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Evaluating the optimal probability distribution for

steganography under zero error 
onditions

Gareth Brisbanea, Rei Safavi-Nainia and Philip Ogunbonab

aS
hool of IT and CS, University of Wollongong, NSW, Australia
bMotorola Australia Resear
h Centre, Sydney, NSW, Australia

ABSTRACT

Information hiding 
an be performed under the guise of a digital image. We 
onsider the following s
enario:
Ali
e and Bob share an image and would like to use it as a 
over image to 
ommuni
ate a message m. We
are interested in answering two questions: What is the maximum amount of information that 
an be sent for a
given level of degradation to an image? and How 
an this level of eÆ
ien
y be a
hieved in pra
ti
e? We require
the re
overed message to be the same as the embedded one.

Our model begins with Ali
e 
ompressing a message to obtain a binary sequen
e with uniform distribution.
She then 
onverts the binary sequen
e into aQ-ary sequen
e having a pre-de�ned distribution, and �nally adding
ea
h symbol to a pixel. The distribution of the Q-ary sequen
e is 
hosen su
h that the amount of information
is maximized for a given value of the signal to noise ratio. Bob re
overs the sequen
e by subtra
ting the image
data, and then 
onverting the Q-ary string into the original binary string.

We determine the optimal distribution analyti
ally and provide a graphi
al representation of the variation
of the amount of information with signal-to-noise ratio when Q varies.

Keywords: Steganography, image es
row, optimal, 
apa
ity

1. INTRODUCTION

The most 
ommon illustration for representing the various nuan
es of the steganographi
 problem was posed
by Simmons.1 He allegorized the problem as the desire for two prisoners, Ali
e and Bob, to 
ommuni
ate with
ea
h other. They had already anti
ipated their arrival in jail and so have already shared a short se
ret. Their
messages are 
ouriered by agents of the warden, Wendy. Wendy knows that they will try to 
o-ordinate their
es
ape but wishes to 
at
h them in the a
t. For this to happen, she allows 
ommuni
ations in the hope that
she will identify messages whi
h 
ontain 
onvi
ting information. Ali
e and Bob, aware of this restri
tion, hide
stego-text (hidden messages) within 
over-text (an inno
uous medium).

The subset of the problem whi
h we are interested in is the passive warden. No alterations are made to
the 
oversignal as an a
tive warden 
ould, nor send additional messages as might a mali
ious warden. Instead,
the passive warden will only prohibit messages in the event that they do not have the appearan
e of a normal
message.

The spe
i�
 type of message we examine are digital images. Images have potential for information hiding
due to the redundan
y and irrelevan
y of the image data where the latter is be
ause of the limitations of Human
Visual System (HVS). Compression algorithms exploit these properties to �nd a mu
h shorter des
ription of
the data.

An information hiding system 
onsists of two algorithms: an embedding algorithm where stego-text is embed-
ded in a 
over-text, and an extra
tion algorithm where the stego-text is extra
ted from a 
over-text. We des
ribe
an embedding pro
ess as a zero-error algorithm if all bits of the embedded data 
an be losslessly extra
ted from
its 
over-text, assuming that it has not otherwise been modi�ed. Information hiding systems 
an be broadly
divided into image es
row systems in whi
h extra
ting the embedded message requires the knowledge of the
original image, and oblivious systems whi
h do not require the original.2
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A steganographi
 te
hnique is evaluated with respe
t to three 
riteria2: embedding 
apa
ity; robustness; and
imper
eptibility. The embedding 
apa
ity of an information hiding te
hnique is de�ned as the maximum amount
of stego-text that 
an be embedded in a given 
over-text. The robustness of a te
hnique refers to the ability of
the te
hnique in re
overing the embedded stegotext after the 
over-text is modi�ed (either invisibly or visibly).
Finally the imper
eptibility of the te
hnique is a measure of its e�e
tiveness with respe
t to hiding the stegotext.
There is a trade-o� between satisfying these 
riteria. That is, in
reasing the embedding 
apa
ity will lower
robustness and imper
eptibility, and redu
ing it will tend to in
rease the two.

1.1. Other works on 
apa
ity

1.1.1. Channel 
apa
ity for oblivious te
hniques

Let N denote the signal power of an image X . Marvel and Bon
elet's aim is to �nd the maximum quantity of
information that 
an be embedded in an image, when the embedding is additive and in the pixel domain (pixel
by pixel).3 They assume an oblivious system, whi
h does not require X for extra
tion of the stego-data. By
modelling data hiding as sending a signal, S, through a noisy signal (N), they 
an use the 
hannel 
apa
ity
expression derived by Shannon,4

C =
1

2
log2

S +N

N

They noted that be
ause the image data is highly 
orrelated, it 
annot be represented as additive Gaussian
noise. They proposed the use of equivalent white Gaussian noise to obtain an upper-bound for the 
hannel

apa
ity. To obtain the white noise equivalent to an arbitrary noise signal, the entropy of the given noise
signal, in this 
ase, N , must be determined. This is done by using CALIC, an image 
ompression algorithm.5

The results showed that the potential for oblivious information hiding was image dependent, and ranged from
approximately 0.25bpp to 3.4bpp for a Signal to Noise Ratio (SNR) of -30dB.

1.1.2. Channel 
apa
ity for 
over image es
row te
hniques

Barni et al.6 
onsider the 
apa
ity of a 
lass of data hiding te
hniques that operate in the frequen
y domain,
su
h as those proposed by Cox et al.7 and Barni et al.8 Though not expli
itly mentioned, both of these
te
hniques are es
row image systems. In these systems the transform 
oeÆ
ients, for example the DCT and
DFT in the two mentioned 
ases respe
tively, are modi�ed. The modi�
ation of ea
h 
oeÆ
ient is proportional
to the size of the 
oeÆ
ients. The authors assimilate ea
h 
oeÆ
ient to a 
hannel through whi
h a 
omponent
of the watermark is transmitted. They argue that for su
h 
hannels, the noise is neither additive nor Gaussian
and so the frequently used expression for 
hannel 
apa
ity, reprodu
ed above, 
annot be used. They also
propose pra
ti
al numeri
al methods for evaluating the 
apa
ity, indi
ating that approximately 0.0055bpp 
an
be hidden, though no mention is made of the quality of Z, the output image.

Ramkumar and Akansu9 
onsider the 
apa
ity of the data hiding 
hannel for both image es
row and oblivious
systems and show that 
apa
ity 
an be substantially in
reased by de
omposing the image using orthonormal
transforms su
h as the DCT, Hartley, Hadamard and sub-band de
omposition. They 
onsider degradation
mainly due to 
ompression (followed by de
ompression) and show that the optimum 
hoi
e of the transform
depends on the required level of robustness.

2. THE INFORMATION HIDING MODEL

2.1. De�nitions

We 
onsider image es
row systems with zero error in re
overy. Stego-data is embedded in the pixel domain,
simply by adding it to the pixel values. We assume that the stego-data is a Q-ary string of symbols, where
elements of the string are integers in the range [�A;B℄. Elements of the stego-text data are added one-by-one
to the pixels of the 
over image. In extra
tion, the 
over-text data is subtra
ted from the stego-text. We only

onsider grey s
ale images, although the results 
an be easily extended to images with more than one 
olour

omponent.
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Figure 1. Hidden 
ommuni
ation through an image
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In the 
ase of an 8 bit s
ale, the addition operation is 
lipped to the range [0; 255℄ and so if the sum is above
255, be
ause of 
lipping the information will be lost. Similarly if the result is less than zero it will be rounded
to zero and again the embedded data will be lost.

The main question is \How mu
h information 
an be hidden within an image, assuming that the warden is
passive, and given a maximum level of degradation to the image?".

Let an image X 
onsist of pixels, x1; x2; :::; xU�V , where U is the number of rows and V is the number of

olumns. The value of xi 2 [0; R℄;8i 2 [1; U � V ℄. We assume that we are dealing with only grey s
ale images.
If 
olour images are used, then if they are stored independently, the 
apa
ity for hiding information is in
reased
by the number of extra 
olour planes�.

Initially, the se
ret data whi
h Ali
e wishes to transmit is a binary sequen
e. It is then 
ompressed to
produ
e a message, whi
h is a binary sequen
e with p(0) = p(1) = 1=2, a uniform distribution. It is a reasonable
assumption that su
h a sequen
e will be the output of any optimal 
ompression algorithm, so we assume the
message to be embedded will be in this form. Our 
al
ulations only assume this distribution of the message to
eliminate any bias in the se
ret data. To use the embedding te
hnique des
ribed above, the binary sequen
e
must be 
onverted into a Q-ary sequen
e with probability distribution y that will be 
hosen to maximize the
amount of embedded information.

The full diagram of the pro
ess is shown in �gure 1.

2.1.1. Ali
e's 
omponents

The 
oder takes the binary uniformly distributed sequen
e and generates a Q-ary sequen
e with probability
distribution y. It is assumed that the symbols are in the range [�A;B℄, where Q = B +A+ 1.

This 
oder 
an be implemented using an entropy de
oder algorithm, su
h as arithmeti
 
oding or Hu�man

oding. A binary entropy 
oder takes a sequen
e over an alphabet, �, together with a probability distribution,
y, and produ
es a binary output that is uniformly distributed. The de
oder performs the inverse: it uses the
same model as the en
oder to 
onvert a binary, uniformly distributed input to the original sequen
e. With this
des
ription, it is 
lear that the 
oder of the information hiding system des
ribed above 
an be 
onstru
ted by
an entropy de
oder, for example an arithmeti
 de
oder whose parameters (size of the alphabet and asso
iated
probability distribution) are determined by the probability distribution required by the embedder.

Although it is theoreti
ally possible to use other entropy 
oders with optimal performan
e, in pra
ti
e
the arithmeti
 
oder provides the best performan
e.10 Thus, the arithmeti
 
oding algorithm is used for our
experiments. The goal of the en
oding se
tion is therefore identifying the model that gives the best performan
e
form a data hiding perspe
tive. This 
an be equated with designing a sour
e that mat
hes a transmission

hannel, in this 
ase, the image X .

The embedder adds the en
oded message sequen
e to the pixel values of X . This is done by adding ea
h
symbol,mi, derived from the en
oding of the message sequen
e, to a pixel, xi, in the image. That is, zi = xi+mi.
We assume that 
lipping takes pla
e, i.e. zi = 0 when zi < 0 and zi = R when zi > R. This results in the loss
of embedded information in the 
lipped values.

�This is not entirely true, as 
ompression of 
olour 
hannels makes use of this 
orrelation.

Proc. of SPIE Vol. 4793     147

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/19/2013 Terms of Use: http://spiedl.org/terms



Embedding may be in all pixels, or a portion of the pixels subje
t to a spe
i�
 
riterion, known by both Ali
e
and Bob. Embedding in all pixels is likely to introdu
e error in message re
overy be
ause of the 
lipping e�e
t
des
ribed above. This error 
an be avoided if a subset of the pixels were used, that is, all pixels with values in
the range [A;R � B℄. Thus, even if the most outlying numeri
 symbols, �A and B, were to be embedded, zi
would still remain in the range [0; R℄, ensuring that the embedding algorithm is error-free.

Modifying pixel values 
auses damage to the original image. A metri
 for measuring the damage is the Peak
Signal to Noise Ratio(PSNR):

PSNR = 20 log10
255p
MSE

(1)

where the MSE is the Mean Squared Error. The PSNR is not always a good measurement11 but it is the most

ommonly used one and will be used in the rest of this paper for measuring imper
eptibility of embedding.

2.1.2. Bob's 
omponents

The extra
tor takes Z and X, and by subtra
ting pixel values, re
overs the embedded message, using the formula
m̂i = zi � xi;8i 2 [1; U � V ℄, where m̂i is either mi or an erroneous value of mi due to 
lipping.

The de
oder is the inverse of the en
oder, 
onverting the message symbols ba
k to the form of the message
sequen
e. If the entropy 
oder is the arithmeti
 
oding algorithm, then de
oding will only su

eed if no errors
are present in m̂.

2.1.3. Error 
orre
tion

As noted previously, a requirement is that the message 
an be re
overed error-free. Error 
orre
tion works by
adding redundan
y to data. We noted above that error free embedding is possible if a subset of points is used
for embedding. An alternative method is to use an error 
orre
ting 
ode to 
orre
t the errors due to 
lipping.
That is, use an error 
orre
ting 
ode in Ali
e's 
omponent, just before the embedding. However this will alter
the probability distribution, y. We note that error 
orre
ting 
odes 
annot be used before the en
oder (entropy
de
oder) as the 
orresponding de
oder will be after the entropy en
oder. This means that the input to the
entropy en
oder will have errors and be
ause of the sensitivity of su
h en
oders to error, the whole output will
be in error. In the rest of this paper we assume error freeness is obtained by restri
ting the embedding to a
subset of symbols.

3. EMBEDDING CAPACITY

3.1. De�nition of the problem

With the above model, we 
an state the problem of �nding the embedding 
apa
ity as an optimization problem.
That is, for a �xed level of distortion, measured by the PSNR, we want to �nd the range [�A;B℄ and probability
distribution y of the symbols whi
h maximizes the amount of embedded information.

Let yi denote the probability of symbol i where i 2 [�A;B℄. Finding the embedding 
apa
ity is equivalent

to �nding yi; i 2 [�A;B℄ that maximizes H(y) = �PB
i=�A yi log yi;8yi for a given value of M(y). That is

MaximizeyH(y)

subje
t to

M(y) =

BX

i=�A

i2yi = 
 (2)

P (y) =

BX

i=�A

yi = 1 (3)

0 � yi � 1 (4)

H(y) represents the entropy of the distribution, M(y) represents the MSE, and P (y) is the term whi
h
equates the sum of the probability distribution.
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3.2. Deriving the optimal distribution

Using LaGrange multipliers, the following simultaneous equations are derived:

�H

�yi
=

�M

�yi
�M +

�P

�yi
�P (5)

�H

�y�i
=

�M

�y�i
�M +

�P

�y�i
�P (6)

�H

�y0
=

�M

�y0
�M +

�P

�y0
�P (7)

From the maximization de�nition, the following identities are also known:

BX

i=�A

i2yi � 
 = 0 (8)

BX

i=�A

yi � 1 = 0 (9)

From the partial derivative equations 5, 6, and 7, where yi > 0

�1� log yi = i2�M + �P (10)

�1� log y�i = (�i)2�M + �P (11)

�1� log y0 = �P (12)

Lemma 3.1. yi = y�i;8i 2 Z; i 2 [�A;B℄

From equation 11,

�1� log y�i = i2�M + �P

= �1� log yi

y�i = yi (13)

where yi; y�i > 0. However, 0 � yi � 1. Thus, for the 
ase where yi = 0, suppose y�i = d. If d > 0, then
yi = y�i by equation 13 above. Therefore, d = 0 be
ause y�i 2 [0; 1℄. Therefore, yi = y�i;8i 2 Z; i 2 [�A;B℄.

Lemma 3.2. A = B

From lemma 3.1, yi = y�i. Suppose A < B. Then yj = 0; j 2 [�A� 1;�B℄. From lemma 3.1, y�j = yj = 0.
Therefore, all symbols in the range [A + 1; B℄ have no probability of o

urring and 
an be ex
luded from the
probability distribution y. Therefore, B = A. Be
ause A and B are arbitrary, the same logi
 
an be used to
show that if B < A, then A = B. Therefore in all 
ases, A = B. For simpli�
ation, we now let q = A = B; so
Q = 2q + 1.

Lemma 3.3. y = 0

From lemma 3.1, yi = y�i;8i 2 Z. Thus,

y =

qX

i=�q

iyi (14)

=

�1X

i=�q

iyi +

0X

i=0

iyi +

qX

i=1

iyi (15)

=

qX

i=1

�iyi + 0 +

qX

i=1

iyi (16)

= 0 (17)
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Lemma 3.3 implies that in the optimal 
ase, the average intensities of the original and embedded images is
equal: Z = X.

Lemma 3.4. yi = y�i = y02
�i2�M ;8i 2 Z

From equation 12,

y0 = 2�(�P+1) (18)

where y0 > 0. From equation 10,

yi = 2�(i
2�M+�P+1) (19)

yi = y02
�i2�M (20)

Thus, from equation 20 and lemma 3.1, in the optimal 
ase, yi = y�i = y02
�i2�M ;8i 2 Z.

Theorem 3.5. The solution to
Pq

i=1(2
��M

i
2

(
� i2)) + 

2 = 0 provides the optimal solution.

From lemma 3.4, a relationship is de�ned between the value of y0 and the remainder of the distribution.
Now, the value of �M 
an be 
al
ulated. Equations 8 and 9 
an now be rewritten as

X

i

i2y02
�i2�M � 
 = 0

X

i

y02
�i2�M � 1 = 0

Therefore,

y0 =

Pq

i=�q i
22�i2�M

y0 =
1Pq

i=�q 2
�i2�M

(21)

qX

i=�q

i2xi
2

= 


qX

i=�q

xi
2

Where x = 2��M ; x > 0. Rewriting equations 21 and 20,

y0 =
1Pq

i=�q x
i2

(22)

yi = y0x
i2 (23)

qX

i=�q

xi
2

(i2 � 
) = 0

2

qX

i=1

(xi
2

(i2 � 
))� 
 = 0

qX

i=1

(xi
2

(
� i2)) +



2
= 0 (24)

Be
ause
P

is involved, the equation 
annot be inverted. However, when Q is known, q 
an be determined and
the polynomial 
an be evaluated numeri
ally, yielding a value for x. As yi is dependent on x, y 
an be derived
as the optimal solution for the general 
ase.
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3.3. Redu
ing the sear
h region

Lemma 3.6. 
 2 [0; q2) for a solution to be found.

From equation 24, the largest 
o-eÆ
ient of the polynomial is q2. When 
 � q2, 
 � i2 > 0;8i 2 [1; q℄ and


2 > 0, rendering the equation insoluble for x � 0. Likewise, when 
 < 0, 
� i2 < 0 and 


2 < 0, whi
h bounds

 2 [0; q2).

Lemma 3.7. 
 = 0) H(y) = 0

Suppose 
 = 0. For equation 8 to hold true, yi = 0; y0 = 1; i 6= 0; i 2 Z. The entropy of this distribution is
H(y) = �1� log 1 = 0. Thus 
 = 0) H(y) = 0.

Lemma 3.8. The distribution with the maximum entropy 
an be found if and only if x = 1.

The maximum entropy for a distribution with Q symbols o

urs when the distribution is uniform.4 That
is, all symbols have equal probability: yi = y0 =

1
Q
.

From equation 20, 2�i
2�M = 1, or yi = y0 = 0. The se
ond option is not possible be
ause equation 9 would

not hold. Therefore, a uniform distribution implies x = 1.

Assuming x = 1,

2�i
2�M = 1

�i2�M = 0

�M = 0 (25)

i 
annot be zero in all 
ases unless the trivial solution, Q = 1, is being 
onsidered. From equations 25, 10
and 12,

i2�M + �P = �P

�1� log yi = �1� log y0

yi = y0

This is the uniform distribution, whi
h has the maximum entropy. Thus, x = 1 implies and is the only 
ase
where the maximum entropy is rea
hed.

Lemma 3.9. The distribution with the maximum entropy 
an be found if and only if 
 = q(q+1)
3 .

From lemma 3.8, the maximum entropy 
an be found if and only if x = 1. Therefore, equation 24 be
omes:

qX

i=1

(
� i2) +



2
= 0

q � 
+



2
=

q(q + 1)(2q + 1)

6
3


2q + 1
= q(q + 1)(2q + 1)


 =
q(q + 1)

3

Thus, as x = 1 , 
 = q(q+1)
3 , from lemma 3.8, the lemma is proved. We label the point 
 = q(q+1)

3 as the
turning point for a given Q.

Lemma 3.10. The 
urve representing the family of optimal distributions is 
ontinuous and 
an be 
ompletely
des
ribed in the range x 2 (0; 1℄.

To derive the optimal distribution, a positive real root must exist from equation 24, whi
h is a polynomial

of order xq
2

. Lemma 3.9 shows that 
 = q(q+1)
3 gives the maximum entropy for a given q. Also, if 
 = 0,
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then x = 0 is a solution to equation 24, although the optimal distribution 
annot be derived from this be
ause
x = 2�i

2�M . However, the equation still produ
es a real root. Thus, for a given value of q, the root is de�ned
for x = 0 and x = 1.

The Zero Ex
lusion Condition,12 is helpful in solving this problem. The parameterized polynomial

p(x; q) =

nX

i=0

ai(q)x
i; q 2 Q � Rl (26)

where ai(q) 
ontinuously depends on q; i = 0; 1; :::; n. If deg(p(x; q)) is invariant, every root xi(q) of p(x; q)

ontinuously depends on the parameter q. Thus, the pointwise 
ontinuous property of ai(q) implies that xi(q)
is also pointwise 
ontinuous. In our 
ase, ai(q) = (
 � i), where i = k2, for some k 2 N and ai(q) = 0,
otherwise. Thus, as 
 is 
ontinuous in the range 
 2 (�1;1), so also all of the roots xi(q) are 
ontinuously

joined. Therefore, as x = 0 and x = 1 are roots for the values of 
 = 0 and q(q+1)
3 respe
tively, then by the

sandwi
h theorem, zeroes exist for all points in the range [0; 1℄. Be
ause x = 0 is a spe
ial 
ase, it is ex
luded
from the general statement to avoid diÆ
ulty.

Thus, the family of optimal distributions is 
ontinuous for 
 2 (0; q(q+1)3 ℄ and 
overs every possible bit rate
through lemmas 3.7 and 3.9.y

3.4. Clipping

Until this point, the e�e
ts of 
lipping have not been in
orporated into the model. Be
ause information needs to
be 
ommuni
ated reliably, some pixels are deemed to be unsuitable for embedding information. Any pixels whi
h
might be 
lipped 
annot guarantee reliable 
ommuni
ation, so some symbols are ex
luded from the embedding
and extra
tion pro
esses. This provides independen
e between the de
ision to use a given pixel and the next
symbol to be embedded.

Assuming a uniform distribution for the intensities of pixels within I , the proportion of pixels, K, that will
be used for embedding is given by

K =
R� (Q� 1)

R

= 1� Q� 1

R

where R represents the number of dis
rete values. In general, R is 256. Now, for the 1�K proportion of pixels
that are not used, MSE= 0. Thus, in order to a
hieve the intended MSE for the image, the MSE is s
aled for
the modi�ed pixels: 
̂ = 


K
. This provides us with a greater ability to hide information within those pixels but

the bit rate must also be s
aled, where Ĥ(y) = K �H(y). As 
lipping is avoided, the embedding algorithm is
error-free.

3.5. Results

Figure 2 shows the amount of data that 
an be hidden with respe
t to the MSE and Q, where embedding is
error-free. The performan
e after the turning point is represented by a dotted line. It is 
lear that in
reasing
the size of the distribution allows for better performan
e as the MSE in
reases. When the MSE is small, shorter
alphabets perform better due a larger value of K.

The surfa
e of the optimal distribution is illustrated in �gure 3. As the MSE in
reases, the distribution

onverges to the uniform distribution from a distribution with one symbol. As illustrated in �gure 2, when

 = 0, no noise is permitted, leaving the only option as y0 = 1; yi = 0; i 6= 0. For a �xed size alphabet, the
maximum entropy is a
hieved when all symbols are equally likely.4 The maximum in �gure 2 therefore o

urs
predi
tably when the distribution is uniform, as shown in �gure 3.

yAlthough it appears true, it has not been proven that the optimal distribution is monotoni
ally in
reasing in 
apa
ity

within this range.
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Figure 2. The relationship between the number of symbols and performan
e

The performance of the optimum distribution with error-free 

embedding
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Figure 3. The relationship between the number of symbols and performan
e in the range identi�ed by lemma 3.10
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Table 1. Embedding 50 random �les in images using the optimal distribution for 40dB

Image Av. PSNR (dB) Av. bits/pixel/
olour Boundary prop. (%)
Peppers 39.99 3.252 4.496
Baboon 39.79 3.402 0.115
Airplane 39.79 3.405 0.076
Cameraman 39.79 3.399 0.034
Man 40.26 3.059 10.229
Boat 39.79 3.405 0.018
Average 39.90 3.320 2.495

3.6. Con
lusion

The optimal distribution for a PSNR of 40dB 
an now be determined, using 
 = 6:5025. A
ross all values of Q
and assuming a uniform distribution for the image, the optimum result is when Q = 13, where H(y) = 3:25bpp.

4. VERIFICATION

4.1. Experiments

We implemented this model in order to verify the limits above. As ea
h trial is purely deterministi
, given an
input and 
over image, we therefore vary both of these in order to give reliability to our 
laims. The 
over
images used were \Peppers", \Baboon", and \Airplane" ea
h with 256 by 256 pixels and 3 
olours, as well as
the grey-s
ale images of \
ameraman", \man", and \boat" whi
h ranged up to 1,024 by 1,024 pixels. These
were 
hosen be
ause they are standard test images in the data hiding �eld, as well as their di�ering levels of

ontrast.

To provide variation in the input, random �les of length 100,000 bytes were generated and then 
ompressed
(to eliminate any possibility of the random generator being unreliable) before being used as the input data. Our
obje
tive was to verify that 
ompressed data is able to be embedded within an image at 3.25bpp (per 
olour)
as derived above. Our initial assumption was only that images have a uniform distribution (and in fa
t this
only is only needed to model the boundary points 
orre
tly). Therefore, even though this is quite unlikely to
be true in pra
ti
e, it is expe
ted that it will be insuÆ
ient to 
ause any pra
ti
al problems.

4.2. Results

If an image has a uniform distribution then the per
entage of intensities in this se
tion will be Q�1
256 = 4:69%.

When it does not have this exa
t proportion, the results will di�er by a small amount. When the PSNR is
40dB, the MSE is 6.5025. After a

ounting for the expe
ted e�e
ts of the boundary se
tion, this is s
aled to
6.8223 as shown in subse
tion 3.4. If no pixels have intensities in this boundary se
tion, then 100% of pixels
will be used for data hiding, giving a PSNR of 39.79dB. So in the worst 
ase s
enario (in terms of damage) with
this distribution, will embed 3.41bpp. There is no pra
ti
al means of identifying the other extreme, as if the
image data was totally white (or bla
k), then no data would be able to be embedded under this model.

The results for the three images are shown in table 1. Although the target PSNR of 40dB is a
hieved in only
one image, the results of the other images are still very 
lose to the expe
ted 
apa
ity (3.25bpp) and damage
(40dB). Also, with most of the images having a negligible proportion in the boundary se
tion, the PSNR and

apa
ity are approximately equal to the estimates given above.

5. CONCLUSION

We have devised a model that allows the 
al
ulation of the optimal distribution in the spatial domain without
noise, for a given Mean Squared Error. Thus, the best performan
e from any steganographi
 method will be
3.250 bpp per 
olour, for a PSNR of 40dB. Lo
al variations in the 
over image may provide more than this,
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but this is the limit for the general 
ase. This performan
e will diminish if any robustness is required, or if less
information 
an be shared.

There are still some open questions in this area: \Is it possible to use some form of error 
orre
tion to re
over
from 
lipping errors introdu
ed in transmission"; and \How 
an information be transmitted robustly?". For
example, suppose that a symbol did not represent a single value but instead a range, then some sort of robustness
might be granted. For example, when embedding three symbols, \-1" 
ould refer to the range [�4;�2℄, \0" to
[�1; 1℄, and \1" to [2; 4℄. However, given that tampering usually involves pixels 
hanging by more than a 
ouple
of points of intensity, a superior approa
h would have to be some form of error 
orre
tion in the symbol domain.
As noted in the introdu
tion, some resear
h already examines these questions of robust steganography9 2 .6

Though we have 
on�ned ourselves to the spatial domain, the use of the frequen
y domain will not provide
any further in
rease in 
apa
ity as the evaluation of the PSNR must be 
arried out in the spatial domain. The
introdu
tion of any message 
an always be evaluated in the spatial domain, so any te
hnique that uses the
frequen
y domain is still 
onstrained to these limits. We have su

eeded in evaluating the maximum reliable
rate of transmission of information through the medium of an image from a theoreti
al perspe
tive, measured
the level of steganographi
 se
urity this provides, as well as illustrating this performan
e in pra
ti
e.

ACKNOWLEDGMENTS

This resear
h work is partly funded by the Motorola Australian Resear
h Centre, through the Australian
Government SPIRT grant s
heme.

REFERENCES

1. G. J. Simmons, \The prisoners' problem and the subliminal 
hannel," in Advan
es in Cryptology, Pro
eed-
ings of CRYPTO '83, pp. 51{67, Plenum Press, 1984.

2. J. R. Smith and B. O. Comiskey, \Modulation and information hiding in images," in Workshop on Infor-
mation Hiding, 1174, (Isaa
 Newton Institute, University of Cambridge, UK), May 1996.

3. L. M. Marvel and J. Charles G. Bon
elet, \Capa
ity of the additive steganographi
 
hannel," 1999.

4. C. E. Shannon, \A mathemati
al theory of 
ommuni
ation," The Bell System Te
hni
al Journal , pp. 379{
423, 1948.

5. L. Marvel, C. Bon
elet, and J. Retter, \Spread spe
trum image steganography," in IEEE Transa
tions on
Image Pro
essing, pp. 1075{1083, 1999.

6. M. Barni, F. Bartolini, A. D. Rosa, and A. Piva, \Capa
ity of the watermark-
hannel: How many bits

an be hidden within a digital image," in Se
urity and watermarking of multimedia 
ontents, So
iety of
Photo-opti
al Instrumentation Engineers (SPIE) 3657, pp. 437{448, (San Jose, California), January 1999.

7. I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, \A se
ure, robust watermark for multimedia," in
Information hiding: �rst international workshop, Cambridge, U.K., May 30{June 1, 1996: pro
eedings,
Le
ture Notes in Computer S
ien
e 1174, pp. 185{206, Springer-Verlag, 1996.

8. M. Barni, F. Bartolini, V. Cappellini, and A. Piva, \Copyright prote
tion of digital images by embedded
unper
eivable marks," in Image and Vision Computing, pp. 897{906, 1998.

9. M. Ramkumar and A. Akansu, \Theoreti
al 
apa
ity measures for data hiding in 
ompressed images," in
Multimedia systems and appli
ations, Nov. 1998.

10. T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prenti
e Hall, 1990.

11. B. Girod, \What's wrong with mean-squared error?," in Digital Images and Human Vision, M.I.T. press,
1993.

12. V. L. Kharitonov, \Asymptoti
 stability of an equilibrium position of a family of systems of linear di�erential
equations," Di�erential'nye Uraveniya , pp. 1483{1485, 1978.

Proc. of SPIE Vol. 4793     155

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/19/2013 Terms of Use: http://spiedl.org/terms




