Evaluating the Performance of Social Networks of
Sensors under Different Mobility Models

Marcello Tomasini*, Franco Zambonelli*, Angelo BraynerT, Ronaldo Menezes?

*Dipartimento di Scienze e Metodi dell’Ingengneria, Universita di Modena e Reggio Emilia, Italy

Email: 90161 @studenti.unimore.it

franco.zambonelli @unimore.it

TMestrado em Informatica Aplicada, Universidade de Fortaleza, Fortaleza, Ceard, Brazil
Email: brayner@unifor.br

iBioComplex Laboratory, Computer Sciences, Florida Institute of Technology, Melbourne, USA
Email: rmenezes@cs.fit.edu

Abstract—Sensor Networks are becoming ubiquitous in our so-
ciety due to their broad applicability to data intensive tasks such
as keeping air population to safe levels, efficient communication
in military applications, to mention but a few. Furthermore, we
have seen the emergence of sensor technology being integrated
in everyday objects such as cars, traffic lights, phones, and
even being attached to living beings such as dolphins, birds and
humans. The consequence of this widespread use of sensors is
that new sensor network infrastructures may be built out of static
and mobile nodes. When mobility is a variable one should define
which mobility model is best for the infrastructure given their
differences. This paper evaluates which mobility pattern is best
suited to be used in a Social Network of Sensors (SNoS). We
evaluate several mobility models and measure the efficiency of
information flow in a SNoS if mobile sensors follow these mobility
patterns. The paper provides us with a greater understanding of
the benefits of mobility in realistic scenarios.

I. INTRODUCTION

Sensor networks have taken an increasing practical rele-
vance to society, and the number of deployed sensor network
infrastructures is now hard to quantify [1]. Once in place, these
sensor infrastructures could be exploited to improve many of
the tasks we require done today such as monitoring of crime,
prevention of forest-fires, tornado-warning systems, etc. When
connected and mobile, these sensors form a “Social Network
of Sensors” (SNoS) where the “Social” aspect comes from the
movement of “Things” endowed with sensing capability such
as smart phones, inboard navigation systems, and other smart
objects brought around by humans, vehicles, or even animals.

So it should be clear that one of the aspects of SNoS
that makes them different from traditional sensor network
infrastructures is that some of these sensors can be mobile
without requiring any energy to achieve mobility because they
are carried by objects that are naturally moving around: taxis,
humans, birds, etc. As a consequence of such mobility, these
nodes can be very effective in SNoS given that they can be dy-
namically patrolling and monitoring the environment. Mobile
nodes in SNoS are extremely valuable in locations where there
is not any (or enough) smart objects to opportunistically ex-
ploit the environment, and where deployment of dense-enough
wireless sensor nodes would not possible or economically

feasible. It should be clear than that the understanding of
different mobility patterns in the context of sensor networks
should help us design more efficient infrastructures. Moreover,
the mobility is surely to be coupled with fixed sensors which
makes the understanding of the benefit of mobility even more
important given different mobility patterns lead to different
interaction patterns between mobile and static sensors.

In this work, we evaluate the performance of three of the
most studied mobility models in the literature: Lévy Flight [2],
CTRW (Continuous-Time Random Walk) [3], and preferential
return as proposed by Song et al. [4]. We study their effect
to SNoS composed of both mobile and static sensors. Using a
number of simulation experiments, we have tried to understand
the effect of the aforementioned models to the performance of
a realistic SNoS. The main results we have shown are the
following. First, in dense networks the performance change
between different mobility models is small. Second, sensor
radius impact is bigger than sensor density thus it should be
maximized. Third, human mobility model performs poorly
compared to other mobility models due to his big wait-
time cutoff and the preferential return which may pose a
big challenge in the engineering of sensor networks that take
advantage of human mobility.

II. RELATED WORK
A. Sensor Networks

Most of the works on sensor networks are on coverage, pro-
tocols, and algorithms to reposition sensors in the environment
[5], [6]. The difference between these works is on how the
desired positions of sensors are computed. Typically, mobility
is only exploited to achieve a static optimal reconfiguration in
an enlarged sensing environment rather than in an environment
where the dynamics of sensors’ movements are exploited as
an added characteristic of the sensor infrastructure [7].

Liu et al. [8] show that sensor mobility can be exploited to
effectively reduce the detection time of a stationary intruder.
They point out that given a fixed number of sensors, their
coverage area is inherently bound by the density of sensors.
However, if sensors are allowed to move, the area that can



be covered increases because sensors are now able to reach
locations in the environment that would have never been
covered. The authors’s work is only for random movements.

B. Mobility Models

In 1947, the French mathematician Paul Pierre Lévy pro-
posed a new type of randomization method based on a specific
kind of probability distribution: heavy-tailed. The proposed
method has been shown to be useful in simulations for ran-
dom or pseudo-random natural phenomena. Indeed, scientist
have used Lévy movement to describe the flight pattern of
wandering albatrosses [9] and the foraging patten of spider
monkeys [10].

CTRW is a random walk that includes random waiting times
between jumps. A case where the distribution of waiting times
has infinite variance (e.g.,power law) was treated in [11] and it
has been used by Brockmann et al. [12] to describe the scaling
laws for the flow of bank notes and then to infer the dynamics
of human travels.

Today it is generally understood that human mobility pat-
terns are non-random. Song et al. [13] has proposed a model
for human mobility based on preferred locations, not fixed a
priori, but rather emerging as a consequence of the mobility
process. Their model is based on two generic mechanisms,
exploration and preferential return, both unique to social
human mobility and missing from the traditional random-walk
(Lévy-flight or Continuous-Time Random Walk) models:

Exploration: a scaling law is proposed to indicate that the
tendency to explore additional/new locations decreases
with time.

Preferential Return: in contrast with random-walk-based mod-
els where people move randomly thus resulting in a
uniform distribution of visits, humans show significant
propensity to return to previously visited locations, such
as their home or workplace.

This model is able to capture most of the characteristics of

human mobility, thus we chose it as our reference human

mobility model.

It is clear that at all the models above have applicability
(some more than others) in the real world and represent
movement of some natural or artificial entity. Our assumption
is that mobility is achieved for free since sensors are attached
to mobile entities. Hence evaluating these more common
models enable us to make design decisions.

III. SIMULATION OF MOBILITY MODELS IN SNOS

Our simulations focus on two aspects. First, we compare the
performance of different mobility models in an urban SNoS
with both fixed and mobile sensors. In particular, we focus
on the benchmarking of two issues in sensor networks: (i)
the time ¢p to detect an event (source) in the environment,
and (ii) the time tr to report that event to a specific location
(sink) in the environment. Our ultimate goal is to find how
much the mobility model affects performance and if there is
a threshold in sensor density after which the mobility model
is less relevant to the performance. Second, we show how to

deploy a SNoS in a realistic environment (based on population
density) and the performance that could be expected.

A. The Model

The simulations were run on the simulator developed for
our previous work [14] where we studied the effect of human
dynamics. The reason to choose a city-wide setup is that
people live in cities. The city is the best environment to achieve
mobility for free, by assuming that sensors are carried by
mobile entities, due to the abundance of mobile carriers (e.g.,
people, vehicles).

The environment is a square divided in square patches
of one unit area. Static and mobile sensors are deployed in
the environment differently. Static sensors are deployed in a
regular lattice simulating the existing infrastructure. Mobile
sensors follow an exponential distribution from the center
of the environment to simulate the characteristic population
distribution of some metropolis [15]. Sensors move at a
constant speed of 1 unit per tick. There are two special markers
in the environment called the event and the sink. The event is
the item we want to detect (e.g., a fire, an explosion) whereas
the sink is the place to which report the event (e.g., a police
station). We placed the sink and the event in the environment
at a distance to be equivalent to having them in the periphery
of the city.

In the simulation, mobile sensors move according to a
specified model, exploring the environment thus increasing the
ratio of covered area f,(t), t € N that is the number of covered
locations divided by the total number of possible locations
(¢?) where ¢ is the side of the square lattice representing
the environment. A location is considered visited if it was
reached by at least one sensor node during the execution
of the simulation. At some point during the execution of
the simulator a sensor should detect the event. From that
point onwards the simulator changes mode with the goal of
spreading information about the detected event to other sensors
when they are within communication range. The simulation
stops when one of the sensors with the information about the
event finds the sink node.

B. Comparing Different Mobility Models

The simulator is executed using different kinds of ran-
dom walks—Lévy walk and CTRW—and these are compared
against the model proposed by Song et al. [13]. Song’s
model has many parameters. Scaling parameters represent
exponents of power laws of jump length and wait time. Cutoff
parameters control the point at which exponential cutoffs
happen. Preferential return is governed by the parameters p
and v (see [13] for detailed description of the meaning of
these parameters). We used the following values: jump length
scaling parameter o = 0.55, jump length exponential cutoff
k1 = ¢/10, wait time scaling parameter 8 = 0.8, wait time
exponential cutoff ks = 5 ticks, scaling of preferential return
v = 0.21, preferential return probability weight p = 0.6.

Lévy walk and CTRW use the same scaling parameters
of Song’s model for power-law distribution of jump length.



Lévy walk does not have a wait time while CTRW uses
Song’s power law with exponential cutoff for wait time to
be consistent with our previous results [14]. Since CTRW and
Song’s models can be reduced to Lévy walk (setting wait time
to 0 in CTRW, setting both wait time and preferential return
probability to 0 in Song’s model), we can say that Lévy walk
represents the best theoretical performance for these kind of
random walks.

C. Estimating Real-World Performance

We fixed the size environment of side ¢ = 100, then we
calculated the number of static sensors ng = 441 according
to:

ne=k* k= (+r)/r (D

where r represents the radius of transmission in a square lattice
of side ¢. These static sensors represents the existing infras-
tructure which is attached to e.g., buildings and streetlights.

In order to simulate a real world scenario, it makes more
sense to look at densities that are realistic with regards to
“things” carrying them. Focusing primarily on human mobility
we set to work under conditions that resemble densities of
typical urban areas in the USA.

We started by matching the size of the simulation environ-
ment to a meaningful size of a city. We set the size of the
square lattice £ = 10km, which makes the simulation area to
be A = 100km? and then we define the unit area a inside
simulation environment as a square of 10 x 10 patches (1 km?
in real terms). Once the environment had a real size we set the
sensor radius to match real world technologies, in our case we
chose Bluetooth that has a range of about 10 meters, which is
equivalent to r = 0.1 in a simulation environment. We assume
a boolean sensor network (where the event is either detected
or not) with fixed sensor radius r both for mobile and static
sensors, we can argue that an event can be detected if and
only if the event is located at a distance, d < 7.

Given this setup we now know that one discrete unit of
space in the environment is 1 v = 100 m, then we also know
sensors move at a constant speed of 1 u/tick = 100 m/tick.

We then tried to match the time unit (1tick) with an
equivalent in the real world. If we assume that mobile sensors
are carried by pedestrians with an average constant speed of
5km/h then it is easy to see that 1 tick equals 1.2 minutes in
real time which gives us that 1 hour is equivalent to 50 ticks.
We can now give a real meaning to the wait-time cutoff k.
We used 2 configurations: the first has k; = Sticks to show
the impact of sensor radius on performance while the second
case uses ko = 17h as found in [13].

The next step is to compute the number of mobile sensors
n.,,. From Equation 1 we can see that achieving a perfect
coverage with only static sensor is truly impossible since it
would require more than a million static sensors to cover our
simulation environment. Hence, mobile sensors represent the
only practical way to implement a SNoS at a city level. The
objective here is not to find the number of mobile sensors to
achieve best possible performance, but to reach a certain event

delivery ratio in a given amount of time, as a tradeoff between
performance and the effort needed to involve a lot of people.
We can obtain the number of mobile sensors required from
the population density of the city. As a reference city density
RD we took the average city densities of 690 cities of the
developed world with a population greater than 500,000 people
as indicated in [16]. Then, the number of mobile sensors n,,
is given by:

x-RD-A

a

Nm = N (2)
where x € X C [0,1] represents the fraction of reference
density we consider. We took different percentages, X = {0.01,
0.015, 0.02, 0.025, 0.035, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15,
0.175, 0.2}, of reference density RD = 2000 ppl/km? and
observed the event delivery ratio to the sink, that is how many
runs out of 500 ended before reaching the time limit, given
different time constraints (4h, 5h, 6h, 8h, 10h). We provide
the mean of each of the values and the standard error of the
mean (SE) that quantifies the variance in the performance of
the sensor network that may arise due to the stochastic nature
of sensors deployment and movements.

IV. EXPERIMENTAL RESULTS
A. Mobility Model Performance

If we look at the performance guaranteed by different kinds
of mobility models, we see in Table I that detection time
follows a law of the kind tp(n,,) = an.,’ where a and b
are constants. Note that the behavior is the same for the all
four different models except for the values of a and b (as also
seen in Fig. 1). Table I also reports the performance for the
report time, tr(n,,), which is also defined by an equation
similar to ¢ (n,,) and again followed by all mobility models.

As a first observation we can see that there is no big
difference between Lévy walk and CTRW so we can argue
that the impact of waiting time to the performance in SNoS
is limited. This was expected because the wait-time cutoff is
quite small. Moreover the wait-time distribution is such that
most pauses have a limited time length with few long pauses,
thus at any moment in time most sensors are able to move.
This experiment lead us to argue that increasing the wait-time
cut off should degrade performance only slightly.

What is most interesting however is that as the sensor
density increases the difference in performance between dif-
ferent mobility models also decreases becoming essentially
irrelevant. We must stress that this is not a consequence of
the interaction with static sensors, which are almost irrelevant
given the small sensor radius and very limited number. Instead
it is due to the influence which higher density has on mobile
sensor inter-contact time. This result is important because it
tell us that in a sufficiently dense network, the performance is
not bounded by a specific mobility model but by sensor speed
and protocol in charge of delivering information. Here we
have used epidemic spreading, that is the protocol with highest
(optimal) performance, so we ruled out spreading protocol as
limiting factor.



However, if we look at “coverage” as the main factor, the
mobility model used has a greater impact because the area
covered depends heavily on the mobility of sensors. As the
sensors move, they are able to “see” areas of the environment
that would otherwise not be seen. This accounts for a fraction
of the area visited/covered by the mobile sensors. Fig. 3 shows
the fraction of the area covered at the end of the simulation
(i.e. tsim = tp + tr ) as we increase the number of mobile
sensors. As expected, Lévy walk and CTRW have the best
coverage since there is no preferential return or cut off in
jump length thus sensors spread rapidly in the environment
following a super diffusive process [17]. Song’s model behave
like a sub-diffusive process [18], thus should have a worse
coverage than those model. However, the preferential return
in Song’s model has a smaller impact at the beginning of the
simulation, because the probability of a jump to previously
unseen locations is higher and this factor partially balances
the progressive diffusion slowdown as the time goes by.

Song’s model instead of being approximately linear it
increases following a law of the kind a + bln(n,,), where
a and b are constants (Fig. 3). This is caused by a saturation,
that is, it is increasingly harder to achieve a greater coverage
by simply adding more sensors because they are not uniformly
distributed in the space; hence the edges of the environment
are less likely to be covered compared to locations in the center
of the environment. However we must say that if we allow the
simulation to run indefinitely, there will be a time instant tg;,,
such that the fraction of covered area f,(tsim) = 1 . This led
us to another observation: due to the large amount of people
and high density of metropolitan cities, with just a relatively
small percentage of the population it is possible to build
a SNoS with a very good coverage. However, performance
relative to tp and tr does not scale as well as we increase
the number of mobile sensors. This is a problem because it
limits the efficacy of the network and its usefulness in cases
where a high delay of information delivery can be tolerated
(e.g., tracking of animals, street/place mapping).

B. Real World Performance

If instead of looking at performance we focus on density
aspects more interesting observations can be made (Figs. 4
and 5). First we see that once a small density threshold is
exceeded, the event delivery ratio increases sharply; this could
depend on the epidemic spread of the event or it is a property
of the network itself. That is, the percolation threshold of the
network is small, thus even if very few sensors find the event
directly, it rapidly spreads over the network to reach the sink.

Second, once we reach an upper threshold, the event deliv-
ery ratio tends to saturate. Therefore it may not be convenient
aim for a perfect delivery ratio, because the effort to obtain
it (the number of mobile sensors required) grows faster than
the percentage of reported events in time t;,,. These two
observations match well with the fact that data is fitted almost
perfectly by a Gompertz function [19], which is a sigmoid
function where growth is slower at the start and end, but the
upper asymptote of the function is approached much more

T
4
i ® Song 5
1250 "‘T [] Song 850 | ]
“‘ [] Levy
h ¥ CTRW
1|
1000
= il
e H 100 .
é 750 1§! 807 1
= ¢ 50’\5\ .
& ! § L \
g [ W ]
8 500H— r T
a L e W g
HPY \ F-- 8- T T -k
I} \ \@ | N S A B
e 275x10°  325x10°  3.75x10*
*

# of mobile sensors

Fig. 1. Detection Time tp follow the law tp ~ anfn but scaling exponent
b is smaller than the setup with radius r» = 2.5.

gradually by the curve than the lower asymptote, in contrast
to the simple logistic function in which both asymptotes are
approached by the curve symmetrically. The equation re-
parameterized according to [20] is:

A- exp{ — exp{MT;e()\ —t)+ 1] }, e=-exp(l) (3)

where A is the upper asymptote, A is the length of the lag
phase and p is the max growth rate. In our case, A = 100
and ) is a density, instead of a time, that may represent the
percolation threshold of the network. Both A and p depend
on the time constraint on t;,,. Moreover, we observe that the
asymmetry is bigger for small values of tg;y,.

Third, unfortunately the wait time cutoff has a big impact
on the delivery ratio under time constraints (Fig. 5). This can
be explained by the fact that it increase both the average value
and the variance of t;,, thus the network does not perform
consistently. This behavior represent a major problem since
is affected by the max grow rate p that is the delivery ratio
increase slower than wanted as we add sensors, thus requiring
high densities or we must relax time constraints. Last, the
density required to achieve the necessary performance tell
us the fraction of the population of the city that should
be involved to build the wanted network. This is especially
important since it imposes a lower limit on the size and density
of the population of the city.

We can expect that in small cities it is not possible to achieve
some acceptable performance in a SNoS. Data for some of the
biggest cities in the USA is shown in Table II; it should be
noted that USA cities have usually a lower density than other
metropolis especially if compared to South America or Asia
metropolis thus they represent a worst case scenario.

V. CONCLUSION AND FUTURE WORK

We found that in dense networks the differences in per-
formance between mobility models fade out if we consider
the detection time tp and the report time tg. Moreover, we
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TABLE I
PERFORMANCE OF A NETWORK SIMULATING A REAL WORLD SCENARIO.
DENSITY EVEN IF SHOWN AS ppl/km? REPRESENTS SENSOR DENSITY.
DETECTION TIME ¢t p AND REPORT TIME tg ARE SHOWED IN SIMULATION
TICKS. FRACTION OF COVERED AREA fq(tsim) € [0, 1].

Song (wait time cutoff k = 5)

ppl/km? N tp  SEip tr  SEtp  fa(tsim)  SEp,
20 1559 700.77  31.87 1044.00 27.59 0.8024  0.0043
30 2559 414.63 17.17 727.62  19.09 0.8308  0.0030
40 3559 31312 1477 561.35  13.36 0.8463  0.0030
50 4559 246.06  10.75 45558 11.50 0.8574  0.0026
70 6559 167.26 7.79 357.89 7.42 0.8761  0.0024
100 9559 124.17 5.97 281.16 5.08 0.9001  0.0019
140 13559 91.05 3.79 220.53 3.69 0.9172  0.0015
180 17559 69.37 2.86 189.87 297 0.9290  0.0012
220 21559 59.16 2.54 171.69 2.40 0.9392  0.0011
260 25559 48.39 2.01 158.74 2.14 0.9467  0.0009
300 29559 43.40 1.79 149.58 1.84 0.9544  0.0008
350 34559 34.63 1.36 138.83 1.59 0.9600  0.0006
400 39559 30.46 1.24 133.36 1.52 0.9652  0.0006
Song (wait time cutoff k = 850)
20 1559 129474 5555 1793.11  59.50 0.7858  0.0039
30 2559 783.83  36.70 1199.43  34.55 0.8077  0.0037
40 3559 626.54  26.86 940.32  26.74 0.8324  0.0032
50 4559 455.89  20.00 784.37 21.34 0.8411  0.0031
70 6559 34847 1473 565.46  14.74 0.8577  0.0029
100 9559 237.08 10.79 416.62 9.61 0.8731  0.0024
140 13559 153.46 6.79 339.75 7.04 0.8927  0.0019
180 17559 109.07 4.72 285.57 5.46 0.9037  0.0017
220 21559 94.63 4.33 252.15 4.54 0.9156  0.0015
260 25559 7791 3.82 230.12 3.79 0.9240  0.0013
300 29559 68.55 3.17 208.82 3.23 0.9309  0.0012
350 34559 59.28 2.71 194.98 2.80 0.9397  0.0010
400 39559 48.64 2.26 178.86 2.57 0.9436  0.0010
CTRW (wait time cutoff & = 5)
20 1559 230.04 990 1381.07 17.33 0.9672  0.0013
30 2559 143.45 5.55 902.68 1125 0.9688  0.0012
40 3559 108.16 4.46 703.52 8.00 0.9724  0.0010
50 4559 89.13 3.16 561.42 6.65 0.9711  0.0012
70 6559 64.43 2.31 41191 4.57 0.9712  0.0009
100 9559 43.88 1.39 295.58 3.09 0.9664  0.0013
140 13559 36.22 1.16 223.78 2.25 0.9626  0.0014
180 17559 30.07 1.00 182.00 1.74 0.9583  0.0014
220 21559 27.40 0.88 156.23 1.45 0.9544  0.0016
260 25559 23.25 0.75 139.91 1.18 0.9527  0.0014
300 29559 20.89 0.66 127.94 1.12 0.9512  0.0013
350 34559 18.69 0.67 118.67 1.01 0.9497  0.0015
400 39559 17.26 0.57 110.37 0.78 0.9509  0.0013
Lévy Walk
20 1559 182.37 7.57 117451 1457 0.9737  0.0012
30 2559 109.69 4.42 796.20 8.55 0.9791  0.0007
40 3559 83.59 3.25 597.33 6.17 0.9795  0.0007
50 4559 67.07 2.82 486.16 5.44 0.9787  0.0009
70 6559 49.59 1.98 363.39 3.64 0.9809  0.0006
100 9559 35.08 1.17 267.13 2.50 0.9799  0.0007
140 13559 28.84 0.97 198.30 1.87 0.9764  0.0009
180 17559 22.60 0.75 163.95 143 0.9748  0.0009
220 21559 19.46 0.62 142.88 1.24 0.9731  0.0010
260 25559 17.97 0.60 127.07 1.06 0.9717  0.0009
300 29559 1591 0.55 118.59 0.95 0.9716  0.0009
350 34559 13.14 0.48 107.66 0.79 0.9697  0.0009
400 39559 13.51 0.46 101.66 0.70 0.9722  0.0008

showed that sensor radius has a bigger impact on them than
sensor density, thus it should be maximized, if it is possible.
Finally, the delivery ratio to the sink is negatively influenced
by wait time and preferential return, thus human mobility
model has performance significantly worse than the other
mobility models tested.

Network performance is of great interest and presently could
be the biggest obstacle in the real implementation since it
seems that network latency remain high no matter how many
mobile sensors we use.

In order to overcome the aforementioned limitation we have
worked on some approaches that could vastly improve this



that is really enforced since users charge their devices almost
daily. Wi-Fi has a greater range and performance than Blue-
tooth and it retains backward compatibility while improving
performance in each new version. It also allows the creation of
ad-hoc networks and development of automatic configuration
protocols (e.g., Zeroconf). Ubiquity and current availability
make Wi-Fi the best candidate for an efficient SNoS.
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TABLE II
DENSITIES D OF SOME OF THE BIGGEST USA CITIES AND DENSITY
PERCENTAGE REQUIRED TO ACHIEVE THE SENSOR DENSITY OF THE CASE
%RD = 20. EVEN FOR SOME BIG CITIES A LARGE PERCENTAGE OF THE
POPULATION NEED TO BE INVOLVED THUS THE DEPLOYMENT AND
IMPLEMENTATION OF THE SNOS MUST BE CAREFULLY DESIGNED.

City D(ppl/km?) 20%
New York, NY-NJ-CT 1800 22.22
Los Angeles, CA 2400 16.67
Chicago, IL-IN-WI 1300 30.77
Philadelphia, PA-NJ-DE-MD 1100 36.36
Boston, MA-NH-RI 800 50.00
Miami, FL 1800 22.22

aspect but that we have not explored here due to space limits.
In summary though, a first idea is derived from the fact that
the presented realistic setup uses mobile and static sensors
that have the same connectivity range. In this configuration,
static sensors have no more relevant meaning since they do not
significantly participate in detection and delivery, they simply
do not cover any meaningful area. Then we could deploy
instead, very few expensive static sensors that exploit current
infrastructure, so that do not have power constraints and they
can have a bigger sensing radius. This way they can function
as a gateway for mobile sensors that have a very small range.
A second idea is to rely on the current network infrastructure
for static sensors so that they constitute a connected network
working at “O latency” and representing a short path to the
sinks. This approach has also the benefit to vastly reduce the
memory pressure on mobile sensors because they can hand off
as much data as they can to the static sensors that then become
responsible for forward the data to the sink. In a city with
many Wi-Fi hotspots we believe this may be very effective.
Finally, we can mitigate the impact of sensor radius using
a different technology for wireless communications. Indeed
Bluetooth is infrequently used by smartphone users while most
of the time Wi-Fi is turned on and thus accessible. Moreover,
in this kind of devices, battery consumption is not something
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