Evaluating the SiteStory Transactional Web
Archive With the ApacheBench Tool

Justin F. Brunelle’?, Michael L. Nelson?, Lyudmila Balakireva®, Robert
Sanderson®, and Herbert Van de Sompel®

! The MITRE Corporation, Hampton, VA 23666
jbrunelle@mitre.org
2 0ld Dominion University, Department of Computer Science, Norfolk VA, 23529
{jbrunelle, mln}@cs.odu.edu
3 Los Alamos National Laboratory, Los Alamos, NM 87544
{ludab, rsanderson, herbertv}@lanl.gov

Abstract. Conventional Web archives are created by periodically crawl-
ing a Web site and archiving the responses from the Web server. Although
easy to implement and commonly deployed, this form of archiving typ-
ically misses updates and may not be suitable for all preservation sce-
narios, for example a site that is required (perhaps for records compli-
ance) to keep a copy of all pages it has served. In contrast, transactional
archives work in conjunction with a Web server to record all content
that has been served. Los Alamos National Laboratory has developed
SiteStory, an open-source transactional archive written in Java that runs
on Apache Web servers, provides a Memento compatible access interface,
and WARC file export features. We used Apache’s ApacheBench utility
on a pre-release version of SiteStory to measure response time and con-
tent delivery time in different environments. The performance tests were
designed to determine the feasibility of SiteStory as a production-level so-
lution for high fidelity automatic Web archiving. We found that SiteStory
does not significantly affect content server performance when it is per-
forming transactional archiving. Content server performance slows from
0.076 seconds to 0.086 seconds per Web page access when the content
server is under load, and from 0.15 seconds to 0.21 seconds when the
resource has many embedded and changing resources.

Keywords: Web Archiving, Digital Preservation

1 Introduction

Web archiving is an important aspect of cultural, historical, governmental, and
institutional memory. The cost of capturing Web-native content for storage and
archiving varies and is dependent upon several factors. The cost of manual Web
archiving has prompted research into automated methods of digital resource cap-
ture. The traditional method of automatic capture is the Web crawler, but re-
cent migrations toward more personalized and dynamic resources have rendered
crawlers ineffective at high-fidelity capture in certain situations. For example, a

2 Authors Suppressed Due to Excessive Length

O.: HTTP Oy HTTP O5;: HTTP

GET GET
C1 l’ l’ Cz C3 C4 l C5
| I | |
I I I I
14 15

¢

t1 t.! tél tk’: t? t3 tg tlLl t11 tll tls
Wy: Crawler W;: Crawler
Visit Visit

Fig. 1. User and crawler accesses control the archival interval, capturing each returned
representation.

crawler cannot capture every representation of a resource that is customized for
each user. Transactional archiving can, in some instances, provide an automatic
archiving solution to this problem.

1.1 Transactional Archiving

The purpose of a transactional archive (TA) is to archive every representation
of a resource that a Web server disseminates. A client does an HTTP GET on
a URI and the Web server returns the representation of the resource at that
time. At dissemination time, it is the responsibility of TA software to send to
an archive the representation sent to the client. In this way, all representations
returned by the Web server can be archived. If storing all served representations
is costly (e.g., a high-traffic site with slowly changing resources), it is possible
to optimize a TA in a variety of ways: store only unique representations, store
every nt representation, etc.

Figure 1 provides a visual representation of a typical scenario where a page P
is both changed and access at irregular intervals. This scenario assumes an arbi-
trary page that will be called P changes at inconsistent intervals. This timeline
shows page P changes at points Cy, Cs, C3, Cy, and C5 at times to, tg, ts, t10,
and t13, respectively. A user makes a request for P at points O1, O2, and O3 at
times ts, t5, and t11, respectively. A Web crawler (that captures representations
for storage in a Web archive) visits P at points V3 and V, at times t4 and to,
respectively.

Since O7 occurs after change C1, an archived copy of C; is made by the TA.
The Web crawler visits V7 captures C7, and makes a copy in the Web archive.
In servicing V7 or Oy, an unoptimized TA will store another copy of C at t,

Title Suppressed Due to Excessive Length 3

and an optimized TA could detect that no change has occurred and not store
another copy of Cj.

Change C5 occurs at time tg, and C'5 occurs at time tg. There was no access to
P between tg and tg, which means C5 is lost — an archived copy exists in neither
the TA nor the Web crawler’s archive. However, the argument can be made that
if no entity observed the change, should it be archived? Change C5 occurs and
the representation of P is archived during the crawler’s visit V5, and the TA will
also archive C3. After Cy, a user accessed P at O3 creating an archived copy of
C, in the TA.

In the scenario depicted in Figure 1, the TA will have changes C7, C3, Cy,
and a conventional archive will only have C, C3. Change C5 was never served to
any client (human or crawler) and is thus not archived by either system. Change
Cs will be captured by the TA when P is accessed next.

1.2 SiteStory

Los Alamos National Laboratory has developed SiteStory?, an open-source
transactional Web archive. First, mod_sitestory is installed on the Apache server
that contains the content to be archived. When the Apache server builds the
response for the requesting client, mod_sitestory sends a copy of the response
to the SiteStory Web archive, which is deployed as a separate service. This
Web archive then provides Memento-based access to the content served by the
Apache server with mod_sitestory installed, and the SiteStory Web archive is
discoverable from the Apache Web server using standard Memento conventions
(see Section 4 of [14]).

Sending a copy of the HT'TP response to the archive is an additional task for
the Apache Web server, and this task must not come at too great a performance
penalty to the Web server. The goal of this study is to quantify the additional
load mod_sitestory places on the Apache Web server to be archived.

2 Prior Work

Extensive research has been done to determine how Web documents change on
the Web. Studies of “wild” pages (such as Cho’s work with crawlers [4] or Ol-
ston’s work in recrawl scheduling [10]) have shown that pages change extremely
frequently.

Prior research has focused on crawlers and robots to find pages and moni-
tor their change patterns [3,6,17]. These crawlers follow the links on pages to
discover other pages and archive and recrawl the discovered pages over time to
compile an archive. This method is unsuitable for an intranet that is closed to
the public Web; crawlers cannot access the resources of archival interest [8]. As
a way to have finer control over the archival granularity, transactional archiving
should be used. Transactional archiving implementations include TTApache [5]
and pageVault [7]. These implementations were also shown not to substantially
increase the access time seen by Web users; pageVault saw an increase of access

4 http://mementolWeb.github.com/SiteStory/

4 Authors Suppressed Due to Excessive Length

Apache Web
Content Server

=
HTTP Request
— SiteStory Web
HTTP Response =) Archive
HTTP PUT via |
mod_sitestory

Memento
HTTP
Request

Memento
HTTP
Response

L

Fig. 2. SiteStory consists of two parts: mod_sitestory which is installed on the Apache
server to be archived, and the transactional archive itself. Image taken from the
SiteStory GitHub at http://mementoWeb.github.com/SiteStory/.

time from 1.1 ms to 1.5 ms, and TTApache saw a 5-25% increase in response
time, depending on requested document size.

Memento is a joint project between Old Dominion University and Los Alamos
National Laboratory. The Memento Framework defines HTTP extensions that
allow content negotiation in the dimension of time [15,16]. When used with
Memento-aware user agents like MementoFox [11], users can set a desired date-
time in the past and browse the Web as it existed at (or near) that datetime. Un-
like other, single-archive applications like DiffIE [12,13], Past Web Browser [9],
or Zoetrope [1], Memento provides an multi-archive approach to presenting the
past Web. Integrating multiple Web archives can give a more complete picture
of the past Web [2].

3 Experiment design

SiteStory was tested with a variety of loads on a variety of resources. Three
different tests were run during the experiment.

3.1 Experiment Machines

The SiteStory benchmarking experiment was conducted with a pre-release ver-
sion of SiteStory installed on a machines referred to as PC1. PC1 has a single core
2.8 GHz processor, ran the prefork version of the Apache 2 Web server, and the
mod_sitestory-enabled Apache server provided content from localhost:8080.
The SiteStory archive was installed as a separate service at localhost:9999.
Although the developers have experimented with optimizations discussed in Sec-
tion 1.1, SiteStory currently archives all returned representations regardless of
whether the representation has changed or not.

Title Suppressed Due to Excessive Length 5

3.2 Experiment Runs

Three separate experiments were run on PC1. The first experiment tests the
throughput of a content server enabled with SiteStory software. The second ex-
periment performs a series of accesses to 100 static resources to test the access
rates, response times, and round trip times possible. The third experiment per-
forms a series of accesses to 100 dynamic, constantly changing set of 100 resources
to demonstrate a worst-case scenario for SiteStory — everything is archived on
each access.

3.3 Connection Handling: ab

This first experiment to measure the differences in throughput when SiteStory
is running and when SiteStory is turned off was run twice a day for 45 days,
resulting in 90 data points. The experiment uses the ab (ApacheBench) tool®,
with a total of N connections made with a concurrency of C connections, where N
and C are specified by the user. The ab utility records the response, throughput,
and other server stats during a test. Essentially, the ApacheBench utility issues
HTTP GET requests for content to establish a benchmark for performance.

Three different HTML resources were targeted with this test: a small, medium,
and large file of sizes 1kB, 250 kB, and 700 kB. We used combinations of
N=(1,000, 10,000, 100,000, 216,000) and C=(1, 100, 200, 450) as parameters
to the ab utility. We chose the file sizes, connection, and concurrency values to
match the values observed in our study of MITRE’s Corporate Intranet. For
simplicity and brevity, this report discusses the runs of 10,000 connections with
concurrencies 1 and 100, and runs of 216,000 connections with concurrencies 1
and 100. This subset of results illustrates typical results of all other tests.

We modified the three resources between each set of connections to ensure the
resource is archived each run. To modify the resources, we ran a script to update
a timestamp displayed on each page and change the image that was embedded in
the page. These modifications would ensure that not only the image was changed
and able to be re-archived, but the surrounding HTML was changed, as well.
Since SiteStory re-archives content whenever a change is detected, each test run
results in each resource being re-archived. It is essential to make sure the resource
is re-archived to observe the effect of an archival action on the content server
performance.

We ran each ab test twice: once while SiteStory was turned on, and once
while it was turned off. This shows how SiteStory affects the content server per-
formance. A subset of the results are provided in Figure 3. The red lines represent
the runs in which SiteStory was turned off, while the blue lines represent the
runs in which SiteStory was turned on. Each entry on the x-axis represents an
independent test run. The y-axis provides the amount of time it took to execute
the entire ab run. The horizontal lines represent the averages over the entire ex-
periment. The dotted, vertical green lines indicate machine restart times due to
power outages. The power outages were noted to show when a cache and memory
resets may have occurred that could impact the performance of the machines.

® http://httpd.apache.org/docs/2.0/programs/ab. html

6 Authors Suppressed Due to Excessive Length

To illustrate how SiteStory affects the content server’s performance, please
reference Figure 3 that portrays the changes in the total run time of the ab test
when SiteStory is on (actively archiving served content) and off (not archiving
served content).

1e+06

10000
1

Total Time (sec)

100
I

o -
—=— TAOH
& TACH

T T T T T

0 20 40 60 80

Test Run

(a) Total run time for the ab test with 10,000 connections and 1 concurrency.

1e+06

[~

10000

Total Time (sec)
0

0 20 40 60 &0

Test Run

(b) Total run time for the ab test with 10,000 connections and 100 concurrency.

Fig. 3. Total run time for 10,000 Connections.

3.4 100 Static Resources: Clearing the Cache
The second experiment uses the curl command to access 100 different HTML

resources, none of which change. After running the ab tests in Section 3.3, a

Title Suppressed Due to Excessive Length 7

theory was formulated that a reason for some of the anomalies was from server
caching. This additional test shows the effect of clearing the server cache on
SiteStory by accessing a large number of large files in sequence. This access es-
sentially thrashes the server cache. Each resource has text, and between 0 and 99
images (the Oth resource has 0 images, the 1st resource has 1 image, etc.). These
resources were generated by a Perl script that constructed 100 different HTML
pages and embedded between 0-99 different images in the generated resources.
The resources were created with different sizes, and different numbers of embed-
ded resources to demonstrate how SiteStory affects content server performance
with a variety of page sizes and embedded images.

Figure 4 demonstrates the accesses of the 100 resources. The dark blue and
red lines indicate the average run time for accessing a resource (in seconds). The
filled areas around the lines are the standard deviation (o) of the observations
over the duration of the experiment.

3.5 100 Changing Resources: Worst-Case Scenario

We ran the same experiment from Section 3.4 in which each resource changes
between runs to provide a “worst case scenario” of data connections vs. archiving
and run time. We executed a script in between each run in which each resource
was updated to make SiteStory archive a new copy of the resource. This means
that each access resulted in a new archived copy of each resource. The results of
this run are shown in Figure 5(a).

Note that Figure 5 show a “burdened” system. An artificial user load was
induced on the servers to simulate a production environment in which many users
are requesting content. A script was run during the test that made curl calls to
the server pages to induce the load. Figure 5 shows the impact of SiteStory
operating in a burdened environment.

4 Results

This section explores the results of the tests, from which we conclude whether
or not SiteStory affects its host content server in an acceptable manner.

4.1 ab Results

For the ApacheBench tests described in Section 3.3, several obvious patterns
emerge. Primarily, there is little separation between the total run times of the
ab tests when SiteStory is on and when SiteStory is off. One can observe only
minor differences in the plotted results. The results differ very little between
any given run of the tests, and the averages across the experiment are almost
identical in all tests. In the run of N=10,000 and C=1, the average total run times
were 6.156 seconds when SiteStory was off, and 6.214 seconds when SiteStory
was on. In the run of N=10,000 and C=100, the average total run time was
2.4 seconds when SiteStory was off, and 2.42 seconds when SiteStory was on.
In the run of N=216,000 and C=1, the average run time was 8.905 seconds
when SiteStory was off, and 8.955 seconds when SiteStory was on. In the run

8 Authors Suppressed Due to Excessive Length

100 Resources Test Result for PC1(Averages)

10
I

Access Time in Seconds.

1e-04

« TA Off - Average
+ TAOn - Average
TA Off - Sid Deviation
4 TA On - Std Deviation
T T T T T T
0 20 40 60 80 100

1e-06

Resource Number (increases in size from 0-99)

(a) Total access time for the 100 static resources on PC1.

100 Resources Test Result for PC1 Change Algorithm (Averages)

10
I

01

0.01

Access Time in Seconds

1e-04

« TAOff - Average
* TAOn - Average
TA Off - Std Deviation
4 TA On - Std Deviation
T T T T T T
o 20 40 &0 80 100

1e-06

Resource Number (increases in size from 0-99)

(b) Total access time for the 100 changing resources on PCI.

Fig. 4. 100 resources accessed on PC1. Resource n has n embedded images.

of N=216,000 and C=100, the average total run time was 4.698 seconds when
SiteStory was off, and the average total run time was 4.706 when SiteStory was
on. This indicates SiteStory does not significantly affect the run time of the ab
statistics, and therefore does not affect the performance of the content server
with regard to content delivery time.

Additionally, C=1 resulted in more consistent executions across each run
whereas the runs with C=100 are more inconsistent, as indicated by the spikes
in runtime. This could potentially be because of server caching, connection lim-
itations, or even machine memory restrictions. The runs of C=100 also begin
with a much longer total run time before dropping significantly and leveling out
at runs 9 and 10. This is due to additional processes running on the experi-
ment machines that induced extra load in runs 1-8. However, the spikes and
inconsistencies do not affect a single run, and do not affect only the runs in

Title Suppressed Due to Excessive Length 9

100 Resources Test Result for PC1 Change Algorithm (Averages)

10
1

o1

| A VAR
/_/\/\/\\/\/\/\/ : /'\/\-/"\/\/\fj\/‘/\/\/\

NP

A : PANAY o~
| AR~ 2

\\/‘

o

Access Time in Seconds

1e-04

= TAOff - Average
* TAOn - Average
TA Off - Std Deviation
B TA On - Std Deviation
T T T T T T
0 20 40 60 80 100

1e-06

Resource Number (increases in size from 0-99)

(a) Total access time for the 100 static resources on a burdened PCI.

100 Resources Test Result for PC1(Averages)

g S AN~
g }‘xv.f-x«\/'wl N \ il A
15 AP A NIV VoW
¢ MAMUNMANAN =7 Y
£ y VAR A
2
]
4 « TAOff- Average

+ TAOn - Average

TA Off - Std Deviation
4 TA On - Std Deviation
T T
0 20 40 60 80 100

1e-06

Resource Number (increases in size from 0-99)

(b) Total access time for the 100 changing resources on a burdened PC1.

Fig. 5. 100 resources accessed on a burdened PC1. Resource n has n embedded images.

which SiteStory is on or those when SiteStory is off. As such, these anomalies
are disregarded since they affect both runs.

Finally, the runs of 216,000 connections take much longer to complete than
the runs of 10,000 connections — specifically, 2.736 seconds longer, on average.
This is intuitive since more connections should take longer to run. Additionally,
the runs of C=1 take 3.9 seconds longer than the runs of C=100. By executing
more connections in parallel, the total run time is intuitively shorter.

The ab test provides evidence that SiteStory does not significantly affect
server content delivery time. As such, a production server can implement SiteStory
without users observing a noticeable difference in server performance.

4.2 100 Resource Results
The runs of the 100 resources are more interesting, and provide a deeper insight

into how SiteStory affects the server’s performance than the ab test. This section

10 Authors Suppressed Due to Excessive Length

examines the results of both the static and changing resource tests, as they
provide interesting contrasts in performance. The results are listed in Table 1.

When comparing the unchanging vs changing resources (such as Figure 4(a)
vs. 4(b)), it is apparent that o is, on average, two times higher for the changing
resources than the unchanging resources. (The average o for unchanging resource
is 0.0839 and 0.1680 for changing resources.) Additionally, the average access
times when SiteStory is off remains approximately the same when the resources
change or remain the same. The interesting result is that the average access time
increases from 0.15 seconds per GET to 0.21 seconds per GET for the changing
resources when SiteStory is on. This is intuitive considering SiteStory needs to
re-archive the accessed content during an access when the resource changes.

The most important observation in Figures 4(a) and 5(b) is that the run time
of this test is approximately 0.5 seconds higher on average when SiteStory is on
vs. when SiteStory is off. This number is reached by comparing the difference in
average run time for each test when SiteStory is on vs. off. For each on-off pair,
the average difference was taken to reach the approximate 0.5 second difference
across all tests. That is, the difference between the average run times of the tests
in Figures 4(a) when SiteStory is running (red) vs when SiteStory is off (blue)
is 0.08 seconds. When the same comparison is performed across all tests and
the average of these results is taken, an overall impact of SiteStory on server
performance is realized.

Each figure begins with SiteStory off taking more time than when SiteStory
is on, but this can be attributed to experiment anomaly or similar server access
anomaly. Inevitably, the run time when SiteStory is on becomes slower than
when SiteStory is off as the resource size increases. This demonstrates that the
performance difference of a server when SiteStory is on vs. off is worse when
there is a large amount of embedded resources, such as images. PC1’s average
page access time increases by, on average, 0.006 seconds per embedded image.
One could come to the conclusion that servers providing access to image-laden
resources would see the biggest performance decrease when utilizing SiteStory.

Table 1. 100 Resource Test Results

Case Avg. Unburdened Unburdened o Avg. Burdened Burdened
Run Time Unburdened ¢ Run Time Burdened o

Static Resources

SS Off 0.121 0.0254 0.192 0.2021

SS On 0.206 0.1811 0.292 0.3103
Changing Resources

SS Off 0.132 0.0346 0.225 0.2174

SS On 0.354 0.4244 0.292 0.6137

Title Suppressed Due to Excessive Length 11

5 Conclusions

In this work, we stress tested and benchmarked a pre-release version of SiteStory
with the ApacheBench (ab) utility. Our experiment environment replicates re-
source sizes and access loads observed in MITRE’s Corporate Intranet. The
results of this study show that SiteStory does not significantly affect the perfor-
mance of a server. While different servers and different use cases cause different
performance effects when SiteStory is archiving content, the host server is still
able to serve sites in a timely manner. The type of resource and resource change
rate also affects the server’s performance — resources with many embedded im-
ages and frequently changing content are affected most by SiteStory, seeing the
biggest reduction in performance.

SiteStory does not significantly increase the load on a server or affect its
ability to serve content — the response times seen by users will not be notice-
ably different in most cases. However, these graphs demonstrate the impact of
SiteStory on performance, albeit small — larger resources with many embedded
resources take longer to serve when SiteStory is on as opposed to when SiteStory
is off due to the increased processing required of the server. However, the signif-
icant finding of this work is that SiteStory will not cripple, or even significantly
reduce, a server’s ability to provide content to users. Specifically, SiteStory only
increases response times by a fraction of a second — from 0.076 seconds to 0.086
seconds per access when the server is under load, and from 0.15 seconds to 0.21
seconds when the resource has many embedded and changing resources. These
increases will not be noticed by human users.

6 Acknowledgments

This work is supported in part by NSF grant 1009392 and the Library of
Congress. A Corporate Case Study to investigate the feasibility of a transac-
tional archive in a corporate intranet was funded by a Fiscal Year 2011 Innova-
tion Grant from the MITRE Corporation. MITRE employees Jory T. Morrison
and George Despres were integral to the MITRE Innovation Grant and Case
Study.

References

1. E. Adar, M. Dontcheva, J. Fogarty, and D. Weld. Zoetrope: interacting with
the ephemeral web. In Proceedings of the 21st annual ACM symposium on User
interface software and technology, pages 239-248. ACM, 2008.

2. S. Ainsworth, A. Alsum, H. SalahFEldeen, M. C. Weigle, and M. L. Nelson. How
much of the Web is archived? In JCDL ’11: Proceedings of the 11th annual inter-
national ACM/IEEE Joint Conference on Digital Libraries, pages 133-136, 2011.

3. B. Brewington, G. Cybenko, D. Coll, and N. Hanover. Keeping up with the chang-
ing Web. IEEE Computer, 33(5):52-58, 2000.

4. J. Cho and H. Garcia-Molina. The evolution of the web and implications for an
incremental crawler. In Proceedings of the 26th international conference on very
large data bases, pages 200—-209, 2000.

12

10

11.

12.

13.

14.

15.

16.

17.

Authors Suppressed Due to Excessive Length

C. E. Dyreson, H.-1. Lin, and Y. Wang. Managing versions of Web documents in
a transaction-time Web server. In Proceedings of the 13th international conference
on World Wide Web, WWW 04, 2004.

. D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of the

evolution of web pages. Software: Practice and Ezperience, 34(2):213-237, 2004.
K. Fitch. Web site archiving: an approach to recording every materially different
response produced by a Website. In 9th Australasian World Wide Web Conference,
pages 5-9, July 2003.

K. Hagedorn and J. Sentelli. Google Still Not Indexing Hidden Web URLs. D-
Lib Magazine, 14(7), August 2008. http://dlib.org/dlib/july08/hagedorn/
O7hagedorn.html.

A. Jatowt, Y. Kawai, S. Nakamura, Y. Kidawara, and K. Tanaka. Journey to
the past: proposal of a framework for past web browser. In Proceedings of the
seventeenth conference on Hypertext and hypermedia, pages 135-144. ACM, 2006.
C. Olston and S. Pandey. Recrawl scheduling based on information longevity. In
Proceeding of the 17th international conference on World Wide Web, pages 437—
446. ACM, 2008.

R. Sanderson, H. Shankar, S. Ainsworth, F. McCown, and S. Adams. Implementing
Time Travel for the Web. Code4Lib Journal, 13, 2011.

J. Teevan, S. T. Dumais, and D. J. Liebling. A longitudinal study of how high-
lighting web content change affects people’s web interactions. In Proceedings of the
28th international conference on Human factors in computing systems, CHI ’10,
2010.

J. Teevan, S. T. Dumais, D. J. Liebling, and R. L. Hughes. Changing how people
view changes on the web. In UIST ’09: Proceedings of the 22nd annual ACM
symposium on User interface software and technology, pages 237246, 2009.

H. Van de Sompel, M. L. Nelson, and R. Sanderson. HTTP framework for time-
based access to resource states — Memento draft-vandesompel-memento-06. http:
//tools.ietf.org/pdf/draft-vandesompel-memento-06.pdf, 2013.

H. Van de Sompel, M. L. Nelson, R. Sanderson, L. L. Balakireva, S. Ainsworth,
and H. Shankar. Memento: Time Travel for the Web. Technical Report
arXiv:0911.1112, 2009.

H. Van de Sompel, R. Sanderson, M. L. Nelson, L. L. Balakireva, H. Shankar,
and S. Ainsworth. An HTTP-Based Versioning Mechanism for Linked Data. In
Proceedings of the Linked Data on the Web Workshop (LDOW 2010), 2010. (Also
available as arXiv:1003.3661).

J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal
crawling strategies for web search engines. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages 136147, 2002.

