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Abstract. Climate reanalyses provide a plethora of global

atmospheric and surface parameters in a consistent manner

over multi-decadal timescales. Hence, they are widely used

in many fields, and an in-depth evaluation of the different

variables provided by reanalyses is a necessary means to pro-

vide feedback on the quality to their users and the operational

centres producing these data sets, and to help guide their

development. Recently, the European Centre for Medium-

Range Weather Forecasts (ECMWF) released the new state-

of-the-art climate reanalysis ERA5, following up on its popu-

lar predecessor ERA-Interim. Different sets of variables from

ERA5 were already evaluated in a handful of studies, but so

far, the quality of land-surface energy partitioning has not

been assessed. Here, we evaluate the surface energy parti-

tioning over land in ERA5 and concentrate on the appraisal

of the surface latent heat flux, surface sensible heat flux, and

Bowen ratio against different reference data sets and using

different modelling tools. Most of our analyses point towards

a better quality of surface energy partitioning in ERA5 than

in ERA-Interim, which may be attributed to a better repre-

sentation of land-surface processes in ERA5 and certainly to

the better quality of near-surface meteorological variables.

One of the key shortcomings of the reanalyses identified in

our study is the overestimation of the surface latent heat flux

over land, which – although substantially lower than in ERA-

Interim – still remains in ERA5. Overall, our results indicate

the high quality of the surface turbulent fluxes from ERA5

and the general improvement upon ERA-Interim, thereby en-

dorsing the efforts of ECMWF to improve their climate re-

analysis and to provide useful data to many scientific and

operational fields.

1 Introduction

The partitioning of available energy at the land surface into

sensible and latent heat exerts a strong control on atmo-

spheric boundary layer (ABL) dynamics and informs on the

coupling strength between land and atmosphere. It translates

variations in the state of the land surface (e.g. soil moisture)

into changes in the state of the atmosphere (e.g. cloud for-

mation, near-surface air temperature, and the ABL height),

both in local and remote locations (Teuling et al., 2017; Mi-

ralles et al., 2016; Guillod et al., 2015; Taylor et al., 2012;

Seneviratne et al., 2010). Hence, surface energy partitioning

is a crucial process in the occurrence and development of ex-

treme events such as droughts and heatwaves (Miralles et al.,

2018, 2014; Teuling et al., 2010; Seneviratne et al., 2006). An

accurate representation of the processes involved in this par-

titioning in land-surface models is thus essential to advance

our understanding of past variations in climate and leverage

our abilities to predict future climate and its impacts on our

biosphere (Berg and Sheffield, 2018; Dirmeyer et al., 2017).

Climate reanalyses are data sets describing the past and

present state of our climate system and are derived using

coupled numerical models in which a large amount of ob-

servations are ingested through a state-of-the-art data as-

similation system. They typically cover multi-decadal pe-

riods and are produced using a constant model setup and

data assimilation framework (often referred to as the Inte-

grated Forecast System, IFS), resulting in consistent data

sets describing the recent state of the atmosphere, ocean,

and land surface at the global scale. Therefore, reanalyses

are widely used to study past climate, to derive long-term

records of essential climate variables, to initialise climate or
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Earth system models, or to force land-surface models offline.

The latter may result in higher-resolution specialised land-

surface reanalyses (Muñoz Sabater, 2019; Albergel et al.,

2018; Balsamo et al., 2015; Reichle et al., 2011). During the

last decade, several climate reanalyses have been produced,

such as the Modern-Era Retrospective analysis for Research

and Applications version 2 (MERRA-2; Gelaro et al., 2017)

from the National Aeronautics and Space Agency (NASA),

the Japanese 55-year ReAnalysis (JRA-55; Kobayashi et al.,

2015) from the Japanese Meteorological Agency (JMA), and

the ECMWF ReAnalysis – Interim (ERA-I; Dee et al., 2011)

from the European Centre for Medium-Range Weather Fore-

casts (ECMWF). Recently, ECMWF released ERA5 (Hers-

bach et al., 2020), a new global climate reanalysis currently

spanning the period 1979–present, which serves as the suc-

cessor of ERA-I. ERA5 is produced using an enhanced mod-

elling and data assimilation framework, and it benefits from

the assimilation of a significantly higher number of improved

observations compared to ERA-I. In addition, the archive

will soon cover the period 1950–present and data will be-

come available with a latency of 2 to 4 d. Finally, data are

provided at a higher spatial (31 vs. 80 km) and temporal

(hourly vs. 3-hourly) resolution than ERA-I. Note that in the

case of ERA-I, the 3-hourly resolution can, in fact, only be

obtained by combining forecast and analysis steps (Dee et al.,

2011).

The number of studies evaluating the quality of differ-

ent variables from ERA5 is still limited. Yet, results gener-

ally point towards improvements upon its predecessor and

to a better quality than other existing reanalyses for various

surface and atmospheric variables (Hersbach et al., 2020).

Tetzner and Thomas (2019), for instance, evaluated several

meteorological parameters from ERA5 and ERA-I over the

southern Antarctic Peninsula and concluded that the better

spatiotemporal resolution at which physical processes are

resolved in ERA5 positively affects the representation of

these variables. These results were confirmed by Wang et al.

(2019), who compared the quality of a similar set of near-

surface meteorological parameters from ERA5 and ERA-I by

means of in situ validation and a modelling exercise where

a thermodynamic sea-ice model was forced with reanalysis

data over the Arctic ice sheet. Jiang et al. (2019) and Ur-

raca et al. (2018), on the other hand, validated ERA5 ra-

diation components against in situ measurements and com-

pared their quality to other reanalyses, ground-based obser-

vations, and satellite data. Although a small positive bias still

remains in ERA5 surface irradiance according to the authors

– mainly due to errors in the simulation of cloud properties

– it is significantly lower than in ERA-I and MERRA-2, es-

pecially at inland locations (Urraca et al., 2018). However,

in more complex terrain such as mountainous or coastal re-

gions, high-resolution regional-scale reanalyses, such as the

COnsortium for Small-scale MOdeling (COSMO) REAnal-

ysis version 6 (COSMO-REA6) from the German weather

service, perform better than ERA5 (Urraca et al., 2018). Also

surface wind fields have been shown to be accurately repre-

sented in ERA5 (Olauson, 2018), mainly as a result of the

relatively high spatial resolution at which physical processes

are resolved. Other studies have focused on the validation of

vertical profiles of atmospheric properties such as humidity

and temperature, typically revealing that the representation

of these fields is better in ERA5 than in various other data

sets, including its predecessor ERA-I (e.g. Brunamonti et al.,

2019; Graham et al., 2019; Zhang and Cai, 2019). Indirect

evaluations of variables derived from ERA5 have also been

performed through different hydrological modelling studies:

Albergel et al. (2018), for instance, compared the quality of

ERA-I and ERA5 by forcing the Interactions between Soil,

Biosphere, and Atmosphere (ISBA) land-surface model with

meteorological parameters derived from both reanalyses and

comparing the simulated land-surface parameters from ISBA

to independent data from satellite observations and in situ

measurements. Based on their study, Albergel et al. (2018)

concluded that forcing the model with ERA5 surface mete-

orology yielded consistently better estimates of hydrological

states and fluxes. Finally, Tarek et al. (2020) forced two hy-

drological models for a large number of catchments across

the continental United States (CONUS) to show the improve-

ments of precipitation and near-surface air temperature from

ERA5 upon ERA-I.

Despite the importance of an accurate representation of

the processes involved in the surface energy partitioning, at

present and to the authors’ best knowledge, no study has di-

rectly evaluated the partitioning of energy in ERA5 into the

two major surface turbulent fluxes over land (i.e. the surface

sensible and latent heat fluxes). As surface energy partition-

ing acts as a nexus between the land surface and atmosphere,

such an analysis might provide useful insights to further im-

prove the modelling of this coupled system and to advance

the quality of future reanalyses. Therefore, the objective of

this study is to evaluate the surface turbulent fluxes (and their

ratio; i.e. the Bowen ratio) from ERA5 for the period 1983–

2018 at different spatiotemporal resolutions. Several exper-

iments are conducted using various observational data sets

and modelling tools to evaluate the spatial and temporal vari-

ability of the turbulent fluxes at different scales, ranging from

point to catchment scale and sub-daily to yearly scales. The

paper is organised as follows: in Sect. 2, we describe the ex-

perimental setup and the data sets used in this study and pro-

vide a brief overview of the key differences between ERA-I

and ERA5. In Sect. 3, we describe the results of our experi-

ments and discuss the quality of surface energy partitioning

in both reanalyses; concluding remarks are summarised in

Sect. 4.
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2 Data and methods

2.1 Reanalysis data

ERA5 is the latest state-of-the-art reanalysis produced at

ECMWF (Hersbach et al., 2020), replacing the widely used

ERA-I (Dee et al., 2011). A first segment of the data set, cov-

ering the period 2010–2016, was released early 2017, about

a decade after the successful release of ERA-I. Compared to

ERA-I, which uses IFS cycle 31r1, ERA5 is produced us-

ing an improved version of ECMWF’s modelling and data

assimilation system (IFS cycle 41r2) and ingests informa-

tion from a substantially larger volume of improved obser-

vations, resulting in a high-quality reanalysis of global at-

mospheric, oceanic, and land-surface fields at hourly time

steps, 137 vertical pressure levels, and horizontal resolution

of approximately 31 km. Several advancements upon ERA-

I are expected to affect the surface energy partitioning in

ERA5 (Hersbach et al., 2020), including (1) a better forc-

ing of solar irradiance, greenhouse gases, and stratospheric

sulfate aerosols, which affect the available energy at the sur-

face that strongly drives the turbulent fluxes, (2) a substan-

tially higher spatial resolution, allowing for a more realis-

tic representation of surface–atmosphere interactions in com-

plex terrain such as mountainous or coastal regions, (3) a

more advanced land-surface model, namely the Hydrology

Tiled ECMWF Scheme for Surface Exchanges over Land

(H-TESSEL), which has a demonstrated high skill to simu-

late surface turbulent heat fluxes in offline experiments (Bal-

samo et al., 2015; Albergel et al., 2012; Balsamo et al.,

2008), (4) improvements in the atmospheric data assimila-

tion component, mainly affecting the atmospheric forcing of

the turbulent fluxes, and (5) an evolved land data assimila-

tion system ingesting both snow and soil moisture observa-

tions into the land-surface model of the IFS, improving the

land-surface control on the turbulent fluxes.

Here, the surface sensible heat flux, surface latent heat

flux, and Bowen ratio derived from both ERA5 and ERA-I

are evaluated for the period 1983–2018 (i.e. the period for

which reference data are available; see Sect. 2.2–2.4) and

across the global land surface. Next to the turbulent fluxes

and the Bowen ratio, precipitation, 2 m air temperature, and

surface radiation components (from which the surface net ra-

diation is calculated) are processed. These variables are used

to disentangle the role of the improved atmospheric forcing

vs. the more evolved land-surface model in ERA5. All vari-

ables are downloaded at their native spatiotemporal resolu-

tions and temporally aggregated to both 3-hourly and daily

time intervals.

2.2 Eddy-covariance data

In situ eddy-covariance data of the turbulent fluxes (i.e. the

land-surface latent flux and land-surface sensible heat flux)

are obtained from the FLUXNET 2015 synthesis data set

covering the period 1991–2014 (Pastorello et al., 2020). The

fluxes are processed as in Martens et al. (2017), including

(1) masking of rainy intervals at hourly time steps to remove

unreliable measurements due to wet sensors, (2) removing

gap-filled data records, and (3) aggregating to both 3-hourly

and daily temporal resolutions. Note that for the temporal

aggregation, 20 % of the higher-resolution data within the in-

terval are allowed to be missing. Aiming at the calculation of

robust validation statistics, only sites with at least 365 daily

records (i.e. at least one full year of data) after masking are

retained, resulting in a sample of 143 quality-checked eddy-

covariance sites (Fig. 1). About 50 % of these selected sites

have a record length of more than 10 years, with a maximum

of 21 years. Note that the same set of towers is used in the

sub-daily (i.e. 3-hourly) and daily evaluations of the turbulent

fluxes, making the validation metrics between experiments

intercomparable. As shown in Fig. 1, eddy-covariance sites

are not uniformly distributed across the global land surface

and hydroclimatic regimes are not equally represented within

the data set. As most sites are located in the CONUS and Eu-

rope, warm and humid regions such as the tropics are only

poorly covered. Hence, results presented in this paper should

be interpreted with the shortcomings of the FLUXNET 2015

data set in mind, as further discussed in Sect. 3.

The daily Bowen ratio at each eddy-covariance site is cal-

culated as the ratio of the land-surface sensible heat flux and

the land-surface latent heat flux. The Bowen ratio might be

highly unstable when the turbulent fluxes are small com-

pared to the measurement error of the eddy-covariance sys-

tem, even at the daily temporal resolution. Therefore, out-

liers in the in situ time series of the Bowen ratio are masked

by removing records outside the following window: [q25 −

1.5(q75 − q25);q75 + 1.5(q75 − q25)], where q75 and q25 are

the 75 % and 25 % quantiles of the Bowen ratio time series,

respectively (Martens et al., 2016).

Finally, next to the turbulent fluxes, measurements of sur-

face net radiation, near-surface air temperature, and precipi-

tation at the eddy-covariance sites are processed as well us-

ing a similar approach as for the turbulent fluxes, except for

the masking of rainy intervals. As these variables are typi-

cally not recorded at each eddy-covariance site, they are only

available at 83 sites in total.

2.3 Catchment water and energy-balance data

If changes in water storage are neglected, the catchment-

scale latent heat flux can be calculated as precipitation minus

river discharge; both are averaged over a sufficiently long

time period (Miralles et al., 2016, 2011; Liu et al., 2014;

Wang and Dickinson, 2012; Vinukollu et al., 2011). By tak-

ing into account the latent heat of vaporisation and the den-

sity of water,

λρE = λρ(P − Q), (1)
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Figure 1. (a) Location of the selected eddy-covariance sites. The lower panels show a detailed view of the sites across the CONUS (b),

Europe (c), and Australia (d). Sites with a record length of less than 5 years (i.e. where no anomalies are calculated) are plotted in green

and sites with a record length of more than 5 years (i.e. where anomalies are calculated) are plotted in yellow. Sites where measurements

of meteorological data are also available are indicated with a diamond. The background provides information on the climatological mean

temperature and precipitation derived from ERA5 (1983–2018).

where λ is the latent heat of vaporisation of water (assumed

to be constant; 2260 × 103 Jkg−1), ρ is the density of liquid

water (assumed to be constant; 1000 kgm−3), E is terrestrial

evaporation (ms−1), λρE is the land-surface latent heat flux

(W m−2), P is precipitation rate (ms−1), and Q is the river

discharge (ms−1). The assumption that changes in catchment

water storage can be ignored requires the consideration of a

sufficiently long period compared to the concentration time

of the catchment; often, a yearly aggregation period is con-

sidered to be sufficient (see, e.g. Miralles et al., 2016).

A similar reasoning as for the catchment mass balance can

be made in terms of energy balance: when changes in energy

storage can be neglected, the energy balance at the catchment

implies that the land-surface sensible heat flux can be calcu-

lated as the difference between surface net radiation and the

sum of ground and latent heat fluxes:

H = Rn − (G + λρE), (2)

where H is the surface sensible heat flux (Wm−2), Rn is the

surface net radiation (Wm−2), and G is the ground heat flux

(W m−2). Combining Eqs. (1) and (2) thus provides a means

to evaluate the long-term average catchment-scale Bowen ra-

tio, derived from surface net radiation, ground heat flux, pre-

cipitation, and river discharge as

β =
(Rn − G)

λρ(P − Q)
− 1, (3)

where β (–) is the Bowen ratio.

In this study, Eqs. (1)–(3) are used in combination with

an observational data set of river discharge covering the pe-

riod 1983–2014 to derive an annual benchmarking data set

of turbulent fluxes and Bowen ratio at the catchment scale.

2.3.1 Discharge

Discharge measurements are obtained from the Global

Runoff Data Centre (GRDC), providing data for nearly 4000

catchments with a daily or monthly temporal resolution. As

in Miralles et al. (2016), records with data artefacts are first

removed based on an exhaustive visual screening, and only

catchments with an area larger than 2500 km2 are considered.

In addition, only catchments with a gridded area (on a reg-

ular 0.25◦ latitude–longitude grid) deviating less than 20 %

from the area reported by GRDC are retained. If measure-

ments are recorded at multiple locations and thus for dif-

ferent drainage areas (particularly in central Europe), mea-

surements further downstream are favoured. By doing so,

catchments are selected without any spatial overlap (due to

possible subcatchments measured upstream). After this ini-

tial filtering, data available at the daily scale are first aggre-

gated to monthly values, given that at least 25 d per month

are present. To reduce the impact of, e.g. human disturbances

such as large-scale groundwater pumping or regulations of

river flow, non-overlapping, centred moving averages con-

taining monthly data of 15 years are calculated as described

in Dehghani et al. (2019). Any catchment for which the aver-

age of a window is exceeded more than 3 standard deviations

Geosci. Model Dev., 13, 4159–4181, 2020 https://doi.org/10.5194/gmd-13-4159-2020
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by the mean of the subsequent window are discarded to re-

move catchments where obvious disturbances occur during

the study period. Finally, monthly averages are aggregated to

annual averages, conditioning on at least 10 months per year

being present.

2.3.2 Atmospheric forcing

Surface net radiation and precipitation to derive catchment-

scale validation data for the turbulent fluxes and the Bowen

ratio using Eqs. (1)–(3) are taken from the respective reanal-

ysis in order to mainly evaluate the effect of the land-surface

scheme in the IFS on the surface energy partitioning rather

than the combined effect of the atmospheric and land-surface

model. Therefore, the reanalysis data (Sect. 2.1) are tempo-

rally aggregated to the annual resolution and spatially aggre-

gated to the scale of the catchments.

2.3.3 Ground heat flux

The ground heat flux is calculated as a fixed fraction of

the surface net radiation depending on the land cover as in

Martens et al. (2017, 2016) and Miralles et al. (2011). The

land cover is parameterised by the Global Vegetation Contin-

uous Fields product (MOD44B v6; Dimiceli et al., 2015) de-

rived from measurements of the Moderate Resolution Imag-

ing Spectroradiometer (MODIS). Hence, each grid cell is

covered by a certain fraction of tall vegetation (e.g. forests),

low vegetation (e.g. grasslands), and bare soil. For the frac-

tion of tall vegetation, the ground heat flux is assumed to be

10 % of the net radiation, while for the fractions of low veg-

etation and bare soil the corresponding percentages are 20 %

and 35 % (Miralles et al., 2011; Santanello and Friedl, 2003;

Kustas and Daughtry, 1990). Altogether, the fraction of net

radiation assumed to be converted into the ground heat flux

is the weighted average of the former percentages with the

fractional land covers.

2.4 Balloon soundings

The Integrated Global Radiosonde Archive (IGRA; Durre

et al., 2006) is a data set of direct atmospheric sounding

observations from balloons across the globe, representative

of different environmental and climate conditions (Wouters

et al., 2019) and can be used to evaluate estimated profiles

of atmospheric properties. The data set will be used here to

evaluate atmospheric profiles derived from forcing an ABL

model (Sect. 2.6) with ERA5 data. The balloon soundings are

screened for the observation time and quality as in Wouters

et al. (2019). A detailed description of this data set, together

with a description of the processing and quality checks can be

found in Wouters et al. (2019). The data set used in this study

consists of approximately 18 000 quality-checked morning–

afternoon sounding pairs from 121 locations across the globe

from 1981 to 2018.

2.5 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM)

is a process-based semi-empirical model designed to esti-

mate terrestrial evaporation and its separate components at

the global scale from satellite observations alone (Miralles

et al., 2011). In summary, GLEAM first calculates potential

evaporation using the Priestley and Taylor equation (Priestley

and Taylor, 1972) for four land cover fractions per grid cell:

(1) low vegetation, (2) tall vegetation, (3) bare soil, and (4)

open water. Estimates of potential transpiration (for the first

two fractions) are converted into actual transpiration by ap-

plying an empirical multiplicative stress factor. The latter is

calculated as a function of vegetation optical depth – which

is used as a proxy for vegetation water content (Liu et al.,

2013, 2011) – and root-zone soil moisture. The root-zone

soil moisture in GLEAM is calculated using a multi-layer

soil water balance model driven by precipitation and is fur-

ther optimised using a Newtonian nudging data assimilation

scheme (Martens et al., 2017, 2016). For the bare soil frac-

tion, the evaporative stress factor is calculated based on sur-

face soil moisture alone, while for the open-water fraction,

no evaporative stress is considered (i.e. actual equals poten-

tial evaporation). Finally, for grid cells covered by snow, sub-

limation is calculated using the Priestley and Taylor equa-

tion with a specific set of parameters (Murphy and Koop,

2005). The fraction of precipitation intercepted by the veg-

etated surface and directly evaporated back into the atmo-

sphere (i.e. rainfall interception loss) is only calculated for

the fraction of tall vegetation. For this purpose, the imple-

mentation of Gash’s analytical model of rainfall intercep-

tion (Gash, 1979) by Valente et al. (1997) is used. Ultimately,

the total evaporative flux is calculated by summing the fluxes

calculated for the four cover fractions. For a detailed descrip-

tion of GLEAM, we refer the readers to Martens et al. (2017,

2016) and Miralles et al. (2011, 2010).

Here, GLEAM is used as a tool to assess quality differ-

ences in some key meteorological drivers of the turbulent

fluxes, derived from ERA5 and ERA-I, and to explore the

skill of the land-surface model implemented in ERA5 (H-

TESSEL) to accurately model the control of the land surface

on the turbulent heat fluxes. To do so, GLEAM is forced by

an up-to-date version of the GLEAM v3a forcing database

described in Martens et al. (2017), which uses near-surface

air temperature and surface net radiation from ERA-I (here-

after referred to as GLEAM+ERA-I). Next, GLEAM is also

forced using the same data set, but with near-surface air tem-

perature and surface net radiation from ERA5 (hereafter re-

ferred to as GLEAM+ERA5). Although GLEAM has been

designed to target the accurate estimation of terrestrial evap-

oration (or surface latent heat flux), we also calculate the es-

timated surface sensible heat flux as the residual of the en-

ergy balance, ignoring changes in energy storage (Eq. 2).

Based on the estimates of both turbulent fluxes, the Bowen

ratio from GLEAM is also calculated. The model is run for

https://doi.org/10.5194/gmd-13-4159-2020 Geosci. Model Dev., 13, 4159–4181, 2020



4164 B. Martens et al.: Evaluating the surface energy partitioning in ERA5

the period 1989–2015 – where 1989 is used as a spin-up

year (Martens et al., 2017) – at daily temporal resolution

and on a regular 0.25◦ latitude–longitude grid (Martens et al.,

2017). All inputs, either sourced from ERA-I or ERA5, are

processed as in Martens et al. (2017), including a linear re-

sampling in both time and space to the spatiotemporal reso-

lution used by GLEAM.

2.6 CLASS4GL

The Chemistry Land-surface Atmosphere Soil Slab (CLASS)

model for GLobal studies (CLASS4GL; http://class4gl.eu,

last access: 4 September 2020) is a free software tool de-

signed to investigate the dynamics of the ABL and its sensi-

tivity to different land and atmospheric conditions using data

from weather balloons (Wouters et al., 2019). The core of

CLASS4GL is the ABL model CLASS, which is coupled

to a soil–vegetation module allowing the simulation of the

diurnal evolution of the ABL with a temporal resolution of

60 s. The platform is able to mine appropriate observational

data from global radio soundings, satellite data, and reanal-

ysis data from the last 40 years to constrain and initialise

the ABL model. Its interactive interface automatises multiple

simulations of the ABL in parallel and allows us to perform

global perturbation experiments. It aims to foster a better un-

derstanding of land–atmosphere feedbacks and to disentan-

gle the drivers of (extreme) weather conditions globally.

Here, CLASS4GL is used as a tool to assess whether the

surface energy partitioning in ERA5 has been improved upon

ERA-I in a similar experiment as described in Sect. 2.5 with

GLEAM. Therefore, CLASS4GL is forced with the turbu-

lent fluxes derived from both ERA5 and ERA-I to simulate

diurnal tendencies of potential temperature, humidity, and

mixed-layer height. As described by Wouters et al. (2019),

the evaporative fraction derived from reanalysis data (either

ERA-I or ERA5) is used to guide the simulations of the ABL

diurnal evolution and the resulting afternoon profiles of hu-

midity, potential temperature, and ABL height.

2.7 Evaluation strategy

2.7.1 Evaluation using eddy-covariance data and

balloon soundings

Both the turbulent fluxes (and Bowen ratio) from the reanal-

yses (Sect. 2.1) and the estimates from the GLEAM exper-

iments (Sect. 2.5) are directly compared against the in situ

eddy-covariance measurements (Sect. 2.2). For each eddy-

covariance site in the validation data set, the variables from

the overlapping model grid cells are extracted at their native

spatial resolution and both as 3-hourly and daily (temporal)

aggregates. Note that for the experiments involving GLEAM,

only daily estimates are available. Eddy-covariance sites lo-

cated within the same model grid cell are treated separately

in the validation to avoid potential problems resulting from

merging sensors with different absolute values and gaps in

their record (Martens et al., 2017). Also note that there is

a substantial mismatch between the footprint of the eddy-

covariance system and the model grid cells, resulting in a

representativeness error that can be a substantial fraction of

the total error (Jiménez et al., 2018).

As the temporal variability of the turbulent fluxes is

strongly influenced by the seasonal cycle of its main drivers

at the scales considered in this experiment, the perfor-

mance of the land-surface schemes in response to anomalous

weather conditions (i.e. with respect to the seasonal cycle)

might be masked when raw time series are analysed. As such,

the evaluation of the turbulent fluxes against the FLUXNET

data set will be done based on standardised anomalies to bet-

ter evaluate the skill of the reanalyses in capturing the effect

of specific meteorological conditions on the surface energy

partitioning. Therefore, standardised anomalies of the tur-

bulent fluxes are calculated (and Bowen ratio) from (1) the

reanalyses, (2) the GLEAM experiments, and (3) the eddy-

covariance measurements prior to calculating validation met-

rics. Note that the calculation of standardised anomalies al-

lows us to directly compare the quality of the turbulent fluxes

and the Bowen ratio, despite their different orders of magni-

tude.

Anomaly time series are calculated by (1) subtracting for

each time interval the expected value (i.e. the climatology),

calculated as the multi-annual average for that time interval,

and (2) dividing by the standard deviation of the expectation.

To calculate climatologies of the eddy-covariance data, only

FLUXNET sites with a minimum record length of 5 years

are considered, resulting in 77 eddy-covariance towers for

the evaluation of the anomaly time series (Fig. 1).

Using the standardised anomalies of the in situ eddy-

covariance measurements as a reference, the Pearson corre-

lation coefficient (R) and mean absolute difference (MAD)

of the reanalysis data sets and the estimates from GLEAM

are calculated to evaluate their quality (Sect. 3.1.1). In ad-

dition, the mean difference (MD) of the raw data series is

calculated to assess the bias in the estimates. Metrics are vi-

sualised in violin plots constructed using a kernel density es-

timation approach with a band width calculated according to

Scott (1979). For the MD and R, a 95 % confidence interval

is calculated at each FLUXNET site following the procedure

outlined in De Lannoy and Reichle (2016). First, the tempo-

ral autocorrelation in both the reference and estimated time

series is calculated to correct the degrees of freedom (Gru-

ber et al., 2020). Second, a confidence interval is calculated

at each FLUXNET site assuming a normal distribution for

R (after applying a Fisher Z transformation to the time se-

ries) and a Student t distribution for the MD. Metrics are

then assumed to be statistically different at the 5 % signifi-

cance level if their confidence intervals do not overlap. Note

that we do not calculate confidence intervals for the MAD, as

there are no analytical solutions available for this metric and

the calculation thus requires a non-parametric approach rely-
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ing on computationally heavy Monte Carlo simulations (Gru-

ber et al., 2020). Finally, the confidence intervals for the MD

and R are averaged across the FLUXNET data set and the

average confidence interval is reported.

In a similar manner as for the GLEAM experiment, the

simulations of CLASS4GL (Sect. 2.6) are validated against

afternoon profiles from balloon soundings sourced from the

IGRA data set (Sect. 2.4). However, the skill of CLASS4GL

is evaluated based on the root mean squared error (RMSE) –

rather than the MAD – along with R and MD, all calculated

on raw time series, and results are visualised in Taylor plots.

2.7.2 Evaluation using catchment energy-balance data

Next to the evaluation of the turbulent fluxes from ERA5

against in situ eddy-covariance measurements, an evalua-

tion against catchment-scale water and energy-balance data

(Sect. 2.3) is also performed. Given the typical bias in eddy-

covariance measurements, especially in the case of the sur-

face latent heat flux (Beer et al., 2010), an evaluation of the

magnitude of the fluxes should be interpreted with care. On

the other hand, the catchment-scale energy-balance data are

thought to be less biased, especially at the temporal scales

considered in this study, and are therefore better suited to

evaluate the magnitude of the fluxes (Miralles et al., 2016).

For each catchment in the data set, the turbulent fluxes of

the reanalyses (Sect. 2.1) are temporally aggregated to the

annual resolution and spatially aggregated to the scale of the

catchments. Next, the MD between the reference data set and

the reanalysis is calculated to assess the magnitude of the

surface energy partitioning. Results are spatially visualised

in global maps and compared against each other by means of

scatter plots.

3 Results and discussion

3.1 Evaluation using eddy-covariance data

3.1.1 Direct comparison to in situ data

Figure 2 shows violin plots of the MD (raw in situ time se-

ries as reference), MAD (anomaly in situ time series as ref-

erence), and R (anomaly in situ time series as reference)

of the turbulent fluxes and the Bowen ratio against in situ

eddy-covariance measurements. Average metrics across the

FLUXNET data set and their confidence interval are reported

in Table 1. Violin plots are presented for the surface latent

heat flux (3-hourly and daily resolution), surface sensible

heat flux (3-hourly and daily resolution), and Bowen ratio

(daily resolution), for ERA5 (green) and ERA-I (yellow), re-

spectively. As shown, statistics are consistently (and statis-

tically significantly) better for ERA5 than for ERA-I, with

typically higher R and lower MAD against in situ measure-

ments, even though the bias (MD) remains relatively similar.

This indicates that ERA5 is better at capturing the tempo-

ral dynamics in surface energy partitioning, both at sub-daily

and daily temporal resolutions. Especially for the daily ag-

gregated surface sensible heat flux, a clear improvement can

be seen, with the median R of ERA5 across all reference

sites approaching the 75 % percentile of the ERA-I distribu-

tion. Nevertheless, differences are statistically significant in

more sites at the sub-daily scale than at daily resolutions:

the Pearson correlation coefficient for the surface sensible

heat flux from ERA5 is significantly better (at the 5 % signif-

icance level) at 63 % and 38 % of the sites at the 3-hourly and

daily temporal resolutions, respectively. ERA-I, on the other

hand, is only significantly better in approximately 10 % of

the sites, while in the remainder of sites, differences are not

significant. For the surface latent heat flux and Bowen ra-

tio, improvements are less remarkable, but still consistent, as

R is significantly better for ERA5 in 59 %, 29 %, and 39 %

of the eddy-covariance sites for the surface latent heat flux

(3-hourly and daily resolutions) and the Bowen ratio. The

opposite is only true in about 8 % of the sites. As shown

in Fig. 2, both ERA5 and ERA-I tend to overestimate the

surface latent heat flux and underestimate the Bowen ratio.

Conversely, the average bias in the surface sensible heat flux

is close to zero. However, advances in ERA5 have not been

able to make a huge difference in these tendencies, as statis-

tics of ERA5 and ERA-I are close to each other and statis-

tically significant in only one to two sites. Notably, for both

ERA-I and ERA5, validation statistics are generally better

for sensible than for latent heat fluxes (see higher median R

and lower MAD for sensible heat fluxes, irrespective of data

set and temporal aggregation). Despite the differences in pre-

processing techniques and in the sample of eddy-covariance

sites, these results are consistent with those by Balsamo et al.

(2015) based on a validation of ERA-I only. When the sea-

sonality is not removed (Fig. A1), turbulent fluxes of ERA5

still outperform those from ERA-I, although differences are

smaller. In terms of seasonal cycle, the surface sensible heat

flux is not necessarily better estimated than the surface la-

tent heat flux; in fact, statistics are generally worse at daily

temporal resolution as shown in Fig. A1.

Figure 3 shows the difference between temporal valida-

tion statistics calculated at the anomaly time series (i.e. MAD

and R) of the surface latent heat flux, surface sensible heat

flux, and Bowen ratio from ERA5 and ERA-I. Sites are clus-

tered as a function of mean annual precipitation and near-

surface air temperature measured at the corresponding eddy-

covariance site. Results are consistent with those in Fig. 2,

with an overall higher quality (green colour) in the sensible

and latent heat fluxes from ERA5. However, it can be ar-

gued that there is a tendency of ERA-I to perform better than

ERA5 in warm and dry regimes, especially for the latent heat

flux and Bowen ratio. These climates are, nonetheless, only

sampled by three eddy-covariance towers, and thus results

may not be generalised. In addition, conclusions based on the

performance in certain climate regimes should be interpreted

with care, as FLUXNET sites are not uniformly distributed:
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Figure 2. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen ratio

(β) from ERA5 (green) and ERA-I (yellow). Statistics are calculated against in situ eddy-covariance measurements at both 3-hourly and

daily temporal resolutions. Violin plots represent the distribution of the individual validation statistics with indication of the median and

interquartile range and are calculated using a kernel density estimation approach. Statistics include the MD (raw in situ time series from

143 sites as reference), MAD (anomaly in situ time series from 77 sites as reference), and R (anomaly in situ time series from 77 sites as

reference). The distribution of the MD of β is plotted on the right y axis.

Table 1. Averaged metrics and their confidence interval of surface energy partitioning from ERA5, ERA-I, GLEAM+ERA5, and

GLEAM+ERA-I across the FLUXNET 2015 data set. n/a – not applicable

λρE (3 h) λρE (24 h) H (3 h) H (24 h) β (24 h)

W m−2 W m−2 W m−2 W m−2 –

MD ERA5 9.27 (±0.080) 8.49 (±0.178) −2.60 (±0.010) −2.99 (±0.140) −0.56 (±0.013)

ERA-I 11.12 (±0.079) 10.29 (±0.180) −3.38 (±0.099) −3.66 (±0.147) −0.69 (±0.012)

GLEAM+ERA5 n/a −3.27 (±0.176) n/a −5.83 (±0.153) −0.25 (±0.014)

GLEAM+ERA-I n/a −3.76 (±0.179) n/a −10.14 (±0.158) −0.39 (±0.014)

R ERA5 0.34 (±0.002) 0.41 (±0.005) 0.46 (±0.002) 0.50 (±0.004) 0.39 (±0.006)

ERA-I 0.31 (±0.002) 0.39 (±0.005) 0.42 (±0.002) 0.45 (±0.004) 0.36 (±0.006)

GLEAM+ERA5 n/a 0.35 (±0.005) n/a 0.45 (±0.005) 0.39 (±0.006)

GLEAM+ERA-I n/a 0.32 (±0.005) n/a 0.46 (±0.005) 0.40 (±0.007)

mild climates are generally over-represented and most sites

are located in Europe and the CONUS, as shown in Fig. 1

and described in Baldocchi et al. (2001).

Presumably, much of the improvement in surface energy

partitioning in ERA5 over ERA-I can be attributed to a bet-

ter representation of land-surface processes in the more ad-

vanced H-TESSEL land-surface model and the improved

data assimilation system wrapped around the model. Note

that both improvements in the atmospheric data assimilation

system (by improving the atmospheric drivers of the turbu-

lent fluxes) and the land-surface data assimilation (by im-

proving the land-surface constraint on the turbulent fluxes)

might affect the turbulent fluxes. The better performance of

H-TESSEL – in reference to TESSEL, its antecessor used in

ERA-I – was already illustrated by Balsamo et al. (2015),

who compared the quality of different land-surface vari-

ables from ERA-I and ERA-I/Land over the Northern Hemi-

sphere. ERA-I/Land is in essence an offline simulation of H-

TESSEL forced with atmospheric data derived from ERA-

I. Although quality differences between ERA-I and ERA-
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Figure 3. Difference between temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen

ratio (β) from ERA5 and ERA-I grouped as a function of precipitation rate (P ) and near-surface air temperature (T ) calculated at the in situ

site. Statistics are calculated against in situ eddy-covariance measurements at daily resolution and then averaged across the sites within each

group. Statistics include the MAD (anomaly in situ time series from 77 sites as reference) and R (anomaly in situ time series from 77 sites

as reference). Circles show the R from ERA5 minus the one from ERA-I, while squares show the MAD from ERA-I minus the one from

ERA5; hence, green colours represent better statistics for ERA5 compared to ERA-I. The size of the symbols relates to the number of in situ

sites per group.

I/Land can be attributed not only to the land-surface scheme

but also to the different model setup (i.e. online vs. offline

simulation), Balsamo et al. (2015) argued that most of the im-

provement was due to the land-surface model. As H-TESSEL

is now also implemented in ERA5, analogous improvements

can thus be expected in ERA5 over ERA-I regarding the sim-

ulation of land-surface variables.

Despite the fact that several studies have shown the high

performance of H-TESSEL as compared to TESSEL for sim-

ulating a variety of land-surface parameters (e.g. Balsamo

et al., 2015; Albergel et al., 2012), Balsamo et al. (2015) also

showed that improvements in the turbulent fluxes of ERA-

I/Land over ERA-I could not be uniquely linked to the differ-

ent land-surface scheme. Hence, the better quality of surface

energy partitioning in ERA5 is, most likely, due to not only

an improved parameterisation of the land surface but also a

better quality of the atmospheric drivers, simulated by the

coupled atmospheric model, which is constrained by a 4-D

variational (4D-Var) data assimilation of a large number of

quality-controlled observations (Hersbach et al., 2020). The

better quality of some key meteorological parameters is con-

firmed by the results presented in Fig. A3, which shows vio-

lin plots of the validation statistics for surface net radiation,

2 m air temperature, and precipitation at the FLUXNET sites,

for 3-hourly and daily temporal resolutions, respectively. Al-

though statistics from ERA5 are better at both temporal res-

olutions, especially the sub-daily variability of all three vari-

ables has been substantially improved over ERA-I, which

may largely be the result of a better modelling of cloud prop-

erties in ERA5 (Hersbach et al., 2020).

Finally, as described in Sect. 2.1, one of the key improve-

ments in ERA5 upon its predecessor is the higher spatial

resolution at which atmospheric and land processes are re-

solved. However, Fig. A2 shows that when ERA5 is linearly

resampled to the spatial resolution of ERA-I, statistics cal-

culated against eddy-covariance measurements only change

marginally. Nevertheless, such an analysis only gives a crude

idea of the impact of the spatial resolution as (1) due to non-

linear processes and feedback mechanisms, a simple resam-

pling of the model output does not properly represent the ef-

fect of the high-resolution numerical modelling; (2) the ef-

fect is expected to be the highest in complex terrain such as

mountainous regions, coastal areas, or highly heterogeneous

landscapes, which are under-represented in the FLUXNET

database; and (3) representativeness errors – resulting from

the relatively small footprint of eddy-covariance towers as

compared to model grid cells – remain considerable at the

spatial resolution of ERA5.

3.1.2 Evaluation using GLEAM

Forcing GLEAM with meteorological data derived from

ERA5 and ERA-I provides a convenient and alternative

means to evaluate and compare the quality of the reanaly-

ses. Moreover, it allows an evaluation of the usefulness of

ERA5 to drive offline models explicitly designed to estimate

land-surface fluxes (in the case of GLEAM, terrestrial evapo-

ration). Nevertheless, results of such an experiment should be

interpreted with care as errors in the forcing might be com-

pensated for by the model. However, parameters in GLEAM

are fully based on literature studies (Martens et al., 2017;

Miralles et al., 2011) and are not calibrated; the analysis pre-
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sented in this study is performed over a large number of sites,

and the modelling concepts of GLEAM and ERA-I/ERA5

are substantially different. Hence, it is assumed here that

errors in neither ERA-I nor ERA5 are compensated for by

GLEAM.

Figure 4a shows violin plots of the MD (raw in situ time

series as reference), MAD (anomaly in situ time series as

reference), and R (anomaly in situ time series as reference)

of the turbulent fluxes and the Bowen ratio derived from

GLEAM against in situ eddy-covariance measurements. The

average R and MD, together with their confidence interval,

are reported in Table 1. Violin plots are shown for both tur-

bulent fluxes and the Bowen ratio at daily temporal reso-

lution; the violin limbs correspond to GLEAM forced with

ERA5 (green) and ERA-I (yellow), respectively. Results pre-

sented in Fig. 4a show that the estimates of the surface la-

tent heat flux from GLEAM+ERA5 are consistently better

than those from GLEAM+ERA-I, especially in terms of R

and MAD, while the bias in both is comparable and close

to zero on average. While for the MD, GLEAM+ERA5 is

only significantly better in a handful of sites, R is signif-

icantly better in 22 % of the sites for the turbulent fluxes,

and in 3 % of the sites for the Bowen ratio. However, in the

majority of sites (75 % for the turbulent fluxes and 91 % for

the Bowen ratio), differences in R are not statistically signifi-

cant. These findings support the ones discussed in Sect. 3.1.1,

where it was found that some key meteorological drivers

of the surface turbulent fluxes are in fact better represented

in ERA5 than in ERA-I. On the other hand, with the ex-

ception of the bias, statistics for the surface sensible heat

flux and Bowen ratio are slightly worse for GLEAM+ERA5

than for GLEAM+ERA-I but not statistically significant in

terms of R, as evidenced by the percentages reported above.

Nonetheless, when the seasonal cycle is not removed prior

to the analysis (Fig. A4a), GLEAM+ERA5 performs con-

sistently (albeit only slightly) better for all variables, sug-

gesting that the seasonality of the meteorological variables

used to force GLEAM is better captured in ERA5 than

in ERA-I. Despite the fact that the most prominent differ-

ences in the quality of the surface latent heat flux from

GLEAM+ERA5 and GLEAM+ERA-I can be found in mild

climates as indicated in Fig. 5a, there is no clear tendency

of GLEAM+ERA5 to perform better under specific climatic

conditions. The surface sensible heat flux and Bowen ratio

from GLEAM+ERA5, on the other hand, tend to degrade

in quality (compared to GLEAM+ERA-I) when the climate

gets drier and colder. It should be emphasised here again that

GLEAM has been specifically designed to estimate the latent

heat flux; thus, the surface sensible heat flux – calculated here

as the residual from the energy balance – has not been sub-

ject to equally extensive validations as its latent counterpart

and is prone to be more uncertain.

The turbulent fluxes and Bowen ratio from

GLEAM+ERA5 can also be directly compared to ERA5

to provide a crude evaluation of the skill of H-TESSEL as

compared to the simpler land-surface scheme in GLEAM.

Figure 4b shows that ERA5 is better at capturing the

temporal dynamics of the anomalies, generally resulting in

lower MAD and higher R for all variables. In terms of R,

ERA5 performs significantly better (at the 5 % significance

level) at 27 %, 39 %, and 27 % of the sites for the surface

latent heat flux, surface sensible heat flux, and Bowen ratio,

respectively. GLEAM+ERA5 only performs better in 15 %,

9 %, and 18 % of the sites for the same variables, while in

the majority of sites, differences are not significant. Only

in terms of the bias, ERA5 overall performs worse than

GLEAM+ERA5 (but again, only significantly at a very

limited number of sites), especially for the surface latent

heat flux, which is consistently overestimated in ERA5

for almost all in situ sites (close to 75 % of the sites have

a positive bias; Fig. 4b). This results in a median MD

of 9 Wm−2 compared to the slight underestimation of

−2 Wm−2 for GLEAM+ERA5 at daily timescales. The

positive bias in the surface latent heat flux from ERA5 is

very similar to the one from ERA-I, with a median MD of

10 Wm−2 across all in situ sites at daily resolutions (Fig. 2).

The tendency to overestimate the latent heat flux in ERA-I

has been previously reported in different studies (Michel

et al., 2016; Miralles et al., 2016; Balsamo et al., 2015;

Decker et al., 2012), and important changes in the IFS

have thus not been able to mitigate this bias in ERA5.

Given the interaction between the coupled atmospheric

and land-surface model in the reanalysis, the consistent

positive bias in the surface latent heat flux is potentially

affected by both components of the modelling framework.

Although it is hard to identify the exact cause of this bias,

it might be induced by the overestimation of the number

of wet days typically found in reanalysis data sets (Beck

et al., 2019), combined with precipitation rates that are often

underestimated (Beck et al., 2019) and vegetation density

that might be overestimated (Král, 2011). This presumably

results in an overestimation of the interception loss (Král,

2011), an important component of the total latent heat

flux in densely vegetated regions (Martens et al., 2017;

Miralles et al., 2010). Note that this hypothesis is partially

supported by our analysis: despite the fact that a positive

bias can be found virtually everywhere, the strongest

biases are typically found in densely vegetated sites (not

shown). We should emphasise here, however, that biases

calculated against eddy-covariance measurements have to

be interpreted with care, given representativeness errors

resulting from the mismatch in spatial footprint between

the grid cell and the instrument, and provided that turbulent

heat fluxes are thought to be generally underestimated by

the eddy-covariance technique, especially in the case of the

surface latent heat flux (Beer et al., 2010). When the seasonal

cycle is not removed prior to the evaluation (Fig. A4b),

GLEAM+ERA5 seems to perform equally as well as or

slightly better than ERA5, indicating that GLEAM+ERA5

is marginally better than ERA5 at capturing the seasonal
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Figure 4. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen ratio

(β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5. Panel (a) compares the violin plots from GLEAM+ERA5 and GLEAM+ERA-I

and (b) compares the violin plots from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ eddy-covariance measurements

at daily temporal resolution. Violin plots represent the distribution of the individual validation statistics with indication of the median and

interquartile range and are calculated using a kernel density estimation approach. Statistics include the MD (raw in situ time series from

143 sites as reference), MAD (anomaly in situ time series from 77 sites as reference), and R (anomaly in situ time series from 77 sites as

reference). The distribution of the MD of β is plotted on the right y axis.

dynamics (Fig. A4b) but worse at capturing the response

of surface energy partitioning to short-term anomalies

in meteorological conditions (Fig. 4b). Nevertheless, we

would like to highlight that ERA5 is a fully coupled land–

atmosphere system permitting a feedback from the land

surface towards the atmosphere, while GLEAM is an offline

land-surface model forced with atmospheric variables from

ERA5. We note that this coupling between the land surface

and the atmosphere might have a substantial impact on the

quality of the turbulent fluxes (Draper et al., 2018; Balsamo

et al., 2015), potentially explaining the differences between

GLEAM+ERA5 and ERA5.

Nonetheless, Fig. 5b shows that for the surface latent heat

flux, the better performance of ERA5 over GLEAM+ERA5

is mainly due to its better statistics in relatively wet or

cold climatic regimes. In drier regimes and, especially

warm regions (mainly located along the west coast of the

CONUS and few eddy-covariance sites in Australia; Fig. 1),

GLEAM+ERA5 seems to better capture the anomalies of the

surface latent heat flux, which might indicate that H-TESSEL

has room to improve the response to water stress. For the

Bowen ratio, similar conclusions may be drawn, even though

the quality of the sensible heat flux in ERA5 is consistently

better than in GLEAM+ERA5.

3.2 Evaluation using catchment energy-balance data

As described in Sect. 2.3, observations of river discharge may

be combined with precipitation, net radiation, and ground

heat flux to derive catchment-scale and long-term estimates

of the surface turbulent fluxes and the Bowen ratio, providing

an alternative means to evaluate the surface energy partition-

ing in ERA-I and ERA5. Figure 6 compares the percentage

of MD (%MD, i.e. MD divided by the mean of the refer-

ence data set) of the surface latent heat flux, surface sensi-

ble heat flux, and Bowen ratio (observations of catchment-

scale variables as reference) from ERA5 and ERA-I using a

scatter plot. The results shown in Fig. 6 largely correspond

to the ones shown in Fig. 2 for the MD and point again to

a substantial overestimation of the surface latent heat flux

from ERA-I; in 83 % of the catchments, a positive bias is ob-

tained. Conversely, the surface sensible heat flux is generally

underestimated (a negative bias is found in 61 % of the catch-

ments), resulting in an underestimation of the catchment-

scale Bowen ratio as well (a negative bias is found in 80 % of

the catchments). While absolute biases for the surface latent
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Figure 5. Difference between temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen

ratio (β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5 grouped as a function of precipitation rate (P ) and near-surface air temperature

(T ) calculated at the in situ site. Panel (a) compares the statistics from GLEAM+ERA5 and GLEAM+ERA-I and (b) compares the statistics

from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ eddy-covariance measurements at daily resolution and then averaged

across the sites within each group. Statistics include the MAD (anomaly in situ time series from 77 sites as reference) and R (anomaly in

situ time series from 77 sites as reference). In panel (a), circles show the R from GLEAM+ERA5 minus the one from GLEAM+ERA-I,

while squares show the MAD from GLEAM+ERA-I minus the one from GLEAM+ERA5; hence, green colours represent better statistics for

GLEAM+ERA5 compared to GLEAM+ERA-I. In panel (b), statistics from GLEAM+ERA-I are replaced by ERA5; hence, green colours

represent better statistics for GLEAM+ERA5 compared to ERA5. The size of the symbols relates to the number of in situ sites per group.

Figure 6. Scatter plot of the bias of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen ratio (β) from ERA-I vs.

ERA5. The bias is calculated against catchment-scale estimates of the fluxes derived using discharge data (Eqs. 1–3) and is assessed by the

percentage of mean difference (%MD, raw time series from 707 catchments as reference). The green area indicates points where the bias in

ERA5 is better than that in ERA-I, and vice versa for the brown area.
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heat flux from ERA5 are lower than those from ERA-I (an

improvement is found in 75 % of the catchments), ERA5 still

overestimates the flux in most catchments, as also indicated

by Hersbach et al. (2020). More striking are the results for the

surface sensible heat flux: while ERA-I generally underesti-

mates the flux, ERA5 overestimates it in about 70 % of the

catchments. In addition, the absolute bias of the surface sen-

sible heat flux from ERA5 is higher than in ERA-I in 55 % of

the catchments. However, this potential overestimation is not

confirmed by the in situ validation presented in Sect. 3.1.1

(Fig. 2), where the surface sensible heat flux from both re-

analyses appeared nearly unbiased. Finally, for the Bowen

ratio, estimates of ERA5 appear better in about 60 % of the

catchments, arguably reflecting the improvement in the sur-

face latent heat flux. Note that a rather strong overestimation

of the surface latent heat flux was also found in other reanal-

yses such as NASA’s MERRA and MERRA-2 (Draper et al.,

2018). However, in the latter reanalyses, both surface turbu-

lent fluxes were consistently overestimated, which could po-

tentially be linked to a positive bias in the incoming radiation

at the land surface.

Figures 7–9 show maps of the catchment-scale %MD of

the surface latent heat flux (Fig. 7), surface sensible heat flux

(Fig. 8), and Bowen ratio (Fig. 9) for ERA5, ERA-I, and the

difference in their absolute values. While ERA-I overesti-

mates the surface latent heat flux virtually everywhere, biases

are relatively larger in the east of the CONUS and the south

of Europe (in regions like Spain and the south of France).

In these regions, a strong reduction in bias can be observed

for ERA5. Despite the complex interactions between the land

surface and the atmosphere in the IFS, these improvements

can potentially be related to an improved representation of

precipitation in ERA5 as shown by Hersbach et al. (2020)

and affecting (1) interception loss in radiation-limited re-

gions such as the east of the CONUS – which might repre-

sent a substantial portion of total evaporation in forested re-

gions (Martens et al., 2017; Miralles et al., 2011, 2010) – and

(2) the land-surface constraint on terrestrial evaporation in

water-limited evaporation regimes like the south of Europe.

Note that the latent heat flux in the latter regions will also be

strongly affected by improvements in the land-surface data

assimilation system (Hersbach et al., 2020; Balsamo et al.,

2015). Over large parts of Europe and western Russia on the

other hand, the surface latent heat flux from ERA5 is nearly

unbiased, while the overestimation in other regions still re-

mains, albeit reduced compared to ERA-I. Except for a small

number of catchments in the northeast of Brazil and the west

of the Sahel, the bias of the surface latent heat flux is lower

in ERA5 than in ERA-I. The surface sensible heat flux from

ERA-I is typically underestimated in high latitudes and the

eastern part of the CONUS, while an overestimation can be

seen in most other regions. However, as discussed in the pre-

vious paragraph, the bias in the surface sensible heat flux of

ERA5 is typically higher, especially over Europe, western

Russia, and the east of the CONUS, regions where the bias

Figure 7. Maps of the bias of the surface latent heat flux (λρE)

from ERA5 and ERA-I. The bias is calculated against catchment-

scale estimates of the fluxes derived using discharge data (Eqs. 1–3)

and is assessed by the %MD (raw time series from 707 catchments

as reference). The bottom map represents the difference (1) be-

tween the absolute bias in ERA-I and ERA5; hence, green colours

represent lower bias in ERA5 than in ERA-I.

in the surface latent heat flux is reduced in ERA5. Finally,

in absolute terms, the bias in the Bowen ratio increases from

ERA5 to ERA-I as evidenced in Fig. 9 and largely follows

the patterns set by the bias in the surface sensible heat flux

(Fig. 8).

Finally, it should be emphasised here that the quality of

the catchment-scale sensible heat flux (and Bowen ratio) es-

timates used as reference is potentially lower than that of the

surface latent heat flux, as (1) the assumption that the ground

heat flux is a fixed fraction of the surface net radiation only

affects the estimates of the sensible heat (Eq. 2), and (2) the

estimates of sensible heat flux depend on the estimates of

surface latent heat (Eq. 2), resulting in a propagation of er-

rors which is difficult to assess. Hence, the catchment-scale

evaluation of the surface sensible heat flux and Bowen ratio

should be more carefully interpreted.

https://doi.org/10.5194/gmd-13-4159-2020 Geosci. Model Dev., 13, 4159–4181, 2020



4172 B. Martens et al.: Evaluating the surface energy partitioning in ERA5

Figure 8. Like Fig. 7 but for the surface sensible heat flux (H ).

3.3 Evaluation using CLASS4GL

Figure 10 shows the validation of the estimated afternoon

ABL properties from CLASS4GL forced with the surface

energy partitioning from ERA-I (on the one hand) and ERA5

(on the other hand). The validation is performed by compari-

son against a global archive of balloon soundings (Sect. 2.6).

Results are shown for the diurnal temporal change (ten-

dency) of potential temperature (dθ/dt), humidity (dq/dt),

and mixed-layer height (dh/dt). The overall performance at

reproducing the diurnal ABL tendencies is improved when

CLASS4GL is forced with ERA5 instead of ERA-I. This is

the case for all statistical scores being considered and for

each ABL variable being analysed. In addition, this is also

the case in most Köppen–Geiger climate classes, which sug-

gests that the higher performance is consistent across cli-

mate regimes. The largest improvement in simulated ABL

properties is found for the tendency of specific humidity,

where the bias is reduced from 0.10 to 0.05 gkg−1 h−1 when

CLASS4GL is forced with ERA5 instead of ERA-I. Most

of the improvement can be found in days where the mixed

layer tends to dry out during the diurnal growth (i.e. negative

tendency of specific humidity) and is most likely related to

Figure 9. Like Fig. 7 but for the Bowen ratio (β).

the substantially lower bias in surface latent heat flux from

ERA5, as discussed in Sect. 3.1.1 and 3.2. Also, the Pear-

son correlation coefficient (0.37 vs. 0.50), normalised RMSE

(0.22 vs. 0.17 gkg−1 h−1), and normalised standard deviation

(1.2 vs. 1.03) point towards improvements of the ABL simu-

lations when forced by the surface energy partitioning from

ERA5. For the other variables (dh/dt and dθ/dt), improve-

ments are only minor but still consistent. These results high-

light that the surface energy partitioning in ERA5 can lead

to improved skill in the diurnal ABL simulations by mixed-

layer models such as CLASS.

3.4 Global patterns of surface energy partitioning

Figure 11 shows maps of the multi-annual average of the sur-

face latent heat flux, surface sensible heat flux, and Bowen

ratio from ERA5 and ERA-I, as well as the difference be-

tween both. In both data sets, the expected geographical pat-

terns set by the general climatic conditions emerge. High val-

ues for the surface latent heat flux can be found around the

Equator where both the availability of water and the supply

of energy are high, while the lowest values can be found in

arid regions such as the Sahara, central Australia, the Namib,

and the Gobi Desert. In terms of surface sensible heat flux, an
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Figure 10. Skill of CLASS4GL at reproducing diurnal changes in ABL properties when forced with surface evaporative fractions from ERA5

vs. ERA-I. Shown are the tendencies of the mixed-layer height (dh/dt), potential temperature (dθ/dt), and specific humidity (dq/dt), which

are assessed by comparison of model simulations against the IGRA sounding data between 1981 and 2015. The first row shows modelled vs.

observed data points, and the corresponding median and interquartile range of the simulations in solid lines, where green represents ERA5

and brown ERA-I. The 1–1 line is shown as a black line for reference. The bottom row illustrates the skill of the ABL simulations when

forced with ERA5 (circles) vs. ERA-I (triangles) in the form of Taylor plots. The transparent symbols show the overall performance of 18 000

sounding pairs from 121 stations, whereas the coloured symbols indicate the performance per Köppen–Geiger climate class and for which

the size is proportional to the number of sounding pairs.

opposite pattern is shown, with relatively lower values in the

tropics, where most of the available energy is consumed to

evaporate water, and very high values in the deserts, where

virtually no water is evaporated. The Bowen ratio clearly

marks the tropical forests and deserts, with intermediate val-

ues for mild climates such as central and western Europe.

The globally averaged surface sensible heat flux from land

amounts to 27.2 and 26.9 Wm−2 for ERA5 and ERA-I, re-

spectively: a difference of only 1.1 % (ERA-I as reference).

For the surface latent heat flux, the difference is higher and

sums up to −5.2 % (ERA-I as reference), with global aver-

ages of 44.1 and 46.5 Wm−2 for ERA5 and ERA-I, respec-

tively. The latter two values correspond to a yearly total vol-

ume of evaporated water of approximately 97.8 × 103 and

103.1 × 103 km3. Similar values typically found in literature

– although based on different land-surface models or retrieval

algorithms, input data sets, or region considered (e.g. areas

permanently covered by snow or ice included or not) – range

between 55 × 103 and 80 × 103 km3 (Miralles et al., 2016;

Wang and Dickinson, 2012, and references therein), pointing

towards an overestimation of the total volume of evaporated

water in both ERA-I and ERA5. In terms of globally aver-

aged energy fluxes, the turbulent fluxes from both reanaly-

ses lie within (or close to) the uncertainty ranges reported by

Wild et al. (2015), who inferred the magnitude of the global

energy fluxes based on a detailed analysis of a variety of ob-

servations and model-based estimates. However, the surface

sensible heat flux from both reanalyses can be found near the
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lower boundary of the interval, while the surface latent heat

flux may be found near the upper limit of the interval. This

is also the case when compared to values reported in Draper

et al. (2018), who analysed the turbulent fluxes of NASA’s re-

analysis products MERRA, MERRA2, and MERRA-Land.

They found values for both fluxes ranging between 42 and

50 Wm−2, depending on the reanalysis considered. These re-

sults confirm our findings in Sect. 3.1 and 3.2 and are in line

with results previously reported in literature (e.g. Miralles

et al., 2016; Wild et al., 2015; Mueller et al., 2013; Jiménez

et al., 2011, and references therein) where similar biases were

found for ERA-I.

Figure 11 shows that the lower globally averaged surface

latent heat flux from ERA5 mainly results from reduced val-

ues along the east coast of the CONUS, the south of Europe,

the Sahel, India, and large parts of South America. These re-

gions align well with the areas identified in Miralles et al.

(2016), where ERA-I seemed to strongly overestimate the

surface latent heat flux, and thus point towards better perfor-

mance of ERA5 in these specific regions, although positive

biases still prevail (Fig. 7). The surface latent heat flux from

ERA5 is higher than the one from ERA-I only in a few ar-

eas, such as the central CONUS, eastern Australia, and east-

ern Europe. For the surface sensible heat flux, differences

between ERA5 and ERA-I are clearly defined, with substan-

tially higher values in the equatorial forests and lower values

in (semi-)arid regions in the case of ERA5.

4 Conclusions

This study evaluated the surface energy partitioning over land

in ECMWF’s latest reanalysis ERA5 by assessing the qual-

ity of the surface latent heat flux, surface sensible heat flux,

and Bowen ratio at different spatiotemporal scales and us-

ing different validation approaches. Results were also com-

pared with the predecessor ERA-I for reference. Different in

situ validation data sets – including eddy-covariance, river

discharge, and balloon sounding data – were used to vali-

date the reanalysis fields, and GLEAM and CLASS4GL were

adopted as modelling tools to evaluate the surface energy par-

titioning in both reanalyses.

In a first experiment, the turbulent fluxes and the Bowen

ratio from the reanalyses were directly compared against

eddy-covariance measurements from the FLUXNET 2015

data set. The analysis revealed that ERA5 performed con-

sistently better than ERA-I for all variables analysed, both at

daily and sub-daily temporal resolutions, resulting in lower

MAD and higher R against in situ data. The differences were

most clear when anomaly time series were analysed, indi-

cating that – although statistics also improved in the case of

the raw time series – ERA5 is substantially better capturing

the response of surface energy partitioning to specific mete-

orological events. As one of the key changes in ERA5 is the

use of the state-of-the-art H-TESSEL land-surface model and

improvements in the land-surface data assimilation system,

an important part of the improvements may be attributed to

the improved land parameterisation. However, a validation of

some key meteorological variables against in situ measure-

ments also showed better quality of these parameters from

ERA5 than from ERA-I. These results were largely con-

firmed by an experiment where GLEAM was forced with me-

teorological fields retrieved from both reanalyses, showing a

higher quality of the output based on ERA5 forcing data. Fi-

nally, although ERA5 did not seem to perform particularly

better than ERA-I in specific climates, it was shown that

GLEAM forced with ERA5 meteorology performed better

than ERA5 in terms of estimating the surface latent heat flux

in warm and dry regimes, indicating possible shortcomings

in the land-surface scheme to capture the response of surface

energy partitioning to heat and drought stress in ERA5.

In a second experiment, catchment-scale turbulent fluxes

derived using discharge, precipitation, net radiation, and

ground heat flux data were used to verify the bias in the an-

nual turbulent fluxes from ERA-I and ERA5. Here, a substan-

tial overestimation of the surface latent heat flux from ERA-I

became evident. On the other hand, the surface sensible heat

flux appeared generally underestimated. While the biases in

ERA5 for the surface latent heat flux were found to be lower

– a strong reduction was found along the east coast of the

CONUS and in the south of Europe – a general tendency to

overestimate the latent heat flux still remains in ERA5. In the

case of the surface sensible heat flux on the other hand, the

sign of the bias reversed (i.e. in ERA5 the flux tends to be

overestimated) and increased in absolute value.

A better quality of the surface energy partitioning in ERA5

was also confirmed by an experiment where CLASS4GL

was forced with the evaporative fraction from ERA-I and

ERA5. Simulations of the diurnal evolution of the ABL

were validated against a global archive of balloon sound-

ings. CLASS4GL forced with ERA5 showed an overall bet-

ter skill for simulating the diurnal boundary layer dynam-

ics than when forced with ERA-I. Especially in reproduc-

ing the tendencies of specific humidity, CLASS4GL seemed

to strongly benefit from the seemingly better surface energy

partitioning in ERA5, resulting in a substantially lower bias.

The latter could be attributed to the lower bias in the sur-

face latent heat flux in ERA5 than in ERA-I. Since ERA5-

forced experiments better explained the global variability of

the boundary layer dynamics, this experiment confirmed the

overall better surface energy partitioning in ERA5 than in

ERA-I, in line with the other independent experiments pre-

sented here.

Finally, the global patterns of turbulent fluxes and Bowen

ratio were analysed, and the globally averaged magnitude of

the fluxes was compared with values reported in literature.

While the spatial patterns are realistic in both data sets, and

align with the expectations from the major hydroclimatolog-

ical regions, the substantial overestimation of the surface la-

tent heat flux in both reanalyses emerged again. However,
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Figure 11. Maps of the multi-annual average of surface latent heat flux (λρE, W m−2), surface sensible heat flux (H , W m−2), and Bowen

ratio (β) from ERA5 and ERA-I. In the last row, 1 presents the difference between ERA5 and ERA-I; hence, green colours represent higher

values in ERA5 compared to ERA-I.

the magnitude of the surface latent heat flux was found to be

about 5 % lower in ERA5 than in ERA-I, pointing towards

the reduction of the bias, while the surface sensible heat flux

only increased by approximately 1 %. The main reductions

in the surface latent heat flux were found in regions that had

previously been highlighted in literature as hotspots of over-

estimation in ERA-I, such as the south of Europe, the Sahel,

India, large parts of South America, and the east coast of the

CONUS.

In this paper, a variety of methods and data sets were

used to evaluate the quality of the turbulent fluxes (and near-

surface meteorology) from ERA5. As discussed throughout

the paper, all techniques and reference data sets come with

their own uncertainties and are derived based on different

assumptions leading to potential flaws in the analyses pre-

sented in this paper. Eddy-covariance sites in the FLUXNET

data set are not uniformly distributed across the globe, and

neither are the discharge measurements and balloon sound-

ings used in this study. Therefore, conclusions should not be

extrapolated to regions that are under-represented in these

data sets. In addition, the quality of each reference data set

is affected by measurement errors and uncertainties intro-

duced by assumptions made during the processing. Finally,

both GLEAM and CLASS4GL are models and cannot be

treated as ground truth as their estimates are impacted by un-

certainties introduced by the model structure and parameter-

isation, as well as their inputs. Nevertheless, most analyses

point towards the direction of improvements from ERA-I to

ERA5, irrespective of the validation technique or reference

data set used, giving confidence to the conclusions drawn in

this study. In summary, it can be concluded that – based on

the validation data and tools used in this study – the quality

of the turbulent fluxes (and near-surface meteorology) from

ERA5 has been improved. Although biases (especially in the

surface latent heat flux) still prevail, changes in the IFS from

ERA-I to ERA5, and improvements in the observational data

sets that are assimilated into the models, have thus generally

resulted in a higher-quality surface energy partitioning in the

reanalysis.
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Appendix A

Figure A1. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen

ratio (β) from ERA5 (green) and ERA-I (yellow). Statistics are calculated against in situ eddy-covariance measurements at both 3-hourly

and daily temporal resolutions. Violin plots represent the distribution of the individual validation statistics with indication of the median and

interquartile range and are calculated using a kernel density estimation approach. Statistics include the MAD (raw in situ time series from

143 sites as reference) and R (raw in situ time series from 143 sites as reference). The distribution of the MAD of β is plotted on the right

y axis.

Figure A2. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen ratio

(β) from ERA5 (green) and ERA5 linearly resampled to the spatial grid of ERA-I (yellow). Statistics are calculated against in situ eddy-

covariance measurements at both 3-hourly and daily temporal resolutions. Violin plots represent the distribution of the individual validation

statistics with indication of the median and interquartile range and are calculated using a kernel density estimation approach. Statistics include

the MD (raw in situ time series from 143 sites as reference), MAD (anomaly in situ time series from 77 sites as reference), and R (anomaly

in situ time series from 77 sites as reference). The distribution of the MD of β is plotted on the right y axis.
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Figure A3. Violin plots of temporal validation statistics of the surface net radiation (Rn), 2 m air temperature (T ), and precipitation rate

(P ) from ERA5 (green) and ERA-I (yellow). Statistics are calculated against in situ eddy-covariance measurements at both 3-hourly and

daily temporal resolutions. Violin plots represent the distribution of the individual validation statistics with indication of the median and

interquartile range and are calculated using a kernel density estimation approach. Statistics include the MAD (anomaly in situ time series

from 83 sites as reference) and R (anomaly in situ time series from 83 sites as reference).

Figure A4. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H ), and Bowen ratio

(β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5. Panel (a) compares the violin plots from GLEAM+ERA5 and GLEAM+ERA-I and

(b) directly compares the violin plots from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ eddy-covariance measurements

at daily temporal resolution. Violin plots represent the distribution of the individual validation statistics with indication of the median and

interquartile range and are calculated using a kernel density estimation approach. Statistics include the MAD (raw in situ time series from

143 sites as reference) and R (raw in situ time series from 143 sites as reference). The distribution of the MAD of β is plotted on the right

y axis.
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Code and data availability. All data sets used in this study can be

freely accessed from their respective repositories after registration.

ERA-I data were downloaded from the ECMWF web page (https:

//apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, Eu-

ropean Reanalysis Interim, 2020), ERA5 data were retrieved

from the Copernicus Climate Data Store (https://cds.climate.

copernicus.eu/, European Reanalysis 5, 2020), GLEAM data

were accessed from https://www.gleam.eu/ (Global Land Evap-

oration Amsterdam Model v3, 2020), GRDC discharge data

can be downloaded from https://www.bafg.de/GRDC/EN/02_srvcs/

21_tmsrs/riverdischarge_node.html (Global Runoff Data Centre,

2020), the FLUXNET2015 Tier2 data set can be accessed from

the FLUXNET data portal at https://fluxnet.fluxdata.org/data/

fluxnet2015-dataset/ (FLUXNET, 2020; Pastorello et al., 2020), in-

put data for CLASS4GL are available at https://www.CLASS4GL.

eu/ (CLASS4GL, 2020), and the output of CLASS4GL is available

upon request. The source code of CLASS4GL can be accessed at

https://www.CLASS4GL.eu/.
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