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Abstract

Software prefetching and locality optimizations are tech-
niques for overcoming the gap between processor and
memory speeds. Using the SimpleScalar simulator, we
evaluate the impact of memory bandwidth and latency
on the effectiveness of software prefetching and locality
optimizations on three types of applications: regular sci-
entific codes, irregular scientific codes, and pointer-based
codes. We find software prefetching hides memory costs
but increases instruction count and requires greater mem-
ory bandwidth. Locality optimizations change the com-
putation order and data layout at compile or run time to
eliminate cache misses, reducing memory costs without
requiring more memory bandwidth. Combining prefetch-
ing and locality optimizations can improve performance,
but interactions can also nullify the benefits of prefetching.
We propose several algorithms to better integrate software
prefetching and locality optimizations.

1 Introduction

Even with large on-chip caches, current microprocessors
spend a large percentage of execution time on memory ac-
cess stalls. Since processor speeds are growing at a greater
rate than either memory and network speeds, we expect
memory access costs to become even more important. In
the not too distant future, it will not be far from the truth
to say instructions are free and performance is determined
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only by memory access costs. Computer architects have
been battling this memory wall by designing ever larger
and sophisticated caches. However, as applications start
using pointer-based linked data structures and performing
irregular memory accesses, caches no longer perform well
without additional help.

Two approaches to improving cache performance are
software prefetching and locality optimizations. Software
prefetching executes explicit prefetch instructions to be-
gin loading data from memory to cache. If the prefetch
begins early enough, and the data is not evicted prior to
use, memory access latency can be completely hidden.
Memory bandwidth use is increased, however, since the
processor will now consume data at a faster rate. In com-
parison, locality optimizations use compiler or run-time
transformations to the computation order and/or data lay-
out of a program to increase the probability it accesses data
already in cache. If successful, average memory latency
and bandwidth are both reduced, since there will be fewer
memory accesses.

Both approaches for avoiding the memory wall have
been studied in isolation. In this paper, we examine how
well each approach works for three types of data-intensive
applications. We also evaluate both approaches in a uni-
fied environment, so we can compare their performance
and investigate their interactions when applied in concert.
Finally, we also study the impact of memory bandwidth
and latency on the performance of each technique. The
contributions of this paper are as follows:

� We compare the efficacy of software prefetching
and locality optimizations for three types of data-
intensive codes.
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� We evaluate the impact of memory bandwidth and
memory latency on application performance with and
without prefetching and locality optimizations.

� We propose several enhancements to integrated soft-
ware prefetching and locality optimizations.

We begin the rest of this paper with a look at three
memory access patterns, then examine software prefetch-
ing and locality optimizations for each type of application.
We present experimental evaluations for each application
and develop improved algorithms. Finally, we discuss
related work and conclude.

2 Memory Access Patterns

The types of software prefetching and locality optimiza-
tions which may be applied are seriously dependent on
the type of memory access pattern made by a program.
We begin by presenting three important types of memory
access patterns.

2.1 Affine Array Accesses

The most basic memory access pattern is affine (linear)
accesses to multidimensional arrays. For instance, con-
sider the Jacobi code in Figure 1, typically used in multi-
grid solvers for partial differential equations (PDEs). The
value of a point inA is calculated as the average of values
of neighboring points in all three dimensions of B. This
stencil pattern is repeatedly applied to each point ofA, re-
sulting in a smoother solution. All array accesses are affine
because array subscripts are combinations of loop index
variables with constant coefficients and additive constants.
In practice, the are no coefficients and small additive con-
stants are used. These programs are also called regular
codes because memory access patterns are so regular and
well defined.

Affine array accesses are common in dense-matrix lin-
ear algebra and finite-difference PDE solvers, as well as
database scans and image processing. A major feature of
affine array accesses is that they allow memory access pat-
terns to be entirely computed at compile time, assume ar-
ray dimension sizes are known. This allows both software
prefetching and compiler transformations to be calculated
precisely at compile time.

2.2 Indexed Array Accesses

Another memory access pattern is called indexed array
accesses, because the main data array is accessed through
a separate index array whose value is unknown at compile
time. For example, consider the molecular dynamics code
in Figure 1, which calculates forces between pairs of atoms
in a molecule. Accesses to the index array E are affine,
striding through the array sequentially. However, accesses
to arraysX and Y are indexed by the contents ofE. Such
programs are also called irregular because their memory
accesses are not fixed. Irregular accesses typically make
it difficult to keep data in cache, resulting in many cache
misses and low performance.

Indexed array accesses arise in several scientific appli-
cation domains ss computational scientists attempt more
complex simulations. In computational fluid dynamics
(CFD), meshes for modeling large problems are sparse
to reduce memory and computations requirements. In
n-body solvers such as those arising in astrophysics and
molecular dynamics, data structures are by nature irregu-
lar because they model the positions of particles and their
interactions. Unfortunately, irregular computations have
poor temporal and spatial locality, and do not utilize pro-
cessor caches efficiently. Unlike applications with affine
accesses, compile-time transformations alone cannot im-
prove locality because the values of the index array are
not known at compile time.

2.3 Pointer-Chasing Accesses

Finally, we also consider pointer programs which dynam-
ically allocate memory and use pointer-based data struc-
tures such as linked lists, n-ary trees, and other graph
structures. For example, consider the list traversal code
in Figure 1, which creates a singly-linked list using a data
structure node which contains a pointer to the next ele-
ment on the list. To traverse this list, the program must
determine the pointer value stored in each node.

As with indexed array accesses, programs utilizing
pointers have memory access patterns which are irreg-
ular and cannot be determined at compile time. Addition-
ally, the next node cannot be traversed until the pointer
value stored in the current node is found. These programs
are thus known as pointer-chasing codes. Pointer-chasing
codes occur in codes in many application domains, includ-
ing scientific programs which use advanced data struc-
tures.



// Affine Array Accesses // Indexed Array Accesses // Pointer-Based Structures
// (3D Jacobi Kernel) // (Molecular Dynamics) // (Linked List Traversal)

A(N,N,N),B(N,N,N) X(M),Y(M),E(2,N) struct node {val, next};
do k=2,N-1 do t = 1, time node *ptr, *list;
do j=2,N-1 if (recalc) while (...) {
do i=2,N-1 E(...) = ... ptr->next = malloc(node);

A(i,j,k) = 0.16667 * do i = 1, N ptr = ptr->next;
(B(i-1,j,k)+B(i+1,j,k)+ d = X(E(1,i))-X(E(2,i)) ptr->val = ... ;
B(i,j-1,k)+B(i,j+1,k)+ force = d**(-7)-d**(-4) }
B(i,j,k-1)+B(i,j,k+1)) Y(E(1,i)) += force while (ptr->next) {

Y(E(2,i)) += -force ...
ptr = ptr->next;

}

Figure 1 Example Affine Array, Indexed Array, and Pointer-Chasing Codes

3 Software Prefetching

Software prefetching relies on the programmer or compiler
to insert explicit prefetch instructions into the application
code for memory references that are likely to miss in the
cache. At run time, the inserted prefetch instructions bring
the data into the processor’s cache in advance of its use,
thus overlapping the cost of the memory access with use-
ful work in the processor. Software prefetching has been
shown to be effective in reducing memory stalls for both
sequential and parallel applications, particularly for sci-
entific programs making regular memory accesses [5, 22,
32, 31]. Recently, techniques have also been developed
to apply prefetching to pointer-based data structures [21,
41, 40, 28, 26]. In this section, we briefly describe the
software prefetching techniques previously proposed for
prefetching different types of memory references.

3.1 Affine Array Prefetching

To perform software prefetching for affine array refer-
ences commonly found in scientific codes, we follow the
well-known compiler algorithm for inserting prefetches
proposed by Mowry and Gupta in [32]. In this algo-
rithm, locality analysis is used to determine which array
references are likely to suffer cache misses. The cache-
missing memory references are then isolated by perform-
ing loop unrolling and loop peeling transformations. Fi-
nally, prefetch instructions are inserted for the isolated
cache-missing references. Each inserted prefetch is prop-
erly scheduled such that there exists ample time between
the initiation of the prefetch and the consumption of the

data by the processor (known as the prefetch distance) to
overlap the latency of the memory access.

3.2 Indexed Array Prefetching

Indexed array accesses, of the formA(B(i)), are common
in irregular scientific codes. The prefetch algorithm for
indexed array accesses, originally proposed in [33], is sim-
ilar to the algorithm for affine array prefetching. The main
difference lies in how prefetch requests are scheduled. In
affine array prefetching, each prefetch is scheduled early
enough to tolerate the latency of a single cache miss. For
indexed array references, the memory indirection between
the index array and data array requires more sophisticated
prefetch scheduling. If both the index array and the data
array references miss in the cache, then the memory la-
tency of two serialized cache misses, rather than just one,
must be tolerated. Hence, the prefetch algorithm must
schedule the prefetch for the index array access two cache
miss times prior to the iteration that consumes the data,
and schedule the prefetch for the data array one cache miss
time prior to the iteration that consumes the data.

3.3 Pointer-Chasing Prefetching

Compared to affine array and indexed array prefetching,
prefetching for pointer-based data structures is signifi-
cantly more challenging due to the memory serialization
effects associated with traversing pointer structures. The
memory operations performed for array traversal can issue
in parallel because individual array elements can be refer-
enced independently. In contrast, the memory operations



performed for pointer traversal must dereference a series
of pointers, a purely sequential operation. The sequential-
ity of pointer chasing prevents conventional prefetching
techniques from overlapping cache misses suffered along
a pointer chain, thus limiting their effectiveness.

Recently, several novel prefetching techniques have
been proposed that address the pointer-chasing prob-
lem [21, 41, 40, 28, 26]. One promising approach is jump
pointer prefetching [41, 26]. In jump pointer prefetch-
ing, additional pointers are inserted into a dynamic data
structure to connect non-consecutive link elements. These
“jump pointers” allow prefetch instructions to name link
elements further down the pointer chain without sequen-
tially traversing the intermediate links. Consequently,
prefetch instructions can overlap the fetch of multiple link
elements simultaneously by issuing prefetches through the
memory addresses stored in the jump pointers. In addi-
tion to inserting the prefetch instructions that use the jump
pointers, jump pointer prefetching also requires insertion
of code to create and maintain the jump pointers as the
data structure is modified.

4 Locality Optimizations

Software prefetching attempts to hide memory latency
while retaining the original program structure. An alterna-
tive approach is to reduce memory costs by changing the
computation order and data layout of a program at com-
pile and run time. These locality optimizations attempt
to improve data locality, the ability of an application to
reuse data in the cache [44]. Reuse may be in the form of
temporal locality, where the same cache line is accessed
multiple times, or spatial locality, where nearby data is
accessed together on the same cache line. Previous re-
searchers have developed many locality optimizations. In
this section we consider optimizations for the three types
of data-intensive applications which access memory in
different ways.

4.1 Tiling for Affine Accesses

In many way, programs with affine array accesses are the
easiest for compilers to apply locality optimizations, since
memory access patterns can be fully analyzed at compile
time. One useful program transformation is tiling (block-
ing), which combines strip-mining with loop permutation
to form small tiles of loop iterations which are executed to-
gether to exploit data locality [44]. Figure 3 demonstrates
how the 3D Jacobi code can be tiled. By rearranging the

// Tiled 3D Jacobi
A(N,N,N),B(N,N,N)
do kk=2,N-1,TK // TI x TJ x TK Tile
do jj=2,N-1,TJ
do ii=2,N-1,TI

do k=kk,kk+TK-1 // Tiled Loops
do j=jj,jj+TJ-1
do i=ii,ii+TI-1

A(i,j,k) = 0.16667 *
( B(i-1, j, k) + B(i, j-1, k) +
B(i+1, j, k) + B(i, j+1, k) +
B(i, j, k-1) + B(i, j, k+1) )

Figure 3 Tiled 3D Jacobi Example

loop structure so that the innermost loops can fit in cache
(due to fewer iterations), tiling allows reuse to be exploited
on all the tiled dimensions.

Tiling is very effective with linear algebra codes [12, 23,
24, 35, 37], and has been been extended to handle stencil
codes used in iterative PDE solvers as well [42, 38, 44].
A major problem with tiling is that limited cache associa-
tivity may cause data in a tile to be mapped onto the same
cache lines, even though there is sufficient space in the
cache. Conflict misses will result, causing tile data to be
evicted from cache before they may be reused [24]. This
effect is shown in Figure 2.

Previous research found tile size selection and array
padding can be applied to avoid conflict misses in tiles [12,
35, 37]. Tile-size-selection algorithms carefully select tile
dimensions tailored to individual array dimensions so that
no conflicts occur. For 2D arrays, the Euclidean remain-
der algorithm may be used to quickly compute a sequence
of nonconflicting tile dimensions through a simple recur-
rence [12, 37]. An alternative algorithm finds nonconflict-
ing 2D tile using an greedy algorithm which expands tile
dimensions while checking no conflicts occur [24]. We can
adapt this algorithm for finding nonconflicting 3D tiles by
iteratively attempting to increase each tile dimension until
none may be increased without introducing conflicts [38].

Tile size selection by itself may yield poor results since
only small tiles may be able to avoid conflicts, particu-
larly for array sizes near powers of of two. One possible
solution is to use padding to enable better tile sizes [36].
Padding increases the size of leading array dimensions,
increasing the range of non-conflicting tile shapes. It has
proven to be very useful for improving tiling for 2D lin-
ear algebra codes [37]. To combine padding with tile



CACHE (array layout causes conflict)

CACHE (array layout avoids conflicts)

Figure 2 Example of Conflict Misses Under Two Array Layouts

size selection for 2D arrays, we can test a small set of
pads and choose the best choice. For 3D tiles we would
need to evaluate a much larger space of possible pads, so
we extend the algorithm to stop searching for pad sizes
when predicted miss rate is within a small percentage of
predicted optimal [38].

4.2 Reordering for Indexed Accesses

Programs with index array accesses access data in an irreg-
ular manner, depending on the values in the index array. If
data is accessed in an irregular manner, spatial locality is
unlikely to be obtained if the data is larger than the cache.
Recently, researchers have discovered run-time data and
computation transformations can improve the locality of
irregular computations [1, 14, 29, 30]. Because compu-
tations are typically commutative, loop iterations can be
safely reordered to bring accesses to the same data closer
together in time. Data layout can also be transformed
so that data accesses are more likely to be to the same
cache line. These compiler and run-time transformations
can be automated using an inspector-executor approached
developed for message-passing machines [13].

In many irregular scientific applications, each loop it-
eration tends to compute interactions for a pair of data.
Such interactions tend to occur between “nearby” data
items. Partitioning data based on either geometric coordi-
nate data or the underlying interaction graph can thus in-
crease the probability accesses will be made to data within
the partition, increasing cache hits [1, 29, 18]. In particu-
lar, partitions based on geometric coordinates yield good
locality if applicable.

To improve data locality of indexed array codes, we thus
apply recursive coordinate bisection (RCB), a partition-
ing technique based on geometric coordinate information.
RCB works by recursively splitting the dimension into two
partitions, alternating axises. The process is recursively
repeated as desired [2]. It is similar to using space-filling
curves [29], but has the advantage of being able to han-

dle unevenly distributed data. Once all partitions are se-
lected, data items are stored consecutively within each
partition, and partitions within an upper level partition are
also arranged consecutively, constructing a hierarchical
structure. We also lexicographically sort loop iterations
afterwards based on the address of data accessed [14, 18,
30].

4.3 Memory Allocation For Pointers

Pointer-based programs frequently suffer from poor lo-
cality. There are many reasons why they underutilize
cache. First, like irregular computations, data access pat-
terns are unlikely to be regular sequential accesses. Sec-
ond, because data is allocated dynamically, logically ad-
jacent data may be in widely scattered memory locations
because they were allocated at different times. Finally,
the pointer-chasing problem means the pointer data at a
memory location must be fetched before processor can
determine what data is needed next. On top of all this,
pointer-based codes are also notoriously difficult to ana-
lyze and transform, because of their reliance on pointers
and heap-allocated recursive data structures.

Recently researchers have developed cache-conscious
heap allocation and transformation techniques to improve
locality for pointer-based programs [4, 10]. Algorithms
include run-time tree optimization routines which place
parent nodes with child nodes for improved locality, and
apply coloring when placing tree nodes to avoid conflict
with the root.

Of particular interest is CCMALLOC, a customized mem-
ory allocator which allocates memory in a location near
to the user specified address. A heuristic which proved
effective allocates new blocks of data, reserving space for
future allocation requests [10]. Using this memory al-
locator, multiple members of a linked list are thus more
likely to be in adjacent memory locations. Not only does
this take advantage of hardware prefetching of long cache
lines, cache line utilization increases and fragmentation is



reduced, decreasing the probability useful cache lines will
be evicted from cache. We applied this optimization to
our pointer-chasing benchmark code.

5 Experimental Evaluation

While both software prefetching and locality optimiza-
tions have been previously studied, we are aware of no
studies of the effects of combining both on program per-
formance, especially for a variety of memory bandwidths
and latencies. To evaluate the combined performance of
software prefetching and locality optimizations, we ap-
plied them by hand to six benchmark codes representing
three classes of data-intensive applications. We then used
simulations to evaluate their performance, both indepen-
dently and in concert.

5.1 Simulation Environment

To study the effects of limited memory bandwidth on
prefetching and locality optimizations, we used a detailed
architectural simulator to measure the performance of sev-
eral memory-bound applications. Our simulator is based
on the SimpleScalar tool set [3] and models a state-of-
the-art 4-way issue dynamically-scheduled processor that
clocks at 1 GHz. The simulator models all aspects of the
processor including the instruction fetch unit, the branch
predictor, register renaming, the functional unit pipelines,
and the reorder buffer.

In addition to the detailed processor model, our sim-
ulator also models the memory system. We assume a
split 8-Kbyte direct-mapped L1 cache with 32-byte cache
blocks, and a unified 256-Kbyte 4-way set-associative L2
cache with 64-byte cache blocks. While these cache sizes
are small, they match the small input data sizes for our
benchmarks. Memory requests across the L1-L2 bus do
not experience contention; however, our simulator does
model bus contention across the L2-memory bus.

To study the sensitivity of our prefetching and data
locality transformation techniques to available memory
bandwidth, we varied the L2-Memory bus bandwidth be-
tween 1-64 Gbytes/second. Note that a bandwidth of
1Gb/sec is equivalent to the processor loading one byte
per cycle. We also varied memory to L2 latencies from 80
to 640 cycles. These parameters are intended to capture
characteristics of future high-performance architectures,
when processors are much faster than large DRAM mem-
ories.

5.2 Results for Affine Accesses

We begin by evaluating prefetching and tiling for three
codes with affine array accesses: MATMULT, multiply-
ing two 200x200 matrices; JACOBI, a 3D Jacobi itera-
tion stencil over 200x200x8 arrays; and REDBLACK, a a
3D red-black successive-over-relaxation (SOR) kernel over
200x200x8 arrays. Both JACOBI and REDBLACK are fre-
quently found in multigrid PDE solvers, such MGRID from
the SPEC/NAS benchmarksuite.

Results are shown in Figure 4 for 80 cycle memory la-
tency and different bandwidths. Execution time is plotted
along the y-axis, with execution time broken down into
memory stall and actual computation. Program version
and available memory bandwidth (from 1 byte/cycle to 64
bytes/cycle) is plotted along the x-axis. Groups of stacked
bars represent the original version of each program, and
versions optimized with either software prefetching, tiling,
or both.

Results show performance generally improves as avail-
able memory bandwidth increases. When available band-
width is low, tiling achieves the best performance. When
bandwidth is high, prefetching obtains the best perfor-
mance. Prefetching versions typically have higher BUSY

times because of the added overhead for issuing prefetch
instructions. Tiling also increases BUSY time since extra
overhead is incurred for the extra levels of loops.

For affine codes, combining tiling and prefetching did
not help performance. The main problem is that tiled
codes had smaller iterations in the innermost loop, in-
creasing the amount of pipelining startup overhead and
reducing amount of latency hidden. The CPU overhead
is higher than either prefetching or tiling alone. As a re-
sult performance is degraded for all but REDBLACK under
some conditions.

We also performed simulations for 160, 320, and 640
cycle memory latencies for each benchmark. Results are
shown in Figure 5. Execution time is plotted along the
y-axis, and memory bandwidth is plotted along the x-
axis. Results for each memory latency is displayed as a
separate line in each graph. Each version of the program
(original, prefetch, optimized, both) is shown in a separate
graph. We see that in general execution times are higher
with larger memory latencies. However, prefetching is
able to take advantage of high memory bandwidths to
hide memory latency, while tiling cannot. In fact, the
implication for memory system designers seems to be very
wide memory bandwidths are useful only for prefetching
for high-latency memory systems.



5.3 Results for Indexed Accesses

Next, we evaluate prefetching and RCB applied to two two
programs, IRREG and MOLDYN. IRREG is an iterative PDE
solver for an irregular mesh, while MOLDYN is abstracted
from the non-bonded force calculation in CHARMM, a
key molecular dynamics application used at NIH to model
macromolecular systems. We ran IRREG with an input
data consisting of a 14K node mesh of an airfoil. We ran
MOLDYN with an input data set representing interactions
between 13K semi-uniformly distributed molecules.

The optimized versions of each program use a run-time
inspector to apply RCB to rearrange data and computa-
tion to improve locality. We measured simulated perfor-
mance with software prefetching and locality optimiza-
tions. Because no preprocessing costs are included, results
are representative of long-running applications where pre-
processing overhead can be amortized over many loop
iterations. Results are shown in Figure 4.

As before, prefetch profits most when bandwidth
is high. Instruction overhead is significantly higher
with prefetching because the irregular accesses must be
prefetched individually rather than as a group (multi-
ple data on a single cache line). Nonetheless, because
prefetches do not have to be executed too far in advance
with only one level of indirection, software prefetching
can hide almost all memory latency for the irregular codes
examined. For these irregular computations, combining
prefetching and RCB eliminated the most memory cycles,
but had high CPU overhead. RCB was able to yield ma-
jor performance improvements even when little memory
bandwidth is available. For these programs with indexed
array accesses, program transformations did not affect the
efficacy of software prefetching.

We also looked at the effect of varying memory la-
tencies. Results are shown in Figure 6. As before, we
see that prefetching is able to hide very high memory la-
tencies with sufficient memory bandwidth, while locality
optimizations still suffer somewhat from memory latency.
Combining prefetching with locality optimizations yields
the best performance.

5.4 Results for Pointer Accesses

Finally, we compare prefetching and cache-conscious
memory allocation for HEALTH, a pointer-based program
from the OLDEN benchmark suite which simulates the
Columbian health care system [39]. The optimized ver-
sion of the program uses a cache-conscious memory allo-
cator which uses the new-block allocation policy to reserve

space for linked list elements, allowing most consecutive
elements of a linked list to be placed next to each other.

Simulation results for HEALTH run with five-deep trees
are shown in Figure 4. Notice memory overheads are
much higher for pointer-based programs, due to the many
irregular and indirect accesses. As before, when available
bandwidth is low, locality optimizations performs the best.
When bandwidth is high, prefetching achieves the best
performance. Combining prefetching and smart memory
allocation did not improve performance, because the high
overhead of jump pointers were not helpful when most list
elements are laid out contiguously. Spatial locality from
long cache lines were sufficient to reduce cache misses.

We also looked at the effect of varying memory la-
tencies. Results are shown in Figure 6. Unlike previous
programs, prefetching was unable to hide high memory la-
tencies. The prefetch distances computed for jump point-
ers were too high for the short linked lists used in the
program. We address this problem later.

5.5 Discussion

Despite comparing software prefetching to three different
locality optimizations on three classes of optimizations,
our results are surprisingly similar. When memory band-
width is high, software prefetching by itself outperforms
other versions, except for pointer-chasing programs. Once
memory bandwidth is reduced, locality optimizations be-
come more effective. Only irregular computations bene-
fited from directly combining locality optimizations and
software prefetching, either because the optimizations ei-
ther interacted poorly, or because either optimization or
prefetching alone were able to achieve most of the bene-
fits possible.

With current processor speeds, maintaining memory
bandwidths of 1-4 bytes per cycle are probably achievable.
The simulation results most relevant are thus those with
bandwidth towards the low end. As processors become
faster, the memory wall will increase, reducing available
memory bandwidth towards 1 byte/sec or lower. Since
memory bandwidth will probably continue to drop relative
to processor speed, locality optimizations should become
more important. Similarly as processor speeds increase,
memory latencies are likely to increase past 80 cycles,
making our high end simulation results more relevant.

One possibility for dramatically increasing memory
bandwidth is to switch to processor-in-memory (PIM) ar-
chitectures. For on-chip data, available memory band-
width will be more like that towards the high end of the



scale, around 16-64 bytes/cycle. Our experiments show
such PIM systems should benefit significantly from soft-
ware prefetching, since only they can support the high
level of memory bandwidth required. However, even PIM
systems will require locality optimizations to reduce ac-
cesses to off-chip data.

6 Algorithm Enhancements

In addition to determining the effects of memory band-
width and latency on performance, our simulations also
pointed out a number of ways to enhance both software
prefetching and locality optimizations.

6.1 Tiling and Prefetching

We saw that a problem with combining tiling and soft-
ware prefetching naively is overhead from small inner-
most loops. We can improve performance by modifying
the tiling algorithm to select tiles loops with more itera-
tions in the innermost loop, even though the cache model
may estimate more cache misses. Our tiling heuristic uses
either the Euclidean GCD algorithm [12, 37] or a version
of the Lam, Rothberg, Wolf algorithm modified for 3D
arrays [24, 38] to generate a series of non-conflicting tile
shapes. As a result we can simply bias the selection to-
wards tall tiles with larger innermost loops, at the expense
of lower cache utilization.

Figure 7 presents our results for our JACOBI and RED-
BLACK benchmarks. Instead of picking a tile size of
46x39x1, our algorithm can pick a tile of 200x8x1 in-
stead. Software prefetch overhead is reduced four-fold
with the taller tile, and there is more time to hide latency
within the innermost loop. Simulation results show an im-
provement, demonstrating taller tiles allow us to combine
the benefits of software prefetching and tiling.

6.2 Jump Pointers

One limitation of jump pointer prefetching is that the first
D link nodes in a list are not prefetched, where D is
the prefetch distance, because there are no jump pointers
pointing to these early nodes. As memory latency in-
creases, D must increase to accommodate a larger cache
miss stall time. Consequently, jump pointer prefetching
becomes less effective at large memory latencies due to
unprefetched early nodes.

In our experiments, we found that it is profitable to re-
duce the prefetch distance in order to minimize the num-

ber of unprefetched early nodes. Figure 8 shows the im-
pact of reducing the prefetch distances from the computed
values of 31, 62, 124, and 247 at memory latencies of
80, 160, 320, and 640, respectively, to a prefetch dis-
tance of 16 across all memory latencies. As a result of
this optimization, performance improves for all memory
latencies. The performance improvement is most pro-
nounced at large memory latencies where the number of
unprefetched nodes is largest.

We note that our prefetch distance reduction optimiza-
tion for pointer prefetching is similar to prefetch arrays,
recently proposed by Karlsson et al in [21]. In prefetch
arrays, an array of pointers is created for each linked list.
Each element of the pointer array points to one of the D
early nodes in the list, hence allowing prefetching of the
early nodes. Our optimization achieves a similar benefit
since it prefetches the early nodes in a list, but it requires
no additional code modifications on top of the basic jump
pointer prefetching technique.

6.3 Padding for Software Prefetching

While software prefetching can usually hide memory la-
tency given sufficient memory bandwidth, conflict misses
on prefetched data can degrade or even completely elim-
inate benefits. The problem is that for some applications
and problematic data sizes, severe conflict misses may re-
sult, with all prefetched data landing in a few cache lines.
This problem is especially acute for affine array accesses
to arrays which are close to a multiple of the cache size.
Compilers can avoid this problem and pad arrays to avoid
prefetch conflicts [36, 37], even if tiling is not needed.
For instance, in our experiments we found that software
prefetching was ineffective for JACOBI and REDBLACK

with a problem size of 256x256x8, unless the innermost
dimension was padded to 259, as predicted by compiler
analysis [36].

6.4 Memory Allocation and Software
Prefetching

We can also combine the benefits of memory allocation
with software prefetching. Jump pointers are not very use-
ful when intelligent memory allocation can put elements
of a linked list contiguously in memory. In these cases
software prefetching should directly calculate a distance
based on the current address and memory latency, just as
for affine array accesses. In our experiments we found we
could improve performance for HEALTH by up to 5% by



using index prefetching with distance 16 instead of jump
pointers when memory latency was 80 cycles. Larger
improvements should result for higher memory latencies.

7 Related Work

Conventional software prefetching [31, 22, 5] has investi-
gated prefetching for arrays. Work in hardware prefetch-
ing [8, 34, 16, 15, 20] is similarly limited to arrays, but
uses hardware to identify what to prefetch automatically.
Prefetch engines [43, 7, 11, 9] provide hardware support
for prefetching, but rely on the programmer or compiler
to identify the access pattern. Like hardware and software
prefetching, prefetch engines have focused on arrays as
well.

Recently, researchers have begun investigating novel
prefetching techniques for pointer-chasing traversal [21,
41, 40, 28, 26]. These new techniques address the pointer-
chasing problem using one of three different approaches.
The first approach inserts additional pointers into dynamic
data structures to connect non-consecutive link elements
[21, 41, 26]. These “jump pointers” allow prefetch in-
structions to name link elements further down the pointer
chain without sequentially traversing the intermediate
links.

The second approach performs prefetching using only
the natural pointers belonging to the dynamic data struc-
ture, and thus do not require additional state for prefetch-
ing [40, 28, 26]. Existing stateless techniques prefetch
pointer chains sequentially, and do not exploit any memory
concurrency. Instead, they schedule each prefetch as early
in the loop iteration as possible to maximize the amount
of work available for memory latency overlap. Finally, a
third approach uses a hardware table known as a “Markov
predictor” to store temporally related cache-missing mem-
ory addresses observed at run time [19]. The table is used
to direct prefetching by predicting the addresses of future
cache misses.

Data locality has been recognized as a significant
performance issue for modern processor architectures.
Computation-reordering transformations such as loop per-
mutation and tiling are the primary optimization tech-
niques [44], though loop fission (distribution) and loop
fusion have also been found to be helpful [27].

Data layout optimizations such as padding and trans-
pose have been shown to be useful in eliminating conflict
misses and improving spatial locality [36]. Several cache
miss estimation techniques have been proposed to help
guide data locality optimizations [17, 44]. Tiling has been

proven useful for linear algebra codes [24, 44, 12] and
multiple loop nests across time-step loops [42]. In com-
parison we apply tiling to 3D stencil codes which cannot
be tiled with existing methods.

Researchers have examined irregular computations
mostly in the context of parallel computing, using run-
time [13] and compiler [25] support to support accesses
on message-passing multiprocessors. A few have also
looked at techniques for improving locality [1, 14].

Few researchers have investigated data layout transfor-
mations for pointer-based data structures. Chilimbi, Hill,
and Larus investigate allocation-time and run-time tech-
niques to improve locality for linked lists and trees [10].
We propose extension to their work. Calder et al. use
profiling to guide layout of global and stack variables to
avoid conflicts [4]. Carlisle et al. investigate parallel per-
formance for pointer-based codes in Olden [6].

8 Conclusions and Future Work

We believe software and architecture support is need to
reduce the memory bottleneck for advanced microproces-
sors. In this paper, we demonstrated how prefetching
and locality optimizations can be used to improve locality
and performance for several types of applications. While
preliminary results have been encouraging, much work
remains to be done.

Our results have mostly been achieved for individual
kernels. These kernels are important because they take up
the vast majority of processing time in larger programs, but
we must still evaluate the effectiveness of our techniques
for larger, more realistic programs. Currently our locality
optimizations are applied semi-automatically, only par-
tially implemented in the compiler and run-time system.
For these optimizations to be widely used, we must auto-
mate them as much as possible. We need to expand the
range of applications, so that in addition to improving cur-
rent codes, we can also gain insights for providing better
solutions for future applications.

Our goal of reducing the memory bottleneck is essential
if we wish to continue increasing the computation power
available to scientists and engineers. Because of trends
in computer architectures, our insights are likely to prove
very useful for improving the memory performance of
commercial applications such as image processing and
high-performance databases.
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Figure 4 Execution Times vs Memory Bandwidth (Original, Optimized, Prefetch, Opt+Pref)
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Figure 5 Execution Times vs Memory Latency (Affine Array Accesses)
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Figure 6 Execution Times vs Memory Latency (Indexed Array and Pointer Accesses)
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JACOBI
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REDBLACK

Figure 7 Prefetching with Square and Tall Tiles
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Figure 8 HEALTH with Computed and Fixed Jump Pointers


