speculation.
In the second case, we bring down one database server, which
is more data-intensive than a Web server and therefore more
likely to introduce performance bottlenecks. As demonstrated
in Fig. 7(b), application throughput in this case indeed exhibits
more pronounced fluctuations. These fluctuations are a result
of increased workload on the other three database servers and
lookup failures of queries destined at records located in the
failed database server. Despite this oscillatory behavior, the
average throughput is maintained the same as that in Fig.
6(a) and 7(a), demonstrating FatTree’s robustness to link/node

4



 0

 10

 20

 30

 40

 50

 60
256 Clients

 0

 20

 40

 60

 80

 100
512 Clients

 0

 20

 40

 60

 80

 100

 120
1024 Clients

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

(a) Ideal placement

 0

 10

 20

 30

 40

 50

 60
256 Clients

 0

 20

 40

 60

 80

 100
512 Clients

 0

 20

 40

 60

 80

 100

 120
1024 Clients

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

 0  20  40  60  80  100 120 140 160 180  200

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Time (sec)

(b) Service fragmentation

Fig. 6. Service fragmentation test of FatTree (grey curves are results of
FiConn illustrated in Fig. 3).

faults. Similar observations can be obtained under failures of
other nodes and are omitted for brevity.

V. DISCUSSION AND FUTURE WORK

Even though it is still unclear which class of DCN architec-
tures, server-centric or network-centric, will prevail, there are
certain fundamental issues that both classes should properly
address. On one hand, the concept of locality is naturally
embedded in server-centric architectures in that servers be-
longing to the same-level component (e.g., FiConn0[0] or
DCell0[0]) are physically close to each other and are able
to communicate efficiently. This property can be utilized by
VM placement schemes to avoid traffic propagation to higher-
level networks. On the other hand, due to the hierarchical
layout of servers, machines (e.g., routing nodes in FiConn)
aggregating traffic between components belonging to the same
or different hierarchies are more prone to overloading and
performance bottleneck. This problem is mitigated in network-
centric architectures, where all servers are equally treated and
communication between any pair of servers can almost achieve
full link speed. However, these architectures may not be able
to fully take advantage of locality (e.g., in FatTree) due to
their flat layouts. Both problems become more profound when
virtualization is introduced, which not only blurs isolation
between physical resources, but also expands the edge of a
network from to physical servers to virtual machines. As a con-
sequence, a variety of problems, such as resource contention,
performance isolation, and inter-VM communication, emerge.
We believe that any DCN architectures designed for modern
(virtualized) data centers have to properly address the above
issues before being considered for actual deployment. Our
future work involves evaluating other DCN architectures in a
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Fig. 7. Failure resilience of FatTree.

larger-scale testbed and an actual operational data center, and
expanding the background environment with more multi-tier
applications. In addition, designing new data center network
architectures that explicitly address issues raised in this paper
forms another line of our future work.
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