
Informatica 36 (2012) 409–424 409

Evaluating the Performance of LSA for Source-code Plagiarism Detection

Georgina Cosma

Department of Business Computing, PA College, Larnaca, CY-7560 Cyprus

E-mail: g.cosma@faculty.pacollege.ac.cy

Mike Joy

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

E-mail: M.S.Joy@warwick.ac.uk

Keywords: LSA, source-code similarity detection, parameter tuning

Received: October 25, 2012

Latent Semantic Analysis (LSA) is an intelligent information retrieval technique that uses mathematical

algorithms for analyzing large corpora of text and revealing the underlying semantic information of docu-

ments. LSA is a highly parameterized statistical method, and its effectiveness is driven by the setting of its

parameters which are adjusted based on the task to which it is applied. This paper discusses and evaluates

the importance of parameterization for LSA based similarity detection of source-code documents, and the

applicability of LSA as a technique for source-code plagiarism detection when its parameters are appro-

priately tuned. The parameters involve preprocessing techniques, weighting approaches; and parameter

tweaking inherent to LSA processing – in particular, the choice of dimensions for the step of reducing the

original post-SVD matrix. The experiments revealed that the best retrieval performance is obtained after

removal of in-code comments (Java comment blocks) and applying a combined weighting scheme based

on term frequencies, normalized term frequencies, and a cosine-based document normalization. Further-

more, the use of similarity thresholds (instead of mere rankings) requires the use of a higher number of

dimensions.

Povzetek: Prispevek analizira metodo LSA posebej glede plagiarizma izvirne kode.

1 Introduction

Latent Semantic Analysis (LSA) is an intelligent informa-

tion retrieval technique that uses mathematical algorithms

for analyzing large corpora of text and revealing the under-

lying semantic information of documents [10, 11]. Previ-

ous researchers have reported that LSA is suitable for tex-

tual information retrieval and is typically used for indexing

large text collections and retrieving documents based on

user queries. In the context of text retrieval, LSA has been

applied to a variety of tasks including indexing and infor-

mation filtering [12], essay grading [23, 38, 13, 43, 19, 18]

cross-language information retrieval [44], detecting plagia-

rism in natural language texts [7], and source-code cluster-

ing and categorization [20, 25, 22, 26, 27, 28]. LSA has

been applied to source-code with the aim of categorizing

software repositories in order to promote software reuse

[27, 28, 24] and much work has been done in the area of

applying LSA to software components. Some of the LSA

based tools developed include MUDABlue [20] for soft-

ware categorization, Softwarenaut [25] for exploring parts

of a software system using hierarchical clustering, and Ha-

pax [22] which clusters software components based on the

semantic similarity between their software entities (entire

systems, classes and methods). Although LSA has been

applied to source-code related tasks such as reuse and cat-

egorization of source-code artifacts, there appears to be a

lack of literature investigating the behavior of parameters

driving the effectiveness of LSA for tasks involving source-

code corpora. The current literature also lacks an evalua-

tion of LSA and its applicability to detecting source-code

plagiarism [31, 32].

2 A Review of Latent Semantic

Analysis

Latent Semantic Analysis uses statistics and linear algebra

to reveal the underlying “latent” semantic meaning of doc-

uments [5]. Latent Semantic Indexing (LSI) is a special

case of LSA, and the term LSI is used for tasks concerning

the indexing or retrieval of information, whereas the term

LSA is used for tasks concerned with everything else, such

as automatic essay grading and text summarization.

The first step prior to applying LSA involves pre-

processing the documents in the corpus in order to effi-

ciently represent the corpus as a term-by-document matrix.

Document pre-processing operations include the following

[2].

– Tokenization. This involves identifying the spaces in



410 Informatica 36 (2012) 409–424 G. Cosma et al.

the text as word separators, and considering digits, hy-

phens, punctuation marks, and the case of letters.

– Stopword elimination. This is the elimination of

words with a high frequency in the document corpus,

and involves removing prepositions, conjunctions and

common words that could be considered as useless

for purposes of retrieval, e.g. words such as the, and,

and but, found in the English language. In source-

code this involves removing programming language

reserved words (i.e. keywords).

– Stemming of words. This involves transforming vari-

ants of words with the same root into a common con-

cept. A stem is the portion of the remaining word after

removing its affixes (suffixes and prefixes). An exam-

ple of a stem is the word eliminat which is the prefix of

the variants eliminated, eliminating, elimination, and

eliminations.

After pre-processing is performed, the corpus of docu-

ments is transformed into a m × n matrix A = [aij ], in

which each row m represents a term vector, each column

n represents a document vector, and each cell aij of the

matrix A contains the frequency at which a term i appears

in document j. Thus, the rows of matrix A represent the

term vectors, and the columns of matrix A represent the

document vectors.

Term weighting is then applied to matrix A. The pur-

pose of term-weighting is to adjust the frequency values of

terms using local and global weights in order to improve

retrieval performance. Local weights determine the value

of a term in a particular document, and global weights de-

termine the value of a term in the entire document collec-

tion. Various local and global weighting schemes exist [4]

and these are applied to the term-by-document matrix to

give high weights to important terms, i.e. those that occur

distinctively across documents, and low weights to terms

that appear frequently in the document collection.

Document length normalization [41] adjusts the term

values depending on the length of each document in the

collection. The value of a term in a document is li,j ×

gi × nj , where li,j is the local weighting for term i in doc-

ument j, gi is the global weighting for term i, and nj is

the document-length normalization factor [4]. Long docu-

ments have a larger number of terms and term frequencies

than short documents and this increases the number of term

matches between a query and a long document, thus in-

creasing the retrieval chances of long documents over small

ones. Literature claims that the cosine document length

normalization can improve retrieval performance [41, 40].

Tables 1, 2, and 3 contain some of the most commonly

used term-weighting formulas [4]. Symbol fij defines the

number of times (term-frequency) term i appears in docu-

ment j; let

b(fij) =

{

1, if fij > 0,

0, if fij = 0,

pij =
fij

∑

j fij

Once term-weighting is applied, the matrix is then sub-

mitted for Singular Value Decomposition (SVD) to derive

the latent semantic structure model. Singular Value De-

composition decomposes matrix A into the product of three

other matrices: an m× r term-by-dimension matrix, U, an

r × r singular values matrix, Σ, and an n × r document

by dimension matrix, V . The rank r of matrix A is the

number of nonzero diagonal elements of matrix Σ. SVD

can provide a rank-k approximation to matrix A, where k

represents the number of dimensions (or factors) chosen,

and k ≤ r. This process is known as dimensionality re-

duction, which involves truncating all three matrices to k

dimensions.

The reduced matrices are denoted by Uk, Σk, and Vk

where U is a m × k matrix, Σ is a k × k matrix and V

is a n × k matrix. The rank-k approximation to matrix A,

can be constructed through Ak = UkΣkV
T
k . It is important

when computing the SVD that k is smaller than the rank r,

because it is this feature that reduces noise in data and re-

veals the important relations between terms and documents

[6, 3].

One common task in information retrieval systems in-

volves a user placing a query in order to retrieve docu-

ments of interest. Given a query vector q, whose non-

zero elements contain the weighted term frequency values

of the terms, the query vector can be projected to the k-

dimensional space using Function 1 [6].

Q = qTUkΣ
−1

k , (1)

On the left hand side of the equation, Q is a mapping of

q into latent semantic space, and on the right hand side of

the equation q is the vector of terms in the user’s weighted

query; qT is the transpose of q; and qTUk is the sum of

the k-dimensional term vectors specified in the query, mul-

tiplied by the inverse of the singular values Σ−1

k . The sin-

gular values are used to separately weight each dimension

of the term-document space [6].

Once the query vector is projected into the term-

document space it can be compared to all other existing

document vectors using a similarity measure. One very

popular measure of similarity computes the cosine between

the query vector and the document vector. Typically, using

the cosine measure, the cosines of the angles between the

query vector and each of the other document vectors are

computed and the documents are ranked according to their

similarity to the query, i.e. how close they are to the query

in the term-document space. All documents or those docu-

ments with a similarity value exceeding a threshold, are re-

turned to the user in a ranked list sorted in descending order

of similarity values, i.e. the documents most similar to the

query are displayed in the top of the ranked list. The qual-

ity of the results can be measured using evaluation mea-

sures, such as those discussed in Section 6. In the term-by-

document matrix A that has columns aj (i ≤ j ≤ n where



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 411

Symbol Name Formula

b Binary b(fij)
l Logarithmic log2(1 + fij)
n Augmented normalised term frequency (b(fij) + (fij/maxkfkj))/2
t Term frequency fij
a Alternate log b(fij)(1 + log2fij)

Table 1: Formulas for local term-weights (lij)

Symbol Name Formula

x None 1
e Entropy 1 + (

∑

j(pij log2(pij))/log2n)

f Inverse document frequency (IDF) log2(n/
∑

j b(fij))

g GfIdf (
∑

j fij)/(
∑

j b(fij))

n Normal 1/
√

∑

j f
2

ij

p Probabilistic inverse log2((n−
∑

j b(fij))/
∑

j b(fij))

Table 2: Formulas for global term-weights (gi)

n is the number of documents in the dataset, or equiv-

alently the number of columns in the term-by-document

matrix A) the cosine similarity between the query vector

Q = (t1, t2, . . . , tm)T and the n document vectors is given

as follows:

cosΘj =
aTj Q

∥ aj ∥2∥ Q ∥2
=

∑m

i=1
aijQi

√

∑m

i=1
a2ij

√

∑m

i=1
Q2

i

(2)

for j = 1, . . . , n.

3 Background Literature

The background literature section consists of two subsec-

tions. The first subsection describes existing plagiarism

detection algorithms and the second subsection describes

literature on LSA applications and their parameter settings.

3.1 Source-code plagiarism detection tools

Many different plagiarism detection algorithms exist, the

most popular being the Fingerprint based algorithms and

String-matching algorithms. Algorithms based on the fin-

gerprint approach work by creating “fingerprints” for each

document which contain statistical information such as av-

erage number of terms per line, number of unique terms,

and number of keywords [31]. An example of these is

MOSS (Measure of Software Similarity) [1]. MOSS uses

a string-matching algorithm which divides programs into

contiguous substrings of length k, called k-grams. Each k-

gram is hashed, and MOSS selects a subset of these hash

values as the program’s fingerprints. The more fingerprints

two programs share, the more similar they are considered

to be [39]. Most popular and recent string-matching based

tools include JPlag [37], and Sherlock [17]. In these tools

the first stage is called tokenization. At the tokenization

stage, each source-code document is replaced by prede-

fined and consistent tokens, for example different types of

loops in the source-code may be replaced by the same to-

ken name regardless of their loop type (e.g. while loop,

for loop). The tokens for each document are compared to

determine similar source-code segments.

Moussiades and Vakali have developed a plagiarism

detection system called PDetect which is based on the

standard vector-based information retrieval technique [30].

PDetect represents each program as an indexed set of key-

words and their frequencies found within each program,

and then computes the pair-wise similarity between pro-

grams. Program pairs that have similarity greater than a

given cutoff value are grouped into clusters. Their results

also show that PDetect and JPlag are sensitive to differ-

ent types of attacks and the authors suggest that JPlag and

PDetect complement each other.

3.2 LSA parameter settings

The performance of LSA is not only driven by the SVD

algorithm, but also from a variety of sources such as the

corpus, term-weighting, and the cosine distance measures

[42, 23]. When LSA is introduced to a new task, the param-

eters should be optimized for that specific task as these in-

fluence the performance of LSA. Parameters include term-

weighting algorithms, number of dimensions retained, and

text pre-processing techniques.

Dumais conducted experiments evaluating the informa-

tion retrieval performance of LSA using various weight-

ing schemes and dimensionality settings. LSA was ap-

plied to five information science collections (consisting of

the full text of document titles, authors, and abstracts or

short articles). Each dataset comprised of 82, 425, 1033,

1400, and 1460 documents and 374, 10337, 5831, 4486,

and 5743 terms respectively. Dumais reported that per-

formance, measured by Average Precision (as discussed



412 Informatica 36 (2012) 409–424 G. Cosma et al.

Symbol Name Formula

x None 1
c Cosine (

∑
i(gilij)

2)−1/2

Table 3: Formulas for document length normalization (nj)

in Section 6), improved when appropriate term weighting

was applied. Normalization and GfIdf had mixed effects

on performance, depending on the dataset, but on aver-

age they appear to decrease performance compared with

the raw (i.e. no weighting) term frequency. Idf, Entropy

and LogEntropy result in consistently large improvements

in performance by 27%, 30%, and 40% respectively [11].

Nakov et al. [34] experimented with combinations of the

weighting algorithms that were also considered by Dumais

[11] and Jones [16], in order to evaluate their impact on

LSA performance. Their results also revealed that local

and global weight functions are independent of each other

and that their performance (measured by Average Preci-

sion) is dependent on the corpus. In addition, their results

revealed that, for some corpora of text, using the logarith-

mic local weighting instead of raw term weighting resulted

in higher precision, and for others it resulted in consistently

lower precision. Applying the global weighting functions

none, normal, and GfIdf, resulted in lower precision re-

gardless of the corpus text and local weighting function ap-

plied, and the global weight entropy outperformed all other

global weighting functions. The results of experiments re-

ported by Pincombe [36] concerning the performance of

LSA when applying various weighting schemes are con-

sistent with those of Dumais [11] and Nakov [34]. Their

findings also show that use of a stop-word list and adding

background documents during the construction of the LSA

space significantly improves performance. Findings of

Wild et al. [43] were quite different to those by Pincombe

[36] and the rest of the literature discussed. They found that

the IDF global weighting outperformed all other weighting

functions, but gave no clear indication as to which local

weighting function performed best. They also found that

combining stemming with stop-word filtering resulted in

reduced average correlations with the human scores. The

findings of Wild et al. [43], who also investigated the cor-

relations between LSA and human scores, were consistent

with those of Pincombe [36] who found that filtering stop-

words using a stop-word list improves results. Identify-

ing the optimal number of dimensions to retain in order to

best capture the semantic structure of the document collec-

tion still remains an unanswered question. With regards to

the corpus size, it is well argued that more reliable results

are gained from a larger corpus size [35, 38]. Rehder et

al. [38] investigated the efficacy of LSA as a technique for

evaluating the quality of student responses against human

ratings, and found that for 106 student essays, the perfor-

mance of LSA improved when documents contained be-

tween 70-200 words. The optimal dimensions selected by

Kontostathis [21] for 7 large corpora containing between

1033 and 348,577 documents ranged from 75 to 500 de-

pending on the corpus. Chen et al. [8] implemented an LSI

search engine and for a collection of 600,000 documents

they used 400 dimensions. Using a test database contain-

ing medical abstracts, Deerwester et al. [10] found that

the performance of LSA can improve considerably after 10

or 20 dimensions, reaches a peak between 70 and 100 di-

mensions but then performance slowly diminishes. Jessup

and Martin [15] also found that for their datasets a choice

of dimensions ranged from 100 to 300, and Berry [3] sug-

gests keeping at least 100 to 200 dimensions. Pincombe

[36] found that, for a corpus of 50 documents, there was a

major improvement in LSA performance when the number

of dimensions was increased from 10 to 20, and that opti-

mal LSA performance was achieved when no dimensional-

ity reduction was applied, i.e. the classic VSM was used.

Nakov [33] describes experiments concerned with the ap-

plication of LSA to source-code programs written by Com-

puter Science students using the C programming language.

The datasets comprised of 50, 47, and 32 source-code doc-

uments. The results of the experiments revealed that LSA

detected copied programs and returned relatively high simi-

larity values to pairs containing non-copied programs. The

author assumes that this was due to the fact that the pro-

grams share common language reserved terms and due to

the limited number of solutions for the given programming

problem. In addition, the author states that, after applying

SVD, 20 dimensions were retained. Considering the size of

their corpora, the choice of dimensions appears to be high,

and it is suspected that this was the main reason that the

authors report very high similarity values to non-similar

documents. The author justifies the existence of the high

similarity values to be due to documents sharing language

reserved terms. However, the use of a suitable weighting

scheme and appropriate number of dimensions can reduce

the chances of this happening. McMillan et. al. [29] cre-

ated an approach for automatically detecting closely related

applications. Their tool, CLAN, helps users detect similar

applications for a given Java application. CLAN is based

on LSI, however the authors do not provide the parame-

ter settings and state that weights and dimensionality were

selected experimentally.

4 Contribution

Most popular plagiarism detection tools are based on

string-matching algorithms. The comparison process of

those approaches are based on the source-code documents

structural information derived from the programming lan-

guage syntax. Algorithms that rely on detecting similar



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 413

documents by analyzing their structural characteristics can

be tricked by specific attacks mainly on the structure of the

source-code and thus often fail to detect similar documents

that contain significant code shuffling. In addition, string-

matching systems are language-dependent based on the

programming languages supported by their parsers [37].

LSA is an algorithm that adopts a more flexible approach

than existing plagiarism detection tools, i.e. one that is not

based on structural comparison and parsers. Furthermore,

the similarity computation algorithms of LSA and recent

plagiarism detection tools are different. One important fea-

ture of LSA is that it considers the relative similarity be-

tween documents, i.e two documents are considered sim-

ilar by LSA if they are relatively more similar than other

documents in the corpus, whereas, recent plagiarism detec-

tion tools compute the similarity between documents on a

pair-wise basis. This is important when comparing a cor-

pus of student solutions to a programming problem that has

many similar solutions and a tool is needed to extract those

similar document pairs that are relatively more similar than

others. LSA is a highly parameterized statistical method,

and its effectiveness is driven by the setting of its parame-

ters which are set differently based on the task for which it

is applied.

This paper discusses and evaluates the importance of

parameterization for LSA-based similarity detection of

source-code documents; and the applicability of LSA as

a technique for source-code plagiarism detection when its

parameters are appropriately tuned. The parameters in-

volved in the experimentations include:

1. different corpus preprocessing steps (i.e. selective

elimination of source-code elements),

2. corpus and document normalization schemes based on

different weighting approaches, and

3. parameter tweaking inherent to the LSA processing,

in particular, the choice of dimensions for the step of

reducing the original post-SVD matrix.

Against multiple Java source-code corpora taken from a

Computer Science course setting, an evaluation study on

the various parameter loadings and configurations between

the parameters is reported herein.

5 Experimental Setup

Experiments were performed using four Java datasets

which comprised of source-code documents produced by

students from the University of Warwick as part of their

computer science programming courses. Ethical consent

had been obtained for using the datasets. The details of

these datasets are given in Table 4.

Total number of documents is the total number of source-

code documents in a corpus, and Total number of terms

is the total number of terms found in the source-code cor-

pus after initial preprocessing is performed. During ini-

tial preprocessing, terms that are solely composed of nu-

meric characters are removed, syntactical tokens (i.e. semi-

colons, and colons) and punctuation marks, and terms

which occur in only one document are all removed; and

upper case letters are translated into lower case. In ad-

dition, identifiers which consist of multiple terms sepa-

rated by underscores are treated as single terms (i.e. after

preprocessing “student_name” becomes one term “student-

name”). The reason for merging rather than separating such

identifiers is because each identifier represents one mean-

ing in the source-code document, regardless whether it con-

sists of one or two words (separated by underscore).

Total number of suspicious document pairs is the total

number of document pairs that were categorised as suspi-

cious. The following steps were carried out for compiling

the set of suspicious document pairs:

1. The four corpora, one at a time, were initially passed

into three source-code similarity detection tools –

JPlag [37], Sherlock [17], and PlaGate [9]. The per-

formance of JPlag is considered to be close to that of

MOSS [1], however, only JPlag was available. Sher-

lock and PlaGate were also used because these were

also readily accessible and available for performing

the experiments. The output of the tools was collated

and four preliminary lists (one corresponding to each

corpus) were created, each containing groups of sus-

picious source-code documents.

2. The documents in each group were scrutinized by aca-

demics(teaching programming subjects, and who pro-

vided the particular corpora) and any false positives

(i.e. documents that did not contain similar source-

code to the rest of the documents in the group) were

removed.

3. The final lists contained a number of queries (one ran-

dom document selected from each group) and their

relevant documents, and these lists were used for eval-

uation purposes.

Applying initial preprocessing resulted in creating four

preprocessing versions, one for each dataset (A, B, C, and

D), and these were named the KC version (in this version

comments, keywords and skeleton code were retained in

the documents). Skeleton code is the source-code provided

to students as a template for completing their solutions. Af-

ter the initial preprocessing, the KC version of each dataset

was further pre-processed using various parameters con-

cerning comments found in source-code, skeleton-code,

and Java reserved words. The final outcome was the cre-

ation of 24 versions (six versions corresponding to each

dataset: A, B, C, and D). Below is a list of abbreviations

and descriptions of the preprocessing parameters used for

creating each version.

– KC: Keep Comments, Keep Keywords and Keep

Skeleton code



414 Informatica 36 (2012) 409–424 G. Cosma et al.

A(RC) A(KC) B(RC) B(KC) C(RC) C(KC) D(RC) D(KC)

Total number of documents 106 106 176 176 179 179 175 175

Total number of unique terms 537 1524 640 1930 348 1189 459 1408

Total number of suspicious docu-

ment pairs

6 6 48 48 51 51 79 79

Table 4: The Dataset Characteristics

– KCRK: Keep Comments, Remove Keywords

– KCRKRS: Keep Comments, Remove Keywords and

Remove Skeleton code

– RC: Remove Comments, Keep Keywords and Keep

Skeleton code

– RCRK: Remove Comments and Remove Keywords

– RCRKRS: Remove Comments, Remove Keywords

and Remove Skeleton code.

Preprocessing by removing comments involves delet-

ing all comments from source-code documents such that

they solely consist of source code. Keeping comments

involves retaining source-code comments and the source-

code within the documents. Experimenting with stemming

or stop-word removal on the comments within the source-

code documents was not conducted because the focus was

mainly on preprocessing parameters within the source-code

(rather than on the comments which are part of natural-

language text). A list of all known Java reserved terms was

used as a stop-list. The words contained in the stop-list

were removed from all Java documents to create the rele-

vant versions (i.e. KCRK, and RCRK). All terms found in

the skeleton documents relevant to each corpus were added

to the stop list of Java reserved terms, thus creating four

new different stop lists (i.e. one for each corpus), and each

stop list was applied to the relevant corpus to create the new

versions (KCRKRS, and RCRKRS).

After creating the preprocessing versions, the TMG tool

[45] was applied and a term-by-document matrix was cre-

ated for each version. A three-letter string was used in or-

der to represent each term-weighting scheme (as shown in

Tables 1, 2, and 3) with the particular local, global and

normalisation factor combinations. For example, the tec

weighting scheme uses the term frequency (t) local term

weighting, the entropy (e) global term weighting, and the

cosine document normalisation factor (c). The following

twelve local, global, and document length normalisation

weighting schemes were tested: txx, txc, tfx, tfc, tgx, tgc,

tnx, tnc, tex, tec, lex, lec. The literature review suggests

that those weighting schemes are the most commonly used

and tested by LSA researchers.

After computing the SVD of each term-by-document

matrix, dimensionality reduction was performed. A range

of seventeen different dimensions were tested, with k rang-

ing from 2 to n (i.e. 2, 5, 10, 15, 20, 25, 30, 35, 40, 45,

50, 60, 70, 80, 90, 100, n) where n is the total number of

documents in a corpus. The particular dimensional settings

were selected for experimentation to investigate the impact

of selecting too few and too many dimensions (including

the maximum number of dimensions). The datasets con-

tained no more than 200 documents, and thus it was de-

cided to show the effect of choosing too few and too many

dimensions by evaluating the LSA performance while us-

ing a range of 2 to 100 dimensions, and also when using the

maximum possible number, n, of dimensions. When max-

imum possible number of dimensions are used, the perfor-

mance of LSA is equivalent to that of the standard Vector

Space Model (VSM) [21].

The cosine similarity measure to compute the distance

between two vectors was used, as it is the most commonly

used measure of similarity in the literature and has been

shown to produce good results.

6 Performance Evaluation Measures

The performance of a system is measured by its retrieval

efficiency. Precision represents the proportion of retrieved

documents that are relevant. Precision is denoted by P

where P ∈ [0, 1], where Fr is the number of relevant doc-

uments retrieved and Ft is the total number of documents

retrieved for a given query.

P =
Fr

Ft

(3)

Precision is 1.00 when every relevant document returned

in the ranked list is relevant to the query. Average Preci-

sion (AP) is the average of the precisions of the relevant

documents in the retrieved list. This evaluation measure

produces a single value summary of the ranking positions

of the relevant documents retrieved, by averaging the pre-

cision values obtained after each new relevant document is

retrieved in the ranked list of documents. The closer the

AP value is to 1.00 the better the system’s retrieval perfor-

mance.

A commonly used measure for evaluating the perfor-

mance of an algorithm using more than one query is Mean

Average Precision (MAP), which is the mean of the AP

values of all queries. During the experiments described in

this paper, the AP for each query was computed by taking

into consideration the precision values of all relevant doc-

uments for the given query (i.e. no threshold was applied

and thus the list of retrieved documents was not reduced).

Thus AP was computed up to rank position n, where n is

the total number of documents in the corpus. This is be-

cause the aim was to evaluate the rank position of all the



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 415

relevant documents for each query, and by taking into con-

sideration the position of all relevant documents a picture

of overall performance is gained. The higher the value of

the MAP, the better the performance of the system, i.e. the

fewer non-relevant documents exist between relevant ones.

When summarizing the behavior of a retrieval algorithm,

more than a single measure is required, in order to summa-

rize its full behavior [2]. The evaluation measures proposed

by Hoad and Zobel [14] were employed as additional mea-

sures for evaluating performance, because these take into

consideration similarity values between the queries and the

retrieved documents. These include the Lowest Positive

Match (LPM), Highest False Match (HFM) and Separa-

tion (Sep.). Lowest Positive Match is the lowest similar-

ity value given to retrieved document, and Highest False

Match is the highest similarity value given to a non-relevant

document, in the returned list of documents. Separation is

the difference between the LPM and HFM. Overall perfor-

mance is calculated by taking the ratio of Sep./HFM, i.e. by

dividing the separation by the HFM. The higher the ratio

value, the better the performance.

Furthermore, for the purposes of the experiments de-

scribed in this paper, a new evaluation measure Maximum

Mean Average Precision (MMAP) is defined. MMAP is

the highest MAP value achieved when using a particular

weighting scheme and preprocessing parameter. For ex-

ample, consider the results of the experiments presented in

Tables up to 9. These tables show the MMAP values for

each dataset’s version.

After computing the MAP value using various weight-

ing schemes and k dimensions, the MMAP value reached

by LSA when using each weighting scheme was recorded

alongside the number of dimensions that were needed for

the particular MMAP value to be achieved. For example,

as shown in Table 6, column KC, the highest MMAP value

reached by the txx weighting scheme was 0.86 at 20 di-

mensions. When comparing the performance of LSA us-

ing various weighting algorithms, it is important to take

into consideration the number of dimensions each weight-

ing algorithm needed to reach its MMAP value. For exam-

ple, observing the results for sub-dataset KC of dataset A,

shown in Table 6, the highest MMAP recorded was that by

the lec algorithm, MAP=0.96 k=40, closely followed by the

tnc algorithm, MAP=0.95 k=25. The difference in MAP is

only 0.01 but there is considerable difference in the number

of dimensions needed, i.e. lec needed 15 more dimensions.

7 Experimental Results

This section discusses the results obtained from conduct-

ing a series of experiments for determining the impact

of parameters on the performance of LSA for the task

of source-code similarity detection on four source-code

datasets. Section 7.1 describes the results concerned with

the impact of weighting schemes, dimensionality and pre-

processing settings on the applicability of LSA for detect-

ing similar source-code documents. Section 7.2 discusses

the impact of choice of parameters on the similarity values

LSA assigns to document pairs.

7.1 Investigation into Weighting Schemes,

Dimensionality and Preprocessing

settings

Tables 6-9 show the MMAP values for each dataset’s ver-

sions. Results suggest that the parameters chosen are inter-

dependent — the performance of weighting schemes de-

pends on the combined choice of preprocessing parame-

ters, the corpora and the choice of dimensionality. In over-

all, the average MMAP values of each dataset show that

the tnc weighting scheme performed well on most versions,

when using between 10 and 20 dimensions. With regards to

which preprocessing parameter performed best, the results

vary depending on the weighting algorithm applied. When

using the tnc term-weighting scheme the highest MMAP

values achieved for each dataset are as follows:

– Dataset A: RC (MMAP=1.00, k=15), RCRK

(MMAP=1.00, k=15),

– Dataset B: RC (MMAP=0.91, k=15), RCRK

(MMAP=0.91 k=15),

RCRKRS (MMAP=0.91, k=15),

– Dataset C: KCRKRS (MMAP=0.97, k=15), and

– Dataset D: RC (MMAP=0.92, k=5).

The results show that highest MMAP values were

reached when using the tnc weighting scheme and the RC

preprocessing parameter on datasets A, B and D. With

regards to dataset C, highest performance (MMAP=0.97

k=15) was achieved using the tnc weighting scheme on the

KCRKRS version, followed the tnc weighting algorithm on

the RC version (MMAP=0.88 k=20).

Figures 1, 2, 3, and 4 show the performance of datasets

A, B, C, and D respectively, when using the tnc weight-

ing algorithm and various dimensional settings. As illus-

trated in Figures 1 - 4, it is clear that the choice of pre-

processing parameters has a major impact on LSA perfor-

mance. For example, in dataset A, Figure 1 shows that ap-

plying the RCRKRS preprocessing has a negative effect on

performance, which suggests that by removing comments,

keywords and skeleton code altogether important meaning

from documents is also removed.

An important finding is that although the choice of pre-

processing influences precision values, it does not influence

the ideal number of dimensions needed for each dataset –

the pattern of behavior across Figures 1 - 4 is very simi-

lar — MAP performance improves significantly after 10 to

15 dimensions and then remains steady or decreases when

35 dimensions are reached, and then begins to fall slowly

and gradually. Furthermore, upon reaching the maximum

number of possible dimensions (and thus the performance



416 Informatica 36 (2012) 409–424 G. Cosma et al.

of LSA is equivalent to that of the VSM), performance de-

creases significantly which suggests that at maximum di-

mensionality irrelevant information is captured by the LSA

model, which causes LSA not to be able to differentiate

between similar and non-similar documents.

Figure 1: Dataset A: MAP performance using the tnc

weighting scheme across various dimensions.

Figure 2: Dataset B: MAP performance using the tnc

weighting scheme across various dimensions.

The results also show that, for the corpora involved in

the experiments, when selecting between 10 and 35 dimen-

sions, the performance of LSA outperforms that of VSM,

i.e. when the value of k is set to n.

A contrast of the results was performed using MANOVA

for comparing the effect of weighting schemes and prepro-

cessing parameters on the performance of LSA. The over-

all performance (i.e. average MMAP and k values) was

compared between the KC and all other types of prepro-

cessing parameters, and between the txx and all other types

of weighting schemes. The statistical results concerning

the comparison of KC and the remaining of preprocess-

ing parameters revealed a significant decrease in MMAP

performance (p < 0.05, p = 0.00) and a significant in-

crease in the number of dimensions (p < 0.05, p = 0.04)

required for reaching MMAP when RCRKRS preprocess-

ing is applied instead of the KC. The remaining compar-

isons did not reveal any statistically significant differences

in MMAP performance. Thus, the statistical tests verify

Figure 3: Dataset C: MAP performance using the tnc

weighting scheme across various dimensions.

Figure 4: Dataset D: MAP performance using the tnc

weighting scheme across various dimensions.

the observations that applying the RCRKRS preprocessing

parameter produces undesirable effects on the retrieval per-

formance of LSA. The most effective preprocessing param-

eter would achieve MMAP at less dimensions when com-

pared to other preprocessing parameter choices - such ef-

fect had the KCRKRS and the RC settings although these

results are not statistically significant.

With regards to weighting schemes, the results revealed

a significant decrease in MMAP performance when the tfx

(p < 0.05, p = 0.03), tgx (p < 0.05, p = 0.02), tgc (p <

0.05, p = 0.02), and tex (p < 0.05, p = 0.03) weighting

schemes were applied and a significant increase in MMAP

performance when the tnc (p < 0.05, p = 0.02) weighting

scheme was applied. Comparisons of the performance of

the txx and the remaining of the weighting schemes, did

not return any statistically significant results. The statis-

tical comparisons revealed that applying txc (p < 0.05,

p = 0.02), tgc (p < 0.05, p = 0.03), lec (p < 0.05,

p = 0.00) and tnc (p < 0.05¸ p = 0.00) significantly

reduced the number of dimensions required for reaching

MMAP performance. These results verify the observations

gathered from Figures 1 - 4 and thus it can be concluded

that the tnc weighting scheme is the most effective to apply

on the LSA model for achieving maximum MMAP perfor-

mance at fewer k dimensions across all datasets.



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 417

Figure 5: Dataset A version RC: Sep./HFM performance

using various weighting algorithms and dimensions.

Figure 6: Dataset A version KC: Sep./HFM performance

using various weighting algorithms and dimensions.

7.2 Investigation into Similarity Values

Based on the previous experiment discussed in Section 7.1,

a hypothesis has been formed that parameters have an im-

pact on the similarity values between a query and the doc-

uments in the corpus. The measure of AP does not take

into consideration the similarity values between a query

and the relevant documents. Importantly, when considering

the most effective parameter combinations for the task of

source-code similarity detection with LSA, it is also essen-

tial to investigate the similarity values assigned to similar

source-code documents when various parameter settings

are applied. For example, with threshold-based retrieval,

if the user submits a piece of code with the aim of finding

similar pieces of code that exceed the minimum similarity

threshold value of 0.70, then the similarity values are an

important factor in the successful retrieval of relevant doc-

uments.

However, a non-threshold based system would display

the top n documents most similar to the query regardless of

their similarity value with the query - for example, if the

similarity value between the query and document D12 was

0.50, and 0.50 was the highest value for a relevant docu-

ment for that particular query, then document D12 would

be retrieved first in a ranked list of results followed by doc-

uments which received lower similarity values, with the

most similar documents positioned at the top of the ranked

list. Now, suppose that document D12 was indeed a rele-

vant document and similarity threshold was set to a value

above 0.60 then a threshold-based system would fail to re-

trieve the particular document. Thus, for the purposes of

an application that detects similar source-code documents

that allows use of thresholds then the similarity values are

important to information retrieval performance.

The experiments performed show that similarity values

are dependent on the choice of parameters. Figure 5 shows

the Sep./HFM performance using various weighting algo-

rithms and dimensions on the RC version of dataset A, and

Figure 6 shows the Sep./HFM performance using various

weighting algorithms and dimensions on the KC version of

the same dataset. Each figure illustrates that performance is

highly dependent on the choice of weighting scheme, and

comparing the two figures shows that similarity values are

also dependent on the choice of preprocessing parameters.

Although the best AP results were returned at 15 dimen-

sions, evidence shows that with regards to similarity values

given to relevant and non-relevant documents, 15 dimen-

sions are too few – however, for an information retrieval

task where results are ordered in a ranked list and where

the similarity value does not really matter, then dimensions

are appropriate for the system to retrieve the most relevant

documents from the top ranked ones.

Figures 7-10 show the mean values of the LPM, HFM,

and Sep./HFM, respectively, over all queries for each

dataset’s RC version. The average Sep./HFM values for

all datasets are also displayed in each figure.

Figure 7: Datasets A, B, C, D: Mean LPM using the RC

version and the tnc weighting scheme across various di-

mensions.

Figure 7 shows that, on average, values given to the rel-

evant documents lowest in the retrieved list are near and

above 0.80 when using 2 to 15 dimensions. In order to

decide whether 15 dimensions are sufficient, the similar-

ity values given to non-relevant documents (i.e. the HFM

values) must be investigated.

Figure 8 shows that at 15 dimensions non-relevant doc-

uments received, on average, very high similarity values,

i.e. above 0.70. Separation between relevant and non-

relevant documents (as shown in Figure 9) is very small



418 Informatica 36 (2012) 409–424 G. Cosma et al.

Figure 8: Datasets A, B, C, D: Mean HFM using the RC

version and the tnc weighting scheme across various di-

mensions.

Figure 9: Datasets A, B, C, D: Mean Separation using the

RC version and the tnc weighting scheme across various

dimensions.

(0.03 and below) which indicates that many non-relevant

documents received high similarity values.

Figure 10 shows that between 2 and 15 dimensions over-

all performance measured by Sep./HFM was very low (0.22

and below). These results clearly suggest that with regards

to similarity values, more dimensions are needed if the

functionality of filtering documents above a given thresh-

old will be included in system implementation. At 30 and

above dimensions, the average values given to non-relevant

documents are 0.53 or below (see Figure 8), and there ap-

pears to be a good amount of separation (see Figure 9)

between the similarity values given to relevant and non-

relevant documents (i.e. average separation at 30 dimen-

sions is 0.14, highest average separation recorded is 0.18).

With regards to good choice of dimensionality, observ-

ing the values of separation shows that there is not much

change in the curve after 30 dimensions. Also, per-

formance by means of Sep./HFM increases considerably

(i.e. by 0.57 points) between 15 and 30 dimensions.

Figure 10: Datasets A, B, C, D: Mean Sep./HFM using the

RC version and the tnc weighting scheme across various

dimensions.

8 Discussion

The results revealed that the choice of parameters influ-

ences the effectiveness of source-code similarity detection

with LSA. Most evaluations of performance in the liter-

ature are based on precision, however for LSA applica-

tions that make use of thresholds it is important to inves-

tigate the similarity values assigned to document pairs (or

query-document pairs) and tune the parameters accordingly

as these are crucial to the system’s retrieval performance.

With regards to the most effective choice of preprocessing

and term-weighting parameters, the experiments revealed

that removing comments during preprocessing source-code

documents and applying the tnc weighting scheme to the

term-by-document matrix are good choice of parameter

choices for the particular application of LSA. However, the

results also suggest that removing comments, Java reserved

terms and skeleton code all at once can have a negative im-

pact on retrieval performance.

In summary, the findings from the experiments revealed

that applying the term frequency local weighting, and nor-

mal global weighting algorithms outperformed all other

weighting schemes (with or without combining it with

the cosine document length normalization). These results

are not consistent with those by Dumais [11] who found

that the normal global weighting performed significantly

lower than all other weighting schemes (no experiments

were conducted with document length normalization algo-

rithms).

Researchers have tested various weighting schemes and

best results were reported when applying the logarithm as

the local, and the entropy as the global weighting scheme

[34, 11, 36]. However, Wild et al. [43] found that the In-

verse Document Frequency (IDF) global weighting outper-

formed all other weighting functions, and found no clear

indication as to which local weighting function performed

best.

With regards to source-code similarity detection with

LSA, the findings described in this paper revealed that the

logarithm-entropy combination performed well but only



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 419

when combined with document length normalization. On

average, the optimal number of dimensions depends on the

particular corpora and task (i.e. depending of whether or

not threshold values will be used by the system), and for

the corpora involved in the experiments the optimal num-

ber of dimensions appears to be between 10 and 30, after

30 dimensions performance begins to deteriorate.

An investigation into similarity values of document pairs

revealed that choice of dimensions influences these values.

The results revealed that setting the value of k to 15 di-

mensions is appropriate for all the source-code datasets in-

volved in the experiments, if the task is to retrieve a ranked

list of documents sorted in order of similarity to a query.

However, when threshold values are used, the results sug-

gest that the number of dimensions must be increased to 30

in order to maximize the retrieval performance of the sys-

tem, and this is because when fewer dimensions were used,

relatively high values were given to non-similar documents

which increased the number of false positives documents

being retrieved.

9 Conclusion and Future Work

This paper describes the results gathered from conducting

experiments in order to investigate the impact of param-

eters on the effectiveness of source-code similarity detec-

tion with LSA. Results show that the effectiveness of LSA

for source-code plagiarism detection is heavily dependent

on the choice of parameters, and that the parameters cho-

sen are dependent on each other, on the corpus, and on the

task to which LSA has been applied. Furthermore, the re-

sults indicate that choice of dimensionality has a major im-

pact on the similarity values LSA gives to retrieved docu-

ment pairs, and that LSA based information retrieval sys-

tems which make use of threshold values as indicators of

the degree of similarity between the query and documents

in a corpus are likely to require more dimensions. In addi-

tion, there is clear evidence that when parameters are tuned,

LSA outperforms the standard vector space model. This

improvement in performance is mainly due to the use of the

Singular Value Decomposition algorithm, which appears to

be the power behind LSA – in fact, the vector space model

is a special case of LSA, without any dimensionality reduc-

tion.

One limitation to this study was concerned with the

datasets used for experimentation. The only source-code

datasets that were available for conducting the experiments

were those provided by academics in the department of

Computer Science at the University of Warwick. It was

also very time demanding to devise an exhaustive list of

similar document pairs for each dataset.

Furthermore, a pattern of similar behavior was observed

when using particular weighting schemes and dimensional-

ity settings. However, this raises the question, will partic-

ular pattern of behavior change when using other source-

code datasets with different characteristics (e.g. different

number of documents and dictionary size)? To answer this

question, one would need to conduct experiments using

more source-code corpora in order to investigate the behav-

ior of LSA’s parameter settings. It would also be interest-

ing to investigate which parameters work best by analyzing

the corpora characteristics. For example, which parameters

drive the effectiveness of source-code similarity detection

with LSA when using C++ corpora, or corpora written in

other programming languages?

Furthermore, symbols in source-code carry meaning

(e.g. y > 4 and y < 4), and by removing those symbols

during preprocessing, important meaning from documents

may also be removed. This raises the question of, how to

treat symbols in programming languages prior to applying

LSA. Possible ways of answering this question would be

to add the symbols to the term dictionary used to create the

term-by-document matrix. Another way of treating sym-

bols would be to replace them with words (e.g. replace

symbol - with the word minus), or even to categorize sym-

bols and to replace each one with their category name (e.g.

replace occurrences of the mathematical symbols with the

word arithmetic). Experiments with how to treat symbols,

would be of greater importance when applying LSA to lan-

guages such as Perl, which are heavily based on symbols.

References

[1] A. Aiken. Moss: A system for de-

tecting software plagiarism. Software:

www.cs.berkeley.edu/ aiken/moss.html, accessed:

July 2008.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern In-

formation Retrieval. ACM Press / Addison-Wesley,

1999.

[3] M. Berry. Large-scale sparse singular value compu-

tations. The International Journal of Supercomputer

Applications, 6(1):13–49, Spring 1992.

[4] M. Berry and M. Browne. Understanding Search

Engines: Mathematical Modeling and Text Retrieval

(Software, Environments, Tools), Second Edition.

Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2005.

[5] M. Berry, Z. Drmac, and E. Jessup. Matrices, vec-

tor spaces, and information retrieval. SIAM Review,

41(2):335–362, 1999.

[6] M. Berry, S. Dumais, and G. O’Brien. Using linear

algebra for intelligent information retrieval. Techni-

cal Report UT-CS-94-270, University of Tennessee

Knoxville, TN, USA, 1994.

[7] A. Britt, P. Wiemer-Hastings, A. Larson, and C. Per-

fetti. Using intelligent feedback to improve sourc-

ing and integration in students’ essays. Interna-

tional Journal of Artificial Intelligence in Education,

14:359–374, 2004.

[8] C. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and

C. Behrens. Telcordia LSI engine: Implementation



420 Informatica 36 (2012) 409–424 G. Cosma et al.

and scalability issues. In RIDE ’01: Proceedings of

the 11th International Workshop on research Issues

in Data Engineering, pages 51–58, Washington, DC,

USA, 2001. IEEE Computer Society.

[9] G. Cosma and M. Joy. An approach to source-code

plagiarism detection and investigation using latent se-

mantic analysis. IEEE Transactions On Computing,

2009. Accepted for publication November 2009.

[10] S. Deerwester, S. Dumais, T. Landauer, G. Furnas,

and R. Harshman. Indexing by latent semantic anal-

ysis. Journal of the American Society of Information

Science, 41(6):391–407, 1990.

[11] S. Dumais. Improving the retrieval of information

from external sources. Behavior Research Methods,

Instruments and Computers, 23(2):229–236, 1991.

[12] P. Foltz. Using latent semantic indexing for informa-

tion filtering. SIGOIS Bulletin, 11(2-3):40–47, 1990.

[13] R. Gravina, M. Yanagisawa, and K. Akahori. Devel-

opment and evaluation of a visual assesment asistant

using latent semantic analysis and cluster analysis. In

Proceedings of International Conference on Comput-

ers in Education, pages 963–968, 2004.

[14] T. Hoad and J. Zobel. Methods for identifying ver-

sioned and plagiarized documents. Journal of the

American Society for Information Science and Tech-

nology, 54(3):203–215, 2003.

[15] E. Jessup and J. Martin. Taking a new look at the

latent semantic analysis approach to information re-

trieval. In In: Proceedings of the SIAM Workshop

on Computational Information Retrieval, pages 121–

144. Raleigh, NC, 2001.

[16] K. Jones. A statistical interpretation of term speci-

ficity and its application in retrieval. Journal of Doc-

umentation, 28:11–21, 1972.

[17] M. Joy and M. Luck. Plagiarism in program-

ming assignments. IEEE Transactions on Education,

42(1):129–133, 1999.

[18] T. Kakkonen, N. Myller, E. Sutinen, and J. Timonen.

Automatic essay grading with probabilistic latent se-

mantic analysis. In Proceedings of the 2nd Workshop

on Building Educational Applications Using Natural

Language Processing at the 43rd Annual Meeting of

the Association for Computational Linguistics, pages

29–36, Ann Arbor, Michigan, USA, 2005.

[19] T. Kakkonen and E. Sutinen. Automatic assessment

of the content of essays based on course materials. In

Proceedings of the International Conference on In-

formation Technology: Research and Education 2004

(ITRE 2004), pages 126–130, London, UK, 2004.

[20] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue.

Mudablue: An automatic categorization system for

open source repositories. In APSEC ’04: Proceedings

of the 11th Asia-Pacific Software Engineering Confer-

ence, pages 184–193, Washington, DC, USA, 2004.

IEEE Computer Society.

[21] A. Kontostathis. Essential dimensions of latent se-

mantic indexing (lsi). In HICSS ’07: Proceedings

of the 40th Annual Hawaii International Conference

on System Sciences, page 73, Washington, DC, USA,

2007. IEEE Computer Society.

[22] A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse

engineering with semantic clustering. In WCRE ’05:

Proceedings of the 12th Working Conference on Re-

verse Engineering, pages 133–142, Washington, DC,

USA, 2005. IEEE Computer Society.

[23] T. Landauer, D. Laham, B. Rehder, and M. Schreiner.

How well can passage meaning be derived without

using word order: A comparison of latent semantic

analysis and humans. In COGSCI-97, pages 412–417,

Stanford, CA, 1997. Lawrence Erlbaum.

[24] T. E. Lin M., Amor R. A Java reuse reposi-

tory for eclipse using LSI. In Proceedings of the

2006 Australian Software Engineering Conference

(ASWEC’06). IEEE, 2006.

[25] M. Lungu, A. Kuhn, T. Gîrba, and M. Lanza. Interac-

tive exploration of semantic clusters. In 3rd Interna-

tional Workshop on Visualizing Software for Under-

standing and Analysis (VISSOFT 2005), pages 95–

100, 2005.

[26] J. Maletic and A. Marcus. Supporting program com-

prehension using semantic and structural information.

In International Conference on Software Engineer-

ing, pages 103–112, 2001.

[27] J. Maletic and N. Valluri. Automatic software cluster-

ing via latent semantic analysis. In ASE ’99: Proceed-

ings of the 14th IEEE International Conference on

Automated Software Engineering, page 251, Wash-

ington, DC, USA, 1999. IEEE Computer Society.

[28] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic.

An information retrieval approach to concept loca-

tion in source code. In Proceedings of the 11th

IEEE Working Conference on Reverse Engineering

(WCRE2004), Delft, The Netherlands, pages 214–

223, November 9-12 2001.

[29] C. McMillan, M. Grechanik, and D. Poshyvanyk. De-

tecting similar software applications. In Proceedings

of the 2012 International Conference on Software En-

gineering, ICSE 2012, pages 364–374, Piscataway,

NJ, USA, 2012. IEEE Press.

[30] L. Moussiades and A. Vakali. PDetect: A clus-

tering approach for detecting plagiarism in source

code datasets. The Computer Journal, 48(6):651–

661, 2005.

[31] M. Mozgovoy. Desktop tools for offline plagiarism

detection in computer programs. Informatics in Edu-

cation, 5(1):97–112, 2006.

[32] M. Mozgovoy. Enhancing Computer-Aided Plagia-

rism Detection. Dissertation, Department of Com-

puter Science, University of Joensuu, Department of

Computer Science, University of Joensuu, P.O.Box

111, FIN-80101 Joensuu, Finland, November 2007.



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 421

[33] P. Nakov. Latent semantic analysis of textual data.

In CompSysTech ’00: Proceedings of the Conference

on Computer systems and Technologies, pages 5031–

5035, New York, NY, USA, 2000. ACM.

[34] P. Nakov, A. Popova, and P. Mateev. Weight func-

tions impact on LSA performance. In Proceedings of

the EuroConference Recent Advances in Natural Lan-

guage Processing (RANLP’01), pages 187–193. John

Benjamins, Amsterdam/Philadelphia, 2001.

[35] C. Perfetti. The limits of co-occurrence: tools and

theories in language research. Discourse Processes,

25:363–377, 1998.

[36] B. Pincombe. Comparison of human and LSA judge-

ments of pairwise document similarities for a news

corpus. Research Report No. AR-013-177, Defence

Science and Technology Organisation - Australia,

2004.

[37] L. Prechelt, G. Malpohl, and M. Philippsen. Find-

ing plagiarisms among a set of programs with JPlag.

Journal of Universal Computer Science, 8(11):1016–

1038, 2002.

[38] B. Rehder, M. Schreiner, M. Wolfe, D. Lahaml,

W. Kintsch, and T. Landauer. Using latent semantic

analysis to assess knowledge: Some technical consid-

erations. Discourse Processes, 25:337–354, 1998.

[39] S. Schleimer, D. Wilkerson, and A. Aiken. Win-

nowing: local algorithms for document fingerprint-

ing. In SIGMOD ’03: Proceedings of the 2003 ACM

SIGMOD International Conference on Management

of Data, pages 76–85, New York, NY, USA, 2003.

ACM.

[40] A. Singhal, C. Buckley, and M. Mitra. Pivoted doc-

ument length normalization. In Proceedings of the

19th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval,

pages 21–29. ACM Press, 1996.

[41] A. Singhal, G. Salton, M. Mitra, and C. Buckley.

Document length normalization. Technical report,

Cornell University, Ithaca, NY, USA, 1995.

[42] P. Wiemer-Hastings. How latent is latent semantic

analysis? In Proceedings of the Sixteenth Interna-

tional Joint Conference on Artificial Intelligence, IJ-

CAI 99, pages 932–941. Morgan Kaufmann, July 31–

August 6 1999.

[43] F. Wild, C. Stahl, G. Stermsek, and G. Neumann.

Parameters driving effectiveness of automated essay

scoring with LSA. In M. Danson, editor, Proceed-

ings of the 9th International Computer Assisted As-

sessment Conference (CAA), pages 485–494, Lough-

borough, UK, July 2005. Professional Development.

[44] L. Yi, L. Haiming, L. Zengxiang, and W. Pu. A sim-

plified latent semantic indexing approach for multi-

linguistic information retrieval. In In Proceedings of

the 17th Pacific Asia Conference on Language, Infor-

mation and Computation (PACLIC17), pages 69–79,

Sentosa, Singapore, 2003. COLIPS Publications.

[45] D. Zeimpekis and E. Gallopoulos. Design of a MAT-

LAB toolbox for term-document matrix generation.

Technical Report HPCLAB-SCG, Computer Engi-

neering and Informatics Department, University of

Patras, Greece, February 2005.



422 Informatica 36 (2012) 409–424 G. Cosma et al.

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

IDF Inverse Document Frequency

SVD Singular Value Decomposition

VSM Vector Space Model

Local weighting schemes

b Binary

l Logarithmic

n Augmented normalized term frequency

t Term frequency

a Alternate log

Global weighting schemes

x None

e Entropy

f Inverse document frequency (IDF)

g GfIdf

n Normal

p Probabilistic inverse

Document Length Normalization schemes

x None

c Cosine

Preprocessing schemes

KC Keep Comments, Keep Keywords and Keep Skeleton code

KCRK Keep Comments, Remove Keywords

KCRKRS Keep Comments, Remove Keywords and Remove Skeleton

code

RC Remove Comments, Keep Keywords and Keep Skeleton

code

RCRK Remove Comments and Remove Keywords

RCRKRS Remove Comments, Remove Keywords and Remove Skele-

ton code

Evaluation measures

AP Average Precision

MAP Mean Average Precision

LPM Lowest Positive Match

HFM Highest False Match

Sep. Separation

MMAP Maximum Mean Average Precision

Weighting schemes (local weight, global weight, document length normalization)

txx Term frequency, none, none

txc Term frequency, none, cosine

tfx Term frequency, Idf , none

tfc Term frequency, Idf , cosine

tgx Term frequency, GfIdf , none

tgc Term frequency, GfIdf , cosine

tnx Term frequency,normal, none

tnc Term frequency, normal, cosine

tex Term frequency, entropy, none

tec Term frequency, entropy, cosine

lec log, entropy, cosine

lex log, entropy, none

Table 5: List of Acronyms



EVALUATING THE PERFORMANCE OF LSA FOR. . . Informatica 36 (2012) 409–424 423

KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.86 0.86 0.86 0.78 0.75 0.54 0.77

k 20 60 60 15 40 106 50.17

txc 0.86 0.86 0.85 0.79 0.80 0.55 0.79

k 20 45 45 40 60 2 35.33

tfx 0.94 0.92 0.92 0.91 0.87 0.61 0.86

k 40 40 40 35 45 70 45.00

tfc 0.93 0.94 0.93 0.88 0.88 0.60 0.86

k 70 80 80 60 60 60 68.33

tgx 0.73 0.70 0.69 0.74 0.69 0.54 0.68

k 25 20 15 20 15 2 16.17

tgc 0.82 0.74 0.64 0.75 0.69 0.57 0.70

k 30 50 10 20 40 10 26.67

tnx 0.92 0.92 0.92 1.00 1.00 0.63 0.90

k 40 40 40 35 25 70 41.67

tnc 0.95 0.96 0.95 1.00 1.00 0.61 0.91

k 25 25 25 15 15 80 30.83

tex 0.87 0.87 0.88 0.85 0.82 0.60 0.82

k 30 30 30 30 35 60 35.83

tec 0.94 0.94 0.94 0.87 0.87 0.61 0.86

k 80 80 70 70 60 80 73.33

lex 0.94 0.93 0.93 0.97 0.97 0.62 0.90

k 20 30 30 20 25 70 32.50

lec 0.96 0.94 0.95 0.97 1.00 0.61 0.91

k 40 20 20 10 90 45 37.50

Table 6: MMAP values for dataset A

KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.94 0.91 0.86 0.90 0.88 0.85 0.89

k 60 70 80 10 45 40 50.83

txc 0.95 0.88 0.86 0.90 0.87 0.60 0.84

k 15 20 15 10 5 25 15.00

tfx 0.78 0.78 0.78 0.74 0.74 0.73 0.76

k 45 70 70 40 40 40 50.83

tfc 0.84 0.83 0.83 0.79 0.78 0.77 0.81

k 15 15 15 15 15 35 18.33

tgx 0.92 0.82 0.77 0.91 0.88 0.81 0.85

k 35 60 70 25 15 40 40.83

tgc 0.92 0.78 0.74 0.95 0.89 0.80 0.85

k 15 20 10 15 20 20 16.67

tnx 0.84 0.84 0.83 0.90 0.90 0.90 0.87

k 70 70 60 60 60 60 63.33

tnc 0.85 0.85 0.85 0.91 0.91 0.91 0.88

k 10 10 10 15 15 15 12.50

tex 0.80 0.80 0.80 0.74 0.74 0.74 0.77

k 45 45 45 90 90 90 67.50

tec 0.83 0.81 0.80 0.79 0.79 0.77 0.80

k 15 15 15 15 15 15 15.00

lex 0.86 0.85 0.85 0.86 0.86 0.86 0.86

k 60 60 60 40 40 40 50.00

lec 0.88 0.88 0.87 0.90 0.89 0.87 0.88

k 15 15 15 10 10 10 12.50

Table 7: MMAP values for dataset B



424 Informatica 36 (2012) 409–424 G. Cosma et al.

KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.78 0.74 0.98 0.81 0.77 0.77 0.81

k 15 15 35 90 80 90 54.17

txc 0.81 0.76 0.96 0.82 0.78 0.78 0.82

k 40 50 45 80 90 80 64.17

tfx 0.65 0.65 0.91 0.71 0.71 0.70 0.72

k 80 70 70 70 70 70 71.67

tfc 0.73 0.71 0.94 0.75 0.70 0.69 0.75

k 80 90 25 60 50 50 59.17

tgx 0.72 0.71 0.93 0.73 0.69 0.64 0.74

k 90 80 60 50 70 70 70.00

tgc 0.75 0.74 0.92 0.74 0.69 0.67 0.75

k 80 70 60 80 80 100 78.33

tnx 0.83 0.79 0.95 0.82 0.80 0.79 0.83

k 25 25 25 20 35 35 27.50

tnc 0.84 0.82 0.97 0.88 0.85 0.85 0.87

k 20 15 15 20 15 25 18.33

tex 0.70 0.70 0.90 0.75 0.73 0.71 0.75

k 60 90 50 70 80 80 71.67

tec 0.73 0.72 0.96 0.71 0.70 0.69 0.75

k 80 80 10 60 50 80 60.00

lex 0.74 0.74 0.96 0.74 0.74 0.73 0.78

k 20 20 25 35 60 60 36.67

lec 0.78 0.77 0.93 0.78 0.78 0.75 0.80

k 35 40 25 20 25 25 28.33

Table 8: MMAP values for dataset C

KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.80 0.77 0.75 0.83 0.80 0.79 0.79

k 25 60 45 30 60 50 45.00

txc 0.82 0.77 0.76 0.84 0.80 0.79 0.80

k 20 20 20 30 10 10 18.33

tfx 0.70 0.69 0.69 0.73 0.73 0.73 0.71

k 45 40 40 25 45 45 40.00

tfc 0.74 0.74 0.74 0.78 0.77 0.77 0.76

k 15 15 15 25 25 25 20.00

tgx 0.79 0.73 0.73 0.81 0.74 0.73 0.76

k 30 25 25 35 70 25 35.00

tgc 0.73 0.70 0.70 0.79 0.74 0.73 0.73

k 30 30 30 10 15 15 21.67

tnx 0.71 0.71 0.70 0.81 0.83 0.82 0.76

k 15 20 15 10 10 10 13.33

tnc 0.82 0.79 0.79 0.92 0.86 0.86 0.84

k 10 15 15 5 15 15 12.50

tex 0.70 0.70 0.70 0.74 0.73 0.73 0.72

k 45 45 50 50 40 40 45.00

tec 0.67 0.67 0.67 0.72 0.72 0.72 0.70

k 10 5 15 25 25 25 17.50

lex 0.64 0.65 0.65 0.70 0.72 0.72 0.68

k 15 15 15 25 90 90 41.67

lec 0.76 0.76 0.76 0.78 0.78 0.78 0.77

k 15 15 15 20 20 20 17.50

Table 9: MMAP values for dataset D


