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Abstract 

Background: Usutu virus (USUV) is a mosquito-borne flavivirus, reported in many countries of Africa and Europe, 
with an increasing spatial distribution and host range. Recent outbreaks leading to regional declines of European 
common blackbird (Turdus merula) populations and a rising number of human cases emphasize the need for 
increased awareness and spatial risk assessment.

Methods: Modelling approaches in ecology and epidemiology differ substantially in their algorithms, potentially 
resulting in diverging model outputs. Therefore, we implemented a parallel approach incorporating two commonly 
applied modelling techniques: (1) Maxent, a correlation-based environmental niche model and (2) a mechanistic epi-
demiological susceptible-exposed-infected-removed (SEIR) model. Across Europe, surveillance data of USUV-positive 
birds from 2003 to 2016 was acquired to train the environmental niche model and to serve as test cases for the SEIR 
model. The SEIR model is mainly driven by daily mean temperature and calculates the basic reproduction number  R0. 
The environmental niche model was run with long-term bio-climatic variables derived from the same source in order 
to estimate climatic suitability.

Results: Large areas across Europe are currently suitable for USUV transmission. Both models show patterns of high 
risk for USUV in parts of France, in the Pannonian Basin as well as northern Italy. The environmental niche model 
depicts the current situation better, but with USUV still being in an invasive stage there is a chance for under-estima-
tion of risk. Areas where transmission occurred are mostly predicted correctly by the SEIR model, but it mostly fails to 
resolve the temporal dynamics of USUV events. High  R0 values predicted by the SEIR model in areas without evidence 
for real-life transmission suggest that it may tend towards over-estimation of risk.

Conclusions: The results from our parallel-model approach highlight that relying on a single model for assessing 
vector-borne disease risk may lead to incomplete conclusions. Utilizing different modelling approaches is thus crucial 
for risk-assessment of under-studied emerging pathogens like USUV.
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Background

Vector-borne diseases (VBDs) are of growing impor-

tance. Due to global transport, long-distance travel, 

population growth, environmental and climatic changes, 

VBDs are emerging all over the world [1–4]. In addi-

tion to human-mediated spread, mobile species such as 

migratory birds are promoting long-distance transport of 

pathogens [5]. If the local conditions at the introduction 

sites (e.g. hosts, vectors, and climate) are suitable, the 

pathogen can establish and evolve quickly, resulting in 

rapid local spread [6]. Usutu virus (USUV) is an example 

where both processes resulted in the recent arrival and 

spread of a zoonotic mosquito-borne virus in Europe [5].

USUV is a flavivirus [7] belonging to the Japanese 

encephalitis virus serocomplex [8]. As a member of the 

family Flaviviridae, USUV is a single-stranded RNA virus 

closely related to Murray Valley encephalitis virus, Japa-

nese encephalitis virus, and West Nile virus (WNV) [8]. 

It was first isolated in 1959 from Culex neavei mosqui-

toes in Swaziland and named after the Usutu river [7]. 

Its most important vectors are mosquito species of the 

genus Culex [9]. Since the first record, USUV has been 

reported for several African countries (e.g. Senegal, Cen-

tral African Republic, Nigeria, Uganda) and detected in 

mosquitoes, birds, and humans [10]. In Europe USUV 

has been detected in 15 countries, with increasing spatial 

distribution and host range [9, 11–15] (Fig. 1). �e earli-

est evidence of USUV in Europe came from a dead com-

mon blackbird (Turdus merula) found in Italy in 1996, 

although this case was not identified as such until 2013 

Fig. 1 USUV in Europe. Orange areas: European countries where cases of USUV have been reported, regardless of species and method of 
confirmation. Triangles: Spatially explicit records of USUV occurrence 2003—2016 before spatial rarefication. These are locations where individual 
USUV-positive dead birds have been found, confirmed by reverse transcription polymerase chain reaction (RT-PCR)
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[16]. �e first USUV epidemic in Europe was a series of 

dead common blackbirds reported from Austria in 2001 

[17]. In the subsequent years, USUV was reported in fur-

ther European countries. USUV or corresponding anti-

bodies were detected in horses, bats, dogs [11, 18, 19], 

and at least 58 bird species, with common blackbirds as 

dominant avian host [14].

In 2009, the first human case of USUV infection in 

Europe was reported in Italy [20], followed by further 

human cases in Germany [21, 22], Croatia [23], Aus-

tria [24], and France [25]. Human cases are commonly 

characterized by mild symptoms including fever, rash, 

jaundice, headache, nuchal rigidity, hand tremor and 

hyperreflexia [20, 23, 26, 27]. However, at least in immu-

nosuppressed patients USUV can cause a neuro-invasive 

infection [20], and it has recently been suspected to have 

caused idiopathic facial paralysis [25]. In addition to that, 

USUV infections were also detected from blood donors 

and healthy forestry workers in Germany and Italy [21, 

22, 28], suggesting that asymptomatic infections can 

occur among humans. Recent data from Italy indicate 

that human USUV infections may not be a sporadic 

event and can even be more frequent than WNV infec-

tions in areas where both viruses co-circulate [9, 29, 30]. 

Furthermore, due to cross reactions in antibody tests, the 

number of human USUV cases may be underestimated 

through confusion with other flaviviruses [26]. As a con-

sequence, the actual distribution of USUV and associ-

ated number of cases is likely to be larger than currently 

known [31].

�e transmission cycle with birds as enzootic hosts 

creates a complex setting related to the risk for human 

health. First, migratory birds may transport the patho-

gen over large distances and can cause repeated re-

introduction of the virus into a specific region that is 

not appropriate to maintain an outlasting population 

of the pathogen [5]. Second, common blackbirds are 

the predominant host [9, 14]. �is species is very com-

mon across Europe and has grown accustomed to urban 

habitats, exhibiting high population densities in human 

settlements [32]. �is means that vectors only need to 

cover short spatial distances between infected birds and 

humans—and the widespread mosquito species Cx. pipi-

ens is a known bridge vector between mammals, birds 

and humans [33, 34]. In consequence, USUV is becom-

ing an increasing threat for Europe as a mosquito-borne 

and zoonotic disease. Measures should be undertaken 

to improve or even create awareness towards zoonotic 

VBDs. For this purpose, spatial representations of risk 

are needed.

Models for vector borne viral diseases can be gener-

ated at various spatial and temporal scales [35]. Maps of 

vector occurrence or disease transmission risk derived 

from them can be used to direct vector surveillance and 

control programs as well as to inform public health offi-

cials, medicine practitioners and the general public about 

potential risks. Current approaches can be divided into 

two basic groups: correlative models (e.g. environmen-

tal niche models) and process-based models (e.g. epi-

demiological models). Both types of models have their 

own strengths and weaknesses [35]. Correlative environ-

mental niche models, on the one hand, typically utilize 

species occurrence records and environmental predic-

tor variables to estimate the current and future poten-

tial spatial distribution of a target species [36] or disease 

[37–42]. �ey do not require a priori knowledge about 

the specific effects single variables have, and are typically 

used on coarser spatio-temporal scales [35]. Process-

based epidemiological models, on the other hand, aim to 

simulate the entire transmission process. Using knowl-

edge gained from laboratory experiments or field obser-

vations, they require a deeper understanding of disease 

dynamics. As all models for VBD have their individual 

strengths and weaknesses, it is best practice not to rely 

on a single approach, but draw a conclusion from a con-

sensus of multiple different models [35]. Although both 

model categories are widely used when modeling VBDs 

[35], comparisons of different models’ outputs are typi-

cally made within those categories (e.g. [43]), and a com-

parison across categories is still missing.

To date only a limited number of USUV models for 

spatially confined areas exist. Based on an epidemiologi-

cal model for WNV, Rubel et al. [44] developed a mech-

anistic susceptible-exposed-infected-removed (SEIR) 

model for USUV in Vienna (Austria) [44–46], which was 

later successfully applied to Germany and neighboring 

countries [47]. �is model is mainly driven by daily mean 

temperature, and to enable the comparison of modeled 

bird deaths and observed bird deaths, it was originally 

carried out with interpolated monthly mean temperature 

values so as to achieve the same temporal resolution as 

the available bird death data [44]. A different, environ-

mental niche model-based approach was followed by 

Lühken et al. [31], who adopted boosted regression trees 

to assess the spatio-temporal risk for USUV in Germany 

by estimating the risk in each grid cell.

Here we present, for the first time, USUV risk maps 

covering the entirety of the European mainland. Using 

two models in parallel, we utilize the mechanistic SEIR 

model by Rubel et  al. [44] as well as a newly developed 

environmental niche model based on the machine-

learning technique Maxent. Instead of using interpolated 

monthly mean temperature values for a single location, 

rasterized daily mean temperature was used to run the 

SEIR model. In order to increase comparability between 

the models, the same data source was also applied for the 
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use of Maxent. Spatial risk maps were generated by both 

models. By using models from these two different groups, 

we are aiming at (1) estimating the potential risk for 

USUV transmission under current climate conditions in 

Europe and (2) investigating the differences between the 

outputs of two widely-used modelling approaches, which 

could be a first step towards interdisciplinary model 

comparison.

Methods

Study area and USUV occurrence records

In this study, we focus on current European occurrence 

records of USUV in the years of 2003–2016, from the 

earliest to the latest USUV cases available. �e investi-

gation area is limited by the natural coastlines, as well as 

through the reported USUV locations in Eastern Europe 

(Fig. 1).

To achieve a good data quality, only locations of 

USUV-positive birds confirmed by reverse transcription 

polymerase chain reaction (RT- PCR) were taken into 

account. �is was done because (1) data from USUV-

positive mammals or mosquitoes are collected quite 

unsystematic, i.e. data on USUV-positive birds are most 

consistent and comparable between the different Euro-

pean countries, and (2) other methods such as antibody 

analysis may not be able to distinguish USUV from other 

closely related flaviviruses such as WNV [48]. According 

to this rule, a total number of 376 USUV records was col-

lected. USUV-positive data in Germany were collected by 

the German Mosquito Control Association (KABS), the 

Nature and Biodiversity Conservation Union (NABU), 

the local veterinary authorities and/or by the local state 

veterinary laboratories [47, 49–51]. Records for other 

European countries were derived from the literature 

(Additional file  1): Geographical coordinates published 

in the literature were directly entered into the database, 

precise site descriptions were digitized using Google 

Earth Pro, and high-quality occurrence maps were geo-

referenced using ESRI ArcGIS 10.2.2.

Climate data

Time series of daily mean temperature data, required by 

the SEIR model, were acquired from the E-OBS dataset 

version 15.0 [52] on a regular latitude–longitude grid 

with a spatial resolution of 0.25° (about 20  km). E-OBS 

provides gridded daily temperature and precipitation 

data for Europe based on data from weather stations. 

To compare the results from the SEIR model and the 

environmental niche model properly, bio-climatic vari-

ables, which are required by the environmental niche 

model, were generated from the E-OBS dataset as well. 

�erefore, time series of daily minimum, maximum 

temperature and daily precipitation sums were acquired 

in addition to daily mean temperature.

Since the occurrence records for USUV cover the 

years of 2003–2016, these time series were trimmed 

accordingly. Considering that the spatial coverage of the 

E-OBS time series varies over time, grid cells with more 

than 10% missing data were excluded from our analyses. 

Monthly mean values were derived using the “raster” 

package [53] for R 3.2.1 [54] and 19 bio-climatic variables 

were calculated in SAGA-GIS version 2.1.4 [55] for use 

with the environmental niche model.

Environmental niche model: Maxent

For the environmental niche model, we used Maxent 

3.3.3k [56]. Maxent is a powerful machine-learning tech-

nique that is widely used [35] to model the potential dis-

tribution of species, especially when the occurrence data 

are sparse [57]. Using occurrence records and environ-

mental predictor variables as input data, Maxent gener-

ates maps of environmental suitability for transmission 

of USUV. Ranging between 0 for the lowest and 1 for 

the highest suitability, these maps can optionally be con-

verted into presence/absence maps by applying a thresh-

old value.

Maxent models are fitted assuming that all locations in 

the landscape are equally likely to be sampled. However, 

when the occurrence records are collected with different 

methods, sampling bias is inevitable. Compared to other 

methods, systematic sampling, also called spatial filtering 

of biased records [58], has a good performance regardless 

of species and bias type [58, 59]. It was applied by using 

the SDM tool box [60], an addon for ESRI ArcGIS that 

provides advanced tools and convenience functions for 

the Maxent workflow. To determine an appropriate spa-

tial filtering resolution (the minimum distance between 

any two locations), the following rules were taken into 

consideration: (1) �e spatial filtering process should 

decrease the bias distribution, but the remaining records 

should still represent the observed spatial patterns well. 

(2) �ere should be enough records left to run Maxent 

after spatial filtering. Consequently, the spatial filtering 

resolution was set to 20 km (about 0.25°), and 92 USUV 

records left after filtering in order to achieve optimum 

results and to avoid artefacts (Fig. 2).

Selection of the environmental predictors for the model 

followed a two-step approach (Table 1). First, 8 out of the 

19 bio-climatic variables that were deemed unsuitable for 

the task were excluded due to the following ecological 

reasons: BIO2 and 3 (“mean diurnal range” and “isother-

mality”) were excluded because while daily fluctuations 

in temperature are important for the mosquito life cycle 

and transmission dynamics, the monthly averages avail-

able here were considered unsuitable for capturing such 
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short-term fluctuations. BIO12 (“annual precipitation”) 

was excluded because summer and winter precipitation 

play very different roles in this context and should be 

considered separately. All variables referring to the wet-

test/driest quarter or month of the year (BIO8, 9, 13, 14, 

16, and 17) were excluded because seasonal precipitation 

patterns vary largely across Europe. As such, the wet-

test time of the year can be summer in some regions and 

winter in others, making this kind of variable unsuitable 

for larger scale analyses. �e remaining eleven variables 

were further reduced through the built-in Jackknife fea-

ture in Maxent with a ten-fold cross-validation run, fol-

lowing the recommendations of Elith et  al. [61]. In the 

end, a combination of five variables was chosen, consist-

ing of annual mean temperature, minimum temperature 

of coldest month, mean temperature of coldest quarter, 

precipitation seasonality, and precipitation of warm-

est quarter. We used default settings for Maxent (10,000 

background locations, 500 iterations), but disabled the 

use of “threshold” and “hinge” features, that would have 

led to over-fitting due to an inappropriate amount of 

model complexity.

Maxent, like many other environmental niche model 

approaches, generates pseudo-absence (“background”) 

locations to make up for the lack of field records of true 

absence of the target species. Careful selection of the area 

from which these background locations are allowed to be 

drawn from is an important part of model creation, as it 

can affect model performance and results. According to 

Barve et al. [62], this should be done by requiring the back-

ground locations to be within the area the species could 

realistically disperse to. We followed a buffer-based method 

[63] by setting a series of buffer radii from 0.5° to 24° (see 

Additional file 2), given the grid cell size of 0.25°. It is sug-

gested to take the radius when the model performance 

stops increasing [63]. In addition to the built-in AUC (area 

under the receiver operator characteristic curve), true skill 

statistic (TSS) was also calculated as an indicator of model 

performance (Additional file 2). A radius of 12° was chosen 

as suggested, with the final model reaching an AUC of 0.92 

and a TSS score of 0.78, both suggesting good model per-

formance. In this model, the minimum temperature of the 

coldest month had the strongest contribution to the model 

(58%), followed by precipitation of the warmest quarter 

(21%) and annual mean temperature (13%). �e thresh-

old for distinguishing predicted presence and absence 

was based on the receiver operator characteristic (ROC), 

choosing the point along the ROC curve that maximized 

Table 1 Excluded and selected environmental predictor variables for the environmental niche model

Abbreviation Variables

Excluded—monthly minima and maxima are not suitable to estimate daily fluctuations

 BIO2 Mean diurnal range (mean of monthly (max temp − min temp))

 BIO3 Isothermality (BIO2/BIO7) × 100

Excluded—summer and winter precipitation are important to distinguish for mosquitoes and disease transmission dynamics

 BIO12 Annual precipitation

Excluded—wettest/driest time of the year can be in different seasons across Europe

 BIO8 Mean temperature of wettest quarter

 BIO9 Mean temperature of driest quarter

 BIO13 Precipitation of wettest month

 BIO14 Precipitation of driest month

 BIO16 Precipitation of wettest quarter

 BIO17 Precipitation of driest quarter

Excluded by Jackknife

 BIO4 Temperature seasonality (standard deviation × 100)

 BIO5 Maximum temperature of warmest month

 BIO7 Temperature annual range (BIO5–BIO6)

 BIO10 Mean temperature of warmest quarter

 BIO19 Precipitation of coldest quarter

Model input

 BIO1 Annual mean temperature

 BIO6 Minimum temperature of coldest month

 BIO11 Mean temperature of coldest quarter

 BIO15 Precipitation seasonality (coefficient of variation)

 BIO18 Precipitation of warmest quarter
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the sum of sensitivity and specificity. We chose this crite-

rion also known as “maxSSS” because it is objective [64], 

widely used, performs consistently well with presence-only 

data [65, 66] and delivers threshold values that are relatively 

low [66], facilitating the high sensitivity desired in risk 

assessment studies.

Epidemiological model: SEIR

�e SEIR model used in this study was developed by Rubel 

et al. [44] for Vienna (Austria) and surrounding areas based 

on data from different parts of the world. �e model simu-

lates the seasonal life cycles and inter-species USUV infec-

tions of the main vector and host species, Cx. pipiens and 

T. merula respectively. Health states of birds and mosqui-

toes are classified into nine compartments (larvae state 

of mosquitoes, health states susceptible/latent infected/

infectious of mosquitoes and birds as well as recovered and 

dead birds, see [44]), and described by ordinary differential 

equations (see Additional file  3). �e basic reproduction 

number  R0 is then calculated as the dominant eigenvalue of 

the next-generation matrix as described in [67], resulting in 

(see Table 2 for model parameters and Additional file 3 for 

details):

R0 =

√

[

δMγMβM

(γM + mM)mM

SB

KB

][

δMγBβB

(γB + mB)(αB + mB)

SM

KB

]

�e SEIR model is mainly driven by variables responding 

to temperature. Further drivers are latitude, calendar day, 

and parameters with constant values [44].

�e original SEIR R-code of the model was upgraded 

to work on a spatial grid rather than a single point loca-

tion, and daytime length was calculated for each grid cell 

based on the geographical latitude of its center. Instead 

of interpolating daily data from monthly mean tempera-

ture, the model was run with true daily temperature data 

from the E-OBS dataset [52]. As an extensive literature 

review did not yield any new information, all other vari-

ables and parameters originally used by Rubel et al. were 

maintained in this study.

As the SEIR model for USUV was created for and cali-

brated within a temperate climate, water availability or 

precipitation were not considered a limiting factor by the 

developers. However, this assumption is not applicable 

for the entire study area, as the dry summers of Mediter-

ranean climates can lead to a different, two peaked activ-

ity pattern of Cx. pipiens mosquitoes [68]. Consequently, 

the model was applied only to regions with a climate that 

is classified as cold or temperate with warm to hot sum-

mers but no dry season (Cfa, Cfb, Dfa and Dfb in the 

Köppen-Geiger system [69, 70]) (Fig. 2b).

�e basic reproduction number  R0 (the number of 

secondary cases arising from a single infection in an 

Table 2 Variables and parameters in the  R0 equation, following [44]

Parameter Value

Mosquitoes

 Mortality rate mM mM(T ) = 0.00025T
2
− 0.0094T + 0.10257

T  : daily mean temperature

 Biting rate κ κ(T ) =
0.344

1+1.231exp(−0.184(T−20))

 Product of biting rate ( κ ) and transmission possibility from mosquitoes to birds ( PM) βM βM(T ) = PMκ(T )

PM = 1

 Percentage of non-hibernating mosquitoes δM δM = 1 −
1

1+1775.7exp[1.559(D−18.177)]

D = 7.639arcsin

[

tan(ǫ)tan(ϕ) +
0.0146

cos(ǫ)cos(ϕ)

]

+ 12

ǫ = 0.409sin

(

2π(d−80)
365

)

D : daytime length,ǫ : declination, ϕ : geographic latitude

 Exposed—infected/infectious rate γM γM(T ) = 0.0093T − 0.1352 , T ≥ 15
◦

γM(T ) = 0 , T < 15
◦

 Susceptible mosquito population SM Dynamic value, see Additional file 3

Birds

 Mortality rate mB 0.0012

 Removal rate: fraction of infected birds either recovering or dying αB 0.182

 Exposed—infected/infectious rate γB 0.667

 Product of biting rate ( κ ) and transmission possibility from birds to mosquitoes ( PB) βB βB(T ) = PBκ(T )

PB = 0.125

 Susceptible black bird population SB Dynamic value, see Additional file 3

 Environmental capacity KB see Additional file 3
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otherwise uninfected population) of USUV calculated by 

the SEIR model is a threshold value: if  R0 > 1, an outbreak 

is possible after a single introduction of the pathogen; 

whereas if  R0 < 1, the introduced virus population will die 

out [67]. �e daily  R0 value of each cell within the spatial 

raster was calculated within the time span of 2003-01-01 

to 2016-12-31. From this, the average yearly number of 

days with  R0 > 1 was calculated for each raster cell and the 

maxSSS threshold was calculated for direct comparison 

with the environmental niche model based on the same 

presence and background locations that were used in the 

Maxent model. In addition to that, the average daily  R0 

value of the main transmission season (June–September) 

was calculated for each year and raster cell.

Results

�e potential geographic distribution of USUV predicted 

by both models on the continental European scale are 

shown in continuous form in Fig. 2, and as a direct com-

parison based on the maxSSS thresholds (environmen-

tal niche model: 0.35 in Maxent’s logistic output format, 

epidemiological model: 40 days of  R0 > 1) in Fig. 3. While 

there are differences between the two models in parts of 

the study area, 15% of the study area are projected to be 

suitable by both approaches. �e northern Italian out-

break region in and around the Po Valley is identified 

as a highly suitable area for USUV by both models. �e 

same is true for eastern Austria, the Pannonian Basin and 

adjoining areas, as well as a narrow strip along the Rhône 

river in France. Large parts of north-eastern France, the 

Benelux states and western and northern Germany are 

predicted to be at least somewhat suitable by both mod-

els. On the other hand, environmental niche model and 

SEIR agree on low risk being present in northern and 

mountainous regions (such as Sweden, Norway and the 

British Isles), where relatively low average and minimum 

temperatures keep the probability of transmission low.

In general, the environmental niche model accurately 

determines the occurrences of birds found positive with 

USUV. Compared to the SEIR, it suggests elevated cli-

matic suitability for USUV to the north and west of 

the Jura Mountains as well as northwards along the 

Rhine and the North Sea coast until southern Denmark 

(Fig.  2a). Following the maxSSS threshold, the environ-

mental niche model predicts a total of 17% of the study 

area to be suitable for transmission (sensitivity: 0.946, 

specificity: 0.852). 2% of the entire area are considered 

suitable only by the environmental niche model and 

not by the SEIR, including most parts of Denmark and 

adjoining parts of northern Germany, northern Neth-

erlands, southern Belgium and a few areas in northern 

Britain (Fig. 3).

In contrast, the average yearly number of days with 

 R0 > 1 derived from the SEIR suggests a high risk for 

USUV in southwestern France and southeastern Italy, 

but shows relatively low risk in the northern Germany-

Netherlands-Belgium region (Fig.  2b). North of the 

Pyrenees, the former French regions of Aquitaine and 

Fig. 2 Potential geographic distribution of USUV in Europe. a Climatic suitability estimated by the environmental niche model, and b the yearly 
mean absolute number of days of  R0 > 1 simulated by the epidemiological SEIR model. Gray areas in b denote regions with a dry season that were 
not included in the SEIR model. Both models use the same E-OBS climate data for 2003–2016. Locations of recorded cases for the environmental 
niche model were rarified (in comparison to Fig. 1) to avoid spatial autocorrelation (see “Methods”)
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Midi-Pyrénées show a high transmission potential as 

well. Medium values mainly occur in Poland and north-

eastern Germany, along the Upper Rhine Valley and in 

central France. For the outbreak area in the Netherlands 

and northern Germany, the SEIR in this form suggests 

relatively low risk of transmission. However, following the 

maxSSS threshold, most of this region can still be classi-

fied as suitable for USUV transmission (Fig. 3). A total of 

67% of the whole study area lies above the threshold for 

this model, resulting in a sensitivity that is slightly higher 

(0.989) than that of the environmental niche model but a 

very low specificity (0.274).

Zooming in towards the main areas of observed USUV 

transmission allows a closer inspection of the models. In 

the Austrian-Hungarian outbreak area, Maxent predicts 

climatic suitability values sufficient for USUV  transmis-

sion at all observed occurrences (Fig.  4a1). �e SEIR 

model predicts the highest  R0 values for the largest USUV 

event in 2003 (Fig. 4a2) and considerably lower values for 

the following 2  years with less observed cases (Fig.  4a). 

Relatively high  R0 values are observed again for the last 

USUV event in 2016. Interestingly, though, values for the 

USUV-free years of 2006–2015 are higher than those of 

2004/5 (Fig. 4a2).

both +

Maxent +

SEIR +

both -

excluded

Fig. 3 Areas of agreement and disagreement of both models. Dark purple areas denote regions where both models predict suitable conditions 
for USUV-transmission based on the maxSSS threshold. In the blue and red areas, only the environmental niche model and SEIR predict suitable 
conditions, respectively. In white areas none of the models predicts suitable environmental conditions, while gray areas were excluded from further 
analyses because they are outside the climatic zones the SEIR model was developed for, or outside the buffer applied to the Maxent model

Fig. 4 Temporal patterns of the average  R0 values for three selected regions of Europe. a Austria and the Pannonian Basin, b northern Italy, and c 
Germany and the Netherlands. (1) Spatial representation of both models for years with USUV events. Color coding in the maps shows the average 
daily  R0 values throughout June to September for the given years. Gray areas denote climate types with dry seasons, thus the SEIR model was not 
applied there. Cross-hatching indicates areas where the environmental niche model suggests absence of USUV, based on climate data for the 
whole time period from 2003 to 2016. (2) Time series curves illustrate the daily  R0 value, averaged over all occurrence records of the respective 
region for each given year

(See figure on next page.)
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In Italy, Maxent is able to predict the general outbreak 

area (Fig. 4b1). �e SEIR model predicts elevated  R0 val-

ues for the year of 2009 where USUV occurred, but simi-

larly high values for the USUV-free years before and after 

(Fig. 4b2).

In the largest outbreak area in western Germany 

and the Benelux states, Maxent closely resembles the 

observed pattern of USUV occurrence (Fig.  4c1). Com-

pared to the other two regions, the SEIR model in these 

areas shows much lower average and absolute  R0 values 

as well as higher temporal variability throughout the 

transmission season (Fig. 4c2). Average  R0 values for the 

transmission season rise above 1 and match the occur-

rence records well in the Rhine Valley but stay below 1 

in the northern parts of the area, i.e. the Netherlands and 

northwestern Germany.

Discussion

In face of emerging VBDs and rapid spread into new 

regions with suitable climatic conditions, models that 

show the current geographic regions at risk are required 

to allow local health authorities to be prepared. However, 

modelling approaches can differ substantially in philoso-

phy, structure, and algorithms. Pros and cons of different 

approaches are evident and, obviously, there is not one 

single approach to be preferred for every pathogen, area 

or timespan.

In this study, two fundamentally different models were 

applied to describe the current emergence of USUV in 

Europe. �is disease exhibits a series of complex inter-

actions between the virus, vectors and host species [9]. 

Process-based models offer direct links between model 

outcome and underlying mechanisms, which makes 

interpretation of the observed spatial patterns rela-

tively straightforward. However, exact knowledge on the 

parameters of USUV transmission is still scarce. With 

large numbers of USUV-positive birds reported from dis-

tinct geographical hot spots, the application of biogeo-

graphical distribution models may be a viable alternative. 

In order to identify coinciding and deviating model out-

put, we ran the analyses based on the same climate data 

and following standard processes to detect regions at risk 

for the transmission of USUV.

�e large-scale spatial patterns predicted by the two 

models (Figs. 2, 3) are quite similar close to the observed 

USUV events—with the notable exception of northern 

Germany and the Netherlands. Here, the environmental 

niche model favors higher latitudes as far north as Den-

mark, while the epidemiological model suggests good 

conditions for transmission in southwestern France and 

northeastern Spain (Fig. 2b) and at least suitable condi-

tions for most parts of Eastern Europe (Fig. 3). Given the 

observed recent increase in temperatures across Europe 

and the projected further increase during the upcoming 

century [IPCC] [71], it can be expected that both models 

under-estimate future potential for USUV transmission 

to some degree. If precipitation patterns change dra-

matically so as to affect mosquito populations, the SEIR 

model may not be a reliable option any more in some 

regions. Similarly, both models are not suitable to predict 

today’s potential for USUV transmission in areas that are 

climatically very different from the study region.

Environmental niche model

As the environmental niche model is strongly driven by 

existing spatial records, it is not surprising that it reflects 

the current distribution of USUV records better. How-

ever, it has to be kept in mind that there is no consistent 

monitoring of USUV across Europe, leading to biases in 

the occurrence records. For instance, many USUV events 

were reported in Italy, Austria, Hungary, and Croatia 

(though no RT-PCR positive birds), but to date no USUV 

case was reported in their neighbor countries—Slovenia 

and Slovakia. Due to the same reason, only bird cases 

were included in our approach, as it is the least biased 

dataset in Europe, compared to USUV cases from wild 

mammals (e.g. bats and wild boars) or humans. Further-

more, we restricted our USUV dataset to USUV cases 

confirmed by RT-PCR counts, as other methods bear 

the possibility of false positives that would lead to over-

estimation of risk. Given the high activity of West Nile 

Virus in the area that could easily be mistaken for USUV 

in antibody tests, the gain from avoiding false positives 

should outweigh the loss from potentially excluding some 

true positives. Even though Maxent is relatively insensi-

tive to sampling bias compared to other environmental 

niche models [57] and records were spatially rarified in 

this study, the modelling output would still be inevitably 

affected, e.g. in Italy, where occurrence records are com-

parably sparse.

In addition, USUV is still spreading in Europe and 

likely does not occupy its entire environmental niche 

yet, which may lead to under-estimation of risk through 

the environmental niche model in areas that may be cli-

matically suitable, but have not been reached yet (com-

pare e.g. [72]). �e quality and accessibility of observed 

records of occurrence of vectors, hosts and especially 

pathogens is a major practical obstacle for the develop-

ment of models of the environmental niche model fam-

ily. Only a consistent and advanced monitoring system 

covering a selection of representative areas across Europe 

could give more accurate and reliable occurrence records 

to produce risk maps. Consequently, the environmen-

tal niche model performance can be improved as more 

occurrence data with high quality are available and the 

sampling bias is minimized. Ideally, such a monitoring 
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system is centralized, open access and would not only 

focus on birds or mosquitoes but also include mam-

malian hosts such as rodents or bats to cover different 

types of potentially circulating pathogens. Especially the 

latter have been suspected to be under-estimated but 

important hosts for other viral zoonotic diseases [73]. As 

USUV outbreaks typically cease with the arrival of winter, 

hibernating bats could enable overwintering of the virus. 

However, coordinated efforts are also needed for central-

ized and open access to the occurrence records resulting 

from these improved measures [35].

Epidemiological model

As an absence of records does not necessarily indicate 

an absence of risk, it makes sense to use a mechanistic 

model to point out regions such as southwestern France, 

where transmission appears to be possible. �e SEIR 

model captured the USUV events in the Pannonian Basin 

and Po Valley regions well, though the events in Germany 

and the Netherlands were not represented correctly. 

Hence, it must be questioned whether the current knowl-

edge on processes, mechanisms and underlying param-

eters is sufficient to explain USUV transmission patterns 

and outbreaks. Although an extensive literature review 

was conducted with the aim of improving and updating 

the parameters for the SEIR model, no information sup-

porting the integration of additional processes, drivers 

or variables was found. �erefore, all the parameters and 

variables used already in the 2008 study of Rubel et  al. 

[44] were kept unchanged, even though some of them 

are probably not suitable for the whole study area. For 

instance, population density as well as birth and mortality 

rates of common blackbirds are unlikely to be constant 

across the whole study area. An advanced, open-access 

monitoring system as discussed above could also be of 

great use for this.

Furthermore, although precipitation is known to affect 

mosquito life cycles and disease transmission dynamics 

[74, 75], the applied SEIR model does not take this into 

account. �e SEIR model for USUV was originally devel-

oped and calibrated for temperate climates. It is thus pos-

sible that certain ecological factors (e.g. precipitation), 

which are not limiting in the calibration area but could 

be limiting elsewhere, are not included in the model. In 

our study we restrained the extent for the SEIR model by 

excluding climate types with dry seasons in order to avoid 

making predictions for regions the model is not suitable 

for. Future models should aim to improve the popula-

tion model components for vectors and hosts, leading 

to a more universally useful model. In addition, explicit 

parameters for USUV are not available yet and had to be 

substituted by data for the related WNV. For instance, no 

information about the extrinsic incubation period and 

its relation to ambient temperature is currently avail-

able. Data from a single experiment on a single strain of 

another virus (i.e. West-Nile virus) [76] is far from opti-

mal, as it has been shown that these experiments are 

subject to large uncertainty for various reasons [77]. �is 

is a common problem, though, since updated and realis-

tic experiments are sorely needed for many VBDs [35]. 

Future models could account for some of this uncertainty 

by incorporating stochastic variations instead of relying 

on fixed values, as it has already been done e.g. for Chi-

kungunya [78].

Another point worth considering is that so far there 

is no standardized way of converting the daily values of 

 R0 calculated by the SEIR model for each grid cell into 

interpretable maps. Obviously, some amount of tempo-

ral aggregation needs to be applied in order to gain low 

dimensional, printable maps. In practice, this ranges 

from  R0 being displayed as averages for single months 

(e.g. [79]) up to  R0 values being averaged over 30-year 

periods (e.g. [80]). Here, we chose to display average  R0 

values for single transmission seasons, which appar-

ently failed to predict the 2016 USUV event in North-

west Europe (Fig.  4c). However,  R0 is a threshold value. 

�us, while a value of  R0 > 1 indicates high risk of dis-

ease spread, an average  R0 < 1 for the same period does 

not necessarily mean no or even low risk, depending on 

how the length of that period was chosen and how often 

the threshold was exceeded. �is is a serious drawback 

of SEIR model results to visualize the spatial-explicit risk 

of pathogen transmission. Hence, an alternative way of 

illustrating these models is concentrating on the duration 

of time where  R0 > 1. Here, we chose to count the (aver-

age) number of days per year where  R0 > 1, but this can 

also be done on other temporal scales (e.g. months [81]). 

In our case, this value apparently fails to capture the out-

break area in Germany and the Netherlands (Fig.  2b). 

However, a closer look reveals that this again is a lack of 

knowledge about the details of the disease that prevents a 

meaningful interpretation of these maps, i.e., how many 

days of  R0 > 1 are actually needed for an USUV event to 

occur. When this threshold would be known, the average 

yearly number of days of  R0 > 1 map can be converted to a 

categorized risk map showing whether there is a risk and 

how severe it is. Furthermore, it has to be questioned, if 

higher absolute  R0 values during the transmission season 

would reduce the number of days of  R0 > 1 days required 

for an USUV outbreak. Only when these primary ques-

tions are addressed, a more reasonable risk map can be 

generated.

Outlook

Further efforts should strive towards the unification of 

the two streams of modeling. As shown in this study, 
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the ecological niche model reflects spatial distribution 

better, while the epidemiological model has the advan-

tage of capturing short term variabilities, as it uses daily 

temperature data. Ecological niche models are run with 

climate data which typically covers decades, and as a con-

sequence, extreme weather events such as heat waves 

would not be captured. An integrated model could ben-

efit from both models’ advantages. For example, in a 

hierarchical approach, spatial distribution of risk could 

first be estimated by an environmental niche model, fol-

lowed by a zoom into a finer scale for the investigation of 

temporal risk patterns in high risk areas through an epi-

demiological model with well-updated parameters and 

variables. In this case, the finer temporal scale epidemio-

logical model, using daily weather data or even weather 

forecast data, can work as a live early warning forecast. 

Instead of projecting where climate is suitable, ecological 

niche models can also be applied to exclude unsuitable 

regions. In addition, in an integrated approach, envi-

ronmental niche models that estimate the abundance of 

vectors and hosts could be nested in an epidemiological 

model as well, in order to gain more precise information 

on the required vector-to-host ratio.

Conclusion

In conclusion, this study highlights the necessity to 

consider different approaches to detect the current and 

future areas under risk of VBDs. Environmental niche 

models and epidemiological models examine rather 

complementary aspects, especially in terms of short-

term weather conditions versus long-term climatic 

conditions. Environmental niche models are typically 

built upon long-term climate data and thus can be used 

to gain a general overview of the areas at risk and esti-

mate potential effects of climate change. Given enough 

spatially explicit occurrence records are available, these 

models are particularly useful for a rapid risk assessment 

of emerging VBDs, while more detailed data about the 

transmission mechanisms is gathered. Once this data is 

available, elaborate mechanistic models can offer more 

fine-grained insights on the progression of outbreaks, 

with the potential for short-term forecasts based on 

weather models. At this point, environmental niche mod-

els for host or vector populations can provide valuable 

input data for advanced epidemiological models. �us, 

using both approaches complementing each other is key 

for a comprehensive and effective risk evaluation.

Wide parts of Europe are currently at risk of USUV 

circulation, and its status of a mostly neglected emerg-

ing disease makes estimation of its potential future range 

difficult. Evidence suggests that USUV event s may be 

more likely to occur in climatically favored regions within 

Europe such as the Po Valley in northern Italy [82] and 

the Rhine Valley [48, 50]. At the same time, these areas 

have a high human population density and exhibit large 

urban areas and cities. Remnant wetland habitats along 

rivers serve as habitats for migratory bird stops result-

ing in a combined setting with humans being exposed 

to high risk. �e detected spatial patterns can be used to 

indicate regions where surveillance activities should be 

focused and intensified.
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