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Summary.

Consider a continuous marker for predicting a binary outcome. For example, serum

concentration of prostate specific antigen (PSA) may be used to calculate the risk of finding

prostate cancer in a biopsy. In this paper we argue that the predictive capacity of a marker

has to do with the population distribution of risk given the marker and suggest a graphical

tool, the predictiveness curve, that displays this distribution. The display provides a common

meaningful scale for comparing markers that may not be comparable on their original scales.

Some existing measures of predictiveness are shown to be summary indices derived from the

predictiveness curve. We develop methods for making inference about the predictiveness
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curve, for making pointwise comparisons between two curves and for evaluating covariate

effects. Applications to risk prediction markers in cancer and cystic fibrosis are discussed.

Key words: risk, classification, explained variation, biomarker, ROC curve, prediction

1. Background

The Early Detection Research Network (EDRN) is a national network of biomarker devel-

opment laboratories and clinical centers sponsored by the National Cancer Institute (Vastag

2000). Two of its goals are to develop biomarkers for cancer screening and for cancer risk

prediction. The statistical focus in cancer screening is on the capacity of a marker to ac-

curately classify subjects as diseased or not (Pepe et al 2001). Classification performance

parameters such as sensitivity and specificity are of key interest, because ultimately it is

the proportion of diseased subjects detected (sensitivity) and the proportion of non-diseased

subjects unnecessarily referred for work-up (1-specificity) that enter into decisions about

screening policy. The evaluation of markers for cancer risk prediction, however, requires a

different approach. In this context we need to quantify how well a marker identifies people at

high or low risk for cancer. A cancer risk prediction marker might be used to select subjects

for a prevention intervention or indeed for screening, but does not classify subjects directly.

Indeed Gail and Pfeiffer (2005) note that criteria for cancer risk prediction markers will often

be much less stringent than those required of screening markers.

In this paper we propose a graphical display to aid in the assessment of risk prediction

markers. The predictiveness curve shows the predictive capacity of a marker. An important

attribute is that it provides a common scale for comparing risk prediction markers. The

predictiveness curve has been suggested previously by Bura and Gastwirth (2001) and Copas

(1999), albeit with different terminology. However, their focus was on inference for summary

indices. They did not address inference for the curve itself or comparisons between curves, nor
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did they consider curves for subpopulations defined by covariates. In this paper, in addition

to addressing these points, we demonstrate the practical usefulness of the predictiveness

curve in assessing the value of risk prediction markers. We illustrate the methodology using

two datasets. The first is a non-cancer application. It concerns major pulmonary infections

in children with cystic fibrosis and the capacity of measures of lung function and nutritional

status to predict them. The second concerns prostate specific antigen (PSA), a widely used

biomarker for prostate cancer.

2. Predictiveness of a Binary Marker

Let D denote the binary outcome and denote the marker by Y . The risk associated with

marker value Y = y is

risk(y) ≡ P (D = 1|Y = y).

Throughout most of this paper we assume that larger values of Y are associated with in-

creasing risk, but generalize the ideas in Section 9. Although our interest is primarily in

evaluating continuous markers, we first consider the simple setting when the marker is bi-

nary. In that case, subjects either have the lower risk level, risk(0) = P (D = 1|Y = 0), or

the higher value, risk(1) = P (D = 1|Y = 1).

Frequently the relative risk is used to summarize the predictiveness of a marker. However,

clearly the absolute levels of risk, not just their ratio, are important in describing the predic-

tive capacity of a marker. For example, a marker with relative risk equal to 10 may corre-

spond to absolute risks of (risk(0) = 0.1%, risk(1) = 1%) or (risk(0) = 1%, risk(1) = 10%).

These two scenarios have very different implications if risks below 5% say are considered

unimportant and risks above 5% are considered “high.”

Reporting of absolute risks, however, is not sufficient either. The proportions of the

population who attain the lower and higher risk levels are also crucial components of pre-

dictiveness. For example, when seeking a marker that identifies subjects at “high risk”, a
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marker with larger high risk prevalence, P [Y = 1], may be preferable even if the absolute

high risk value, risk(1), is somewhat smaller.

The definitions of “high” and “low” risk depend entirely on the clinical context and

include consideration of overall prevalence, consequences of disease, and interventions for

subjects in the low and high risk strata. In general, once appropriate thresholds have been

decided upon, one marker is preferable to another if it leaves fewer subjects in the interme-

diate equivocal risk range.

In conclusion, to fully describe the predictiveness of a binary marker, we stipulate that

one should report the absolute risks and the frequencies of those risks in the population.

That is, one should report the distribution of risk in the population conferred by the marker.

The remainder of this paper expands on this theme in relation to continuous markers.

3. The Predictiveness Curve

We propose the predictiveness curve, R(v) versus v, for describing the predictive capacity of

a marker where R(v) is the risk associated with the vth quantile of the marker:

R(v) = P [D = 1|Y = F−1(v)],

and F is the cumulative distribution function of the marker. Figure 1 displays curves for

−FEV1, a measure of lung function and −weight, a measure of nutritional status, for predict-

ing serious lung infection in the following year among cystic fibrosis patients. The markers

are negated to conform to our convention that increasing values are associated with increas-

ing risk. Details of the data will be discussed in Section 7.

Observe that by using the scale v = F (Y ) on the x-axis, the markers are transformed to a

common scale. This facilitates their comparison, whereas on their original scales the markers

are not comparable. We see for example that at the 90th percentile of −FEV1, the risk is

0.76, whereas the risk is only 0.58 at the 90th percentile of −weight. Patients in the top

10% of the marker distribution are at greater risk when lung function rather than nutritional
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status is used as the risk prediction marker. Pulmonary function is also a better marker of

low risk. The bottom 10% have risks in the range (0.25, 0.28) according to −weight but in

a much lower range, (0.01,0.15) according to −FEV1.

Another way of looking at the predictiveness curve is to consider the inverse function.

We see that R−1(p) is the proportion of the population with risks less than or equal to

p. Suppose pL is a threshold that defines ‘low risk’ and pH is a threshold that defines

‘high risk.’ Then the proportions of the population with low, high, and equivocal risks are

R−1(pL), 1−R−1(pH) and R−1(pH)−R−1(pL), respectively. To illustrate in the cystic fibrosis

example, suppose we take pH = 0.75 and pL = 0.25, then lung function is predictive of low

risk in R−1(0.25) = 29% of the population, of high risk in 1 − R−1(0.75) = 12% and it

leaves 59% of patients in the equivocal risk range. Nutritional status on the other hand is

completely uninformative about high or low risk. Knowledge of weight leaves all 100% of

patients with risks in the equivocal risk range, (0.25,0.75).

Interestingly, the predictiveness curve displays the distribution of risk(Y ) in the popula-

tion. As mentioned above, and most easily seen from the plot itself, R−1(p) is the proportion

of the population with risks less than p. Mathematically we write

R−1(p) = P [risk(Y ) < p]

is the cumulative distribution of risk(Y ). Correspondingly R(v) is the 100×vth percentile of

risk(Y ) in the population. We find the display simple and useful for describing the predictive

capacity of a marker. It conveys the essential elements of our concept of predictiveness and

leads us to a general definition for the predictiveness of a marker in the population.

Definition. Predictiveness of Y ≡ the distribution of risk(Y )

A marker that is uninformative about risk assigns equal risk to all subjects, risk(Y ) =

P [D = 1|Y ] = P [D = 1] = ρ. The corresponding predictiveness curve is the horizontal line
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at R(v) = ρ, v ∈ (0, 1). On the other hand, a perfect marker assigns risk(Y ) = 1 for the

proportion ρ of subjects with D = 1 and risk(Y ) = 0 for the proportion 1 − ρ with D = 0.

Correspondingly, its predictiveness curve is the step function R(v) = I [(1 − ρ) < v], where

I [.] is the indicator function. Most risk prediction markers are imperfect, lying between these

extremes. Better markers have steeper curves corresponding to wider variation in risk. Note

that
∫

R(v)dv =
∫

P [D = 1|Y ]dF (Y ) = ρ. Therefore
∫

(R(v) − ρ)dv = 0, which implies

that
∫ v∗

0
(ρ − R(v))dv =

∫ 1

v∗(R(v)) − ρ)dv where v∗ is the point where R(v∗) = ρ. In other

words, the areas between the curve and the horizontal line at ρ that are above and below the

horizontal line are equal. The horizontal line at ρ serves as a useful benchmark and visual

aid in evaluating predictiveness curves.

4. Estimation

We now turn to the task of estimating the predictiveness curve. Suppose data from a random

sample of n independent identically distributed subjects are available, {(Yi, Di), i = 1, . . . , n}.
We model the risk as a parametric increasing function of Y into (0,1):

P [D = 1|Y ] = G(β, Y )

where G has the form of a cumulative distribution function (cdf). Assume that an asymp-

totically normal estimator of β is employed with var(
√

n(β̂ − β)) = Σ(β). For exam-

ple, β̂ might be the maximum likelihood estimate from a linear logistic model G(β, Y ) =

exp(β0 + βY )/{1 + exp(β0 + βY )}. We prefer to employ more flexible models and use the

3 parameter Box-Cox family (Cole and Green, 1992) in our illustrations. Let F̂ be the

empirical cdf of Y . Then

R̂(v) ≡ G(β̂, F̂−1(v)) vε(0, 1).

Theorem 1
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The asymptotic distribution of
√

n(R̂(v)−R(v)) is mean 0, normal, with variance σ2(v)

where

σ2(v) =

(
∂R(v)

∂β

)T

Σ(β)

(
∂R(v))

∂β

)
+ v(1− v)

(
∂R(v)

∂v

)2

(1)

and 0 < v < 1.

The result indicates that the variance of R̂(v) is comprised of two additive components.

The first is due to variability in β̂ while the second is due to variability in F̂−1(v). Observe

that the magnitude of the second component depends on the slope of the predictiveness curve

at v. The variability due to F̂−1(v) is more important when R(v) is steep. It makes sense

intuitively that imprecision in F̂−1(v) will have a greater impact on R̂(v) when (∂/∂v)R(v)

is larger. Asymptotic theory for the inverse function is provided in the next result.

Theorem 2

√
n(R̂−1(p) − R−1(p)) has an asymptotically normal distribution with mean 0 and variance

τ 2(p) where

τ 2(p) =

[
∂R−1(p)

∂β

]T

Σ(β)

[
∂R−1(p)

∂β

]
+ R−1(p)(1 − R−1(p)) (2)

and p is in the range of {R(v) : vε(0, 1)}

The variance again is comprised of two additive components, one due to β̂ and the

other due to F̂ . If β were known precisely, then R̂−1(p) is the binomial proportion of

subjects with risk(Y ) < p, so its variance is the binomial variance R−1(p)(1−R−1(p))/n as

indicated by (2). On the other hand, if F , the population distribution of Y , were known,

then R̂−1(p) = F (G−1(β̂, p)), which only includes β̂ as a random variable, and its variance

is given by the first component of (2). Observe also the simple relationship between τ 2(p)
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and σ2(v) at v = R−1(p): σ2(v) = ((∂/∂v)R(v))2τ 2(p). Variability in R̂−1(p) is magnified by

(∂/∂v)R(v) on the scale for R̂(v).

Consistent estimates of σ2(v) and τ 2(p) are obtained by substituting estimated quan-

tities into expressions (1) and (2). Derivatives with respect to β of R̂(v) = G(β, F̂−1(v))

and R̂−1(p) = F̂ (G−1(β̂, p)) are easily obtained since G and G−1 are simple differentiable

functions of β. To estimate (∂/∂v)(R(v)) = [(∂/∂y)G(β, y)][(∂/∂v)F−1(v)] where y =

F−1(v), the first component is straightforward while the second involves the density of Y ,

(∂/∂v)F−1(v) = 1/f(F−1(v)). We use a Gaussian kernel density estimate for f in our ap-

plications with bandwidth h optimal for normally distributed data (Silverman, 1986):h =

n− 1
5 1.06min(standard deviation, interquartile range/1.349).

5. Simulation Studies

We performed a limited simulation study to investigate the use of large sample inference for

R(v) and R−1(p) in finite sample studies. Data were simulated according to two models.

In the first, F is a standard normal distribution and the risk function is linear logistic,

G(β, Y ) = exp(β0 + β1Y )/(1 + exp(β0 + β1Y )). We chose (β0, β1) such that R(0.1) and

R(0.9) were at pre-defined values. In the second, F is standard log normal and the risk

function is from the Box-Cox family: G(β, Y ) = Φ(β0 + β1Y
(β2)) where Y (λ) = (Y λ − 1)/λ

when λ �= 0 and Y (λ) = log Y when λ = 0. In this setting we fixed β2 = −0.4, 0, or

0.4 and then chose (β0, β1) based on specified values for R(0.1) and R(0.9). We fit the

predictiveness curves using the correct form for G(β, Y ). That is, we did not investigate the

robustness of these models to misspecification. In practice one should check for goodness of

fit, investigating multiple model forms if necessary.

Tables 1 and 2 show the results of our simulations for one of the Box-Cox model simu-

lations. We found that bias was minimal. Variance estimates reflected the actual sampling

variability with sample sizes of n = 500 or more. Consequently the coverage of 95% confi-
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dence intervals was excellent in moderate to large samples but lower than the nominal level

with n = 100. Problems occurred only at the edges of the predictiveness curve, at v = 0.1

and v = 0.9. Considering that with n = 100 only 10 observations lay beyond these points,

the reduced performance under these circumstances seems reasonable. With larger sample

sizes, (n ≥ 500), inference based on asymptotic inference appeared to work very well across

all of the scenarios we studied (additional results not shown).

6. Further Inferential Techniques

6.1 Comparing Markers

A key attribute of the predictiveness curve is that it provides a common relevant scale

for comparing risk prediction markers. Here we consider formal comparisons between two

markers. Comparisons might be based on the difference in risk percentiles, RA(v0)−RB(v0),

at some v = v0 of interest where subscripts denote markers A and B. The Appendix

summarizes asymptotic distribution theory for R̂A(v)− R̂B(v), assuming that both markers

are measured on the same individuals. The estimated standard error of the difference is

calculated using steps analogous to those described earlier for calculating the estimated

standard error of R̂(v). A p-value can then be based on the Z-statistic: R̂A(v) − R̂B(v)

divided by the estimated standard error.

A particularly compelling case can be made for comparing markers on the basis of R̂−1(p)

where p is a threshold that defines high (or low) risk. One marker of high risk would be

preferred over another if it identifies a greater fraction of people at high risk. That is, if the

high risk threshold is pH and R−1
A (pH) − R−1

B (pH) > 0 then marker B is a better marker of

high risk. Asymptotic distribution theory for R̂−1
A (p) − R̂−1

B (p), provided in the Appendix

can serve as the basis of confidence intervals and hypothesis testing.

Our methodology concerns pointwise comparisons between markers. The simple clinically

relevant interpretations for points on the predictiveness curve and its inverse motivate making

such comparisons in practice. However, statistical power might be greater for statistics based
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on summary indices. Gail and Pfeiffer (2005) note that several indices of predictability are

functionals of the predictiveness curve. For example, the average entropy (Shapiro 1977) is
∫ {R(v) log R(v)+(1−R(v)) log(1−R(v))}dv and the risk variance is

∫
(R(v)−ρ)2dv. Both

give rise to measures of the proportion of explained variation (Mittlebock and Schemper,

1996) which are existing summary indices of predictiveness. Bura and Gastwrith (2001)

suggest the total gain, TG =
∫ |R(v) − ρ|dv, as a summary index. Methods for making

formal comparisons between predictiveness curves based on summary indices, however, have

not been studied yet. Bootstrapping could be used for inference in practice.

6.2 Covariate Specific Predictiveness Curves

The predictiveness of a marker can vary across populations. This can happen if the

marker distribution varies or if there is an interaction between the marker and a covariate

on risk. In addition, the usefulness of a risk prediction marker may vary with the overall

risk. In a low risk population, the marker may not identify any high risk subjects while in a

moderate risk population it might, even if the distribution of the marker and its association

with risk are the same. In this section we consider how to estimate predictiveness curves in

subpopulations defined by covariates denoted by Z.

For a discrete covariate, one can simply stratify and estimate stratum specific predictive-

ness curves, RZ(v), as described earlier. More generally we model the effect of Z on risk

with

P (D = 1|Y, Z) = G(β, Y, Z)

where, as before, G is monotone increasing in Y , and we use a semiparametric location-scale

model (Heagerty and Pepe, 1999) for the distribution of Y given Z

Fz(y) = P (Y ≤ y|Z = z) = F0

(
y − μz

σz

)

where μZ = γ
′
U(Z) and log(σZ) = δ′W (Z), and U(Z) and W (Z) are specified functionals

of Z. For example, for binary Z, U(Z) and W (Z) could be (1, Z), while for continuous Z,
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U(Z) and W (Z) could be a B-spline basis for Z. Writing Ui = U(Zi) and Wi = W (Zi), the

estimators γ̂ and δ̂ are solutions to

n∑
i=1

Ui(Yi − γ
′
Ui)/σ

2
Zi

= 0

n∑
i=1

Wi[(Yi − γ
′
Ui)

2 − σ2
Zi

]/σ2
Zi

= 0.

Denoting the empirical cumulative distribution of standardized residuals by F̂0(·), the

Z=z covariate-specific marker distribution estimate is

F̂z(y) = F̂0

(
y − γ̂′u

eδ̂′w

)

where u = U(z) and w = W (z). The corresponding vth quantile is

F̂−1
z (v) = γ̂′u + eδ̂′wF̂−1

0 (v).

Having fit the risk model, through maximum likelihood or otherwise, the covariate specific

predictiveness curve estimate is

R̂z(v) = G(β̂, F̂−1
z (v), z).

Similarly, the estimated inverse is

R̂−1
z (p) = F̂z(G

−1(β̂, p, z)).

Asymptotic distribution theory is provided in the appendix.

7. The Cystic Fibrosis Data

Cystic fibrosis is a genetic disorder that results in impaired ion transport across the cell

membrane. Its effects on pulmonary and gastrointestinal systems lead to progressive deteri-

oration. Predicted survival currently extends into the mid 30s (Cystic Fibrosis Foundation,

2004). The main culminating event that leads to death is acute pulmonary exacerbation,

i.e., lung infection requiring intravenous antibiotics.
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To illustrate our methodology we use data from the Cystic Fibrosis Registry, a database

maintained by the Cystic Fibrosis Foundation, containing annually updated information on

over 20,000 people diagnosed with CF and living in the USA. We consider weight and FEV1

measured in 1995 to predict pulmonary exacerbations in 1996. Data for 11,960 patients are

analyzed of whom 5094 (42%) had at least one pulmonary exacerbation. Patients 6 years of

age and older are included. Weight is standardized for age and gender (Hamill et al., 1977)

and FEV1 is standardized for age, gender and height (Knudson et al., 1983). See Moskowitz

and Pepe (2004) for more details. Figure 1 shows the estimated predictiveness curves for

−FEV1 and −weight. We have referred to them as population curves earlier in the paper

when illustrating concepts but now acknowledge their sampling variability.

Table 3 shows point estimates and confidence intervals for R(v) and R−1(p). We have

tight confidence intervals for the estimates whose values were already mentioned in relation

to this curve in Section 3. Confidence intervals calculated using bootstrap resampling were

almost identical to those based on asymptotic theory. The second column shows the %

variance in R̂(v) due to F̂ , i.e., the second component of (1). Observe that it is larger for

−FEV1 than for −weight presumably because the predictiveness curve for −FEV1 is more

steep. An hypothesis test based on the difference in predictiveness estimates at v = .1 yields

p-value< 0.01. This test uses the asymptotic variance expression given in the Appendix. At

v = 0.9 the difference in R(v) for the two markers is also statistically significant (p-value

< 0.01).

We next consider the predictiveness of lung function (Y = −FEV1) in subpopulations

defined by their nutritional status (Z = weight). We modeled the risk of pulmonary exac-

erbation with the Box-Cox form

P [D = 1|Y, Z] = Φ(β0 + β1Y
(λ) + β2Z)

and used a semiparametric location scale model for log(−Y ) with mean a natural cubic spline
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function of Z having knots at the 0.30 and 0.70 quantiles of Z and log standard derivation

also a natural cubic spline with knot at the median of Z. Fitted predictiveness curves are

shown in Figure 2 for subjects with weight at the median, first and third quartiles. Observe

that the incidence of pulmonary exacerbation varies across these three populations, from

58% in subjects at the first quartile of weight to 30% in subjects at the third quartile. In

the latter population, FEV1 identifies .41 of subjects below the low risk threshold of 25%

(95% CI = (0.38,0.43)) but only 0.01 with risks above the high risk threshold of 75% (95%

CI=(0.01,0.02)). On the other hand, in the high risk population FEV1 identifies only 0.06

(95% CI=(0.05,0.07)) low risk subjects and 0.23 (95% CI=(0.20,0.25)) high risk subjects.

Therefore FEV1 is a particularly useful marker of high risk in subjects at already somewhat

elevated risk due to their nutritional status and similarly it is more useful as a low risk

marker in subjects at somewhat reduced risk based on their weight.

8. Markers for Prostate Cancer

The Prostate Cancer Prevention Trial was a randomized prospective study of men with PSA

< 3.0 ng/mL, aged 55 years and older who were followed up for 7 years with annual PSA

measurements. A biopsy was recommended for all men either during or at the end of the

study. Thompson et al. (2006) identified 5519 men on the placebo arm of the trial who

had undergone prostate biopsy and had a PSA and digital rectal exam (DRE) during the

year prior to biopsy and at least 2 PSA values from the 3 years prior to biopsy. Prostate

cancer risk was evaluated as a function of PSA, PSA velocity and several other variables

including age, family history, DRE and prior prostate biopsy. Here we use the data to

compare PSA and PSA velocity as predictors of prostate cancer risk. 21.9% of men were

found to have prostate cancer. Figure 3 top panel displays the predictiveness curves for PSA

and PSA velocity. The curve for PSA velocity is more shallow, indicating that it is a poorer

marker of risk for this general class of prostate cancers. The 90thpercentile of risk is 0.291
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according to PSA velocity while it is higher, 0.369, according to the absolute most recent

PSA measurement (p < 0.01). At the low end of the scale, the 10thrisk percentiles based

on PSA velocity and PSA are 0.149 and 0.091 (p < 0.01) respectively, again suggesting that

PSA is the better marker of risk. According to PSA velocity 2.9% of men can be classified as

having risk below 10% while far more, 13.6%, qualify as low risk when using most recent PSA

as the marker (p < 0.01). In addition, a greater fraction are found to have risks above 30%

with PSA, 1 − R̂−1(.30) = 23.0%, than with PSA velocity 1 − R̂−1(0.30) = 8.0%(p < 0.01).

Prostate cancer biopsy specimens are classified using the Gleason scoring system with

higher scores associated with more aggressive disease. The bottom panel of Figure 3 shows

the same markers as predictors of high-grade prostate cancer (Gleason score ≥ 7) which

occurred in only 4.7% of men. Again, the 10thand 90thpercentiles of risk are better for

PSA than for PSA velocity. The 10thpercentiles are 0.4% versus 1.3% (p=0.05) and the

90thpercentiles are 11.1% versus 8.5% (p < .01) for the two markers. The proportion of

subjects with risks greater than 10% is 0.063 according to the PSA velocity marker while

the proportion is much larger, 0.132, according to the absolute PSA marker (p < 0.01). We

conclude that absolute PSA is also a better risk prediction marker than PSA velocity for

high grade prostate cancer.

9. Discussion

The predictiveness curve provides a complete and conceptually simple description of the ca-

pacity of a marker to predict risk. It is not an entirely new proposal. The idea of categorizing

a continuous marker according to quartiles or quintiles say and documenting the proportions

of subjects with D = 1 in each category is not uncommon in the applied literature (see

Willett et al., 1987 for example). Our proposal builds on and formalizes the idea, allowing

the marker scale to remain continuous and restricting the risk function to be monotone.

Our method has the added advantage that it provides inference about the inverse function,
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R−1(p) (or 1−R−1(p)) the proportion of the population with risks below (or above) p, which

are often of key interest.

Receiver operating characteristic curves generalize to continuous markers the notions of

sensitivity, P (Y = 1|D = 1), and specificity, P (Y = 0|D = 0), that are defined for binary

markers. The idea is to use a threshold c to define a series of binary markers, “Y > c”, and

to plot the corresponding sensitivity versus 1−specificity for all values of c. In a similar vein,

Moskowitz and Pepe (2004) proposed generalizing the binary marker notions of positive and

negative predictive values, PPV = P (D = 1|Y = 1) and NPV = P (D = 0|Y = 0), to

continuous markers using thresholds. They proposed the positive predictive value (PPV)

curve, which is a plot of PPV(v) = P (D = 1|Y > F−1(v)) versus v. These curves are

mathematically related to the predictiveness curve

PPV(v) =

∫ 1

v

R(u)du/(1 − v).

In words, the PPV of the decision rule F (Y ) > v is the average risk(Y ) for Y that satisfy

the positivity criterion. We note that the PPV curve is concerned with the performance

of classification rules, not directly with predictiveness. An estimated predictiveness curve

gives rise to an estimate of the predictive value curve. However, in contrast the empirical

nonparametric methods used by Moskowitz and Pepe (2004) to estimate the PPV curve do

not give rise to a simple estimate of R(v). Numerical derivatives are required and mononicity

cannot be guaranteed. Observe that neither ROC curves nor positive predictive value curves

show the population distribution of risk that is displayed by predictiveness curves.

A key element of our proposal is that risk(Y ) is monotone increasing. This allows us to

interpret R−1(p) as the proportion of the population with risks below p, and to say that a

proportion v of the population have risks below R(v). Some markers may not have monotone

increasing risk functions. To accommodate such markers a more general definition of the
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predictiveness curve can be provided:

R(v) = p : P [risk(Y ) ≤ p] = v (3)

That is, R(v) is the 100×vth percentile of risk(Y ) in the population. Equivalently, R−1(p) is

the cdf of the random variable risk(Y ). The ordering on the x-axis is according to risk(Y )

and is equivalent to that based on Y if risk(Y ) is a monotone increasing function. For

the more general case, one can fit a risk model that allows non-monotonicity and plot the

empirical percentiles for R̂(v).

In most applications however, we expect that the risk function is monotone increasing

with the marker. Efficiency is likely gained by incorporating this restriction into the model.

We used the Box-Cox family of distributions to fit monotone predictiveness curves to data.

This 3 parameter family is reasonably flexible. It includes a wide variety of shapes (Cole and

Cole 1992). However, further research is required to determine if another parametric family

would be preferable. For fitting non-monotone curves we prefer B-splines because of their

local nature and numerical stability. However analogues for fitting monotone curves do not

appear to be available.

We have considered simple continuous prediction markers in this paper. However Y could

be a function of multiple markers and risk factors. It might be a clinical prediction score

derived from fitting a risk model to data. We note that if the risk score is to be evaluated

with predictiveness curves estimated from the same data as used to develop the score, then

issues pertaining to shrinkage, (ie., overoptimism of R̂(v) estimated from the same data used

to develop the linear combination) would need to be addressed. We leave that for future

research.
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Appendix: Large Sample Distributions

Let

Ψ1i = −∂R(v)

∂v

(
I
[
Yi ≤ F−1(v)

] − v
)

Ψ2i = I [G(β, Yi) ≤ p] − P [G(β, Y ) ≤ p] = I
[
Yi ≤ G−1(β, p)

]− R−1(p)

and assume
√

n(β̂n−β) = n− 1
2

∑n
i=1 Ψ3i + op(1), where Ψ3i, i = 1, ..., n are independently

18

http://biostats.bepress.com/uwbiostat/paper282



identically distributed variables with E(Ψ3i|Yi) = 0 and var(Ψ3i) ≡ Σ(β). Observe that Ψ1i

and Ψ2i are also mean zero random variables with variances v(1−v)
(

∂R(v)
∂v

)2

and R−1(p)(1−
R−1(p)), respectively. When v = R−1(p), Ψ1i = −∂R(v)

∂v
Ψ2i.

In the supplementary appendix we show

√
n

(
R̂(v)− R(v)

)
= n−1/2

(
∂R(v)

∂β

) n∑
i=1

Ψ3i + n−1/2
n∑

i=1

Ψ1i + op(1)

√
n

(
R̂−1(p) −R−1(p)

)
= n−1/2

(
∂R−1(p)

∂β

) n∑
i=1

Ψ3i + n−1/2

n∑
i=1

Ψ2i + op(1)

A.1 Comparing Markers

Subscripts A and B are used to denote the markers.

Result A.1

The asymptotic distribution of
√

n(R̂A(v) − R̂B(v) − (RA(v) − RB(v))) is normal with

mean 0 and variance

var

(
∂RA(v)

∂βA
Ψ3A − ∂RB(v)

∂βB
Ψ3B

)
+ var (Ψ1A − Ψ1B)

where βA and βB are the parameters in the risk models for P (D = 1|YA) and P (D = 1|YB)

respectively.

Result A.2

The asymptotic distribution of
√

n(R̂−1
A (p)− R̂−1

B (p))− (R−1
A (p)−R−1

B (p)) is normal with

mean 0 and variance

var

(
∂R−1

A (p)

∂βA

Ψ3A − ∂R−1
B (p)

∂βB

Ψ3B

)
+ var(Ψ2A − Ψ2B)

19

Hosted by The Berkeley Electronic Press



Asymptotic variances can be estimated by substituting empirical or estimated quantities

as necessary.

A.2 Covariate Specific Predictiveness Curves

Result A.3

Since γ̂ and δ̂ are solutions to estimating equations we can write them as
√

n (γ̂ − γ) ≡
n−1/2

∑
i=1 γi and

√
n

(
δ̂ − δ

)
≡ n−1/2

∑
i=1 δi.

Let

Ψ1iz = −∂Rz(v)

∂v

(
I

(
Yi − γ′Ui

eδ′Wi
≤ F−1

0 (v)

)
− v

)

+
∂G(β, F−1

z (v), z)

∂F−1
z (v)

(
u− eδ′wE(U/eδ′W )

)′
γi

+
∂G(β, F−1

z (v), z)

∂F−1
z (v)

(F−1
z (v)− γ′u) (w − E(W ))′ δi

√
n(R̂z(v)−Rz(v)) and

√
n(R̂−1

z (p)−R−1
z (p)) converge in distribution to mean 0 normal

random variables with variances

σ2
z(v) =

(
∂Rz(v)

∂β

)
Σ(β)

(
∂Rz(v)

∂β

)T

+ var(Ψ1z), and

τ 2
z (p) =

(
∂R−1

z (p)

∂p

)2

σ2
z(v),

for v = R−1
z (p) respectively. These expressions reduce to those of Theorems 1 and 2 when

no covariates are modeled.
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Table 1
Results of 5,000 simulations to evaluate the application of inference based on asymptotic
theory to finite sample studies. Box-Cox risk with β0 = −0.486, β1 = 0.793, β2 = 0.4, the

same as in Table 2. Shown are results for R̂(v)

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9

R(v) 0.100 0.194 0.313 0.491 0.800

Bias

% bias in R̂(v)

n = 100 −1.636 −3.058 −0.969 −0.493 −0.749

n = 500 −0.164 −0.619 −0.468 −0.308 −0.031

n = 2000 −0.279 −0.240 −0.152 −0.095 −0.033

Variance

Asymptotic − Observed
Observed %

n = 100 −7.660 −11.976 −4.646 −7.322 7.262

n = 500 3.276 1.103 −0.875 −1.694 −3.330

n = 2000 0.538 −0.200 1.739 0.047 5.910

95% Confidence Interval

coverage (%)

n = 100 86.529 92.094 92.914 92.874 89.992

n = 500 92.984 94.769 94.567 94.386 94.245

n = 2000 94.238 95.038 95.428 95.161 95.346
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Table 2
Results of simulations to evaluate the application of inference based on asymptotic theory to
finite sample studies. Box-Cox risk with β0 = −0.486, β1 = 0.793, β2 = 0.4, the same as in

Table 1. Shown are results for R̂−1(p)

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

R−1(p) 0.100 0.480 0.708 0.848 0.944

Bias

% bias in R̂−1(p)

n = 100 20.292 0.821 −0.892 −0.800 −0.746

n = 500 0.795 0.500 −0.096 −0.156 −0.199

n = 2000 0.316 0.154 0.0008 −0.034 −0.031

Variance

Asymptotic − Observed
Observed %

n = 100 37.008 7.548 5.396 −9.196 −0.409

n = 500 11.167 1.173 −0.018 −1.133 3.857

n = 2000 1.249 1.730 1.134 4.121 6.095

95% Confidence Interval

coverage (%)

n = 100 73.46 92.11 92.01 94.06 91.23

n = 500 91.33 93.60 94.08 95.09 95.53

n = 2000 94.20 94.77 94.65 95.71 95.86

22

http://biostats.bepress.com/uwbiostat/paper282



Table 3
Point estimates and 95% confidence intervals for R(v) and R−1(p) using −FEV1 and

−weight as markers of risk for subsequent pulmonary exacerbation in patients with cystic
fibrosis.

Estimate Variance Confidence Interval Confidence Interval

due to F̂ Asymptotic Bootstrap

R(0.9)

FEV1 0.76 10.0% (0.748,0.779) (0.749,0.779)

weight 0.58 0.60% (0.568,0.601) (0.567,0.601)

R(0.1)

FEV1 0.15 8.91% (0.133,0.157) (0.133,0.157)

weight 0.28 0.72% (0.262,0.293) (0.261,0.294)

R−1(0.25)

FEV1 0.29 18.16% (0.273,0.311) (0.270,0.314)

weight 0 0% (0,0.040) (0,0.039)

R−1(0.75)

FEV1 0.88 13.58% (0.865,0.897) (0.864,0.898)

weight 1 0% (1,1) (1,1)
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Figure 1. Predictiveness curves for two markers of pulmonary exacerbation in children with
cystic fibrosis. F is the cdf of the marker. The x-axis concerns the marker quantile and the
y-axis shows the corresponding risk, R(v) = P [D = 1|Y = F−1(v)]
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Figure 2. Predictiveness curves for lung function as a predictor of risk of pulmonary
exacerbation in the subsequent year. Shown are curves for cystic fibrosis children with poor,
average and good nutritional status defined by weight at the 1st, 2nd and 3rd quartiles, the
incidences of pulmonary exacerbation in the 3 groups being 0.58, 0.40 and 0.30, respectively.
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Figure 3. Predictiveness of PSA and PSA velocity as markers for prostate cancer risk. The
top panel is for all cancers while the bottom panel is for the subset of high grade cancers
(Gleason score > 6). The horizontal lines show the prevalence of cancer and correspond to
predictiveness curves of a useless marker.
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