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This study explores the uncertainties in terrestrial water budget estimation over

High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM)

simulations. The uncertainty in the water balance components of precipitation (P),

evapotranspiration (ET ), runoff (R), and terrestrial water storage (TWS) is significantly

impacted by the uncertainty in the driving meteorology, with precipitation being the

most important boundary condition. Ten gridded precipitation datasets along with a

mix of model-, satellite-, and gauge-based products, are evaluated first to assess their

suitability for LSM simulations over HMA. The datasets are evaluated by quantifying the

systematic and random errors of these products as well as the temporal consistency

of their trends. Though the broader spatial patterns of precipitation are generally well

captured by the datasets, they differ significantly in their means and trends. In general,

precipitation datasets that incorporate information from gauges are found to have higher

accuracy with low Root Mean Square Errors and high correlation coefficient values. An

ensemble of LSM simulations with selected subset of precipitation products is then used

to produce the mean annual fluxes and their uncertainty over HMA in P, ET, and R to be

2.11 ± 0.45, 1.26 ± 0.11, and 0.85 ± 0.36 mm per day, respectively. The mean annual

estimates of the surface mass (water) balance components from this model ensemble

are comparable to global estimates from prior studies. However, the uncertainty/spread

of P, ET, and R is significantly larger than the corresponding estimates from global
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studies. A comparison of ET, snow cover fraction, and changes in TWS estimates against

remote sensing-based references confirms the significant role of the input meteorology

in influencing the water budget characterization over HMA and points to the need for

improving meteorological inputs.

Keywords: High Mountain Asia, precipitation, terrestrial water budget, uncertainty, land surface modeling, triple

collocation

1. INTRODUCTION

The Himalayan mountain glaciers encompasses the largest
reservoirs of freshwater on Earth outside of the polar regions.

The melting of snow and glaciers in High Mountain Asia (HMA)

contributes up to 70% of the annual water supply of over

1.4 billion people in the region (Xu et al., 2009; Immerzeel
et al., 2010; Wester et al., 2019). Water resource management
and water security applications in HMA, therefore, require
accurate characterization of the changes in terrestrial snow and
ice for making reliable policy decisions. The complex terrain
and extreme climatic conditions over HMA, however, severely
limit the availability of traditional ground-based meteorological
observations for this purpose. Remote sensing measurements
offer broader spatial coverage, but they also suffer from sensor
limitations. For example, fractional snow cover, land surface
(including snow and ice) temperature, and albedo measurements
are available from optical and infrared sensors, but are limited
in the presence of cloud cover (Hall et al., 1995). Alternatively,
passive microwave sensors provide retrieval estimates of snow
water equivalent, but are coarser in resolution and suffer from
limitations such as signal saturation over deep snow (Dong
et al., 2005; Foster et al., 2005). Measurements from gravity
missions provide retrievals of mass variations on the Earth’s
surface, which are dominated by snow and ice changes and
human management impacts such as groundwater abstraction
and agricultural irrigation in regions such as HMA (Tapley et al.,
2004b; Rodell et al., 2009). These gravitational measurements,
however, are only available at coarse spatial and temporal scales.
Land surface models (LSMs) provide an alternative to developing
spatially- and temporally-continuous measurements of terrestrial
water and energy budget estimates, though they are also limited
by model structural errors and the quality of model parameters
and meteorological boundary conditions. Due to all these factors,
despite the critical need to accurately characterize the water
storage changes over HMA, large uncertainties exist in the
current understanding of the terrestrial water budget estimates
(Müller et al., 2016). Among the surface meteorological data
used to drive the LSMs, precipitation is the most important
mass input (Guo et al., 2006). A quantitative evaluation of the
precipitation data over HMA is particularly difficult due to the
lack of reliable reference ground measurements. In addition, the
sources and magnitudes of precipitation exhibit large variability
across the HMA.

There have been numerous studies (Andermann et al., 2011;
Palazzi et al., 2013; You et al., 2015; Song et al., 2016; Nguyen
et al., 2018) that examine the quality and skill of the precipitation

datasets from models and remote sensing over HMA. Many of
these studies are over the Tibetan Plateau, where some ground
observations of precipitation are available. For example, Ma et al.
(2009) and You et al. (2015) present an evaluation of a number
of atmospheric reanalysis products and quantified that there are
large negative biases in these products. Similarly, Wang and Zeng
(2012) evaluate a number of reanalysis products by comparing
them to in-situ measurements over the Tibetan Plateau and
report that the skill of these products is highly-dependent on the
timescale of evaluation. Due to the large biases in the reanalysis
datasets over the Tibetan Plateau, Tong et al. (2014) conclude
that the reanalysis datasets are unreliable for hydrological studies.
Though the gauge-based datasets had better skill, issues such
as undercatch corrections significantly impact the precipitation
trends and quality. Precipitation is strongly dependent on
terrain, which has high variability across orographic fronts
and lower variability in low-relief areas (Andermann et al.,
2011; Song et al., 2016). Though direct comparisons to gauge
data are useful for assessing the general quality of the data
products, the representativeness of the sparse in-situ data is a
serious limitation in these evaluations (Song et al., 2016). The
uncertainties in the satellite-based (microwave- and infrared-
based) precipitation retrievals also stem from photon scattering
associated with terrestrial snow cover (You et al., 2015). Overall,
these studies confirm the large biases and uncertainties in existing
precipitation products, especially over the mountainous areas
of HMA.

Though the majority of these studies are motivated by the
need for reliable precipitation inputs for hydrological modeling,
only a few have actually quantified the associated impacts
on terrestrial water budget estimates. Immerzeel et al. (2009)
reported reasonable skill in the simulation of streamflow in
the upper Indus when driven with remote sensing based
inputs of precipitation and snow cover. The contribution of
precipitation and snowmelt to river discharge is shown to have
large spatiotemporal variations (Bookhagen and Burbank, 2010).
In addition to the precipitation uncertainty, factors such as
glacier melt, large-scale groundwater abstraction, and reservoir
management contribute significantly to the uncertainty in the
water balance estimates (Immerzeel and Bierkens, 2012).

Regional climate and mesoscale model simulations have
also been used to develop consistent estimates of precipitation
and snow amounts. Using the Model Atmospheric Regional,
Ménégoz et al. (2013) conducted regional-scale model runs
and reported that despite the underestimation in the simulated
precipitation, accurate estimates of modeled snow cover extent
and snow water equivalent (SWE) were found. Similarly, the
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High Asia Reanalysis (HAR; Maussion et al., 2014), developed
by the dynamical-downscaling of global analysis data using
the Weather Research and Forecasting model has been shown
to capture the spatial features of precipitation frequency and
orography at fine-spatial scales. In a more recent study, Ghatak
et al. (2018) examined the impact of precipitation uncertainty
on modeled evapotranspiration and runoff over an Indian
subcontinent domain. This study demonstrated the utility of
hydrological modeling as a proxy for evaluating the accuracy of
precipitation products.

Due to the critical importance of HMA as a source of
current and future water availability, the climatic trends in
water cycle variables have been a focus of several studies. In
general, most studies agree that the temperature trends over
HMA show warming patterns whereas long-term trends in
precipitation are more mixed. For example, Liu and Chen (2000)
and Shrestha et al. (1999) found warming temperature trends
over the Tibetan Plateau and central Himalayas, respectively.
No distinct trends in precipitation, however, are reported by
Shrestha et al. (2000). Similarly, significant increasing trends are
reported for surface air temperature in Ren et al. (2017), whereas
the trends in precipitation changes are more variable. While the
overall trend of precipitation had a slight decrease, more recent
time periods (1961–2013) showed an increasing trend. The trends
in precipitation intensity are also closely related to the terrain,
with higher elevation areas showing more significant increasing
trends. In a global analysis of precipitation trends from satellite
observations, Nguyen et al. (2018) show increasing trends in
precipitation over the western HMA, with decreasing trends
in the central and eastern regions. The precipitation decrease,
particularly in the central and eastern regions of HMA, is
identified as the cause for the observed declining trends in remote
sensing-based terrestrial water storage anomalies (Rodell et al.,
2018). Further, Rodell et al. (2018) note that over the Tibetan
Plateau, the increasing trend in TWS anomalies is due to the
increasing trend in precipitation. Passive microwave-based SWE
estimates from the Special Sensor Microwave Imager instrument
are used by Smith and Bookhagen (2018) to examine the trends
in SWE. Increasing trends in SWE, particularly during the winter
time, are observed over the western HMA and declining trends in
other regions. These studies also emphasize the significant spatial
heterogeneity and uncertainty in the trend estimates due to the
limitations of the data sources and limitations in the process
understanding of the dominant climate systems.

In this article, we examine the errors and uncertainties
in key terrestrial water budget variables of precipitation,
evapotranspiration, runoff, terrestrial water storage, and snow
cover over HMA using a suite of uncoupled LSM simulations
forced with prescribed meteorology. A large suite of precipitation
datasets is evaluated first to assess their utility to the LSM
simulations. The systematic and random errors in these products,
and consistency of their long-term trends, are used as measures
of evaluation. An ensemble of LSM simulations is then generated
to develop estimates of terrestrial water budgets and their
corresponding uncertainties. Available reference measurements
of water cycle components, from remote sensing and reanalysis
efforts, are used to evaluate these water budget estimates.

The specific goals of the study include: (1) to develop
simultaneous assessments of the uncertainty and accuracy of
precipitation (modeling inputs) and terrestrial water budget
components (modeling outputs) over HMA from remote
sensing, model analysis, and merged products; (2) to quantify the
spatial variability of the precipitation uncertainties and errors in
these products; (3) to assess the long-term trends in the mean
and extremes of these precipitation products; and (4) evaluate
the uncertainty in the terrestrial water budget estimates and the
consistency of the long-term trends relative to those in the input
meteorology. The article is organized such that section 2 contains
descriptions of data products and the model configurations.
Section 3 presents the evaluation methods employed in the
study. The description and analysis of the results are presented
in section 4. A summary and major conclusions are described
in section 5.

2. STUDY SETTINGS

2.1. Model Domain
The study area shown in Figure 1 includes the Tibetan Plateau
and Himalayas with a geographical extent that ranges from
20.5◦N to 41.0◦N, and 66.5◦E to 101.0◦E. The climate in the
eastern part of the Himalayas is characterized by the East-Asian
and Indianmonsoon systems, causing the bulk of precipitation to
occur from June to September. Overall, the South Asianmonsoon
provides the main source of rain over HMA, contributing up to
80% of annual rainfall over central HMA and the Tibetan Plateau
(Bookhagen and Burbank, 2010). Over the eastern and western
HMA, however, the low pressure systems provide significant
contributions to precipitation in addition to the monsoon
(Ménégoz et al., 2013). The precipitation intensity exhibits a
strong north-south gradient due to orographic effects (Galewsky,
2009). Precipitation patterns in the Pamir, Hindu Kush, and
Karakoram ranges in the west are also characterized by westerly
and southwesterly flows, causing the precipitation to be more
evenly distributed over the year as compared to the eastern parts
(Bookhagen and Burbank, 2010). In the Karakoram, up to two-
thirds of the annual high-altitude precipitation occurs during the
winter months (Winiger et al., 2005; Hewitt, 2011). About half of
this winter precipitation is brought by western disturbances, with
westerly-driven eastward propagating cyclones bringing sudden
winter precipitation to the north-western parts of the Indian
subcontinent (Barlow et al., 2005). The inter-annual variability
in precipitation is higher for HMA than over the downstream
parts of the river basins (Immerzeel et al., 2009). To examine the
regional patterns, we define four sub-regions within this domain
(Figure 1): West, Central, East and Tibetan Plateau regions.

2.2. Gridded Precipitation Datasets
Precipitation estimates from ten different products (i.e.,
APHRODITE, CHIRPS, IMD, CMORPH, TMPA, HAR,
GDAS, ECMWF, ERA-Interim-Land, and MERRA2) are
evaluated. Table 1 shows the general information of the
datasets. APHRODITE (Asian Precipitation - Highly-Resolved
Observational Data Integration Toward Evaluation) product is a
daily gridded precipitation dataset for Asia that is generated from
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FIGURE 1 | The High Mountain Asia (HMA) domain and the corresponding sub-regions with the terrain elevation as the background. Note that TP is the Tibetan

Plateau.

TABLE 1 | Details of the precipitation datasets evaluated in this study.

Dataset Coverage Spatial Time period Time period used References

resolution of availability in the study*

APHRODITE Asia 0.25◦ × 0.25◦ 1950–2007 2001–2007 Yasutomi et al., 2011

CHIRPS lat: 50◦S–50◦N 0.05◦ × 0.05◦ 1981-present 2001–2017 Funk et al., 2015

lon: 180◦W–180◦E

IMD Indian mainland 0.25◦ × 0.25◦ 1980–2013 2001–2013 Pai et al., 2014

CMORPH lat: 60◦S–60◦N 0.25◦ × 0.25◦ 2001-present 2001–2016 Joyce et al., 2004

lon: 180◦W–180◦E

TMPA lat: 50◦S–50◦N 0.25◦ × 0.25◦ 1998–2016 2001–2016 Huffman et al., 2007

lon: 180◦W–180◦E

HAR South-central Asia 10 km × 10 km 2001–2014 2001–2014 Maussion et al., 2014

GDAS Global Varies (60 km–13 km) 2000–2017 2001–2017 Derber et al., 1991

based on the time period

ECMWF Global 0.25◦ × 0.25◦ 2003–2017 2003–2017 Molteni et al., 1996

ERA-Interim-land Global 80 km × 80 km 1979–2010 2001–2010 Balsamo et al., 2015

MERRA2 Global 0.5◦ × 0.625◦ 1980-present 2001–2017 Gelaro et al., 2017

*Time period used for ETC analysis is 2001–2007. Triples include ECMWF used the time period of 2003–2007.

a dense network of daily rain-gauge data (Yasutomi et al., 2011;
Yatagai et al., 2012). CHIRPS (Climate Hazards group Infrared
Precipitation with Stations) dataset is a thermal infrared-based,
quasi-global 0.05◦ precipitation (Funk et al., 2015). IMD (India
Meteorological Department) precipitation data is a daily gridded
rainfall product derived from a dense network of rain gage
stations for the Indian mainland (Pai et al., 2014). In this
study, 0.25◦ gridded rainfall dataset is used. CMORPH (CPC
Morphing Technique) data is derived from several low orbit
passive microwave observations (Joyce et al., 2004). TMPA
(TRMM Multi-satellite Precipitation Analysis) is a merged
multi-satellite precipitation product derived from the Tropical
Rainfall Measuring Mission (TRMM) with a native spatial
resolution of 0.25◦ (Huffman et al., 2007). In this study, we used
the daily precipitation product called 3B42 (Version 7). As noted
earlier, HAR is an atmospheric dataset generated primarily for

the Tibetan Plateau using the Weather Research and Forecasting
regional mesoscale model. The HAR precipitation estimates do
not encompass any gauge-based precipitation measurements.
GDAS (Global Data Assimilation System; Derber et al., 1991)
is the global, operational atmospheric analysis system based
on the operational Global Forecasting System developed at
the Environmental Modeling Center of NOAA’s National
Centers for Environmental Prediction (NCEP). GDAS products
were originally produced on a quadratic T170 gaussian grid
(roughly 80 km) which subsequently have been upgraded to
finer resolution data products over the years. The GDAS model
grids have been upgraded to T254 (∼60 km; since Oct 2002),
T382 (∼38 km; since Jun 2005), T574 (∼27km; since Jul 2010)
and T1534 (∼13 km; since Jan 2015) for the years 2000–2015.
The ECMWF data is obtained from the operational, global
analysis products (Molteni et al., 1996) available on a TL511
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triangular truncation, linear reduced gaussian grid (0.25◦) for
four synoptic hours: 00, 06, 12, and 18 UTC. ERA-Interim/Land
is a global reanalysis and is produced using the HTESSEL land
surface model (Hydrology-Tiled ECMWF Scheme for Surface
Exchanges over Land) with ERA-Interim forcing (Balsamo et al.,
2015). Finally, MERRA2 (Modern-Era Retrospective Analysis for
Research and Applications, version 2) is the latest atmospheric
reanalysis from NASA Global Modeling and Assimilation Office
and is produced with the Goddard Earth Observing System
model version 5 (GEOS-5) Data Assimilation System (Gelaro
et al., 2017). Note that GDAS, ECMWF, HAR, and MERRA2
are reanalysis products and include estimates of all surface
meteorology variables whereas the other products contain
estimates of precipitation only.

2.3. Water Budget and Snow Evaluation
Datasets
As reliable, independent reference datasets are sparse in this
region, a thorough evaluation of each of the water budget
components is difficult. Available remote sensing-based datasets
of evapotranspiration (ET) and changes in terrestrial water
storage (1TWS) and snow cover fraction (SCF) are used to
provide evaluations of the LSM estimates as well as to provide
indirect assessments of the driving meteorology.

Atmospheric Land Exchange Inverse model (ALEXI;
Anderson et al., 2007) and the Global Land Evaporation
Amsterdam Model (GLEAM; Martens et al., 2017) datasets are
used to evaluate the modeled ET estimates. ET estimates in
ALEXI are computed from surface temperature data derived
from geostationary satellites within a two-source energy balance
model. The ALEXI ET datasets available from 2003 at a 5 km
resolution are used in this study. The GLEAM estimates are
produced using a Priestley-Taylor approach driven by passive
microwave sensor data, which does not involve aerodynamic and
canopy resistance formulations, whereas all three LSMs employ
a Penman Monteith type of formulation to compute ET. The
GLEAM datasets from 2000 available at 0.25◦ spatial resolution
are used here.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) daily SCF product from the Terra instrument
(MOD10A1 version 6; Hall and Riggs, 2016) generated using
the Normalized Difference Snow Index and a series of screens
designed to alleviate errors and flag uncertain snow cover
detections is used in this study. MOD10A1 data is available at
500 m spatial resolution from February 2000 to the present.

Terrestrial Water Storage (TWS), the total amount of water
and ice mass on or within the Earth, as glaciers, permafrost,
snow, soil moisture, surface water and groundwater, represents
an integrated measure of the terrestrial water budget. Anomalies
of TWS from the Gravity Recovery and Climate Experiment
(GRACE; Tapley et al., 2004a) satellite are estimated after
removing the effects of atmospheric and oceanic circulations
and glacial isostatic adjustment. In this study, we employ three
different GRACE products available on a monthly basis on
1◦ horizontal resolution grids from the University of Texas
Center for Space Research, Jet Propulsion Laboratory, and

German Research Centre for Geosciences. These products
are based on the version RL05 spherical harmonics fields
(Landerer and Swenson, 2012).

2.4. Land Surface Models and
Configuration
To study terrestrial water budget components and their
uncertainties, an ensemble of land surface model runs was
conducted using a suite of LSMs and forcing inputs. Specifically,
12 different model runs were conducted using three different
LSMs and four different forcing datasets. The Noah (version 3.3;
Wang et al., 2010; Wei et al., 2013), Catchment (CLSM version
Fortuna 2.5; Ducharne et al., 2000; Koster et al., 2000), and
NoahMP (version 3.6; Niu et al., 2011; Yang et al., 2011) LSMs
are forced with MERRA2, GDAS, and ECMWF meteorological
boundary conditions. Note that we chose this subset of products
for forcing the LSM runs as datasets such as APHRODITE, ERA-
Interim-Land, HAR, and IMD have limited spatial or temporal
coverage. Among the precipitation-only products (CHIRPS,
CMORPH, TMPA), we choose CHIRPS data (with other near
surface meteorology from ECMWF), since CHIRPS is found
to have relatively low errors, high correlations and better
consistency of trends in the precipitation evaluations discussed
below (section 4.1).

The three LSMs represent a mix of models with significant
differences in parameterizations and model physics, as
documented in Kumar et al. (2017). The community Noah
LSM is the land model currently used by NCEP and the United
States Department of Defense to support their operational land
analyses. Noah simulates the surface energy and water balance,
land surface skin temperature, snowpack, soil temperature and
moisture (both liquid and frozen) in multiple soil layers. The
version of Noah used in this study includes several improvements
and fixes to the snow physics and warm season processes (Wang
et al., 2010). The NoahMP LSM is developed from the Noah
LSM and incorporates extensive upgrades including dynamic
vegetation phenology, a carbon budget and carbon-based
photosynthesis, an explicit vegetation canopy layer, a multilayer
snowpack representation and the addition of a groundwater
module. The CLSM model represents the land component
of the NASA GEOS-5 system. The subsurface water storage
in CLSM is simulated using three prognostic bulk moisture
variables that represent the deviations from the equilibrium soil
moisture profile (Ducharne et al., 2000; Koster et al., 2000). A
three-layer snow model simulates the snowpack evolution. The
vertical moisture profile includes an implicit groundwater table
located at the depth of equilibrium saturation. Note that none of
these models configurations includes the treatment of glaciers
and human management impacts of groundwater abstraction
and irrigation.

The LSM simulations are conducted with a 15-min timestep
for a 15-year time period (2003–2017) at 0.25 spatial resolution
to generate daily output of water balance components. The
initial conditions for the runs are generated by looping the
LSMs from 2003 to 2017 twice, and then reinitializing the model
in 2003. The LSMs are driven with meteorological datasets
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(MERRA2, GDAS, ECMWF, and CHIRPS) as described in
section 4.1. The high-resolution elevation data from Shuttle
Radar Topography Mission (Rodriguez et al., 2005) is used to
derive the topography dataset of elevation, slope, and aspect.
All model integrations use the modified International Geosphere
Biosphere Programme MODIS 20-category landuse data (Friedl
et al., 2002) and the soils data from the International Soil
Reference and Information Centre (Hengl et al., 2014). The
meteorological inputs (i.e., air temperature, humidity, surface
pressure, wind, downward shortwave, and longwave radiation)
are adjusted for the elevation differences through lapse-rate and
slope-aspect correction methods (Kumar et al., 2013).

3. METHODS

The meteorological inputs are evaluated through an
intercomparison of the mean estimates and their seasonality.
In addition, we employ indirect evaluation strategies such as
the extended Triple Collocation (ETC; McColl et al., 2014) to
assess the skill of the precipitation products. Note that the ETC
does not require the availability of reference datasets. Thus,
the ETC is effective to use for evaluation in this data poor
region such as HMA, where reliable, spatially-representative
reference measurements are not routinely available. We use the
Mann-Kendall test (Mann, 1945; Kendall, 1975) to evaluate the
statistical significance of the trends. To evaluate the uncertainties
in the simulated water budget variables, reference measurements
from remote sensing and reanalysis products are used. Here,
commonly-used accuracy measures such as Root Mean Square
Error (RMSE) and correlation coefficient (r) are utilized.

3.1. Extended Triple Collocation
Triple Collocation (TC; Stoffelen, 1998) is a method for
the simultaneous estimation of the unknown error standard
deviations (or RMSE) of three or more related datasets, without
requiring knowledge of the "true" value. The method assumes a
linear model (Equation 1) where the errors of the datasets being
compared are orthogonal relative to the unknown truth and that
the cross-error variance of the products are zero.

TC has been used in the evaluation of several earth system
measurements such as soil moisture, ocean wind speed, leaf area
index, and sea-ice thickness (Caires and Sterl, 2003; Fang et al.,
2012; Roebeling et al., 2012; Zwieback et al., 2013; Gruber et al.,
2016). The majority of the TC studies uses one dataset as a
reference and applies rescaling procedures to ensure that the
error orthogonality assumption is preserved and the system is
solvable. Given three datasets (X1, X2, and X3), we here rescale
the other two precipitation products (X2 and X3) based on X1

dataset, following Yilmaz and Crow (2014). Therefore, the RMSE
estimated from TC can be assumed to be representative of the
random error component of the total error.

McColl et al. (2014) introduced the ETC that can be used to
estimate the RMSE and r between each of the triplets and the
unknown truth. Note that ETC is mathematically equivalent to
the original TC and provides an easier method for calculating the
correlation coefficients. Alemohammad et al. (2015) introduced
the multiplicative (logarithmic) error model to TC instead of

the additive (linear) error model when applied to precipitation
products across the United States. As the multiplicative error
model is more appropriate for variables such as precipitation, this
approach is used for evaluating the performance of precipitation
products in section 4.1. Hence, a given precipitation estimate, Xi,
can be written as:

Xi = X
′

i + ǫi = αi + βit + ǫi (1)

where Xi(i ∈ {1, 2, 3}) are collocated measurements that are
linearly related to the (unknown) true value t, ǫi represents
additive random errors, and αi and βi are offset and gain terms,
respectively. Assuming that the errors are uncorrelated with each
other (cov(ǫi, ǫj) = 0, i 6= j) and with the (unknown) truth
(cov(ǫi, t) = 0), the RMSE and r, can be estimated as:
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(2)
where Qij is the covariance of Xi and Xj. The signs, “+/-,” refer to
positive linear correlation and negative correlation, respectively,
but r will be practically expected to be positively corrected to the
unobserved truth to avoid the sign ambiguity (McColl et al., 2014;
Alemohammad et al., 2015).

3.2. Mann-Kendall Trend Test
The Mann-Kendall test is a non-parametric test for the
monotonic trends of environmental data over time, such as
climate data or hydrological data (Nguyen et al., 2018). The S
statistics are calculated to determine increasing (or decreasing)
pattern and their magnitude of the trend as follow:

S = 6n−1
k=1

6n
j=k+1sign(xj − xk) (3)

where x is the time series variable. The subscript j and k are the
observation time. sign(xj − xk) is equal to +1, 0, or -1, which
means increasing, no, and decreasing trends, respectively. The S
values are normalized to [-1, 1] for a better explanation. The null
hypothesis H0 assumes that there is no significant trend in the
data at significant at a level of 5% (or 95% confidence level).

4. RESULTS AND DISCUSSION

4.1. Precipitation Analysis
In this section, an intercomparison of the precipitation products
is presented, in order to evaluate their suitability for land
surface and hydrological model simulations. Figure 2 shows
a comparison of the multi-annual mean precipitation over
HMA (computed based on the available time period of each
dataset shown in Table 1). The significant uncertainty in the
precipitation estimates is evident in Figure 2. Generally, all
datasets capture the spatial pattern of increased rainfall over
the central and eastern regions compared to the west and

Frontiers in Earth Science | www.frontiersin.org 6 May 2019 | Volume 7 | Article 120

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Yoon et al. HMA Water Budget Evaluation

FIGURE 2 | Spatial maps of multi-annual mean precipitation (mm) and their distribution from 10 precipitation datasets (Table 1). The box plot in the lower-right

illustrates the median (red line), upper- and lower-quantiles (blue box) and the 25- and 75-th percentiles (black whiskers) of the multi-annual mean precipitation. Note

that the IMD and HAR datasets are only available over part of the entire domain of interest.

the relatively dry regions of the Tibetan Plateau. A notable
exception to this spatial pattern is ERA-Interim-Land, which
shows significantly drier precipitation amounts compared to the
other datasets. Though not as low as that of ERA-Interim-Land,
the mean precipitation from MERRA2 is also low, particularly
over the central and eastern regions. Among these datasets, the
mean precipitation from ECMWF is the greatest, particularly
over the eastern HMA. The pattern of larger precipitation
magnitudes in these datasets is also seen over the western
HMA, over parts of the Hindu Kush, and the Pamir mountains.
Among the satellite-data based products (CHIRPS, CMORPH,
TMPA), the magnitude of precipitation from CMORPH is lower
and comparable to those from MERRA2 whereas the TMPA
and CHIRPS estimates are larger and more consistent with
the station-data based estimates from IMD and APHRODITE.
Note that CHIRPS also includes information from the World

Meteorological Organization Global Telecommunication System
gauges, which are blended with infrared global Cold Cloud
Duration estimates. The IMD and HAR datasets are not available
over the entire domain of interest. The patterns of precipitation
magnitudes from HAR show reasonable consistency with the
gauge-based products, particularly over the eastern HMA. The
boxplot in Figure 2 indicates that the model products HAR and
GDAS have the largest spatial variability, whereas the gauge-
based products (excluding IMD), show a more narrow range.

To examine the differences among these datasets over the
shallow and high terrain, a comparison of the domain-averaged
mean precipitation stratified by elevation is shown in Figure 3.
Similar to the patterns in Figure 2, ECMWF has higher mean
precipitation than the other products at all elevations whereas
ERA-Interim-Land, CMORPH, and MERRA2 are generally
dry (Note that the spatial averages of IMD and HAR are

Frontiers in Earth Science | www.frontiersin.org 7 May 2019 | Volume 7 | Article 120

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Yoon et al. HMA Water Budget Evaluation

FIGURE 3 | Comparison of the domain-averaged precipitation (P) stratified by

elevation. Note that HAR and IMD datasets are limited in their spatial coverage.

influenced by their regional spatial coverage). Generally, there
are larger differences in the precipitation estimates at lower
elevations whereas the spread among the datasets reduces at
higher elevation, likely due to the reduced influence of ground-
based precipitation measurements. For example, precipitation
magnitudes from APHRODITE at high elevations are low and
comparable to that of MERRA2 and CMORPH. This pattern
is consistent with the documented dry biases in APHRODITE
over high terrain (Immerzeel et al., 2015). Similarly, the
magnitude of precipitation from CHIRPS is larger than most
products at low elevations. At higher elevations, however, the
precipitation estimates from CHIRPS are lower than that of
GDAS and ECMWF.

The seasonal patterns of the spatial variability and magnitude
of precipitation directly impact the snowpack evolution and
melt processes. Since there are distinct precipitation regimes
over HMA that influence the spatial patterns in winter and
summer, the mean precipitation estimates stratified by the
winter (December, January, February) and summer (June, July,

August) time periods are shown in Figures 4, 5, respectively.
The spatio-temporal patterns of the winter Westerlies are the
primary determinant of snow evolution over these regions.
Similar to Figure 2, the precipitation magnitudes are smallest
in ERA-Interim-Land, followed by MERRA2 and CMORPH.
The winter precipitation estimates are largest in the ECMWF,
GDAS, and HAR products, whereas APHRODITE, CHIRPS,
and IMD, which include information from gauges, span the
intermediate range across these products. These patterns are
repeated in the summer comparisons, where the precipitation
regime shifts to the south and eastern regions (Figure 5). The
magnitude of mean precipitation is lowest in ERA-Interim-Land
and highest in ECMWF. The spatial pattern in MERRA2 over
the eastern HMA during this time period is more consistent with
APHRODITE, CHIRPS, and IMD, though the rainfall amounts
are underestimated over the central HMA. These comparisons
of mean precipitation are indicative of possible biases in these
products. The seasonally stratified comparisons confirm that
ECMWF and GDAS precipitation estimates are consistently high
whereas MERRA2, ERA-Interim-Land, and the satellite-based
products (TMPA and CMORPH) tend to be low. The gauge-
informed products (particularly APHRODITE and CHIRPS) fall
in the midrange in terms of the magnitude of precipitation in
these comparisons.

Estimates of average RMSE and r2 generated by the ETC
analysis are shown in Figures 6, 7, respectively. These maps
are generated by averaging the RMSE and r2 values generated
from each of the 120 possible triplets across the 10 precipitation
products. As noted earlier, the RMSE estimates from ETC are
representative of the random errors in these products. Figures 6,
7 indicate that MERRA2 products have the largest RMSEs
and lowest r2 values across different products. Comparatively,
the station data-based products (APHRODITE, CHIRPS, and
IMD) have lower errors and increased correlations (NOTE:
the average error for IMD in the histogram is high because it
only encompasses the Indian subcontinent). Generally, larger
RMSEs are observed over the eastern HMA, likely because
the mean precipitation is higher over the eastern region due
to the influence of the monsoon regime. Conversely, low
RMSEs are observed over the Tibetan Plateau from most
products, as precipitation magnitudes are typically small in
that region. Among the model-based precipitation products,
ECMWF performs well with low RMSE and high r2 values. It
is also notable that in ECMWF, r2 estimates are consistently
high across the entire domain and the spatial variability of r2

is generally low, particularly compared to the spatial patterns
of r2 in other datasets. The satellite-based products (CMORPH
and TMPA) have low correlations over the Tibetan Plateau and
high elevation areas whereas the correlations are higher in the
southern parts of the domain. Note that the products that include
in-situmeasurements (APHRODITE, CHIRPS, IMD) may share
information from the same station locations. In such cases, the
assumption of uncorrelated errors in the triplets may be violated.
In the ETC evaluations shown in Figures 6, 7, however, the
influence of correlated errors is ignored as the spatial density of
the stations is small and time span of the individual station data
products is different.
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FIGURE 4 | Same as Figure 2, but stratified for the peak winter months (December, January, February). The extreme data points/outliers are plotted individually using

the “+” symbol.

Figure 8 shows the domain-averaged mean annual
precipitation from these datasets along with estimates of their
temporal trends for the four sub-regions of HMA (Figure 1).
Note that for some datasets (IMD and HAR), the spatial averages
are influenced by their limited spatial coverage.

CMORPH, GDAS, HAR, and MERRA2 show an increasing
trend of precipitation over all of HMA, whereas the other
datasets do not indicate a statistically significant increasing
or decreasing trend. There are more significant trends in the
regional evaluations. Over the western HMA, most products
indicate an increasing precipitation trend, consistent with the
findings of Nguyen et al. (2018). None of the products show
a statistically significant decreasing trend in precipitation over
the central and eastern regions as suggested in Nguyen et al.
(2018) and Rodell et al. (2018). In fact, CMORPH, HAR, and
MERRA2 show the opposite trend, indicating a statistically
significant increasing trend in precipitation. Finally, over the

Tibetan Plateau, most products except CMORPH, GDAS, and
HAR indicate no significant trends in precipitation. Note that
over the Tibetan Plateau, Rodell et al. (2018) found an increasing
trend in precipitation whereas Nguyen et al. (2018) indicates
that there is no statistically significant trend in precipitation.
It should also be stressed that the time periods (i.e., 17-year
analysis) used in our computations are generally short, due to the
availability of datasets, and the choice of a common time period
of evaluation. The shortness of the time period of evaluation is a
likely contributing factor in the determination of these trends.

It should be emphasized that the sparse and uneven in-
situ coverage in these precipitation products is a significant
factor in the quality of these products, as documented in prior
studies (Ghatak et al., 2018). Generally, it is acknowledged that
precipitation is underestimated in these products, particularly
over high elevations (Immerzeel et al., 2015). Most weather
stations are located on the valley floors (at lower elevation) and
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FIGURE 5 | Same as Figure 2, but stratified for the summer months (June, July, August). The extreme data points/outliers are plotted individually using the “+”

symbol.

not on mountain slopes, which means that statistically-averaged
gauge data may not properly represent the heterogeneity of
rainfall in complex terrain over these regions (Bharti and Singh,
2015; Song et al., 2016). The retrieval algorithms for satellite-
based products can suffer from high frequency microwave
scattering associated with persistent snow cover and falling
snow in high mountainous regions, which contributes to the
uncertainty in these products (Yong et al., 2015; Song et al.,
2016). The accuracy and the trends in the modeled precipitation
products are also influenced by the remote sensing inputs. For
example, it is documented (Bosilovich et al., 2017) that the
introduction of the Atmospheric Infrared Sounder radiances in
2002 leads to an increase in precipitation over the land areas
and a decrease over the oceans. Bosilovich et al. (2017) also
note that the introduction of data from new instruments is a
significant factor in the changes of water cycle components in
these reanalysis products.

4.2. Near Surface Air Temperature Analysis
An intercomparison of near surface air temperature (Tair)
estimates from three model analysis products (ECMWF, GDAS,
and MERRA2) is presented in this section. A time series
of domain-averaged annual mean Tair estimates from 2000-
onward is shown in Figure 9, which demonstrates the significant
differences in the mean and the trends in these products.
The MERRA2 estimates are generally warmer and devoid of
any climatological trends, whereas both ECMWF and GDAS
estimates show a statistically significant warming trend, with
generally cooler Tair than that of MERRA2. When stratified
regionally, GDAS shows a warming trend over all four regions,
whereas ECMWF shows warming trends in the western and
central regions only. MERRA2 does not have a statistically
significant trend in the western and central regions, whereas it
shows an increasing trend in Tair over the Tibetan Plateau and
eastern regions. Previous studies using in-situmeasurements and
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FIGURE 6 | RMSE of precipitation (mm) estimated using the ETC method. The value at each grid point represents the mean RMSE across 120 possible triplets

among the 10 precipitation products. The error bars represent the mean standard deviation across the 120 triplets.

GCM outputs also find the climatological warming trends in the
eastern (Ren et al., 2017), central (Shrestha et al., 1999), and the
Tibetan Plateau (Immerzeel, 2008) regions.

The time series of annual mean Tair shown in Figure 9

indicates that MERRA2 is consistently warmer than GDAS and

ECMWF. The examination of the mean seasonal cycle of Tair also
confirms that the pattern of warmer Tair inMERRA2 is persistent
throughout the season (not shown). In particular, over most of

the eastern HMA, climatological mean Tair from MERRA2 is
observed to be above freezing. GDAS estimates are comparable

to MERRA2 during the summer time period and are coldest
(among the three products) during the winter time periods.
The evaluation of Tair presented in this section indicates that
the lack of a warming trend, consistently warmer estimates and
regional deficiencies in the seasonality of MERRA2 estimates
poses significant challenges for realistic snow and hydrological
model simulations.

4.3. Uncertainties in the Water Cycle
Components
In this section, we examine the uncertainty in the terrestrial
water balance estimates from the LSM ensemble. The terrestrial
water budget is represented by Equation (4), representing the
partitioning of total precipitation (P) into ET, runoff (R), and
1TWS. Note that R is the gridded runoff (consisting of surface
runoff and baseflow) estimated by the LSM and not the routed
streamflow. The 1TWS are contributed by the changes in soil
moisture, snow icemass, canopy water, surface water, and ground
water storages.

P = ET + R+ 1TWS (4)

We first examine if the spread in P, ET, and R is driven by the
differences in the LSM formulations or the driving meteorology.
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FIGURE 7 | Same as Figure 6, but for r2.

Figure 10 shows the distribution of mean annual averages of P,
ET, and R, grouped by LSMs and the forcing datasets. Overall, it
can be noted that there are smaller differences in the water budget
terms across the LSMs when driven with a common forcing
whereas larger differences in P, ET, and R are seen across the
modeled estimates with different forcing datasets. This suggests
that the uncertainty in the driving meteorology is the dominant
factor in the terrestrial water budget estimates. Generally, the
spread in the ET estimates (when grouped by the LSM or the
forcing) is generally small compared to that seen with R. It
can be noted that, when stratified by the forcing dataset, the
range of ET and R estimates essentially mirrors that of the
precipitation input. Indeed, similar to the precipitation inputs,
the magnitude of ET and R is higher during the summer season
over eastern HMA (not shown). During the melt season, due to
the contribution of snow and ice melt to R, the spatial patterns of
R shift from northwest to southeast. The high and low estimates
of ET and R are obtained from LSM runs that employ ECMWF
and MERRA2, respectively. These results further confirm the

significant influence of precipitation in the LSM-based water
budget estimates.

Across the 12 member LSM ensemble used in this study, we
estimate the mean annual fluxes and their uncertainty (expressed
as one standard deviation) over HMA in P, ET, and R to be 2.11
± 0.45, 1.26 ± 0.11, and 0.85 ± 0.36 mm per day, respectively.
Similar estimates are seen in global water budget estimation
studies. For example, using a large suite of modeled and remote
sensing based products, Rodell et al. (2015) document that the
annual mean fluxes and their uncertainty at the global scale to be
2.16 ± 0.12, 1.33 ± 0.13, and 0.92 ± 0.13 mm per day, for P, ET,
and R, respectively. The estimates over Eurasia are similar, with
annual mean fluxes of 1.99 ± 0.12, 1.15 ± 0.18, and 0.94 ± 0.12
mm per day in P, ET, and R, respectively.

The mean annual estimates from our model ensemble are
comparable to these global/continental estimates, while the
uncertainty estimates, particularly for P and R, are significantly
higher than the corresponding global estimates, which is
an additional confirmation of the challenges in the accurate
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FIGURE 8 | Time series of domain-averaged mean annual precipitation (A), and estimates of the Mann Kendall S-statistic (B) for the entire HMA and four sub-regions

(Figure 1). The statistically significant trends are shown with filled boxes.

FIGURE 9 | Time series of domain-averaged mean annual near surface air temperature (A), and estimates of the Mann Kendall S-statistic (B) for the entire HMA and

four sub-regions (Figure 1). The statistically significant trends are shown with filled boxes.
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FIGURE 10 | Distribution of the mean annual averages of precipitation (P), evapotranspiration (ET ) and total runoff (R), grouped by the LSMs (top panel) and forcing

datasets (bottom panel). The units are mm.

characterization of these terrestrial fluxes over HMA. These
uncertainties estimates are also quite close to those found by
Munier and Aires (2018).

Figure 11 shows the distribution of the domain-averaged
RMSE from eachmodel run as well asmaps of the ensemblemean
RMSE across the 12 ensemble members. Though independent,
ALEXI and GLEAM are also modeled products, with their own
biases in the ET estimates, which are apparent in the comparisons
shown in Figure 11. In the ALEXI comparisons, estimates
from Noah33 and NoahMP forced with ECMWF produce the
lowest RMSE, whereas NoahMP forced with ECMWF and
CHIRPS produces the best agreement compared to GLEAM. The
examination of the mean seasonal cycles of the model runs and
these reference products indicates that the ET estimates from
ALEXI are generally higher compared to the LSM ensemble.
Note that similar findings about the possible positive biases
in ALEXI are also described in Ghatak et al. (2018). That
means a better match of a model run with ALEXI may be
indicative of a high bias in the modeled estimates. GLEAM,
on the other hand, shows better consistency with the model
ensemble, though the ET magnitudes are lower in the late
summer, fall, and winter months. In the GLEAM comparisons,
runs forced with ECMWF and CHIRPS produce the best
agreements in ET for each model. In the spatial comparisons,
larger disagreements are seen over the western regions and parts
of the eastern domain. The RMSE spatial patterns in the GLEAM
comparison essentially mirror the summer precipitation means

(Figure 5) with the disagreements more prominent over the
eastern parts of the domain. Figure 11 also indicates that the
disagreements between LSMs and ALEXI are more prominent
over the lower Indus and lower Brahmaputra basins. These
basins are known to have significant agricultural irrigation
systems (http://pakirsa.gov.pk), the impacts of which are not
captured in the LSM runs. It is possible that the large RMSE
values over these areas are a result of the reference datasets
capturing the impacts of such processes. ALEXI, in particular,
has been demonstrated to represent the impacts of management
related sources and sinks over the continental United States
(Hain et al., 2015).

As reliable, multi-year ground observations of R are not
easily available over this domain, an independent assessment of
the quality of R estimates beyond the comparisons shown in
Figure 10 is not conducted in this study. Instead, we focus on
the assessment of the simulated TWS and snow conditions. Note
that a direct evaluation of the snow mass is difficult due to the
lack of reliable ground measurements with good spatial coverage.
In addition, remote sensing retrievals of SWE and snow depth
from passivemicrowave instruments retrievals are known to have
large uncertainties in mountainous terrain such as HMA (Dong
et al., 2005; Markus et al., 2006; Tedesco et al., 2010). Therefore,
the evaluation of snow conditions is performed by comparing
the simulated SCF estimates against the observations from the
MODIS instrument, which provides an assessment of the snow
covered extent, but not the snow mass.
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FIGURE 11 | Maps of ensemble mean RMSE (W/m2) of ET across the 12 ensemble members compared against ALEXI (A) and GLEAM (B), distribution of the

domain-averaged RMSE from each of the 12 LSM runs (C) and the mean seasonal cycle of ET (D). The gray shading in (D) represents the spread in ET across the

LSMs.

FIGURE 12 | Comparison of mean SCF estimates (unitless) from MOD10A1 and the model runs. (A) Shows the spatial maps of mean SCF whereas (B) shows the

domain-averaged SCF stratified by elevation. The modeled estimates are averaged across the three LSMs for each forcing data.
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FIGURE 13 | The time series of the anomalies in TWS (mm) from GRACE and the model runs during 2003–2018. The red and cyan shadings represent the spread in

TWS anomalies across the GRACE products and LSMs, respectively. The average TWS anomaly estimates from models driven by the ECMWF +CHIRPS forcing are

shown in black.
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Figure 12 shows a comparison of mean SCF from MOD10A1
and the modeled SCF averaged across the LSMs for each
forcing data. The influence of the precipitation and temperature
differences in the driving meteorology can be observed in
these comparisons. The large magnitude of precipitation in the
ECMWF and GDAS data leads to large snow evolution and
broader spatial coverage of snow. This is evidenced in both the
spatial maps and in the comparison of the mean SCF stratified by
elevation. The snow coverage in the MERRA2 based runs, on the
other hand, is generally low, possibly due to the underestimation
of precipitation and warmer air temperature. The CHIRPS-
based runs provide a better match with the MOD10A1 data,
particularly over the western and central domains and over
the mid-elevation ranges (∼ 2,000–5,000 m). In the southeast
part of the domain, the CHIRPS-based runs underestimate
snow coverage, due to possible precipitation underestimation.
The accuracy of simulating snow cover is evaluated using the
probability of detection (POD) and false alarm ratio (FAR)
compared to MOD10A1. Overall, the LSM ensemble has an
average POD of 72% and FAR of 36%. Most prominent POD
and FAR values are over the shallow snow covered areas over the
Tibetan Plateau and eastern HMA. Despite these discrepancies
over eastern HMA, the ECMWF + CHIRPS-based runs provide
the best estimate of the snow coverage, with a domain average
POD of 81% albeit with a slightly higher FAR of 51%.

Figure 13 shows the time series of the spread of TWS
anomalies from GRACE and the model runs during 2003–2018.
Over the entire HMA, the model runs provide a reasonable
match to GRACE, though the slight declining trend in TWS
is not represented well in the model runs. Larger differences
between the modeled estimates and GRACE are observed in the
regional comparisons. As noted in Rodell et al. (2018), significant
declining trends in GRACE are observed over the western and
central regions. The negative trends in TWS anomalies are
comparatively smaller over the eastern HMA. The model runs
do not represent these temporal trends well, as none of the
input precipitation forcing data used in the model ensemble
(ECMWF, GDAS, MERRA2, and CHIRPS) has a statistically
significant declining trend over this region. Since MERRA2
has an increasing trend in precipitation, the MERRA2 forced
run shows an increasing trend in TWS. The domain-averaged
anomaly RMSE and R of the LSM ensemble are 67 mm and 0.31,
respectively. The dominant errors come from glacial areas and
downstream basins of the western and central HMA. Overall,
average anomaly RMSE and r of the ECMWF+CHIRPS runs are
59 mm and 0.36, respectively, providing the best match to the
GRACE observations. Note that the TWS anomalies from the
ECMWF+CHIRPS runs are also shown as a separate time series
in Figure 13.

Note that relating the surface mass changes to the GRACE
signal can be hard in this region with tectonically activemountain
ranges, substantial groundwater pumping for farm irrigation, and
melting of snow and glaciers (Moiwo et al., 2011; Immerzeel
and Bierkens, 2012). Rodell et al. (2018) identified groundwater
depletion as the primary cause of the declining trends in TWS
over the westernHMAwhereas water depletion and precipitation
decline was the key reason for the decline in TWS over the
central and eastern HMA. Studies such as Moiwo et al. (2011)

and Yi and Sun (2014) also quantify that the influence of
the mass changes from glacier melt is comparable to that
from underground water depletion over HMA. As the LSM
simulations used in this study exclude glaciers and do not include
representations of human management such as groundwater
abstractions, they can only be expected to simulate the impacts
of natural variability in meteorology. The mismatches between
the model estimates and GRACE TWS in Figure 13, therefore,
can be used to find potential sources of TWS variability and
limitations of precipitation inputs. For example, over the Tibetan
Plateau, the model (particularly the ECMWF+CHIRPS based
simulation) and GRACE estimates are comparable, indicative of
the reasonable quality of the input meteorology. Comparatively,
the larger mismatches over the West and Central regions can
be attributed to the lack of handling of the glacier melt and
groundwater abstraction impacts in the model.

5. SUMMARY AND CONCLUSIONS

Despite the importance of HMA as a critically important area of
freshwater storage and water availability, significant uncertainty
in the characterization of terrestrial water budget components
exists due to the lack of reliable and spatially-distributed ground
measurements as well as limitations in the modeling and remote
sensing estimates. This study presents an evaluation of the key
terrestrial water budget variables over HMA using available
measurements and both direct and indirect evaluation methods.
An ensemble of uncoupled land surfacemodel simulations forced
with prescribed meteorology is used to develop estimates of
terrestrial water budget components.

As precipitation is one of the most important inputs for
LSM simulations, an evaluation of the quality of a suite of 10
precipitation datasets is conducted first. The spatial patterns
of precipitation seasonality, where the winter precipitation is
dominated by the westerly and southwesterly flows with the
summer precipitation influenced primarily by the South Asia
monsoon, are captured reasonably well in these products.
However, significant differences in the mean estimates are
observed across these products. Within the suite of products
being compared, the precipitation magnitudes from ERA-
Interim-Land and MERRA2 are generally lower whereas that
fromGDAS and ECMWF are higher. The station data and remote
sensing based products generally encapsulate an intermediate
range of precipitation variability in the comparisons.

An indirect evaluation method called ETC that does not
require the availability of a reference dataset is used to
assess the RMSE and correlation of these precipitation data
products. The ETC evaluation indicates poor performance
of MERRA2 with large RMSE and low r2 values. The
products such as APHRODITE, CHIRPS, and IMD that employ
gauge information had stronger agreement across the ETC
comparisons. Among the modeled estimates, the ECMWF
dataset is found to have good skill with low RMSE and high
correlations. Spatially, larger errors are observed over the eastern
HMA, where the magnitude of the precipitation is higher than
the western and central domains due to the influence of the South
Asia monsoon. The examination of the temporal trends in the
precipitation datasets also demonstrates significant differences
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across these products. CMORPH, GDAS, HAR, and MERRA2
show an increasing trend of precipitation over HMA, whereas
the other datasets do not show a statistically significant increasing
or decreasing trend. The increasing precipitation trends in these
products, particularly over the central and eastern regions, are
inconsistent with the reported declining trends in prior studies.

A comparison of the Tair from ECMWF, GDAS, and
MERRA2 indicates that MERRA2 estimates are generally
warmer. Consistent with the prior studies, ECMWF and GDAS
Tair estimates indicate a warming trend whereas MERRA2
estimates do not show a significant warming or cooling trend.
These inconsistencies (in precipitation and air temperature) have
significant influence on the LSM simulations, particularly in
the characterization of the magnitude of snowpack evolution
over HMA.

Using a subset (ECMWF, GDAS, MERRA2, and CHIRPS)
of the 10 precipitation products, 12 model runs are conducted
using three different land surface models. This model ensemble is
used to generate assessments of the uncertainty in the terrestrial
water budget components. Comparison of the distribution of
the mean annual averages of P, ET, and R stratified by the
driving meteorology and LSMs indicates that the uncertainty
in the driving meteorology is the dominant factor in the
uncertainty in these estimates over HMA. Further, there is larger
uncertainty in the R estimates compared to the spread in the
ET estimates within the ensemble. The annual mean estimates
of water budget partition from this model ensemble are found
to be comparable to reported global/continental estimates in
prior studies, whereas the uncertainty/spread of P, ET, and R
is significantly larger than the corresponding estimates from
global studies.

The modeled ET estimates are compared against the thermal
infrared based ALEXI and passive microwave based GLEAM
estimates. Generally, the biases in the input precipitation datasets
(particularly over the summermonths) are reflected in the quality
of the ET estimates, with the model runs forced by ECMWF +
CHIRPS producing the best match with the GLEAM estimates.
The modeled SCF estimates are strongly influenced by the input
precipitation and air temperature. The ECMWF and GDAS
based runs produce large snow evolution whereas MERRA2 runs
underestimate the magnitude and extent of snow. Overall, the
ECMWF+CHIRPS based run provides the best match to the
MOD10A1 estimates, particularly over the western and central
HMA. Though the ECMWF+CHIRPS based runs underestimate
the snow evolution in the northeastern parts of HMA, such
disagreements are mostly limited to areas with shallow snow.
When compared at the domain-wide scale, the simulated TWS
anomalies show reasonable agreements with those from the
GRACE mission. In regional comparions the model simulations
fail to simulate the declining trends in TWS observed in
GRACE. The lack of a statistically significant declining trend in
precipitation is the cause of this deficiency in some parts of the
domain (over the Central HMA). Over HMA, the GRACE signal
also encompasses the impacts of groundwater pumping, tectonic
activity, and glacier melt, which are not well represented in the
LSM simulations. The discrepancies between GRACE and the

LSM estimates (particularly over theWestern and Central HMA)
are likely due to these missing processes in the LSM simulations.

Overall, this study points to the significant need for improving
the meteorological boundary conditions toward reducing the
uncertainty in the terrestrial budget estimates. The results
presented in this article demonstrate that some of the widely
used global reanalysis products have significant uncertainties
in their surface meteorological fields in such a mountainous
region and these uncertainties are accompanied by a failure
to capture trends and inter-annual variability relevant to water
resource monitoring and projection applications. While direct
measurements of variables such as precipitation are difficult over
this complex terrain, the study demonstrates the utility of indirect
evaluation methods for developing attributions of uncertainty.
For example, the use of remotely sensed SCF measurements
to assess precipitation products is particularly useful in mid-
elevation zones where the biases in input precipitation are
expected to lead to biases in simulated SCF. The challenge in
evaluating remotely sensed ET products remains a critical gap, as
there is significant uncertainty in the absolute values generated by
products such as ALEXI and GLEAM. These products, however,
are still useful for evaluating the spatial and temporal variability
of the simulated ET products (Anderson et al., 2007; Martens
et al., 2017). Similarly, the lack of reliable, spatially distributed
measurements of SWE, particularly at higher elevations, is
another critical terrestrial water budget observational gap. As
evidenced in this study, despite its importance as a major water
budget component, reliable measurements of R are lacking in
this region due to the limitations of the stream gauge network
and inadequate data sharing. Measurements from the upcoming
Surface Water Ocean Topography (Biancamaria et al., 2016)
mission are expected to help toward mitigating this observational
gap. The current study provides a benchmark for evaluating
further improvements in water budget estimation through the
incorporation of such future measurements.
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