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Abstract. On the Tibetan Plateau, the limited ground-

based rainfall information owing to a harsh environment has

brought great challenges to hydrological studies. Satellite-

based rainfall products, which allow for a better coverage

than both radar network and rain gauges on the Tibetan

Plateau, can be suitable alternatives for studies on inves-

tigating the hydrological processes and climate change. In

this study, a newly developed daily satellite-based precipita-

tion product, termed Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks – Cli-

mate Data Record (PERSIANN-CDR), is used as input for a

hydrologic model to simulate streamflow in the upper Yellow

and Yangtze River basins on the Tibetan Plateau. The results

show that the simulated streamflows using PERSIANN-CDR

precipitation and the Global Land Data Assimilation System

(GLDAS) precipitation are closer to observation than that

using limited gauge-based precipitation interpolation in the

upper Yangtze River basin. The simulated streamflow using

gauge-based precipitation are higher than the streamflow ob-

servation during the wet season. In the upper Yellow River

basin, gauge-based precipitation, GLDAS precipitation, and

PERSIANN-CDR precipitation have similar good perfor-

mance in simulating streamflow. The evaluation of stream-

flow simulation capability in this study partly indicates that

the PERSIANN-CDR rainfall product has good potential to

be a reliable dataset and an alternative information source of

a limited gauge network for conducting long-term hydrolog-

ical and climate studies on the Tibetan Plateau.

1 Introduction

Precipitation is one of the essential meteorological inputs

of a hydrologic model and the key driving force for a hy-

drologic cycle. Errors in precipitation estimation can bring

significant uncertainties in streamflow simulation and pre-

diction (Sorooshian et al., 2011). Three methods are gener-

ally used to measure precipitation: traditional gauge obser-

vations, meteorological radar observations, and satellite ob-

servations (Ashouri et al., 2015). In many remote regions and

mountainous areas, rain gauges and meteorological radar net-

works are either sparse or non-existent. Thus, satellite-based

precipitation is of great importance in such regions. For in-

stance, there is a great potential for using satellite-based

precipitation estimates on the Tibetan Plateau known as the

“roof of the world” with an average elevation of over 4000 m

(Yao et al., 2012). Owing to a harsh environment, the ex-

isting meteorological stations managed by the Chinese Me-

teorological Administration only form an extremely sparse

network, which creates great challenges for water resources

management and operation. For example, on average, there

is only 0.3 and 1 station per grid of 1◦
× 1◦ in the upper

Yangtze and upper Yellow river basins, respectively (Xue et

al., 2013a). Moreover, the spatial distribution of the meteo-

rological stations is highly uneven and most stations are lo-

cated around the river channel with relatively low elevation

(Fig. 1). Therefore, streamflow simulation using the limited

gauge-based rainfall information might not be reliable due

to the input uncertainties with such a poor spatial resolution.

Satellite-based rainfall products have the advantage of good
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Figure 1. The selected river basins (the upper Yellow River and

Yangtze River basin) on the Tibetan Plateau and location of rainfall

stations and river outlets.

spatial coverage, which could allow for an accurate stream-

flow simulation on the Tibetan Plateau. Besides precipitation

estimation from satellites, the Global Land Data Assimila-

tion System (GLDAS), as a global-scale terrestrial modeling

system, is also capable of providing good spatial coverage to

solve the issue of insufficient observation data over the Ti-

betan Plateau area (Wang et al., 2011).

According to Kidd and Levizzani (2011), during the last

decade satellite-based precipitation estimates have reached

a good level of maturity. Currently, many satellite rainfall

products are available and have been extensively used glob-

ally (e.g., Sorooshian et al., 2000; Huffman et al., 2001;

Adler et al., 2003; Xie et al., 2003; Joyce et al., 2004;

Turk and Miller, 2005; Miao et al., 2010, 2011). Recently,

a new satellite-based precipitation product was released by

the National Climatic Data Center (NCDC), which is termed

Precipitation Estimation from Remotely Sensed Information

Using Artificial Neural Networks – Climate Data Record

(PERSIANN-CDR) (Ashouri et al., 2015). PERSIANN-

CDR is a multi-satellite, high-resolution and post-time rain-

fall product that provides daily precipitation estimates at

0.25◦ spatial resolution from 1 January 1983 to the present.

According to Ashouri et al. (2015), the PERSIANN-CDR

rainfall product uses the archive of gridded satellite (GridSat-

B1) infrared radiation (IR) data (Knapp, 2008) as the input

to the artificial neural network algorithm. The retrieval al-

gorithm uses IR satellite data from global geosynchronous

satellites as the primary source of precipitation informa-

tion. To meet the calibration requirement of PERSIANN, the

model is pre-trained using the National Centers for Environ-

mental Prediction stage IV hourly precipitation data. Then,

the parameters of the model are kept fixed and the model is

run for the full historical record of GridSat-B1 IR data. To re-

duce the biases in the estimated precipitation, while preserv-

ing the temporal and spatial patterns in high resolution, the

resulting estimates are then adjusted using the Global Pre-

cipitation Climatology Project (GPCP) monthly 2.5◦ precip-

itation products. The performance of the PERSIANN-CDR

rainfall product has been tested and reported in different re-

gions (e.g., Ashouri et al., 2015; Miao et al., 2015; Zhu et

al., 2016). Ashouri et al. (2015) found that PERSIANN-CDR

precipitation is performing reasonably well when compared

with radar and ground-based observations in the 1986 Syd-

ney flood event of Australia and the 2005 Hurricane Katrina

of the United States. Zhu et al. (2016) compared precipi-

tation estimation from PERSIANN-CDR, Tropical Rainfall

Measuring Mission 3B42 Version 7 (TRMM-3B42-V7), and

Climate Prediction Center morphing technique (CMORPH)

over the Xiang and Qu River basins in China and demon-

strated the accuracy of PERSIANN-CDR. Miao et al. (2015)

showed that PERSIANN-CDR rainfall product is able to cap-

ture the spatial and temporal characteristics of extreme pre-

cipitation events at daily scale in the eastern China mon-

soon region when compared with a ground-based precip-

itation dataset. Miao et al. (2015) also pointed out that

the correlation between the PERSIANN-CDR precipitation

and ground-based precipitation is not strong on the Ti-

betan Plateau and speculated that the sparse ground-based

gauge stations may result in uncertainties with the use of

ground-based precipitation estimates as a reference on the Ti-

betan Plateau. Building on Miao et al. (2015), in this study,

PERSIANN-CDR is further applied to a conceptual hydro-

logical model to simulate streamflow of two river basins on

the Tibetan Plateau, and is compared with the limited gauge

information, and the precipitation from GLDAS with regard

to their streamflow simulation capabilities.

Many studies have been carried out to evaluate the suitabil-

ity of a number of satellite-based precipitation estimate prod-

ucts in forcing hydrologic models and simulating stream-

flow for various regions around the world (e.g., Yilmaz et al.,

2005; Artan et al., 2007; Su et al., 2011; Bitew et al., 2012;

Yong et al., 2012, Yang et al., 2015). However, there are few

evaluation studies focusing on hydrological modeling driven

by satellite rainfall products on the Tibetan Plateau. Among

a limited number of studies, Tong et al. (2014) evaluated

the streamflow simulation capability of four satellite prod-

ucts (TRMM-3B42-V7, TRMM-3B42RT-V7, PERSIANN,

and CMORPH) using the variable infiltration capacity (VIC)

hydrologic model in two sub-basins over the Tibetan Plateau

and concluded that the TRMM-3B42-V7 and CMORPH

datasets have relatively better performance than the others.

One of the limitations is that the data length of many satel-

lite precipitation products, such as TRMM-3B42RT-V7 and

CMORPH, start from 2000 to the present, which is rather

short. In this study, there is no such limitation because the

PERSIANN-CDR daily rainfall product includes more than

33 years of data and the length of data grows every year. In

Tong et al. (2014), the rain gauge is set to be the reference

to compare different satellite-based rainfall products. How-

ever, given the fact that (1) density of rain gauges on the
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Tibetan Plateau is rather low as compared to other regions

in China, (2) distribution of gauges are uneven according to

Miao et al. (2015), and (3) rain gauges are located in low-

elevation river channels (Fig. 1), the authors have the sim-

ilar concern as Miao et al. (2015) that the use of a sparse

rain gauge as reference to compare satellite products is ques-

tionable. Therefore, in this study, precipitation from a limited

gauge network, GLDAS precipitation, and PERSIANN-CDR

precipitation are used as the inputs of a hydrologic model for

streamflow simulation on two major river basins, the upper

Yangtze River basin and the upper Yellow River basin, on

the Tibetan Plateau. Then, the simulation results are com-

pared with observed streamflow, which is believed to be a

more reliable reference than the limited rainfall observation

to judge the qualities of satellite rainfall products on the Ti-

betan Plateau. Potential sources of uncertainties are also dis-

cussed with regard to the parameterization of the hydrologi-

cal model and the length of data used for calibration.

2 Study region, data, and hydrological modeling

2.1 Study region and data

Two river basins on the northern Tibetan Plateau, namely,

the upper Yangtze River (UYZR) and upper Yellow River

(UYLR) basins are selected, which have a long daily stream-

flow record from 1983 to 2012. As shown with red squares in

Fig. 1, two hydrological stations, Tangnaihai and Zhimenda,

are the outlet stations of the UYZR and UYLR, which have

total drainage areas of 121 972 and 137 704 km2, respec-

tively. Elevation in the region varies from 3450 to 6621 m.

According to Yao et al. (2012), the climate system of the two

regions has distinct summer Indian monsoon and East Asian

monsoon characteristics during summer. Figure 1 shows the

distribution of meteorological and hydrological stations in

the two basins. The green triangles show the location of rain

gauges, which are rather unevenly distributed and sparse as

compared to the gauge distribution of China available from

Miao et al. (2015).

The observed daily streamflow data from 1983 to 2012 at

the outlets of the two basins are provided by the Ministry of

Water Resources of China. The runoff is calculated by di-

viding streamflow by corresponding basin area. The daily

gauge meteorological data in the two basins from 1983 to

2012 are obtained from the China Meteorological Adminis-

tration (http://data.cma.cn/en). There are 4 and 11 meteoro-

logical stations in the UYZR and UYLR, respectively, which

means that on average there is only 0.3 and 1 station per

grid of 1◦
× 1◦ in the two basins, respectively. The precip-

itation data in GLDAS come from three different sources:

the Climate Prediction Center Merged Analysis of Precipi-

tation, Global Data Assimilation System, and the European

Centre for Medium-Range Weather Forecasts (Rodell et al.,

2004). The precipitation data used in GLDAS are a combi-

nation of reanalysis and observations, which is believed to

have the advantages of different data sources (Gottschalck et

al., 2005). In this study, the 1.0◦ resolution GLDAS precipi-

tation dataset is re-sampled into 0.25◦
× 0.25◦ grids and used

as the input of streamflow simulations (http://ldas.gsfc.nasa.

gov/gldas/). The PERSIANN-CDR rainfall dataset is avail-

able at the NOAA NCDC website (ftp://data.ncdc.noaa.gov/

cdr/persiann/files/), as well as the Center for Hydromete-

orology and Remote Sensing at the University of Califor-

nia, Irvine. In order to compare the PERSIANN-CDR with

gauge observations, the gauge precipitation is interpolated

into 0.25◦
× 0.25◦ grids with the inverse distance-weighting

interpolation method, which has been demonstrated as be-

ing efficient in precipitation interpolation applications (e.g.,

Nalder and Wein, 1998; Garcia et al., 2008; Ly et al., 2011).

The daily gauge-based precipitation, GLDAS precipitation,

and PERSIANN-CDR precipitation for basin average are

compared by the cumulative distribution functions (CDFs) of

daily precipitation values (e.g., Sheffield et al., 2014; Zhang

and Tang, 2015), whereby the two-parameter Gamma distri-

bution function (Thom, 1958) is used to fit the data.

2.2 Hydrological modeling

The hydrologic model used in this study is the Hydroinfor-

matic Modeling System (HIMS) rainfall–runoff model (Liu

et al., 2006, 2008, 2010a, b), which is one of the operational

hydrological models by the Tibet Government in China. The

HIMS model is a grid-based hydrologic model, which is

able to simulate the dominant hydrological processes such

as actual evapotranspiration, infiltration, runoff, groundwater

recharge, and channel routing. In the HIMS model, a catch-

ment is divided into grids, and grids are linked throughout the

stream network based on topological relationships of channel

network and properties of soil, vegetation, and land use. In

each grid, actual evaporation is calculated by a formulation

between soil water content and potential evapotranspiration.

Potential evapotranspiration ET0 (Hargreaves and Samani,

1985) and actual evaporation ETa are described as follows:

ET0 = 0.00023 · RA · (T + 17.8) · (Tmax − Tmin)
0.50, (1)

ETa(t) = ET0(t) ·

(

1 −

(

1 −
SMSt

SMSC

)C
)

, (2)

where RA is extraterrestrial radiation (MJ m−2 day−1); T ,

Tmax, and Tmin are daily average, maximum, and minimum

temperatures (◦C), respectively; L is latent heat of vaporiza-

tion (MJ kg−1); SMS and SMSC are soil moisture storage

and the maximum soil storage capacity (mm), respectively;

and C is the evapotranspiration coefficient to be calibrated.

The infiltration process is modeled using an empirical rela-

tionship, which has been confirmed through analysis of data

measured in a number of experimental watersheds and vari-

ous physical geographic factors in China (Liu et al., 2006):

ft = R · P r
t , (3)
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where ft is infiltration (mm) and Pt is precipitation (mm),

and R and r are parameters. Surface runoff (RSt ; mm) is

calculated by

RSt = Pt − ft = Pt − R · P r
t . (4)

According to the saturation excess mechanism and spa-

tial variability of watershed characteristics, interflow and

groundwater recharge are estimated as linear functions of soil

wetness (soil moisture amount divided by soil moisture ca-

pacity). Baseflow is simulated based on the linear reservoir

assumption, in which the relationship between groundwater

storage and outflow is linear. Interflow (RI; mm), ground-

water recharge (REC; mm), baseflow (RG; mm), and total

runoff (TR; mm) are determined by

RIt = La ×

(

SMSt

SMSC

)

× ft , (5)

RECt = Rc ×

(

SMSt

SMSC

)

× (ft − RIt ), (6)

RGt = Kb × (GWt + RECt ) , (7)

TRt = RSt + RIt + RGt , (8)

where La, Rc, and Kb are coefficients for interflow, ground-

water recharge, and baseflow, respectively; SMSC is the

maximum value of soil moisture storage capacity (mm);

SMS is the actual soil moisture storage (mm); and GW is

groundwater storage(mm). La, Rc, Kb, and SMSC are the

parameters in need of calibration. The degree-day snowmelt

algorithm (Hock, 2003), assuming an empirical relation-

ship between air temperature and snowmelt rate, is used to

simulate snowmelt runoff. The air temperature within each

grid is adjusted by a commonly used temperature lapse rate

(0.65 ◦C/100 m). The degree-day factor of snowmelt is set to

4.1 mm ◦C−1 day−1 in the two basins based on the investi-

gation of Zhang et al. (2006). Surface runoff and baseflow

for each grid are routed to the basin outlet through a channel

network. The Muskingum method (Franchini and Lamberti,

1994) is used for flow channel routing. The detail descrip-

tions and the conceptual diagram showing the configuration

of HIMS model are available in Liu et al. (2008) and Jiang et

al. (2015).

The HIMS model is set up at 0.25◦
× 0.25◦ spatial resolu-

tion grids in the two river basins. There are nine parameters

requiring calibration in the HIMS model (Table 1). The Shuf-

fle Complex Evolution method (SCE-UA) is used for cali-

brating the model parameters (Duan et al., 1992). The op-

timization objective is to maximize the Nash–Sutcliffe effi-

ciency (NSE) (Nash and Sutcliffe, 1970) between the simu-

lated and measured daily streamflow. There are two stopping

criteria for calibrating the parameters. The first one is the

evolution of all simplexes have converged to a limited pa-

rameter space, which is the default convergence criterion of

SCE-UA. Another stopping criterion is the maximum num-

ber of function evaluation set by users is met. In our study,

the settings for SCE-UA are the maximum numbers of func-

tion evaluation equal to 5×108, numbers of complexes equal

to 2, which give a total population of 38, and the percentage

change allowed to define convergence is set to 1×10−6. The

calibration period is from 1983 to 1997 and the verification

period is from 1998 to 2012. The performance of the stream-

flow simulation is evaluated by comparing simulated and ob-

served streamflow through two statistics: NSE and relative

bias (Rb) between simulated and observed streamflow:

NSE = 1 −

N
∑

i=1

(

Qobs,i − Qsim,i

)2

N
∑

i=1

(

Qobs,i − Qobs

)2

, (9)

Rb =

N
∑

i=1

(

Qsim,i − Qobs,i

)

N
∑

i=1

Qobs,i

, (10)

where Qsim and Qobs are the simulated and observed stream-

flow, respectively; Qobs is the mean of the observed stream-

flow; and N is the total number of days in the calibration

period.

3 Results

3.1 Hydrometeorological characteristics of the two

basins

Figure 2 and Table 2 show the average monthly amounts

of precipitation and runoff in the UYZR and UYLR from

1983 to 2012. These two river basins have distinct dry and

wet seasons, which are from September to February, and

March to October, respectively. According to Table 2, pre-

cipitation between May and October (wet season) accounts

for 92.5 and 90.1 % of the annual total precipitation for the

UYZR and UYLR, respectively. Similar to the temporal dis-

tribution of precipitation, runoff during May to October ac-

counts for 87.6 and 78.4 % of annual runoff in the UYZR and

UYLR, respectively. Given the seasonal concurrence of pre-

cipitation and runoff, precipitation in the wet season plays a

dominant role in annual runoff generation in these two river

basins. The runoff coefficients are 0.22, 0.27, and 0.26 in the

UYZR based on gauge-based precipitation, GLDAS precip-

itation, and PERSIANN-CDR precipitation, respectively. In

the UYLR, the runoff coefficients are 0.29, 0.31, and 0.29

based on the three precipitation datasets, respectively.
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Table 1. Description of HIMS model parameters and allowable ranges.

Parameter Description Allowable range

SMSC The maximum soil storage capacity (mm) 50–1000

R The infiltration coefficient 0.1–2

r The infiltration coefficient 0.1–1

La The interflow coefficient 0.1–2

Rc The groundwater recharge coefficient 0.01–2

C The evapotranspiration coefficient 0.001–10

Kb The baseflow coefficient 0.001–1

C1 The Muskingum coefficient 0.001–1

C2 The Muskingum coefficient 0.001–1

Table 2. Average monthly precipitation and runoff in the upper Yangtze and Yellow River basins.

Upper Yangtze River Upper Yellow River

Period Rain_ Rain_ Rain_ Runoff_ Rain_ Rain_ Rain_ Runoff_

Gauge GLDAS CDR OBS Gauge GLDAS CDR OBS

Jan 3.3 4.0 1.4 1.3 4.4 5.3 3.2 3.7

Feb 3.4 4.8 2.5 1.2 6.5 7.5 5.2 3.7

Mar 5.0 8.1 7.5 1.5 12.9 16.2 13.1 4.8

Apr 10.2 16.2 14.6 3.0 23.7 28.0 25.0 7.7

May 37.9 34.6 38.2 5.6 62.9 62.3 65.3 11.9

Jun 90.4 66.3 72.0 12.9 107.6 96.2 104.6 20.4

Jul 105.8 87.6 87.8 21.6 113.5 110.3 111.8 29.6

Aug 88.6 69.0 74.5 20.6 92.0 93.3 94.0 23.3

Sep 66.9 49.8 53.2 16.0 83.4 83.7 84.4 22.2

Oct 20.2 18.0 20.5 9.1 35.3 36.0 41.4 19.4

Nov 2.5 3.9 1.7 3.5 5.0 5.8 7.3 10.0

Dec 2.3 2.0 0.5 1.6 3.0 3.3 1.5 5.0

May to Oct 409.7 325.3 346.1 85.8 494.6 481.8 501.4 126.8

Annual 436.4 364.3 374.3 98.0 550.2 547.9 556.6 161.8

Ratio 93.9 89.3 92.5 87.6 89.9 87.9 90.1 78.4

Note: Rain_gauge, Rain_GLDAS and Rain_CDR indicate gauge-based precipitation GLDAS precipitation and

PERSIANN-CDR precipitation (mm), respectively. Runoff_OBS indicates observed runoff (mm). Ratio means the percentage

of precipitation and streamflow during May to November to annual values.

3.2 Comparison between gauge-based precipitation,

GLDAS precipitation, and PERSIANN-CDR

precipitation

Figure 3 shows the spatial distribution of average annual

values of 1.0◦ resolution GLDAS precipitation and 0.25◦

resolution PERSIANN-CDR precipitation. The spatial pat-

terns of the two dataset are generally consistent with each

other. Figure 4 shows the comparison of CDFs for basin-

averaged daily gauge-based precipitation, GLDAS precipi-

tation, and PERSIANN-CDR precipitation in the UYZR and

UYLR from 1983 to 2012. At a given probability, GLDAS

precipitation generally has the smallest values, followed by

PERSIANN-CDR precipitation and gauge-based precipita-

tion in the UYZR. In the UYLR, the CDFs of PERSIANN-

CDR precipitation, GLDAS precipitation, and gauge-based

precipitation show overall better agreement than that in

the UYZR. Table 2 shows the average amounts of gauge-

based precipitation, GLDAS precipitation, and PERSIANN-

CDR precipitation. In the UYZR, the average annual pre-

cipitation is 436.4 mm from gauge-based data, 365.1 mm

from GLDAS dataset, and 374.3 mm from PERSIANN-

CDR product. Gauge-based annual precipitation is 16.6 %

larger than PERSIANN-CDR annual precipitation. In the

UYLR, average annual amounts of gauge-based precipita-

tion, GLDAS precipitation, and PERSIANN-CDR precipi-

tation are similar, which are 550.2, 547.9, and 556.6 mm, re-

spectively (Table 2).

3.3 Streamflow simulation in the two basins

Due to the previously mentioned concern that a sparse gauge

network and its interpolation cannot perfectly describe the

spatial and temporal rainfall characteristics at river basin
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Figure 2. The monthly average runoff observed at the river outlet of the upper Yangtze River and Yellow River basin, and the precipitation

data retrieved from ground-based observation, GLDAS, and PERSIANN-CDR product.

Table 3. Calibrated parameter values in the HIMS model for the upper Yangtze and Yellow River basins.

Basin Input SMSC R r La Rc C Kb C1 C2

Yangtze Gauge_based 302.5 1.47 0.78 0.74 0.05 0.67 0.15 0.18 0.81

GLDAS 339.2 1.72 0.87 0.82 0.07 0.58 0.18 0.17 0.81

PERSIANN-CDR 343.8 1.71 0.89 0.87 0.07 0.56 0.18 0.17 0.82

Yellow Gauge_based 334.8 2.08 0.77 1.00 0.03 0.44 0.14 0.14 0.86

GLDAS 332.5 2.10 0.76 1.02 0.03 0.39 0.14 0.15 0.85

PERSIANN-CDR 342.1 2.01 0.73 0.98 0.05 0.45 0.14 0.12 0.88

Figure 3. The spatial distribution of average annual values of

1.0◦ resolution GLDAS precipitation (a) and 0.25◦ resolution

PERSIANN-CDR precipitation (b).

scale, the alternative is to evaluate the streamflow simulated

instead of treating the sparse gauge network as reference. In

this section, the streamflow simulated by gauge-based pre-

cipitation, GLDAS precipitation, and PERSIANN-CDR pre-

cipitation is derived from HIMS, and compared with ob-

served streamflows at the outlet in the UYZR and UYLR.

The HIMS model is separately calibrated by maximizing the

NSE between observed streamflow and simulated streamflow

driven by gauge-based precipitation, GLDAS precipitation,

and PERSIANN-CDR precipitation from 1983 to 1997. Ta-

ble 3 shows the calibrated parameter values of the HIMS

model for the two basins. Figure 5 shows daily observed

streamflow and simulated streamflow driven by gauge-based

precipitation, GLDAS precipitation, and PERSIANN-CDR

precipitation for the two basins from 1983 to 2012. In the

UYZR (Fig. 5a, b and c), the NSE values are 0.63, 0.78,

and 0.77 in the calibration period driven by gauge-based

precipitation, GLDAS precipitation, and PERSIANN-CDR

precipitation, respectively, whereas they are 0.60, 0.71, and

0.73 in the verification period. In both the calibration and

verification period, the NSE values from GLDAS precipi-

tation and PERSIANN-CDR precipitation are greater than

that from gauge-based precipitation, which indicates that us-

ing GLDAS precipitation and PERSIANN-CDR precipita-

tion as input to the HIMS model is able to generate more

accurate streamflow than using gauge-based precipitation

in the UYZR. In the UYLR (Fig. 5d, e and f), the NSE

values between daily observed streamflow and simulated

streamflow are 0.82, 0.78, and 0.80 in the calibration pe-

riod driven by gauge-based precipitation, GLDAS precipi-

tation, and PERSIANN-CDR precipitation, respectively. In

the verification period, the NSE values are 0.81, 0.77, and

0.78 for the three types of data. The high NSE values in both

Hydrol. Earth Syst. Sci., 21, 169–181, 2017 www.hydrol-earth-syst-sci.net/21/169/2017/



X. Liu et al.: Streamflow simulation capability of PERSIANN-CDR daily rainfall products 175

Figure 4. The calculated CDF of daily gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation in the upper

Yangtze River basin and upper Yellow River basin.

Table 4. The performances of streamflow simulations driven by gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR

precipitation in the two basins.

Upper Yangtze River Upper Yellow River

Period Q_ Qs_ Qs_ Qs_ Rb_ Rb_ Rb_ Q_ Qs_ Qs_ Qs_ Rb_ Rb_ Rb_

obs gauge GLDAS CDR gauge GLDAS CDR obs gauge GLDAS CDR gauge GLDAS CDR

Jan 68.1 48.4 40.4 32.8 −28.9 −40.7 −51.8 168.9 65.7 71.4 68.0 −61.1 −57.7 −59.8

Feb 68.3 32.7 30.2 24.9 −52.1 −55.8 −63.5 168.3 61.6 67.6 60.5 −63.4 −59.8 −64.1

Mar 76.9 70.2 75.3 72.4 −8.7 −2.1 −5.8 219.7 110.5 145.1 138.0 −49.7 −34.0 −37.2

Apr 158.6 153.2 158.3 147.5 −3.4 −0.2 −7.0 352.0 299.0 311.5 302.5 −15.1 −11.5 −14.0

May 289.2 253.5 262.1 273.4 −12.3 −9.4 −5.5 543.6 512.9 514.9 524.9 −5.7 −5.3 −3.4

Jun 683.9 750.5 679.1 698.4 9.7 −0.7 2.1 928.5 968.6 921.3 946.6 4.3 −0.8 1.9

Jul 1108.9 1306.9 1102.5 1111.4 17.9 −0.6 0.2 1350.1 1386.6 1420.2 1431.3 2.7 5.2 6.0

Aug 1059.7 1204.0 1042.8 1063.2 13.6 −1.6 0.3 1061.1 1141.4 1102.7 1088.5 7.6 3.9 2.6

Sep 850.7 977.4 897.2 918.9 14.9 5.5 8.0 1009.6 1059.7 1062.6 1075.7 5.0 5.2 6.5

Oct 469.4 428.1 407.2 420.1 −8.8 −13.3 −10.5 883.7 859.1 861.3 876.5 −2.8 −2.5 −0.8

Nov 187.6 169.0 182.3 161.1 −9.9 −2.8 −14.1 457.3 429.1 437.8 456.6 −6.2 −4.3 −0.2

Dec 84.5 28.2 27.5 24.5 −66.7 −67.5 −71.0 227.0 100.7 132.8 127.5 −55.7 −41.5 −43.9

May–Oct 743.4 819.6 731.9 746.9 10.3 −1.5 0.5 962.7 987.7 980.5 990.4 2.6 1.8 2.9

Nov–Apr 107.2 83.6 85.6 77.2 −22.1 −20.1 −28.0 265.6 177.6 194.2 192.3 −33.1 −26.9 −27.6

Annual 427.9 454.6 408.7 414.8 6.2 −4.5 −3.1 617.0 586.0 587.8 594.6 −5.0 −4.7 −3.6

Note: Q_obs indicates observed runoff (m3 s−1). Qs_gauge, Qs_GLDAS, and Qs_CDR indicate streamflow simulations (m3 s−1) driven by the gauge-based precipitation,

GLDAS precipitation, and PERSIANN-CDR precipitation, respectively. Rb_gauge, Rb_GLDAS, and Rb_CDR indicate relative bias between observed streamflow and simulated

streamflow driven by the gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation, respectively.

the calibration and verification periods suggest that gauge-

based precipitation, GLDAS precipitation, and PERSIANN-

CDR precipitation have similar performances as the drivers

of streamflow simulation in the UYLR.

Figure 6 and Table 4 compare the simulated and ob-

served average monthly streamflow for the two basins. In

the UYZR, the relative bias between observed streamflow

and simulated streamflow driven by gauge-based precipita-

tion is 10.3 % in the wet season, which suggests a consid-

erable overestimate of streamflow. Comparably, the relative

bias between observed streamflow and simulated streamflow

driven by GLDAS precipitation and PERSIANN-CDR pre-

cipitation is −1.5 and 0.5 % the in wet season, respectively.

As compared with the wet season streamflow simulation re-

sults with gauge-based precipitation, the simulated stream-

flows driven by GLDAS precipitation and PERSIANN-CDR

precipitation are closer to the observed streamflow. In the

dry season, streamflow simulations driven by gauge-based

precipitation, GLDAS precipitation, and PERSIANN-CDR

precipitation all underestimate streamflow with relative bias

of −22.1, −20.1, and −28.0 % in the UYZR, respectively.

In the UYLR, all the three precipitation products slightly

overestimate the streamflow in the wet season with rela-

tive bias of 2.6, 1.8, and 2.9 %. Similar to the results in the

UYZR, streamflow simulations driven by gauge-based pre-

cipitation, GLDAS precipitation, and PERSIANN-CDR pre-

cipitation have similar good performances in the wet season

in the UYLR. However, all the three precipitation products
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Figure 5. The comparison between the simulated daily streamflow (red) with ground-based, GLDAS, and PERSIANN-CDR precipitation

and the observed data (black) at the outlets of the upper Yangtze River basin (a, b, c) and upper Yellow River basin (d, e, f).

Figure 6. The comparison between the observed streamflow (black) and the simulated streamflow using ground-based precipitation (red),

GLDAS precipitation (green), and PERSIANN-CDR precipitation (blue) in the upper Yangtze River basin and upper Yellow River basin.

tend to produce a smaller streamflow in the dry season with

a relative bias of −33.1, −26.9, and −27.6 %, respectively.

One of the reasons that gauge-based precipitation, GLDAS

precipitation, and PERSIANN-CDR precipitation generate

smaller streamflow in the dry season is the lack of complex

method or proper algorithm in the HIMS model to handle

frozen soil. In dry season, when the amounts of precipitation

and streamflow are small, streamflow melted from frozen soil

can account for a significant proportion of total streamflow.

In other words, the frozen soil melt could significantly in-

fluence the streamflow simulation results. The relative high

bias of observed streamflow and simulated streamflow from

all the three precipitation products could be due to the lack of

a proper modeling component in the HIMS hydrologic model

that quantifies the frozen soil melting effects in dry season.

However, the bias between simulated and observed stream-

flow is much smaller in the wet season, when precipitation

and streamflow are relatively large and streamflow melted
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from frozen soil accounts for a limited proportion in total

streamflow.

In summary, the streamflow simulated by GLDAS pre-

cipitation and PERSIANN-CDR precipitation has a good

agreement with the observed streamflow in the UYZR and

UYLR. The good agreement between observed streamflow

and PERSIANN-CDR simulated streamflow reveals a strong

streamflow simulation capability of PERSIAN-CDR prod-

uct, which also gives community certain confidence in using

PERSIANN-CDR product to study hydrological cycle and

climate change on the Tibetan Plateau.

4 Discussions

4.1 Parameter uncertainties of hydrological modeling

In this study, model parameters are separately calibrated

in terms of the highest NSE between observed streamflow

and simulated streamflow driven by gauge-based precipita-

tion, GLDAS precipitation and PERSIANN-CDR precipi-

tation. Therefore, these parameter values are highly depen-

dent on the precipitation inputs. When the precipitation in-

put changes, the parameter values may change accordingly

in order to match the streamflow. Table 3 shows the values

of calibrated parameters separately driven by gauge-based

precipitation, GLDAS precipitation, and PERSIANN-CDR

precipitation in the two basins. Parameter sensitivity study

of the HIMS model indicates that the HIMS model is most

sensitive to parameters of the maximum soil storage capac-

ity (SMSC) and the infiltration coefficients (R and r) (Jiang

et al., 2015). In the UYLR, the parameters calibrated by

the inputs of gauge-based precipitation, GLDAS precipita-

tion, and PERSIANN-CDR precipitation generally have sim-

ilar values. However, in the UYZR, SMSC, R, and r val-

ues calibrated from gauge-based precipitation are 302.46,

1.47, and 0.78, respectively, whereas SMSC, R and r values

calibrated from PERSIANN-CDR precipitation are 343.80,

1.71, and 0.89. By separately calibrating the HIMS param-

eters, the gauge-based precipitation, GLDAS precipitation,

and PERSIANN-CDR produce different optimal parameter

values. Thus, the streamflow simulation bias using gauge-

based precipitation, GLDAS precipitation, and PERSIANN-

CDR are the joint results of parameter differences and model

input bias. Correspondingly, soil moisture and evapotranspi-

ration estimation could be different using various precipita-

tion forcings and calibrated parameters. However, the main

purpose of this study is evaluating the streamflow simulation

capability of satellite-based precipitation and gauge-based

precipitation as inputs to a hydrologic model over the Ti-

betan Plateau. Therefore, in spite of the influence of cancella-

tion between parameter differences and precipitation bias on

streamflow simulation, it does not harm the conclusion that

both PERSIANN-CDR and GLDAS precipitation is able to

produce a reasonably good streamflow in the two river basins

on the Tibetan Plateau.

In a previous study, Tong et al. (2014) evaluated the

streamflow simulation capabilities of four satellite-based

precipitation products (TRMM-3B42-V7, TRMM-3B42RT-

V7, PERSIANN, and CMORPH) using the VIC hydrologic

model in the UYZR and UYLR from 2006 to 2012. Dif-

ferent from the PERSIANN product that Tong et al. (2014)

used, PERSIANN-CDR is a different product that provides

over 33 years of daily and high-resolution precipitation with

GPCP monthly information incorporated. In addition, the

parameters in the VIC hydrologic model are calibrated by

the input of interpolated gauge-based precipitation. The cal-

ibrated parameter values are then kept fixed when the VIC

model are rerun by inputs of satellite-based precipitation

datasets to evaluate the streamflow simulation capabilities of

satellite-based precipitation datasets. Rerunning the hydro-

logic model with the fixed parameters calibrated by gauge-

based precipitation partly indicates that Tong et al. (2014) as-

sumed that the sparse gauge observations are a more reliable

dataset than satellite-based precipitation datasets. However,

this is a questionable assumption. As we mentioned in the in-

troduction, not only the location of rain gauges is conditioned

(relatively low elevations) but also the sparse distribution of

rainfall stations over the Tibetan Plateau could bring large er-

rors and uncertainties in regional rainfall measurement. Sim-

ilar arguments are also raised by Miao et al. (2015). In this

study, we rather cautiously believe that gauge-based precip-

itation could not be reliable, especially in the UYZR where

there is only one station per 34 426 km2 (nearly 1◦
× 3◦ spa-

tial resolution). Therefore, separately calibrating hydrologic

model by the inputs of different precipitation datasets instead

of using identical parameters will contribute to fairer com-

parisons when evaluating streamflow simulation capabilities

of different precipitation datasets, although other hydrolog-

ical variables such as soil moisture and evapotranspiration

could be incorrectly estimated by different precipitation in-

puts and calibrated parameters.

4.2 The influences of precipitation record length on

streamflow simulation capability

Besides of the uncertainties due to hydrological model cali-

bration, another factor that influences the accuracy of stream-

flow simulation is the length of precipitation records used

for calibration. As mentioned before, one of the advantages

of PERSIANN-CDR product is the provision of more than

33 years of continuous sequences of precipitation data, which

can allow for more extensive streamflow simulation in the Ti-

betan Plateau. In this study, comparison experiments (Fig. 7)

were designed to test the influences of precipitation record

length on the accuracy of streamflow simulation. In the de-

signed experiments, we investigate the accuracy of stream-

flow simulation during 2008 to 2012 with two different cal-

ibration scenarios. In the first scenario, the calibration pe-
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Figure 7. The simulated daily streamflow (red) forced by PERSIANN-CDR rainfall product in different scenarios and the observed daily

streamflow (black) at the outlets of the upper Yangtze River basin and upper Yellow River basin. Panels (a) and (b) are the scenarios where

the period 2003 to 2007 is used for calibration and 2008 to 2012 for verification. Panels (c) and (d) are the scenarios where the period 1983

to 1997 is used for calibration and 2008 to 2012 for verification.

riod is from 2003 to 2007 for both the UYZR (Fig. 7a) and

the UYLR (Fig. 7b). In the second scenario (Fig. 7c and d),

15 years of data from 1983 to 1997 are used for calibra-

tion, which are longer than that in the first scenario. As it

is shown in Fig. 7a and b, in the first scenario the NSE values

between daily observed and simulated streamflow are 0.75

and 0.66 during the verification period (from 2008 to 2012)

for the UYZR and UYLR, respectively. Comparatively, in

the second scenario the NSE values during the verification

period (from 2008 to 2012) are 0.81 and 0.82 for the two

basins, respectively. The NSE values in the second scenario

are consistently higher than that in the first scenario in the

two basins. For the UYLR in the second scenario (Fig. 7d),

the NSE value during the verification period is significantly

greater than that in the first scenario. Figure 7b also shows

that the HIMS hydrological model significantly underesti-

mates the flow peaks during the summer of 2010 and 2012

when calibrated by 5 years of data from 2003 to 2007. The

disagreement between the observed and simulated flow peaks

is partly because the magnitudes of flood events during the
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calibration period are all smaller than that during the verifi-

cation period and the HIMS hydrological model cannot be

well trained during the calibration period. Therefore, when

using a short-length precipitation data as input for a hydro-

logical model, the accuracy of streamflow simulation could

be limited, especially when precipitation data used for cal-

ibration cannot cover the flood and drought conditions of a

basin. However, when the HIMS hydrological model is cali-

brated by the longer dataset from 1983 to 1997, as it is shown

in Fig. 7c and d, there is a greater potential that the char-

acteristics of extreme events can be captured by the hydro-

logical model than using only 5 years of data from 2003

to 2007. Given the availability of long-term precipitation

records (over 33 years) provided by PERSIANN-CDR prod-

uct, the extreme events in the historical period could be well

captured by a hydrological model. Therefore, using such a

product with long-term records, the confidence of simulating

streamflow over the Tibetan Plateau will correspondingly in-

crease.

5 Summary

As it is compared to radar-based precipitation measurement

and gauge networks, the main advantage of satellite-based

precipitation estimate is the broader coverage at global scale.

This allows for a comprehensive understanding of the driv-

ing force of hydrologic cycle, especially for the gauge-sparse

area. To verify the accuracy of satellite-based precipitation

estimate products, the comparison with ground observation

is necessary. However, in a gauge-sparse area, a direct com-

parison on precipitation temporal and spatial variation will

be questionable due to the limited gauge information. This

study provides an alternative way to evaluate satellite-based

precipitation products by forcing both rainfall estimates from

satellite and limited gauge network into hydrological model.

Given the confidence in streamflow measurements, which are

more reliable and well monitored than the limited ground-

based rainfall measurements, the comparison of simulated

streamflow enables an indirect way to evaluate satellite-based

precipitation products.

In this study, PERSIANN-CDR precipitation, GLDAS

precipitation, and gauge-based precipitation have good

agreements in the UYLR, whereas the three datasets have

different values in the UYZR. Streamflow simulation capa-

bilities of PERSIANN-CDR precipitation, GLDAS precipi-

tation, and gauge-based precipitation are evaluated as the in-

puts of the HIMS hydrologic model in the two basins. All the

three datasets have similar good performances in the UYLR,

whereas PERSIANN-CDR precipitation and GLDAS pre-

cipitation have slightly better performance than gauge-based

precipitation in the UYZR. Gauge-based precipitation tends

to produce larger streamflow in the wet season in the UYZR.

This indicates that in the UYZR, a sparse gauge network

could not be fully reliable when used as the reference for

streamflow simulation due to the fact that the locations of the

limited gauge stations cannot be representative for measur-

ing the precipitation patterns at the river basin scale. In ad-

dition, gauge-based precipitation, GLDAS precipitation, and

PERSIANN-CDR precipitation all generate smaller stream-

flow in the dry season probably because of the lack of a

frozen soil algorithm in HIMS model. This may bring certain

uncertainties in the discharge comparisons by different pre-

cipitation inputs (Xue et al., 2013b). Further studies should

be conducted to improve the frozen soil simulation of HIMS

model.

Lack of rainfall gauge stations has brought a great chal-

lenge to hydrological and climate studies over the Tibetan

Plateau (e.g., Yao et al., 2012; Zhang et al., 2013). Based on

the demonstration in this study that PERSIANN-CDR is able

to produce reasonably good streamflow in the UYZR and

UYLR as compared to observed streamflow, we can spec-

ulate that the PERSIANN-CDR rainfall product has the po-

tential to be a useful dataset and an alternative for the sparse

gauge network in climate change and hydrological studies

on the Tibetan Plateau considering the needs for long-term

(more than 33 years) and high-resolution records.

6 Data availability

The GLDAS precipitation dataset is available at the web-

site http://ldas.gsfc.nasa.gov/gldas/ (NASA, 2016). The

PERSIANN-CDR rainfall dataset is available at the NOAA

NCDC website (ftp://data.ncdc.noaa.gov/cdr/persiann/files/;

NCDC, 2016). The streamflow data used for this paper are

not publicly available due to the constraints of governmental

policy in China. The data were obtained through a purchas-

ing agreement for this study.
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