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Abstract—Contemporary integrated circuits are designed and
manufactured in a globalized environment leading to concerns
of piracy, overproduction and counterfeiting. One class of
techniques to combat these threats is logic encryption. Logic
encryption modifies an IC design such that it operates correctly
only when a set of newly introduced inputs, called key inputs, are
set to the correct values.

In this paper, we use algorithms based on satisfiability checking
(SAT) to investigate the security of logic encryption. We present
a SAT-based algorithm which allows an attacker to “decrypt”
an encrypted netlist using a small number of carefully-selected
input patterns and their corresponding output observations. We
also present a “partial-break” algorithm that can reveal some of
the key inputs even when the attack is not fully successful. We
conduct a thorough evaluation of our attack by examining six
proposals for logic encryption from the literature. We find that all
of these are vulnerable to our attack. Among the 441 encrypted
circuits we examined, we were able to decrypt 418 (95%). We
discuss the strengths and limitations of our attack and suggest
directions that may lead to improved logic encryption algorithms.

I. INTRODUCTION

Considerations of capital costs and economies of scale

dictate that semiconductor manufacturing is now reliant on

offshore foundries that are organizationally separate and ge-

ographically distant from the design houses that design and

validate integrated circuits (ICs). This has led to increased

concerns of IC counterfeiting, piracy and unauthorized over-

production by the contract foundry [7, 16, 23]. The financial

risk due to counterfeit and unauthorized ICs was estimated to

be over $169 billion a year by IHS Technology [11]. Besides

financial losses, this issue potentially has national security

implications. The Semiconductor Industry Association (SIA)

estimates that 15% of all spare and replacement semiconduc-

tors purchased by the Pentagon are counterfeit [20].
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Fig. 1: Overview of logic encryption.

One set of techniques to prevent counterfeiting and overpro-

duction by an untrusted foundry is called logic encryption [1,

4, 8, 14, 17–19].1 The insight underlying these proposals is
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1The terms active hardware metering [13], and logic obfuscation [17] have
also been used for this technique. This paper only uses logic encryption.

shown in Figure 1. Additional logic is introduced to the IC and

is connected to a set of newly introduced inputs, called key
inputs, as well as some parts of the original IC. The key inputs

are connected to a tamper-proof memory and the modified

IC produces the correct output only if the key inputs are set

correctly. This correct value is not revealed to the foundry. The

foundry manufactures the IC and returns the fabricated units

to the design house. The design house loads the tamper-proof

memory with the correct key value, “activating” the IC and

the activated IC is marketed to end-users.

A. Attacks on Logic Encryption

Logic encryption rests upon the assumption that the foundry
does not know and cannot compute the correct values of the

key inputs. Otherwise, the foundry could just program these

values and overproduction could not be prevented.

1) Attack Model: Considering a malicious foundry, we

assume the attacker has access to layout and mask information.

The gate-level netlist can be reverse-engineered from this [22].

We also assume that the attacker has access to an activated

IC on which to apply input patterns and observe outputs. This

could be obtained by purchasing an activated IC from the open

market. The components of our attack model are therefore: (i)
a gate-level netlist of the encrypted IC and (ii) a means for
applying arbitrary input patterns and observing the resultant
outputs on an activated IC.2

2) Potential Attacks: Given the above attack model, an

attack is possible when an attacker can determine the correct

values of the key inputs. Let us consider potential attacks.

The naı̈ve idea of brute-force search does not work. If the

circuit has M inputs and L key inputs, this requires 2M

observations from an activated IC and O(2M+L) computations

on the encrypted design. Clearly, this is not practical.

Rajendran et al. [17] propose using automatic test pattern

generation (ATPG) tools [3] to generate input patterns that

expose the value of a key input. In Figure 2(b), when the input

is a = b = c = 0, the output is y = ¬k1. Therefore, an ATPG

tool can find such patterns to reveal keys. But in Figure 2(c), no

input pattern can expose k1 if k2 is also unknown. The solution

is to first attack k2 with the pattern a = b = c = 1. From this

we deduce k2 = 0. Now attacking k1 is possible. But even this

strategy does not guarantee a successful attack. For the circuit

in Figure 2(d), there is no single input pattern that can reveal

the value of either k1 or k2. Therefore, if logic encryption is
done carefully, the fault-analysis attack is ineffective.

2We note that other attacks are possible. For example, an attacker may
evade/subvert the tamper-resistant packaging and probe the signals corre-
sponding to the key inputs.
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(d) Yet another
encrypted version with
key (k1, k2) = (1, 1).

Fig. 2: Simple logic encryption example.

Formal analyses can potentially be used to attack logic

encryption. Roy et al. [19] suggest formulating the attack as

a solution to a quantified boolean formula (QBF). Suppose

the original circuit is represented by the Boolean function

CO( �X), and its encrypted version is represented by C( �X, �K).
Here �X and �K are the circuit’s primary inputs and key inputs

respectively. We can retrieve the key by solving the QBF:

∃ �K ∀ �X C( �X, �K) = CO( �X). In plain English, the QBF

attempts finds an assignment to the key inputs �K such that for

all values of the primary inputs �X , the functions C and CO are

equal. While we do have relatively efficient algorithms to solve
this particular type of QBF [10], the formulation itself is moot.
The attacker does not have access to the unencrypted IC’s
gate-level netlist and cannot construct the formula CO( �X).

The attacker can only observe the outputs for a small set

of input patterns on the activated IC and must somehow

determine the key values from these observations. Given a

set of input/output observations, a SAT solver can determine

a key value that is consistent with these observations. But

this key value may not be correct. For example, suppose we

make the observation y = 1 when a = b = c = 1 in Figure

2(b). Given this information, a SAT solver may assign k1 = 0
since this value is consistent with the above observation.

Even if we provide additional observations to the solver, e.g.,
(a, b, c, y) = (1, 1, 0, 1) and (a, b, c, y) = (0, 1, 1, 1), k1 = 0
is still a valid solution. While we are guaranteed that the
solver returns a key value that yields the correct output for
the input patterns observed thus far, there may be other
input patterns for which this key value produces incorrect
output. Furthermore, even if the SAT solver returns the correct

key, verifying its correctness seemingly requires evaluation of

outputs for all possible input patterns (2M in a circuit with

M inputs). Clearly, it is impractical to apply these many input

patterns and so a simple SAT formulation is not enough.

B. Contributions of This Paper

The first contribution of this paper is a SAT-based algorithm

that determines key values. The algorithm iteratively finds

special input patterns, called distinguishing inputs, which rule

out equivalence classes of keys. The algorithm can determine
when it has found a correct key value and can prove that
this key is guaranteed to be consistent with all possible
input/output observations. It is agnostic to the algorithm used

for logic encryption and requires a relatively small number of

input/output observations from an activated IC. To the best

of our knowledge, this is the first attack that in principle

guarantees the decryption of a circuit encrypted with any

combinational logic encryption scheme.3

A second contribution of this paper is a comprehensive

evaluation of our attack algorithm on six proposed schemes for

logic encryption [1, 8, 17–19]. To the best of our knowledge,

ours is the first direct head-to-head comparison of the strength

of these different logic encryption proposals. We find that all

of these are vulnerable to our attack algorithm. We examine 21

benchmark circuits, encrypted with 21 different combinations

of logic encryption algorithms and parameter values. Of these

441 encrypted circuits, our algorithm determines the correct

key for 418 (95%) within 10 hours of compute-time. Among

these, 397 encrypted circuits (90%) required 250 or fewer

input/output observations for successful decryption.

A third contribution is a “partial-break” algorithm which

can be used when the attack is not outright successful. This

algorithm determines the correct value of some of the key

inputs, thus reducing the effective security of logic encryption.

A final contribution is that we are making the attack tool

and encrypted benchmarks available to the community [6]. We

believe release of the tool will help the community develop

even more secure logic encryption algorithms.

II. DESCRIPTION OF ATTACK ALGORITHM

Before we describe the attack algorithm, let us formalize

the notation and circuit model used in the rest of this paper.

A. Notation and Formal Model

Assume the encrypted combinational logic circuit4 is repre-

sented as the relation C( �X, �K, �Y ) ⊆ B
M+L+N .5 B = {0, 1}

is the Boolean domain. The vector �X ∈ B
M represents the M

primary inputs of the circuit. The vector �K ∈ B
L represents

the L key inputs, while �Y ∈ B
N represents the N primary

outputs. C( �X, �K, �Y ) is equivalent to the input/output relation

3In practice, an implementation may run into scalability limitations if the
encrypted circuit requires a very large number of iterations for decryption.

4This paper considers only combinational circuits. Sequential circuits can
be treated as combinational circuits where the flip-flop inputs and outputs are
treated as primary outputs and inputs respectively. We assume all flip-flops in
a sequential design can be accessed through the scan chain, which is likely to
be true for prevalent design-for-testability (DFT) [3] solutions. The attacker
can use the scan-chain to read/write the values of all flip-flops in the design.

5Note C is actually the characteristic function of the relation. In this
paper we use the relation and its characteristic function interchangeably. We
choose to use Boolean relations rather than Boolean functions to represent
the input/output behavior of the circuit because relations map directly to the
CNF encoding used in modern SAT solvers.
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of the unencrypted circuit when �K is set to a correct key

value, which may not be unique. CO( �X, �Y ) ⊆ B
M+N is the

input/output relation for the unencrypted circuit. The attacker

cannot construct the relation CO but can apply input patterns

and observe the outputs on an activated IC. We model this

through the black-box function eval : B
M �→ B

N . For an

input vector �X1, eval(�X1) = �Y1 if and only if �Y1 would be the

output obtained when the input pattern �X1 is applied on an

activated IC: eval(�X1) = �Y1 ⇐⇒ CO(�X1,�Y1).

B. Problem Statement

The attacker’s goal is to find �K = �KC such that for all inputs
�X: C( �X, �KC, �Y ) ⇐⇒ eval( �X) = �Y . This is equivalent to

solving the QBF: ∃ �K ∀ �X C( �X, �K, �Y ) ∧ CO( �X, �Y ), but of

course, the attacker cannot construct the formula for CO. For a

practical attack, eval can be evaluated only on a small number

of input patterns, i.e., only small number of input/output

observations can be made on the activated IC.

C. Algorithm Overview

Given a set of input vectors �X1,�X2, . . .�Xp and the corre-

sponding output observations �Y1,�Y2, . . . ,�Yp, determining a key

value that is consistent with these p observations is straightfor-

ward. One just needs to use a SAT solver to find a satisfying

assignment to �K in the formula ∧p
j=1C(�Xj , �K,�Yj). However,

suppose we now make a new observation eval(�Xp+1) = �Yp+1.

We have no guarantee that a satisfying assignment to K for the

formula ∧p
j=1C(�Xj , �K,�Yj) will also be a satisfying assignment

to K for the formula ∧p+1
j=1C(�Xj , �K,�Yj). This is just a formal

restatement of the observation we made in §I-A2. Although

the SAT solver can find a key value that is consistent with the

observations seen thus far, this value may not be correct. Even

if the solver finds the correct key, verifying this apparently

requires checking all 2M input/output patterns.

Our algorithm is able to resolve these problems through two

insights. First, instead of considering key values individually,

let us consider equivalence classes of keys. Let us define two

keys �K1 and �K2 to be equivalent, denoted as �K1 ≡ �K2, if and

only if for each input value �Xi, the encrypted circuit produces

the same output value �Yi for both keys �K1 and �K2. Precisely

stated: �K1 ≡ �K2 iff ∀ �Xi : C( �Xi, �K1, �Yi) ∧ C( �Xi, �K2, �Yi).
The intuition is that instead of finding the correct key, we

are looking for a member of the equivalence class of keys
which produces the correct output for all input patterns. To

“zero-in” on the correct equivalence class, we will iteratively

rule out equivalence classes which produce the wrong output

value for at least one input pattern. Given two key values �K1
and �K2, define the input pattern �Xd as a distinguishing input
pattern if the encrypted circuit outputs different values �Yd1 and
�Yd2 when the key inputs are set to �K1 and �K2 respectively. More

precisely, �Xd is a distinguishing input pattern for �K1 and �K2 iff

C(�Xd,�K1,�Y
d
1) ∧ C(�Xd,�K2,�Y

d
2) ∧ (�Yd1 = �Yd2).

The second insight is that if a distinguishing input pattern
�Xd is found, then we can examine the output of the activated

IC for input �Xd and use this to rule out one (or both) of �K1
and �K2 as not being in the equivalence class of correct keys.

Algorithm 1 Logic Decryption Algorithm

Function: decrypt .
Inputs: C and eval.
Output: �KC.

1: i := 1
2: F1 = C( �X, �K1, �Y1) ∧ C( �X, �K2, �Y2)
3: while sat [Fi ∧ (�Y1 = �Y2)] do
4: �Xdi := sat assignment �X [Fi ∧ (�Y1 = �Y2)]
5: �Ydi := eval(�Xdi )
6: Fi+1 := Fi ∧ C(�Xdi ,

�K1,�Y
d
i ) ∧ C(�Xdi ,

�K2,�Y
d
i )

7: i := i+ 1
8: end while
9: �KC := sat assignment �K1

(Fi)

This suggests Algorithm 1 which repeatedly finds distin-

guishing inputs (line 4) for some two keys �K1 and �K2,

while asserting that the encrypted circuit must have outputs

consistent with the input/output patterns observed thus far on

the activated IC (line 6). The loop ends when no distinguishing

inputs can be found. The correct key value is any assignment

to �K1 or �K2 that satisfies the formula Fi (line 9).

Theorem: Algorithm 1 terminates and upon termination �KC is
set to a value in the equivalence class of correct keys.

Proof Sketch: Each iteration of the while loop rules out at least

one incorrect equivalence class. This is because (�Y1 = �Y2)
and so at least one of the assignments to �K1 or �K2 must be

incorrect. When the algorithm terminates, we know that no

distinguishing inputs can be found, i.e., this equivalence class

cannot be refined further. Since circuit outputs are consistent

with all the input/output patterns observed so far, we must be

in the equivalence class of correct keys.

Consider the operation of Algorithm 1 on Figure 2(d). In the

first iteration, the SAT-solver may generate �Xd1 as (a, b, c) =
(1, 0, 1). Evaluating the output yields y = 1. When F2 is

computed in line 6 of the algorithm, the solver deduces that

(k1, k2) = (0, 1) is not a valid key. The next iteration may

have �Xd2 as (a, b, c) = (0, 0, 0). Now we evaluate the output

and get y = 0. The algorithm now terminates because the only

key consistent with these observations is (k1, k2) = (1, 1). In

contrast to Algorithm 1, the fault-analysis attack is restricted

to propagating key values to outputs. It may seem that when no
key input can be propagated to the output, an attacker needs
to brute-force search the space of all possible keys. But as
seen here, this is not true. The algorithm is able to carefully

select input patterns and infer key values even for encrypted

circuits that are “immune” to the fault-analysis attack.

III. PARTIAL-BREAK ALGORITHM

While Algorithm 1 is effective on most benchmark circuits

we examine, it occasionally runs into scalability problems.

This is because each iteration of the algorithm increases the

size of the formula to be examined (line 6). Experimental

results show this is not an issue in practice for most circuits

because the algorithm converges very quickly. However, for
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the few circuits that do not converge quickly, algorithms that

can extract partial information about key values by analyzing

subsets of the circuit (called “slices”) are desirable.

A. Finding Suitable Circuit Slices

The first task here is finding suitable “slices.” We define

a slice of a circuit as a subset of the outputs of the circuit

along with all the nodes in their transitive fanin cones. Slices

required for the partial-break algorithm must satisfy the fol-

lowing properties.

1) For each output that is included in the slice, all the gates

in its transitive fanin cone are also included in the slice.

2) The slice contains at least one key input such that all the

outputs that are in the transitive fanout cone of the key

are also included.

3) No more than the fraction P of the gates in the circuit

are included in the slice. (P = 0.3 in our experiments.)

The first requirement defines a well-formed slice. The

second condition ensures that at least one key input’s “effect”

on the circuit is fully-defined. The third requirement results in

small slices. We find such slices by formulating the above

requirements as constraints in an Integer Linear Program

(ILP). The objective of the ILP is to maximize the number

of key inputs included in the slice.

B. Extracting Key Values From Circuit Slices

At first glance, it may seem that we can run Algorithm 1

on a slice and then directly use the resultant key values in

the larger circuit. But this is not possible because the key

value returned by Algorithm 1 is a member of an equivalence

class that is defined in terms of the subset of circuit outputs

in the slice. But this equivalence class may be further refined

by the outputs not part of the slice. And so this key value

may be incorrect in the context of the full circuit. Instead, the

insight behind the partial-break algorithm is to examine the

input/output observations generated while running Algorithm 1

and determine whether these necessarily imply something

about the values of the key variables in the full circuit.

Let us define Cslice as the input/output relation of the

slice under consideration. Suppose we run Algorithm 1 on

the slice and it converges after λ iterations. We now have

λ input/output observations:
{
(�Xd1,�Y

d
1), . . . , (�X

d
λ,�Y

d
λ)
}

. Now

consider the formula: G = ∧λ
i=1Cslice(�X

d
i ,

�K,�Ydi ). G encodes

exactly the constraints on the key input variables imposed by

the λ input/output observations. Now suppose kj ∈ �K is a key

input, and that G =⇒ kj . This means that kj is a backbone
of G, i.e., all satisfying assignments to G must have kj = 1,

or equivalently for the input/output observations to hold, we

must have kj = 1. Therefore, kj can be generalized to the full

circuit. A symmetric argument applies when G =⇒ ¬kj .

This leads to the complete procedure shown in Algorithm 2.

Line 2 invokes Algorithm 1. However we do not use the return

value �KCslice but instead examine the input/output observa-

tions
{
(�Xd1,�Y

d
1), . . . , (�X

d
λ,�Y

d
λ)
}

. We use the probing algorithm

from [24] to find backbones.

Algorithm 2 Slice Analysis Algorithm

Function: partialBreak .

Inputs: C and eval.
Output: �KC.

1: Cslice := findSliceUsingILP(C)
2:

{
(�Xd1,�Y

d
1), . . . , (�X

d
λ,�Y

d
λ)
}

:= decrypt(Cslice, eval)

3: G := ∧λ
i=1C(�Xdi ,

�K,�Ydi )
4: �KC := findBackbones(G)

IV. EVALUATION

Our attack algorithms apply to all combinational logic

encryption schemes. Therefore, we evaluated the attack by

implementing six state-of-the-art combinational logic encryp-

tion algorithms in our framework. EPIC [19] is the orginal

proposal for logic encryption and it inserts XOR and XNOR

gates at randomly chosen locations in the IC. We refer to this

as “RND” in the results. Baumgarten et al. [1] (“DTC’10/LUT”)

insert a set of lookup tables (LUTs) to the IC such that

every path from an input to an output goes through a lookup

table. The values stored in the lookup tables are effectively

the key inputs. Rajendran et al. [17] (“DAC’12”) propose an

algorithm to insert XOR/XNOR gates at carefully chosen

locations in the circuit so that the encrypted circuit is not

vulnerable to the fault-analysis attack. Rajendran et al. [18]

also propose two algorithms that insert XOR (“ToC’13/xor”)

and MUX (“ToC’13/mux”) gates at locations which maximize

the Hamming distance between correct and incorrect outputs.

Dupuis et al. [8] (“IOLTS’14”) propose an encryption scheme

which attempts to minimize low-controllability locations in the

circuit by inserting AND and OR gates. When performing the

encryption for ToC’13/mux and IOLTS’14, we estimated signal

probabilities using the algorithm from [15].

A. Methodology

For the algorithms IOLTS’14, ToC’13/mux, ToC’13/xor, RND,

and DAC’12, we generated four sets of encrypted circuits

corresponding to an area overhead of 5%, 10%, 25% and 50%

for logic encryption for each benchmark circuit. We believe an

area overhead of 5% is a realistic budget for logic encryption,

10% may be acceptable for sensitive designs, and the values of

25% and 50% overhead are unrealistic but help us understand

the limits of our attack. DTC’10/LUT does not describe a method

to “tune” the overhead due to logic encryption. Hence we

generated only one version of the encrypted circuits for this

algorithm. In total, we generated 21 encrypted circuits from

each benchmark circuit. When generating the benchmarks, we

only considered the area overhead and did not consider the

impact on timing, which may rule out certain encryptions. As

a result, our evaluation is a pessimistic estimate of the strength

of the attack algorithm and provides an upper bound on the

security of the logic encryption algorithms.

Our benchmark circuits are listed in Table I. They consist

of the ISCAS’85 benchmarks and the combinational circuits

from the Microelectronics Center of North Carolina (MCNC)
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Fig. 3: Distributions of execution time (left) and number of input/output observations (right). Legend for both graphs is the

same, each color represents a different encryption algorithm while the marker symbols show different area overheads.

(a) ISCAS’85 circuits

Circuit #in #out #gates
c1355 41 32 546
c17 5 2 6
c1908 33 25 880
c2670 233 140 1193
c3540 50 22 1669
c432 36 7 160
c499 41 32 202
c5315 178 123 2307
c6288 32 32 2416
c7552 207 108 3512
c880 60 26 383

(b) MCNC circuits

Circuit #in #out #gates
apex2 39 3 610
apex4 10 19 5360
dalu 75 16 2298
des 256 245 6473
ex1010 10 10 5066
ex5 8 63 1055
i4 192 6 338
i7 199 67 1315
i8 133 81 2464
i9 88 63 1035
k2 46 45 1815
seq 41 35 3519

TABLE I: Benchmark circuits used in the evaluation.

benchmark suite. Recall that our methodology applies to com-

binational circuits. These benchmarks continue to be reflective

of the size of individual combinational logic circuits.

We exclude c17 and c6288 from the evaluation, leaving

us with 21 benchmark circuits. c17 is trivial to decrypt

and uninteresting. c6288 is a multiplier, and multipliers are

challenging for SAT solvers in all contexts, not just logic

encryption [5]. Since 21 encrypted circuits are generated from

each benchmark circuit, our evaluation examined a total of

21× 21 = 441 encrypted circuits.

We implemented Algorithms 1 and 2 in a C++ tool. We

used the Lingeling [2] SAT solver and version 12.5 of the

CPLEX ILP solver. Source code, binaries and benchmark

circuits are available at [6]. Experiments were run on an Intel

Xeon E31320 CPU with 32 GB of RAM. The execution time-

limit was 10 hours (3.6× 104 seconds).

B. Results

A summary of the results obtained using Algorithm 1 is

shown as a “cactus plot” in Figure 3. For the plot on the left,

the x-axis is in log-scale and shows the execution time of the

algorithm in seconds. The y-axis is the number of benchmark

circuits decrypted within these many seconds. The plot on

the right shows number of the input/output observations on

Fig. 4: Box plot of the runtime of Algorithm 1.

the x-axis (also in log-scale) and the y-axis is the number

of circuits decrypted with these many or fewer observations.

The lines show combinations of different logic encryption

algorithms and area overheads for encryption. Each color

represents a specific encryption algorithm while the different

marker symbols show different area overheads for encryption.

Consider an area overhead of 5%. We assert this is a realistic

budget for logic encryption. In this scenario, all 21 circuits are

decrypted for IOLTS’14, ToC’13/mux, ToC’13/xor and RND. For

DAC’12, the only circuit we are unable to decrypt is c2670.

In all successful attacks, the execution time was less than 8

minutes and fewer than 104 input/output observations were

required. All circuits for DTC’10/LUT were also decrypted; the

most challenging circuit needed a runtime of about 2.5 hours

and 3594 input/output observations.

Even when allowing for a budget of 50% for the area

overhead, we are able to decrypt all 21 circuits encrypted

with IOLTS’14 and ToC’13/mux. We are able to decrypt 17
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circuits encrypted with DAC’12 and RND and 15 circuits en-

crypted with ToC’13/xor. The maximum execution time for

a successful attack was about 8 hours and the maximum

number of observations needed was 15981. In total, 418 (95%)

of the 441 encrypted circuits were decrypted. 397 of these

(90%) needed fewer than 250 input/output observations. These

numbers suggest that the attack is feasible and easy to perform

on all encryption schemes and almost all encrypted circuits.

Insertion of AND, OR and MUX gates as in IOLTS’14 and

ToC’13/mux is less secure than the insertion of XOR/XNOR

gates. XOR/XNOR gates result in clauses that are harder

to satisfy with the DPLL algorithm used in modern SAT

solvers [21]. The targeted placement of XOR/XNOR gates

done by DAC’12 and ToC’13/xor is more secure than RND.

Figure 4 shows a “box plot” of the distribution of the

time taken to decrypt the different encrypted versions of each

benchmark circuit using Algorithm 1. The benchmark circuits

are shown on the x-axis and are sorted by size. The leftmost

circuit is the smallest and the rightmost is the largest. For

each circuit, we consider the vector consisting of the time-to-

decrypt values for each of its 21 different encrypted versions. If

a particular circuit could not be decrypted, its time-to-decrypt

value is set to the time limit of 10 hours (3.6× 104 seconds).

The box shows the 25%-75% percentile distribution of this

vector, the red horizontal line shows the median value of

this vector, and the two black lines show the minimum and

maximum values. We expect that larger circuits will take more

time to decrypt, and we can see from the plot that this is largely

true. But we also observe that the strength of the encryption

has a significant impact on the runtime of Algorithm 1. For

weak encryption schemes, or when the number of key inputs is

small, Algorithm 1 completes execution in just a few seconds

for even the largest circuits in our benchmark suite. And

conversely, when the number key inputs is very large and

if these key inputs are placed strategically, the decryption of

small circuits can also be challenging.

C. Partial-Break Algorithm Results

Fig. 5: Percentage of keys decrypted with the partial-break al-

gorithm and the fault-analysis attack. All circuits are encrypted

with 50% area overhead for encryption.

Figure 5 shows the results of the partial-break algorithm

from Section III. We consider the two most challenging

encryption schemes: ToC’13/mux and DAC’12, with 50% area

overhead. Eight circuits are shown; these are the circuits which

could not be decrypted by Algorithm 1 for one or both of these

encryption algorithms. Three sets of results are shown, the

partial-break algorithm, the fault-analysis algorithm from [17]

and a hybrid algorithm which runs the fault-analysis attack

and partial-break algorithm iteratively. The y-axis in the figure

shows the percentage of keys that were decrypted. We see that

all algorithms find these circuits very challenging. In particular

the fault-analysis algorithm [17] is able to decrypt very few

keys. The partial-break algorithm is based on backbones, so it

will succeed only if some of the key input values are unique.

But when so many XOR/XNOR gates are inserted, the keys are

unlikely to be unique. So it is unsuccessful in many instances.

Despite this, it is able to decrypt a significant percentage of

keys in some benchmarks, including over 30% in c2670.

V. DISCUSSION

A. Challenging Circuits for Logic Decryption

Surprisingly, the relatively small benchmark circuit c2670

turns out to be challenging for logic decryption algorithms.

We investigated the reason for this and found that the bench-

mark contains an “and-tree,” which is a tree of AND gates

that computes the function y = ∧N
i=1xi. Now suppose the

encrypted circuit is ye = ∧N
i=1(xi ⊕ ki). For this circuit,

it is easy to see that each assignment to k1 . . . kN is a

singleton equivalence class. Therefore the and-tree with N
inputs encrypted as above has 2N equivalence classes of

keys. Moreover, any single input/output observation in which

ye = 0 rules out only one equivalence class. So if the SAT

solver in Algorithm 1 chooses its distinguishing inputs from

a uniform distribution, the expected number of observations

required to decrypt the and-tree is ≈ 2N−1. The and-tree

also has a “graceful degradation of encryption” property: if

ye =
( ∧k

i=1 (xi ⊕ ki)
) ∧ ( ∧N

i=k+1 xi

)
, k < N , then we still

have 2k equivalence classes.

All of these observations explain why c2670 is hard to

decrypt. They also suggest interesting directions for the design

of provably-secure combinational logic encryption algorithms.

B. Related Work

1) Logic Encryption: This paper considered only combina-

tional logic encryption schemes. Sequential logic encryption

schemes have also been proposed [4, 14] but analyzing them

is outside the scope of this work. Our attack can be extended

to some sequential logic encryption schemes too. E.g., in

ObfusFlow [4], the circuit is modified by inserting a finite

state machine (FSM) whose outputs are XOR’d with some

signals in circuit. Algorithms 1 and 2 can be used to infer

these FSM output values. A model checker can then find a

trace that takes the FSM to a state which outputs these values.

2) Partial Synthesis: The logic decryption algorithm pre-

sented in Section II is similar to the oracle guided program

synthesis algorithm from Jha et al. [12], and the partial

synthesis algorithm from Fujita et al. [9]. Jha et al. [12]

present a program synthesis algorithm that can synthesize
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small loop-free programs using a simulation oracle. Fujita et

al. [9] propose an algorithm for partial synthesis in the scenario

where parts of a circuit have been replaced by lookup tables.

This is useful in implementing engineering change orders

(ECOs), debugging logical bugs etc. Both algorithms are based

on generating candidate solutions and then counterexamples to

these candidates. Algorithm 1 directly generates the equivalent

of counterexamples. Fujita et al. [9] use a slightly more

complex formulation to generate the counterexamples, they

encode the equality of outputs across two candidate solutions.

We avoid this by directly asserting the output values as

concrete Boolean values (see line 6).

VI. CONCLUSION

In this paper, we used SAT-based techniques to investigate

the security of logic encryption. We presented a SAT-based

attack on logic encryption that allows an attacker to infer the

correct values of the key inputs using only a small number of

input/output observations taken from an activated IC. We also

presented a “partial-break” algorithm that allows an attacker to

infer the values of some of the key inputs even when the full

attack is not successful. We performed a thorough evaluation

of these attacks by investigating the security of six different

proposals for logic encryption. We found all these proposals

are vulnerable to our attacks. Out of 441 encrypted circuits

we examined, we could decrypt 418 (95%). Among these

397 circuits (90%) required only 250 or fewer input/output

observations. We discussed the strengths and weaknesses of

our attacks and suggested some directions towards provably-

secure logic encryption algorithms.
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