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Evaluating the optimal probability distribution for

steganography under zero error onditions

Gareth Brisbanea, Rei Safavi-Nainia and Philip Ogunbonab

aShool of IT and CS, University of Wollongong, NSW, Australia
bMotorola Australia Researh Centre, Sydney, NSW, Australia

ABSTRACT

Information hiding an be performed under the guise of a digital image. We onsider the following senario:
Alie and Bob share an image and would like to use it as a over image to ommuniate a message m. We
are interested in answering two questions: What is the maximum amount of information that an be sent for a
given level of degradation to an image? and How an this level of eÆieny be ahieved in pratie? We require
the reovered message to be the same as the embedded one.

Our model begins with Alie ompressing a message to obtain a binary sequene with uniform distribution.
She then onverts the binary sequene into aQ-ary sequene having a pre-de�ned distribution, and �nally adding
eah symbol to a pixel. The distribution of the Q-ary sequene is hosen suh that the amount of information
is maximized for a given value of the signal to noise ratio. Bob reovers the sequene by subtrating the image
data, and then onverting the Q-ary string into the original binary string.

We determine the optimal distribution analytially and provide a graphial representation of the variation
of the amount of information with signal-to-noise ratio when Q varies.

Keywords: Steganography, image esrow, optimal, apaity

1. INTRODUCTION

The most ommon illustration for representing the various nuanes of the steganographi problem was posed
by Simmons.1 He allegorized the problem as the desire for two prisoners, Alie and Bob, to ommuniate with
eah other. They had already antiipated their arrival in jail and so have already shared a short seret. Their
messages are ouriered by agents of the warden, Wendy. Wendy knows that they will try to o-ordinate their
esape but wishes to ath them in the at. For this to happen, she allows ommuniations in the hope that
she will identify messages whih ontain onviting information. Alie and Bob, aware of this restrition, hide
stego-text (hidden messages) within over-text (an innouous medium).

The subset of the problem whih we are interested in is the passive warden. No alterations are made to
the oversignal as an ative warden ould, nor send additional messages as might a maliious warden. Instead,
the passive warden will only prohibit messages in the event that they do not have the appearane of a normal
message.

The spei� type of message we examine are digital images. Images have potential for information hiding
due to the redundany and irrelevany of the image data where the latter is beause of the limitations of Human
Visual System (HVS). Compression algorithms exploit these properties to �nd a muh shorter desription of
the data.

An information hiding system onsists of two algorithms: an embedding algorithm where stego-text is embed-
ded in a over-text, and an extration algorithm where the stego-text is extrated from a over-text. We desribe
an embedding proess as a zero-error algorithm if all bits of the embedded data an be losslessly extrated from
its over-text, assuming that it has not otherwise been modi�ed. Information hiding systems an be broadly
divided into image esrow systems in whih extrating the embedded message requires the knowledge of the
original image, and oblivious systems whih do not require the original.2
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A steganographi tehnique is evaluated with respet to three riteria2: embedding apaity; robustness; and
impereptibility. The embedding apaity of an information hiding tehnique is de�ned as the maximum amount
of stego-text that an be embedded in a given over-text. The robustness of a tehnique refers to the ability of
the tehnique in reovering the embedded stegotext after the over-text is modi�ed (either invisibly or visibly).
Finally the impereptibility of the tehnique is a measure of its e�etiveness with respet to hiding the stegotext.
There is a trade-o� between satisfying these riteria. That is, inreasing the embedding apaity will lower
robustness and impereptibility, and reduing it will tend to inrease the two.

1.1. Other works on apaity

1.1.1. Channel apaity for oblivious tehniques

Let N denote the signal power of an image X . Marvel and Bonelet's aim is to �nd the maximum quantity of
information that an be embedded in an image, when the embedding is additive and in the pixel domain (pixel
by pixel).3 They assume an oblivious system, whih does not require X for extration of the stego-data. By
modelling data hiding as sending a signal, S, through a noisy signal (N), they an use the hannel apaity
expression derived by Shannon,4

C =
1

2
log2

S +N

N

They noted that beause the image data is highly orrelated, it annot be represented as additive Gaussian
noise. They proposed the use of equivalent white Gaussian noise to obtain an upper-bound for the hannel
apaity. To obtain the white noise equivalent to an arbitrary noise signal, the entropy of the given noise
signal, in this ase, N , must be determined. This is done by using CALIC, an image ompression algorithm.5

The results showed that the potential for oblivious information hiding was image dependent, and ranged from
approximately 0.25bpp to 3.4bpp for a Signal to Noise Ratio (SNR) of -30dB.

1.1.2. Channel apaity for over image esrow tehniques

Barni et al.6 onsider the apaity of a lass of data hiding tehniques that operate in the frequeny domain,
suh as those proposed by Cox et al.7 and Barni et al.8 Though not expliitly mentioned, both of these
tehniques are esrow image systems. In these systems the transform oeÆients, for example the DCT and
DFT in the two mentioned ases respetively, are modi�ed. The modi�ation of eah oeÆient is proportional
to the size of the oeÆients. The authors assimilate eah oeÆient to a hannel through whih a omponent
of the watermark is transmitted. They argue that for suh hannels, the noise is neither additive nor Gaussian
and so the frequently used expression for hannel apaity, reprodued above, annot be used. They also
propose pratial numerial methods for evaluating the apaity, indiating that approximately 0.0055bpp an
be hidden, though no mention is made of the quality of Z, the output image.

Ramkumar and Akansu9 onsider the apaity of the data hiding hannel for both image esrow and oblivious
systems and show that apaity an be substantially inreased by deomposing the image using orthonormal
transforms suh as the DCT, Hartley, Hadamard and sub-band deomposition. They onsider degradation
mainly due to ompression (followed by deompression) and show that the optimum hoie of the transform
depends on the required level of robustness.

2. THE INFORMATION HIDING MODEL

2.1. De�nitions

We onsider image esrow systems with zero error in reovery. Stego-data is embedded in the pixel domain,
simply by adding it to the pixel values. We assume that the stego-data is a Q-ary string of symbols, where
elements of the string are integers in the range [�A;B℄. Elements of the stego-text data are added one-by-one
to the pixels of the over image. In extration, the over-text data is subtrated from the stego-text. We only
onsider grey sale images, although the results an be easily extended to images with more than one olour
omponent.
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Figure 1. Hidden ommuniation through an image
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In the ase of an 8 bit sale, the addition operation is lipped to the range [0; 255℄ and so if the sum is above
255, beause of lipping the information will be lost. Similarly if the result is less than zero it will be rounded
to zero and again the embedded data will be lost.

The main question is \How muh information an be hidden within an image, assuming that the warden is
passive, and given a maximum level of degradation to the image?".

Let an image X onsist of pixels, x1; x2; :::; xU�V , where U is the number of rows and V is the number of
olumns. The value of xi 2 [0; R℄;8i 2 [1; U � V ℄. We assume that we are dealing with only grey sale images.
If olour images are used, then if they are stored independently, the apaity for hiding information is inreased
by the number of extra olour planes�.

Initially, the seret data whih Alie wishes to transmit is a binary sequene. It is then ompressed to
produe a message, whih is a binary sequene with p(0) = p(1) = 1=2, a uniform distribution. It is a reasonable
assumption that suh a sequene will be the output of any optimal ompression algorithm, so we assume the
message to be embedded will be in this form. Our alulations only assume this distribution of the message to
eliminate any bias in the seret data. To use the embedding tehnique desribed above, the binary sequene
must be onverted into a Q-ary sequene with probability distribution y that will be hosen to maximize the
amount of embedded information.

The full diagram of the proess is shown in �gure 1.

2.1.1. Alie's omponents

The oder takes the binary uniformly distributed sequene and generates a Q-ary sequene with probability
distribution y. It is assumed that the symbols are in the range [�A;B℄, where Q = B +A+ 1.

This oder an be implemented using an entropy deoder algorithm, suh as arithmeti oding or Hu�man
oding. A binary entropy oder takes a sequene over an alphabet, �, together with a probability distribution,
y, and produes a binary output that is uniformly distributed. The deoder performs the inverse: it uses the
same model as the enoder to onvert a binary, uniformly distributed input to the original sequene. With this
desription, it is lear that the oder of the information hiding system desribed above an be onstruted by
an entropy deoder, for example an arithmeti deoder whose parameters (size of the alphabet and assoiated
probability distribution) are determined by the probability distribution required by the embedder.

Although it is theoretially possible to use other entropy oders with optimal performane, in pratie
the arithmeti oder provides the best performane.10 Thus, the arithmeti oding algorithm is used for our
experiments. The goal of the enoding setion is therefore identifying the model that gives the best performane
form a data hiding perspetive. This an be equated with designing a soure that mathes a transmission
hannel, in this ase, the image X .

The embedder adds the enoded message sequene to the pixel values of X . This is done by adding eah
symbol,mi, derived from the enoding of the message sequene, to a pixel, xi, in the image. That is, zi = xi+mi.
We assume that lipping takes plae, i.e. zi = 0 when zi < 0 and zi = R when zi > R. This results in the loss
of embedded information in the lipped values.

�This is not entirely true, as ompression of olour hannels makes use of this orrelation.
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Embedding may be in all pixels, or a portion of the pixels subjet to a spei� riterion, known by both Alie
and Bob. Embedding in all pixels is likely to introdue error in message reovery beause of the lipping e�et
desribed above. This error an be avoided if a subset of the pixels were used, that is, all pixels with values in
the range [A;R � B℄. Thus, even if the most outlying numeri symbols, �A and B, were to be embedded, zi
would still remain in the range [0; R℄, ensuring that the embedding algorithm is error-free.

Modifying pixel values auses damage to the original image. A metri for measuring the damage is the Peak
Signal to Noise Ratio(PSNR):

PSNR = 20 log10
255p
MSE

(1)

where the MSE is the Mean Squared Error. The PSNR is not always a good measurement11 but it is the most
ommonly used one and will be used in the rest of this paper for measuring impereptibility of embedding.

2.1.2. Bob's omponents

The extrator takes Z and X, and by subtrating pixel values, reovers the embedded message, using the formula
m̂i = zi � xi;8i 2 [1; U � V ℄, where m̂i is either mi or an erroneous value of mi due to lipping.

The deoder is the inverse of the enoder, onverting the message symbols bak to the form of the message
sequene. If the entropy oder is the arithmeti oding algorithm, then deoding will only sueed if no errors
are present in m̂.

2.1.3. Error orretion

As noted previously, a requirement is that the message an be reovered error-free. Error orretion works by
adding redundany to data. We noted above that error free embedding is possible if a subset of points is used
for embedding. An alternative method is to use an error orreting ode to orret the errors due to lipping.
That is, use an error orreting ode in Alie's omponent, just before the embedding. However this will alter
the probability distribution, y. We note that error orreting odes annot be used before the enoder (entropy
deoder) as the orresponding deoder will be after the entropy enoder. This means that the input to the
entropy enoder will have errors and beause of the sensitivity of suh enoders to error, the whole output will
be in error. In the rest of this paper we assume error freeness is obtained by restriting the embedding to a
subset of symbols.

3. EMBEDDING CAPACITY

3.1. De�nition of the problem

With the above model, we an state the problem of �nding the embedding apaity as an optimization problem.
That is, for a �xed level of distortion, measured by the PSNR, we want to �nd the range [�A;B℄ and probability
distribution y of the symbols whih maximizes the amount of embedded information.

Let yi denote the probability of symbol i where i 2 [�A;B℄. Finding the embedding apaity is equivalent

to �nding yi; i 2 [�A;B℄ that maximizes H(y) = �PB
i=�A yi log yi;8yi for a given value of M(y). That is

MaximizeyH(y)

subjet to

M(y) =

BX

i=�A

i2yi =  (2)

P (y) =

BX

i=�A

yi = 1 (3)

0 � yi � 1 (4)

H(y) represents the entropy of the distribution, M(y) represents the MSE, and P (y) is the term whih
equates the sum of the probability distribution.
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3.2. Deriving the optimal distribution

Using LaGrange multipliers, the following simultaneous equations are derived:

�H

�yi
=

�M

�yi
�M +

�P

�yi
�P (5)

�H

�y�i
=

�M

�y�i
�M +

�P

�y�i
�P (6)

�H

�y0
=

�M

�y0
�M +

�P

�y0
�P (7)

From the maximization de�nition, the following identities are also known:

BX

i=�A

i2yi �  = 0 (8)

BX

i=�A

yi � 1 = 0 (9)

From the partial derivative equations 5, 6, and 7, where yi > 0

�1� log yi = i2�M + �P (10)

�1� log y�i = (�i)2�M + �P (11)

�1� log y0 = �P (12)

Lemma 3.1. yi = y�i;8i 2 Z; i 2 [�A;B℄

From equation 11,

�1� log y�i = i2�M + �P

= �1� log yi

y�i = yi (13)

where yi; y�i > 0. However, 0 � yi � 1. Thus, for the ase where yi = 0, suppose y�i = d. If d > 0, then
yi = y�i by equation 13 above. Therefore, d = 0 beause y�i 2 [0; 1℄. Therefore, yi = y�i;8i 2 Z; i 2 [�A;B℄.

Lemma 3.2. A = B

From lemma 3.1, yi = y�i. Suppose A < B. Then yj = 0; j 2 [�A� 1;�B℄. From lemma 3.1, y�j = yj = 0.
Therefore, all symbols in the range [A + 1; B℄ have no probability of ourring and an be exluded from the
probability distribution y. Therefore, B = A. Beause A and B are arbitrary, the same logi an be used to
show that if B < A, then A = B. Therefore in all ases, A = B. For simpli�ation, we now let q = A = B; so
Q = 2q + 1.

Lemma 3.3. y = 0

From lemma 3.1, yi = y�i;8i 2 Z. Thus,

y =

qX

i=�q

iyi (14)

=

�1X

i=�q

iyi +

0X

i=0

iyi +

qX

i=1

iyi (15)

=

qX

i=1

�iyi + 0 +

qX

i=1

iyi (16)

= 0 (17)
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Lemma 3.3 implies that in the optimal ase, the average intensities of the original and embedded images is
equal: Z = X.

Lemma 3.4. yi = y�i = y02
�i2�M ;8i 2 Z

From equation 12,

y0 = 2�(�P+1) (18)

where y0 > 0. From equation 10,

yi = 2�(i
2�M+�P+1) (19)

yi = y02
�i2�M (20)

Thus, from equation 20 and lemma 3.1, in the optimal ase, yi = y�i = y02
�i2�M ;8i 2 Z.

Theorem 3.5. The solution to
Pq

i=1(2
��M

i
2

(� i2)) + 
2 = 0 provides the optimal solution.

From lemma 3.4, a relationship is de�ned between the value of y0 and the remainder of the distribution.
Now, the value of �M an be alulated. Equations 8 and 9 an now be rewritten as

X

i

i2y02
�i2�M �  = 0

X

i

y02
�i2�M � 1 = 0

Therefore,

y0 =
Pq

i=�q i
22�i2�M

y0 =
1Pq

i=�q 2
�i2�M

(21)

qX

i=�q

i2xi
2

= 

qX

i=�q

xi
2

Where x = 2��M ; x > 0. Rewriting equations 21 and 20,

y0 =
1Pq

i=�q x
i2

(22)

yi = y0x
i2 (23)

qX

i=�q

xi
2

(i2 � ) = 0

2

qX

i=1

(xi
2

(i2 � ))�  = 0

qX

i=1

(xi
2

(� i2)) +


2
= 0 (24)

Beause
P

is involved, the equation annot be inverted. However, when Q is known, q an be determined and
the polynomial an be evaluated numerially, yielding a value for x. As yi is dependent on x, y an be derived
as the optimal solution for the general ase.
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3.3. Reduing the searh region

Lemma 3.6.  2 [0; q2) for a solution to be found.

From equation 24, the largest o-eÆient of the polynomial is q2. When  � q2,  � i2 > 0;8i 2 [1; q℄ and

2 > 0, rendering the equation insoluble for x � 0. Likewise, when  < 0, � i2 < 0 and 

2 < 0, whih bounds
 2 [0; q2).

Lemma 3.7.  = 0) H(y) = 0

Suppose  = 0. For equation 8 to hold true, yi = 0; y0 = 1; i 6= 0; i 2 Z. The entropy of this distribution is
H(y) = �1� log 1 = 0. Thus  = 0) H(y) = 0.

Lemma 3.8. The distribution with the maximum entropy an be found if and only if x = 1.

The maximum entropy for a distribution with Q symbols ours when the distribution is uniform.4 That
is, all symbols have equal probability: yi = y0 =

1
Q
.

From equation 20, 2�i
2�M = 1, or yi = y0 = 0. The seond option is not possible beause equation 9 would

not hold. Therefore, a uniform distribution implies x = 1.

Assuming x = 1,

2�i
2�M = 1

�i2�M = 0

�M = 0 (25)

i annot be zero in all ases unless the trivial solution, Q = 1, is being onsidered. From equations 25, 10
and 12,

i2�M + �P = �P

�1� log yi = �1� log y0

yi = y0

This is the uniform distribution, whih has the maximum entropy. Thus, x = 1 implies and is the only ase
where the maximum entropy is reahed.

Lemma 3.9. The distribution with the maximum entropy an be found if and only if  = q(q+1)
3 .

From lemma 3.8, the maximum entropy an be found if and only if x = 1. Therefore, equation 24 beomes:

qX

i=1

(� i2) +


2
= 0

q � +


2
=

q(q + 1)(2q + 1)

6
3

2q + 1
= q(q + 1)(2q + 1)

 =
q(q + 1)

3

Thus, as x = 1 ,  = q(q+1)
3 , from lemma 3.8, the lemma is proved. We label the point  = q(q+1)

3 as the
turning point for a given Q.

Lemma 3.10. The urve representing the family of optimal distributions is ontinuous and an be ompletely
desribed in the range x 2 (0; 1℄.

To derive the optimal distribution, a positive real root must exist from equation 24, whih is a polynomial

of order xq
2

. Lemma 3.9 shows that  = q(q+1)
3 gives the maximum entropy for a given q. Also, if  = 0,
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then x = 0 is a solution to equation 24, although the optimal distribution annot be derived from this beause
x = 2�i

2�M . However, the equation still produes a real root. Thus, for a given value of q, the root is de�ned
for x = 0 and x = 1.

The Zero Exlusion Condition,12 is helpful in solving this problem. The parameterized polynomial

p(x; q) =

nX

i=0

ai(q)x
i; q 2 Q � Rl (26)

where ai(q) ontinuously depends on q; i = 0; 1; :::; n. If deg(p(x; q)) is invariant, every root xi(q) of p(x; q)
ontinuously depends on the parameter q. Thus, the pointwise ontinuous property of ai(q) implies that xi(q)
is also pointwise ontinuous. In our ase, ai(q) = ( � i), where i = k2, for some k 2 N and ai(q) = 0,
otherwise. Thus, as  is ontinuous in the range  2 (�1;1), so also all of the roots xi(q) are ontinuously

joined. Therefore, as x = 0 and x = 1 are roots for the values of  = 0 and q(q+1)
3 respetively, then by the

sandwih theorem, zeroes exist for all points in the range [0; 1℄. Beause x = 0 is a speial ase, it is exluded
from the general statement to avoid diÆulty.

Thus, the family of optimal distributions is ontinuous for  2 (0; q(q+1)3 ℄ and overs every possible bit rate
through lemmas 3.7 and 3.9.y

3.4. Clipping

Until this point, the e�ets of lipping have not been inorporated into the model. Beause information needs to
be ommuniated reliably, some pixels are deemed to be unsuitable for embedding information. Any pixels whih
might be lipped annot guarantee reliable ommuniation, so some symbols are exluded from the embedding
and extration proesses. This provides independene between the deision to use a given pixel and the next
symbol to be embedded.

Assuming a uniform distribution for the intensities of pixels within I , the proportion of pixels, K, that will
be used for embedding is given by

K =
R� (Q� 1)

R

= 1� Q� 1

R

where R represents the number of disrete values. In general, R is 256. Now, for the 1�K proportion of pixels
that are not used, MSE= 0. Thus, in order to ahieve the intended MSE for the image, the MSE is saled for
the modi�ed pixels: ̂ = 

K
. This provides us with a greater ability to hide information within those pixels but

the bit rate must also be saled, where Ĥ(y) = K �H(y). As lipping is avoided, the embedding algorithm is
error-free.

3.5. Results

Figure 2 shows the amount of data that an be hidden with respet to the MSE and Q, where embedding is
error-free. The performane after the turning point is represented by a dotted line. It is lear that inreasing
the size of the distribution allows for better performane as the MSE inreases. When the MSE is small, shorter
alphabets perform better due a larger value of K.

The surfae of the optimal distribution is illustrated in �gure 3. As the MSE inreases, the distribution
onverges to the uniform distribution from a distribution with one symbol. As illustrated in �gure 2, when
 = 0, no noise is permitted, leaving the only option as y0 = 1; yi = 0; i 6= 0. For a �xed size alphabet, the
maximum entropy is ahieved when all symbols are equally likely.4 The maximum in �gure 2 therefore ours
preditably when the distribution is uniform, as shown in �gure 3.

yAlthough it appears true, it has not been proven that the optimal distribution is monotonially inreasing in apaity

within this range.
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Figure 2. The relationship between the number of symbols and performane
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Table 1. Embedding 50 random �les in images using the optimal distribution for 40dB

Image Av. PSNR (dB) Av. bits/pixel/olour Boundary prop. (%)
Peppers 39.99 3.252 4.496
Baboon 39.79 3.402 0.115
Airplane 39.79 3.405 0.076
Cameraman 39.79 3.399 0.034
Man 40.26 3.059 10.229
Boat 39.79 3.405 0.018
Average 39.90 3.320 2.495

3.6. Conlusion

The optimal distribution for a PSNR of 40dB an now be determined, using  = 6:5025. Aross all values of Q
and assuming a uniform distribution for the image, the optimum result is when Q = 13, where H(y) = 3:25bpp.

4. VERIFICATION

4.1. Experiments

We implemented this model in order to verify the limits above. As eah trial is purely deterministi, given an
input and over image, we therefore vary both of these in order to give reliability to our laims. The over
images used were \Peppers", \Baboon", and \Airplane" eah with 256 by 256 pixels and 3 olours, as well as
the grey-sale images of \ameraman", \man", and \boat" whih ranged up to 1,024 by 1,024 pixels. These
were hosen beause they are standard test images in the data hiding �eld, as well as their di�ering levels of
ontrast.

To provide variation in the input, random �les of length 100,000 bytes were generated and then ompressed
(to eliminate any possibility of the random generator being unreliable) before being used as the input data. Our
objetive was to verify that ompressed data is able to be embedded within an image at 3.25bpp (per olour)
as derived above. Our initial assumption was only that images have a uniform distribution (and in fat this
only is only needed to model the boundary points orretly). Therefore, even though this is quite unlikely to
be true in pratie, it is expeted that it will be insuÆient to ause any pratial problems.

4.2. Results

If an image has a uniform distribution then the perentage of intensities in this setion will be Q�1
256 = 4:69%.

When it does not have this exat proportion, the results will di�er by a small amount. When the PSNR is
40dB, the MSE is 6.5025. After aounting for the expeted e�ets of the boundary setion, this is saled to
6.8223 as shown in subsetion 3.4. If no pixels have intensities in this boundary setion, then 100% of pixels
will be used for data hiding, giving a PSNR of 39.79dB. So in the worst ase senario (in terms of damage) with
this distribution, will embed 3.41bpp. There is no pratial means of identifying the other extreme, as if the
image data was totally white (or blak), then no data would be able to be embedded under this model.

The results for the three images are shown in table 1. Although the target PSNR of 40dB is ahieved in only
one image, the results of the other images are still very lose to the expeted apaity (3.25bpp) and damage
(40dB). Also, with most of the images having a negligible proportion in the boundary setion, the PSNR and
apaity are approximately equal to the estimates given above.

5. CONCLUSION

We have devised a model that allows the alulation of the optimal distribution in the spatial domain without
noise, for a given Mean Squared Error. Thus, the best performane from any steganographi method will be
3.250 bpp per olour, for a PSNR of 40dB. Loal variations in the over image may provide more than this,
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but this is the limit for the general ase. This performane will diminish if any robustness is required, or if less
information an be shared.

There are still some open questions in this area: \Is it possible to use some form of error orretion to reover
from lipping errors introdued in transmission"; and \How an information be transmitted robustly?". For
example, suppose that a symbol did not represent a single value but instead a range, then some sort of robustness
might be granted. For example, when embedding three symbols, \-1" ould refer to the range [�4;�2℄, \0" to
[�1; 1℄, and \1" to [2; 4℄. However, given that tampering usually involves pixels hanging by more than a ouple
of points of intensity, a superior approah would have to be some form of error orretion in the symbol domain.
As noted in the introdution, some researh already examines these questions of robust steganography9 2 .6

Though we have on�ned ourselves to the spatial domain, the use of the frequeny domain will not provide
any further inrease in apaity as the evaluation of the PSNR must be arried out in the spatial domain. The
introdution of any message an always be evaluated in the spatial domain, so any tehnique that uses the
frequeny domain is still onstrained to these limits. We have sueeded in evaluating the maximum reliable
rate of transmission of information through the medium of an image from a theoretial perspetive, measured
the level of steganographi seurity this provides, as well as illustrating this performane in pratie.
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