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Being able to replicate scientific findings is crucial for scientific progress1-15. We 

replicate 21 systematically selected experimental studies in the social sciences 

published in Nature and Science between 2010 and 2015. The replications follow 

analysis plans reviewed by the original authors and pre-registered prior to the 

replications. The replications are high powered with sample sizes on average about 

5 times higher than in the original studies. We find a significant effect in the same 

direction as the original study for 13 (62%) studies, and the effect size of the 

replications is on average about 50% of the original effect size. Replicability varies 

between 12 (57%) and 14 (67%) for complementary replicability indicators. 

Consistent with these results, the estimated true positive rate is 67% in a Bayesian 

analysis. The relative effect size of true positives is estimated to be 71% suggesting 

that both false positives and inflated effect sizes of true positives contribute to 

imperfect reproducibility. We furthermore find that peer beliefs of replicability 

are strongly related to replicability, suggesting that the research community could 

predict which results would replicate and that failures to replicate were not the 

result of chance alone. 

To what extent can we trust scientific findings? The answer to this question is of 

fundamental importance1-3, and the reproducibility of published studies has been 

questioned in many fields4-10. Until recently, systematic evidence has been scarce11-15. 

The Reproducibility Project: Psychology12 (RPP) put the question of scientific 

reproducibility at the forefront of scientific debate16-18. The RPP replicated 100 original 

studies in psychology, and found a significant effect in the same direction as the 

original for 36% of the 97 studies reporting “positive findings”12. The RPP was 

followed by the Experimental Economics Replication Project (EERP) which replicated 
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18 laboratory experiments in economics and found a significant effect in the same 

direction as the original studies for 61% of replications13. Both the RPP and the EERP 

had high statistical power to detect the effect sizes observed in the original studies. 

However, the effect sizes of published studies may be inflated even for true positive 

findings due to publication or reporting biases19-21. As a consequence, if replications 

were well-powered to detect effect sizes smaller than those observed in the original 

studies, replication rates might be higher than those estimated in the RPP and the EERP.  

We provide evidence about the replicability of experimental studies in the social 

sciences published in the two most prestigious general science journals, Nature and 

Science (the Social Sciences Replication Project; SSRP). Articles published in these 

journals are considered exciting, innovative, and important. We include all experimental 

studies published between 2010 and 2015 that (i) test for an experimental treatment 

effect between or within subjects, (ii) test at least one clear hypothesis with a 

statistically significant finding, and (iii) were performed on students or other accessible 

subject pools. Twenty-one studies were identified to meet these criteria. We used the 

following three criteria in descending order to determine which treatment effect to 

replicate within each of these 21 papers: (a) select the first study reporting a significant 

treatment effect for papers reporting more than one study, (b) from that study, select the 

statistically significant result identified in the original study as the most important result 

among all within and between subjects treatment comparisons, and (c) if there was more 

than one equally central result, randomly select one of them for replication. The 

interpretation of which was the most central and important statistically significant result 

within a study in criteria (b) above was made by us, and not by the original authors.  

(See Supplementary Information, section 1 and Tables S1-S2 for details.)  
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To address the possibility of inflated effect sizes in the original studies, we used 

a high-powered design and a two-stage procedure for conducting the replications. In 

Stage 1 we had 90% power to detect 75% of the original effect size at the 5% 

significance level in a two-sided test. If the original result replicated in Stage 1 (a two-

sided p-value < 0.05 and an effect in the same direction as in the original study), no 

further data collection was carried out. If the original result did not replicate in Stage 1, 

we carried out a second data collection in Stage 2 to have 90% power to detect 50% of 

the original effect size for the first and second data collections pooled. 

The motivation for having 90% power to detect 50% of the original effect size 

was based on the replication effect sizes in the RPP being on average about 50% of the 

original effect sizes (12) (see Supplementary Information, section 1, for details; the 

average relative effect size of the replications in the EERP was 66%13). On average, 

replication sample sizes in Stage 1 were about three times as large as the original 

sample sizes and replication sample sizes in Stage 2 were about six times as large as the 

original sample sizes. All of the replication and analysis plans were made publicly 

known on the project website, pre-registered at the OSF and sent to the original authors 

for feedback and verification prior to data collection (see Supplementary Information, 

section 1, for details and see individual replication reports for methodological details 

and reporting of any deviations in the protocols from the original studies). 

There is no universally agreed upon criterion for replication12, 22-25, but our 

power analysis strategy is based on detecting a significant effect in the same direction as 

the original study using the same statistical test. As such, we treat this as the primary 

indicator of replication and refer to it as the statistical significance criterion. This 

approach is appealing for its simplicity as a binary measure of replication, but does not 
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fully represent evidence of reproducibility. We also provide results for the relative 

effect size of the replication as a continuous measure of the degree of replication. To 

complement these indicators, we present results for: (i) a meta-analytic estimate of the 

original and replication results combined12, (ii) 95% prediction intervals26, (iii) the 

“Small Telescopes” approach25, (iv) the one-sided default Bayes factor27, (v) a Bayesian 

mixture model28, (vi) and peer beliefs about replicability29. See Supplementary 

Information, section 2, and Fig. S1–S3 for additional robustness tests of the replication 

results.  

In Stage 1 we find a significant effect in the same direction as the original study 

for 12 replications (57.1%) (Fig. 1a and Table S3). When we increase the statistical 

power further in Stage 2 (Fig. 1b and Table S4), 2 additional studies replicate based on 

this criterion. By mistake, a second data collection was carried out for one study 

replicating in Stage 1, and we therefore also include this study in the Stage 2 results to 

base our results on all the data collected. This study does not replicate in Stage 2. This 

may suggest that replication studies should routinely be powered to detect at least 50% 

of the original effect size, or that one should use a lower p-value threshold than 0.05 for 

not continuing to Stage 2 in our two-stage testing procedure. Based on all data 

collected, 13 (61.9%) studies replicate after Stage 2 using the statistical significance 

criterion. 

The mean standardized effect size (correlation coefficient, r) of the replications 

is 0.249, compared to 0.460 in the original studies (Fig. S4). This difference is 

significant (Wilcoxon signed-ranks test, z = 3.667, p < 0.001, n = 21), and the mean 

relative effect size of the replications is 46.2%. For the 13 studies that replicated, the 

mean relative effect size is 74.5%, and for the 8 studies that did not replicate, the mean 
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relative effect size is 0.3%. It is not surprising that the mean relative effect size is 

smaller for the non-replicating effects than replicating effects as these are correlated 

indicators. However, it is notable that, even among the replicating effects, effect sizes 

for the replications were weaker than the original findings and, for the non-replicating 

effects, the mean effect sizes were approximately zero. 

We also combined the original result and the replication in a meta-analytic 

estimate of the effect size. As seen in Fig. 1c, 16 studies (76.2%) have a significant 

effect in the same direction as the original study in the meta-analysis. However, the 

meta-analysis assume that the results of the original studies are not influenced by 

publication or reporting biases making the meta-analytic results an overly optimistic 

indicator compared to criteria focused on the replication evidence12. A team recently 

suggested that the p-value threshold for statistically significant findings should be 

lowered from 0.05 to 0.005 for new discoveries30. In a replication context it would be 

relevant to apply this stricter threshold to meta-analytic results. In this case, the meta-

analysis leads to the same conclusions about replication as our primary replication 

indicator (i.e., 13 studies or 61.9% have a p-value < 0.005 in the meta-analysis). It is 

obvious that the 13 successful replications would achieve p < 0.005 when the original 

and replication results were pooled, but this criterion could have also included 

replications that did not achieve p < 0.05 but were in the right direction and were 

combined with an original study with particularly strong evidence. 

A complementary replication criterion is to count how many replicated effects 

lie in a 95% prediction interval (26), which takes into account the variability in both the 

original study and the replication study. Using this method, 14 effects replicate (66.7%; 

see Fig. 2a and Supplementary Information, section 2, for details). This method yields 
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the same replication outcome as the statistical significance criterion for 20 of the 21 

studies. 

The Small Telescopes approach estimates whether the replication effect size is 

significantly smaller than a “small effect” in the original study with a one-sided test at 

the 5% level. A small effect is defined as the effect size the original study would have 

had 33% power to detect. Following the Small Telescopes approach25 12 studies 

(57.1%) replicate (see Fig. 2b and Supplementary Information, section 2, for details). 

One replication has a significant effect in the same direction as the original study, but 

the effect size is significantly smaller than a small effect as defined by the Small 

Telescopes approach. This is the only difference compared to the statistical significance 

criterion. 

Another way to represent the strength of evidence in favor of the original result 

versus the null hypothesis of no effect is to estimate the Bayes factor24, 27, 31-32. The 

Bayes factor compares the predictive performance of the null hypothesis against that of 

an alternative hypothesis in which the uncertainty about the true effect size is quantified 

by a prior distribution. The prior distributions were first set to their generic defaults; 

they were then folded across the test value so that all prior mass is consistent with the 

direction of the effect from the original study, thereby implementing a Bayesian one-

sided test (see the Supplementary Information, section 2, for details). For example, the 

replication of Pyc and Rawson yielded a one-sided default Bayes factor of BF+0 = 6.8, 

meaning that the one-sided alternative hypothesis outpredicted the null hypothesis of no 

effect by a factor of almost 7. 

The one-sided default Bayes factor exceeds 1, providing evidence in favor of an 

effect in the direction of the original study for the 13 (61.9%) studies that replicated 
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according to our primary replication indicator (Fig. 3). This evidence is strong to 

extreme for 9 (42.9%) studies. The default Bayes factor is below 1 for 8 (38.1%) studies 

providing evidence in support of the null hypothesis; this evidence is strong to extreme 

for 4 (19.0%) studies. 

In additional Bayesian analyses, we use an errors-in-variables mixture model 

(28) to estimate the true positive rate in the total sample (see the Supplementary 

Information, section 2 and Fig. S5 for details). The estimated true positive rate is 67% 

(Fig. S5), which is close to the other replicability estimates. The mixture model also 

estimates that the average relative effect size of true positives is 71% (Fig. S5) 

suggesting that the original studies overestimated the effect sizes of true positives. 

We also estimate peer beliefs about replicability using surveys and prediction 

markets29, 33 (see Supplementary Information, section 3 and Table S5 and Fig. S6 for 

details). The prediction markets produce a collective peer estimate of the probability of 

replication that can be interpreted as a reproducibility indicator29. The average 

prediction market belief of replicating after Stage 2 is a replication rate of 63.4% and 

the average survey belief is 60.6%, both close to the observed replication rate of 61.9% 

(Fig. 4; see Supplementary Information, section 4, Fig. S7–S8 and Tables S5–S6 for 

more details). The prediction market beliefs and the survey beliefs are highly correlated, 

and both are highly correlated with a successful replication (Fig. 4 and Fig. S7). That is, 

in the aggregate, peers were very effective at predicting future replication success. 

In the RPP12 and the EERP13, replication success was negatively correlated with 

the p-value of the original study, suggesting that original study p-values might be a 

predictor of replicability. We also find a negative correlation between the p-value of the 

original study and replication success, although it is not significant (Spearman 
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correlation coefficient ‒0.405, p = 0.069, n = 21); the estimate is in between the 

correlations found in the RPP (‒0.327) and the EERP (‒0.572) (Table S7). That peers 

are to some extent able to predict which studies are most likely to replicate suggests that 

there are features of the original studies that journals or researchers can use in 

determining ex ante whether a study is likely to replicate. The results from the RPP, 

EERP, and SSRP taken together suggest that the p-value of the original study is one 

such important determinant of replication. The SSRP with n = 21 studies is too small to 

reliably test determinants of replications, but pooling the results of all large scale 

replication projects may offer a higher powered opportunity to explore moderators of 

replication. 

To summarize, we successfully replicated 13 of 21 findings from experimental 

social and behavioral science studies published in Science or Nature between 2010 and 

2015 based on the statistical significance criterion with very high-powered studies 

compared to the RPP12 and the EERP13. This number is larger than the RPP’s 

replication rate and similar to the EERP’s replication rate (Fig. S9). However, the small 

sample of studies and different selection criteria makes it difficult to draw any 

interpretation confidently in comparison with those studies. We can conclude, however, 

that increasing power substantially is not sufficient to reproduce all published studies. 

Also, we observe that the conclusions across binary replication criteria converge with 

increased statistical power. The Small Telescopes and the 95% prediction interval 

indicators drew different conclusions on only one of the replications compared to the 

statistical significance criterion. 

Considering statistical significance and effect sizes simultaneously, we observe 

two major outcomes. First, even among successful replications, estimated effect sizes 
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were smaller than the original study. For the 13 studies that replicated according to the 

statistical significance criterion the replication effect sizes were about 75% of the 

original effect size. This provides an estimate of the overestimation of effect sizes of 

true positives in original studies. The Bayesian mixture model corroborates this result 

yielding an estimate of the relative effect size of true positives of 71%. This implies that 

meta-analyses of true positive findings will overestimate effect sizes on average. This 

finding bolsters evidence that the existing literature contains exaggerated effect sizes 

because of pervasive low powered research coupled with bias selecting significant 

results for publication.8,12 Also, if this finding generalizes to the literatures investigated 

by the RPP and the EERP, it suggests that the statistical power of these two projects, 

where the sample sizes were determined to obtain 90% power to detect the original 

effect size, was de-facto smaller than intended. This would imply that the replication 

rates, based on the statistical significance criterion, were underestimated in these studies 

consistent with those authors’ speculation. 

Second, among the unsuccessful replications, there was essentially no evidence 

for the original finding. The average relative effect size was very close to zero for the 

eight findings that failed to replicate according to the statistical significance criterion. 

The expected relative effect size for a sample of false positives is zero, but this 

observation does not demand the conclusion that the eight original findings were false 

positives. Another possibility is that the replication studies failed to implement 

necessary features of the protocol to detect the effect17. We cannot rule out this 

alternative, but we also do not have evidence for necessary features missing from the 

replications that would reduce the observed effect sizes to zero. Indeed, it would be 

surprising but interesting to identify an unintended difference that completely 
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eliminated the effect rather than just reduce the effect size. One suggested indicator for 

whether differences between studies are a likely cause for bias, is the endorsement of 

the original authors.17 In the current project, we took extensive efforts to ensure that the 

replications would be as close as possible to the originals. All of the replications but one 

were designed with the collaboration of the original authors (for one replication the 

original authors did not respond to our queries). And, all of the reviewed replications 

but one were approved by the original authors. However, none of this implies that 

original authors agree with the final outcomes or interpretation. For example, changes in 

planned implementation or insights after observing the results could lead to different 

interpretations of the replication outcome and ideas for subsequent research to clarify 

the understanding of the phenomenon. See Supplementary Information, section 1 and 

the posted replication reports for each study for more details including follow-up 

comments from original authors if provided. 

Another hypothesis that could account for replication failures, at least partly, is 

the result of chance, such as a large degree of heterogeneity in treatment effects in 

different samples17. However, such heterogeneity would not affect the average relative 

effect size of replications, as replications would be as likely to over- as underestimate 

original effect sizes. It cannot therefore explain why the average effect sizes of our 

replications is only about 50% of the original effect sizes. Furthermore, the strong 

correlation between the peer predictions and the observed replicability is discordant 

with the possibility that replication failures occurred by chance alone. That is, 

researchers appear to have identified a priori systematic differences between the studies 

that replicated and those that did not. This capacity to predict the replicability of effects 

is a reason for optimism that methods will emerge to anticipate reproducibility 
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challenges and guide efficient use of replication resources toward exciting but uncertain 

findings. 

The observed replication rate of 62%, based on the statistical significance 

criterion, adds to a growing pool of replicability rates from a variety of systematic 

replication efforts with distinct selection and design criteria: the RPP12 (36%, n = 100 

studies), the EERP13 (61%, n = 18 studies), Many Labs 111 (77%; n = 13 studies), Many 

Labs 215 (50%, n = 28 studies), and Many Labs 314 (30%, n = 10 studies). It is too early 

to draw a specific conclusion about the reproducibility rates of experimental studies in 

the social and behavioral sciences. Each investigation has a relatively small sample of 

studies with idiosyncratic inclusion criteria and unknown generalizability. But, the 

diversity in approaches provides some confidence that considering them in the 

aggregate may provide more general insight about reproducibility in the social-

behavioral sciences. As a descriptive and speculative interpretation of these findings in 

the aggregate, we believe that reasonable lower and upper bound estimates are 35% and 

75% for an average reproducibility rate of published findings in social and behavioral 

sciences. Accumulating additional evidence will reveal if there are systematic biases in 

these reproducibility estimates themselves. 

When assessing reproducibility we are interested in both the systematic bias in 

the estimated effect sizes of original studies and the fraction of original hypotheses that 

are directionally true. The average relative effect size of 50% in the SSRP is a direct 

estimate of the systematic bias in the published findings of the 21 studies, as it should 

be 100% if original studies provide unbiased estimates of true effect sizes. This estimate 

assumes that there is no systematic difference in the effectiveness of implementing the 

study procedures or the appropriateness of testing circumstances between original and 
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replication studies. If both of those assumptions are true, then our data suggests that the 

systematic bias is partly due to false positives and partly due to the overestimated effect 

sizes of true positives. These systematic biases can be reduced by implementation of 

pre-registration of analysis plans to reduce the likelihood of false positives, and 

registration and reporting of all study results to reduce the effects of publication bias 

inflating effect sizes34. With notable progress on these practices, particularly in the 

social and behavioral sciences35, we predict that replicability will improve over time. 

Limitations  

The SSRP is a small sample of studies with specific selection criteria for 

experimental studies from two high-profile journals. Work that is published in Nature 

and Science may be atypical to the field as a whole, and may have a stronger focus on 

novelty, which may also lead to greater – or lesser – editorial scrutiny. The small 

sample and selective criteria significantly reduce confidence in generalizing these 

findings to the social science literature more generally. Indeed, like all other research, 

replications require an accumulation of evidence across multiple efforts to identify and 

address sampling biases and to obtain increasingly precise estimates of replicability. 

This study adds to this accumulating literature with a focused, high-powered 

investigation of high-profile studies published in Nature and Science. Notably, with 

replication sample sizes about five times larger as the original studies, we get relatively 

precise estimates of the individual effects of these single replications and average 

relative effect sizes that are very similar to what was observed in RPP. 

Another important limitation is that for papers reporting a series of studies we 

only replicate one of those studies, and for studies testing more than one hypothesis we 

only replicate one hypothesis. Like prior large-scale replication projects, this study does 
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not provide definitive insight on any of the original papers from which we designed 

replication studies. An alternative methodology would be to replicate all results within 

the selected study or all results within all studies in a paper reporting a series of studies. 

This would give more information from each replication and a more precise estimate of 

reproducibility of each study and paper. All investigations involve tradeoffs. The 

advantage of an in-depth examination of a paper is greater insight and precision of the 

reproducibility of its findings. The disadvantage is that many fewer findings can be 

investigated to learn about reproducibility of findings more generally. Some other 

findings reported in the original papers can be tested with the data available in our 

study’s replications. We did not consider those secondary findings in this paper or in 

deciding the statistical power plans for the design. However, all of our data and 

materials are publicly posted as part of open science and will be available to other 

researchers who may want to pursue this issue further in follow-up work. 

The original authors in reviewing our paper and replication results have noted 

some limitations on the replications of their individual studies. These are discussed 

more in the Supporting Information (Section 1.2); and several of the original authors 

have also posted comments on the replications at OSF alongside our Replication 

Reports. For example, previously unidentified or inadvertent changes to the protocol 

may have affected replication success for some studies. Also, for papers reporting a 

series of studies we replicated the first study reporting a significant treatment effect. In 

some cases the original authors argue that other studies in their papers report more 

important results or use stronger research designs.46,54 If the replicability of the first 

study systematically differ from the replicability of subsequent studies in a paper our 
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criteria for deciding which study to replicate will systematically over- or under-estimate 

replicability.  

Inspired by our replication, the original authors of Shah et al.54 decided to carry 

out a replication study of their own on all of their five studies (with results posted at 

https:osf.io/vzm23/). They did replicate what they consider to be their most important 

finding, that scarcity itself leads to over-borrowing. They also failed to replicate study 1 

in their paper consistent with our findings. Their approach of conducting replications of 

their own studies is admirable and provides additional insight and precision for 

understanding those effects. 

Five of our replications were carried out on Amazon Mechanical Turk (AMT) 

and for one of those (Rand et al.53), the original authors argue that increasing familiarity 

with economic game paradigms among AMT samples may have decreased the 

replicability of their result. It cannot be ruled out that changes in the AMT subject pool 

over time have affected our results, but we also note that the two other studies based on 

economic game paradigms and AMT data replicated successfully43,50. It would be 

interesting in future work to test if replicability differ for older versus newer studies or 

depends on the time that has elapsed between the original study and the replication. 

For the Sparrow et al.55 replication, the original authors did not provide us with 

materials for the replication or feedback on our inquiries. This made it more difficult to 

replicate the experimental design of the original study. After the replication had been 

completed the original authors noted some design differences compared to the original 

study. These design differences are discussed further in the Supplementary Information, 
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and we cannot rule out that they impacted the replication result. This illustrates the 

importance of open access to all the materials of published studies for conducting direct 

replications and accumulating scientific knowledge. 
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Fig. 1. Replication results after Stage 1 and Stage 2. (a) Plotted are 95% CIs of 

replication effect sizes (standardized to correlation coefficients r) after Stage 1. The 

standardized effect sizes are normalized so that 1 equals the original effect size. There is 

a significant effect in the same direction as in the original study for 12 replications 

[57.1%; 95% CI = (34.1%, 80.2%)]. (b) Plotted are 95% CIs of replication effect sizes 

(standardized to correlation coefficients r) after Stage 2 (replications not proceeding to 

Stage 2 are included with their Stage 1 results). The standardized effect sizes are 

normalized so that 1 equals the original effect size. There is a significant effect in the 

same direction as in the original study for 13 replications [61.9%; 95% CI = (39.3%, 

84.6%)]. (c) Meta-analytic estimates of effect sizes combining the original and 

replication studies. 95% CIs of standardized effect sizes (correlation coefficient r). The 

standardized effect sizes are normalized so that 1 equals the original effect size. 16 

studies have a significant effect in the same direction as the original study in the meta-

analysis [76.2%; 95% CI = (56.3%, 96.1%)]. 
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Fig. 2. Replication results for two complementary replication indicators; 95% 

prediction intervals26 in panel a and the Small Telescopes approach25 in panel b. 

(a) Plotted are 95% prediction intervals for the standardized original effect sizes 

(correlation coefficient r). The standardized effect sizes are normalized so that 1 equals 

the original effect size. 14 replications [66.7%; 95% CI = (44.7%, 88.7%)] are within 

the 95% prediction interval and replicate according to this indicator. (b) Plotted are 90% 

CIs of replication effect sizes in relation to small effect sizes as defined by the Small 

Telescopes approach (the effect size the original study would have had 33% power to 

detect). Effect sizes are standardized to correlation coefficients r and normalized so that 

1 equals the original effect size. A study is defined as failing to replicate if the 90% 

confidence interval is below the small effect. According to the Small Telescopes 

approach 12 [57.1%; 95% CI = (34.1%, 80.2%)] studies replicate. 
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Fig. 3. Default Bayes factors (one-sided)27 for the 21 replications. A default Bayes 

factor above 1 favors the hypothesis of an effect in the direction of the original paper 

and a default Bayes factor below 1 favors the null hypothesis of no effect. The evidence 

categories proposed by Jeffreys31 are also shown in the Figure (from extreme support 

for the null hypothesis to extreme support for the original hypothesis). The default 

Bayes factor is above 1 and provide evidence in favor of an effect in the direction of the 

original study for the 13 (61.9%) studies that replicated according to the statistical 

significance criterion. This evidence is strong to extreme for 9 (42.9%) studies. The 

default Bayes factor is below 1 for 8 (38.1%) studies providing evidence in support of 

the null hypothesis; this evidence is strong to extreme for 4 (19.0%) studies. 
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Fig. 4. Prediction market and survey beliefs. The Figure shows the prediction market 

beliefs and the survey beliefs of replicating (from Treatment 2 for measuring beliefs; 

see the supplementary materials, section 3 for details and Fig. S6 for results from 

Treatment 1). The replication studies are ranked in terms of prediction market beliefs on 

the y-axis. The mean prediction market belief of replication is 63.4% [range of 23.1% to 

95.5%, 95% CI = (53.7%, 73.0%)], and the mean survey belief is 60.6% [range of 

27.8% to 81.5%, 95% CI = (53.0%, 68.2%)]. This is similar to the actual replication rate 

of 61.9%. The prediction market beliefs and survey beliefs are highly correlated, but 

imprecisely estimated (Spearman correlation coefficient 0.845, 95% CI = (0.652, 

0.936), p < 0.001, n = 21). Both the prediction market beliefs (Spearman correlation 

coefficient 0.842, 95% CI = (0.645, 0.934), p < 0.001, n = 21), and the survey beliefs 

(Spearman correlation coefficient 0.761, 95% CI = (0.491, 0.898), p < 0.001, n = 21) 

are also highly correlated with a successful replication.  

 


