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Despite the widespread use of exploratory factor analysis in psychological research,

researchers often make questionable decisions when conducting these analyses.

This article reviews the major design and analytical decisions that must be made

when conducting a factor analysis and notes that each of these decisions has

important consequences for the obtained results. Recommendations that have been

made in the methodological literature are discussed. Analyses of 3 existing em-

pirical data sets are used to illustrate how questionable decisions in conducting

factor analyses can yield problematic results. The article presents a survey of 2

prominent journals that suggests that researchers routinely conduct analyses using

such questionable methods. The implications of these practices for psychological

research are discussed, and the reasons for current practices are reviewed.

Since its initial development nearly a century ago

(Spearman, 1904, 1927), exploratory factor analysis

(EFA) has been one of the most widely used statistical

procedures in psychological research. Despite this

long history and wide application, the use of factor

analysis in psychological research has often been

criticized. Some critics have raised concerns about

fundamental limitations of factor analysis for contrib-

uting to theory development (e.g., Gould, 1981; Hills,

1977; Overall, 1964). For instance, Armstrong (1967),

in an article entitled "Derivation of theory by means

of factor analysis or Tom Swift and his electric factor

analysis machine," argued that factor analysis had

limited utility for aiding in the development of theory,

because it could not be relied on to provide meaning-

ful insights into data.1 He attempted to demonstrate

this point by creating artificial data with a known

structure and then ostensibly showing that EFA failed

to accurately represent the structure.2 Other critics

have not challenged the fundamental utility of EFA

but have instead criticized the manner in which it is
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1 The name Tom Swift refers to a character in a popular

series of juvenile science fiction novels published in the

1960s. In each novel, Tom Swift makes use of futuristic

devices with near-miraculous powers. Armstrong's refer-

ence to this character in the title of his article highlighted

what he regarded as the naive belief by researchers in fun-

damental utility of EFA.
2 It is important to note that Armstrong (1967) was not

the first person to examine the effectiveness of EFA proce-

dures using data sets with a known underlying structure

(e.g., see Thurstone, 1947; Cattell & Dickman, 1962; Cattell

& Sullivan, 1962; Cattell & Jaspers, 1967). Interestingly, in

these other cases, the authors concluded that appropriate

EFA procedures were reasonably effective in revealing the

known underlying structure of the data.
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sometimes applied (e.g., Comrey, 1978; Ford, Mac-

Callum, & Tail, 1986; Gorsuch, 1983; McNemar,

1951; Skinner, 1980). In this article, we primarily

address the latter issue. That is, we explore the man-

ner in which factor analysis is applied in psychologi-

cal research and evaluate the soundness of current

practices. However, we contend that these two issues

are intertwined. The utility of factor analysis for

theory development is dependent on the manner in

which it is implemented (see Cattell, 1978; Comrey,

1978). Furthermore, we suggest that some critics who

have questioned the fundamental value of factor

analysis have not been sufficiently sensitive to this

relationship.

We begin our discussion by reviewing some of the

major methodological decisions that researchers must

make when conducting a factor analysis. Next, we

illustrate with published data sets how poor choices

when making these decisions can substantially distort

the results. We then turn our attention to the extent to

which current use of factor analysis reflects sound

practice-. We conclude with discussions of the impli-

cations of current factor analytic practices for psycho-

logical theory and reasons for the prevalence of cer-

tain practices.

Methodological Issues in the Implementation of
Factor Analysis

Perhaps more than any other commonly used sta-

tistical method, EFA requires a researcher to make a

number of important decisions with respect to how the

analysis is performed (see Finch & West. 1997). Spe-

cifically, there are at least five major methodological

issues that a researcher should consider when con-

ducting a factor analysis. First, he or she must decide

what variables to include in the study and the size and

nature of the sample on which the study will be based.

Second, a researcher must determine if EFA is the

most appropriate form of analysis given the goals of

the research project. Third, assuming that EFA is ap-

propriate, a specific procedure to fit the model to the

data must be selected. Fourth, the researcher must

decide how many factors should be included in the

model. Finally, it is usually necessary for a researcher

to select a method for rotating the initial factor ana-

lytic solution to a final solution that can be more

readily interpreted. Each of these decisions can have

important consequences for the results obtained (see

Armstrong & Soelberg, 1968; Cattell, 1978; Comrey,

1978; Ford et al., 1986; MacCallum, 1983; MacCal-

lum, Widaman, Zhang, & Hong, 1999; Velicer &

Fava, 1998; Weiss, 1976). To the extent that a re-

searcher makes poor decisions, the analysis is more

likely to provide misleading results. However, re-

searchers often appear to be unaware of the issues

involved in these decisions.

Decisions in Conducting an EFA

Study design. As with any statistical procedure,

the utility of the results obtained in EFA is in large

part determined by the soundness of the design of the

study from which the data are collected. Within the

context of EFA, one design issue that is especially

important is what measured variables to include in the

study (Cattell, 1978). If a researcher inadequately

samples measured variables from the domain of in-

terest, he or she may fail to uncover important com-

mon factors. Conversely, if measured variables irrel-

evant to the domain of interest are included, then

spurious common factors might emerge or true com-

mon factors might be obscured. Therefore, research-

ers should carefully define their domain of interest

and specify sound guidelines for the selection of mea-

sured variables.

Research suggests that EFA procedures provide

more accurate results when each common factor is

represented by multiple measured variables in the

analysis (i.e., when common factors are "overdeter-

mined"; MacCallum et al., 1999; see also Velicer &

Fava, 1998). Methodologists have recommended that

at least three to five measured variables representing

each common factor be included in a study (MacCal-

lum et al., 1999; Velicer & Fava, 1998). Thus, when

designing studies for which EFA is likely to be used,

a researcher should consider the nature and number of

common factors he or she expects might emerge. The

total number of measured variables included should

be at least 3 to 5 times the number of expected com-

mon factors, and the selected variables should include

multiple variables likely to be influenced by each of

the common factors. Alternatively, in cases in which

there is little or no basis to anticipate the number and

nature of common factors, a researcher should attempt

to delineate as comprehensively as possible the popu-

lation of measured variables for the domain of inter-

est. He or she should then include in the study a

sample of these measured variables that is as large as

feasible (see Cattell, 1978).

Sound selection of measured variables also requires

consideration of psychometric properties of measures.

When EFA is conducted on measured variables with
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low communalities (i.e., variables for which the com-

mon factors explain little variance), substantial distor-

tion in results can occur (MacCallum et al., 1999;

Velicer & Fava, 1998). There are a number of reasons

why communalities for measured variables might be

low. One obvious reason is low reliability. As ex-

plained later, variance due to random error cannot, by

definition, be explained by common factors. Because

of this, variables with low reliability will have low

communalities and thus should be avoided. A second

reason why a variable might have a low communality

is that the variable is unrelated to the domain of in-

terest and thus shares little in common with other

measured variables in that domain. Therefore, to the

extent such information is available, a researcher

should consider the validity (e.g., face validity, con-

vergent validity) of measured variables when select-

ing items to include in the analysis.

A second important design decision is the selection

of the sample. A researcher must determine how large

the sample should be and how that sample will be

selected from the population of interest. Methodolo-

gists have proposed a host of rough guidelines for

estimating an adequate sample size for an EFA. Most

of these guidelines involve determining sample size

based on the number of measured variables included

in the analysis—with more measured variables requir-

ing larger sample sizes. Sometimes such guidelines

also specify a minimum necessary sample size regard-

less of the number of measured variables.

Unfortunately, there are serious drawbacks to such

guidelines. One problem is that these recommenda-

tions vary dramatically. For instance, Gorsuch (1983)

suggested a ratio of 5 participants per measured vari-

able and that the sample size never be less than 100.

In contrast, Nunnally (1978) and Everitt (1975)

proposed ratios of 10 to 1. More important, recent

research has suggested that such guidelines are not

sufficiently sensitive to a variety of important char-

acteristics of the data (MacCallum et al., 1999;

Velicer & Fava, 1998). The primary limitation of such

guidelines is that adequate sample size is not a func-

tion of the number of measured variables per se but is

instead influenced by the extent to which factors are

overdetermined and the level of the communalities of

the measured variables. When each common factor is

overdetermined (i.e., at least three or four measured

variables represent each common factor) and the com-

munalities are high (i.e., an average of .70 or higher),

accurate estimates of population parameters can be

obtained with samples as small as 100 (MacCallum et

al., 1999). However, under more moderate conditions

a sample size of at least 200 might be needed; when

these conditions are poor it is possible that samples as

large as 400 to 800 might not be sufficient.

It is worth noting that obtaining parameter esti-

mates that closely approximate population values is

only one criterion a researcher might consider when

determining sample size. In some situations, addi-

tional concerns might also play a role. Most notably,

when EFA involves the testing of formal hypotheses

regarding model fit or parameter estimates (as is

sometimes done in maximum likelihood [ML] EFA),

statistical power might also be considered. A re-

searcher could specify a hypothesis of interest, a de-

sired level of power, and an assumed population value

for model fit. The sample size necessary to achieve

these objectives can then be calculated (see MacCal-

lum, Browne, & Sugawara, 1996).

Researchers should also consider the nature of the

sample on which the study is based. Psychologists

often select samples based on convenience. In many

cases, this practice will not pose a problem. However,

if the sample is considerably more homogeneous than

the population on the common factors, this can lead to

restriction of range in the measures, thereby attenuat-

ing correlations among variables. This attenuation can

result in falsely low estimates of factor loadings and

correlations among factors (see Comrey & Lee, 1992;

Gorsuch, 1983; Tucker & MacCallum, 1997). Addi-

tionally, selection biases related to a single measured

variable in the analysis can also distort results (Tucker

& MacCallum, 1997). For these reasons, researchers

should consider the nature of the measured variables

they are investigating and the manner in which their

sample is selected. Overly homogeneous samples and

samples whose selection is related to measured vari-

ables in the analysis should be avoided. Thus, when

there is a substantial basis to expect that convenience

samples will not be appropriate, a researcher should

consider obtaining a sample representative of the

population of interest. Alternatively, a researcher

might wish to select a sample to maximize variance

on measured variables relevant to the constructs of

interest and minimize variance on measured variables

irrelevant to the constructs of interest (see Cattell,
1978).

Determining whether EFA is appropriate. The

primary purpose of EFA is to arrive at a more parsi-

monious conceptual understanding of a set of mea-

sured variables by determining the number and nature

of common factors needed to account for the pattern
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of correlations among the measured variables. That is,

EFA is used when a researcher wishes to identify a set

of latent constructs underlying a battery of measured

variables. Before using EFA. a researcher should

carefuily consider if this is a goal of the research

projec.

In reaching this decision, it is important to recog-

nize that the goal of identifying latent constructs (i.e.,

understanding the structure of correlations among

measured variables) is different from that of data re-

duction. Data reduction involves taking scores on a

large set of measured variables and reducing them to

scores on a smaller set of composite variables that

retain as much information from the original variables

as possible. Data reduction does not attempt to model

the structure of correlations among the original vari-

ables. This distinction is important, because different

methods have been designed to achieve these two

objectives. If the goal is to arrive at a parsimonious

representation of the associations among measured

variables, EFA can be an appropriate form of analysis.

If the goal is data reduction, principal components

analysis (PCA) is more appropriate. Many researchers

mistakenly believe that PCA is a type of EFA when in

fact these procedures are different statistical methods

designed to achieve different objectives (for a discus-

sion of the distinction, see Bentler & Kano, 1990;

Bookstein, 1990; Gorsuch, 1990: Loehlin, 1990;

McArdie, 1990; Mulaik, 1990; Rozeboom. 1990;

Schonemann, 1990; Steiger, 1990; Velicer & Jackson,

1990a, 1990b; Widaman, 1990).

EFA is based on the common factor model (Thur-

stone, 1947). This model postulates that each mea-

sured variable in a battery of measured variables is a

linear function of one or more common factors and

one unique factor. Common factors are unobservable

latent variables that influence more than one mea-

sured variable in a battery and are presumed to ac-

count for the correlations (covariances) among the

measured variables (i.e., two measured variables are

assumed to be correlated, because they are influenced

by one ;>r more of the same common factors). Unique

factors are latent variables that influence only one

measured variable in a battery and do not account for

correlations among measured variables. Unique fac-

tors are assumed to have two components: a specific

factor component (i.e., systematic latent factors that

influence only one measured variable) and an error of

measurement component (i.e., unreliability in a mea-

sured variable). The goal of the common factor model

is to understand the structure of correlations among

measured variables by estimating the pattern of rela-

tions between the common factor(s) and each of the

measured variables (i.e., as indexed by factor load-

ings).

In contrast, PCA does not differentiate between

common and unique variance. Rather, this approach

defines each measured variable as a linear function of

principal components, with no separate representation

of unique variance. Mathematically, these principal

components can be defined as linear composites of the

original measured variables and thus contain both

common and unique variance. Therefore, principal

components are not latent variables, and because of

this it is not conceptually correct to equate them with

common factors (although in practice researchers of-

ten do so). Furthermore, whereas the goal of common

factor analysis is to explain correlations among mea-

sured variables, the goal of PCA is to account for

variance in the measured variables. That is, the ob-

jective of PCA is to determine the linear combinations

of the measured variables that retain as much infor-

mation from the original measured variables as pos-

sible. Thus, although PCA is often referred to and

used as a method of factor analysis, it is not factor

analysis at all.

Nevertheless, some methodologists have argued

that PCA is a reasonable substitute for analyses of

common factors and might even be superior (e.g., see

Velicer & Jackson, 1990a, 1990b). They noted that

PCA is computationally simpler than common factor

analysis and therefore requires less computer memory

and processing time (e.g., Velicer & Jackson, 1990a).

They also argued that the two approaches generally

produce very similar results (e.g.. Arrindell & van der

Ende, 1985; Velicer, 1977; Velicer & Jackson, 1990a;

Velicer, Peacock, & Jackson, 1982). Also, they noted

that common factor analysis procedures sometimes

produce "Heywood cases" (e.g., Velicer & Jackson,

1990a)—situations in which a communality for a

measured variable (i.e., the proportion of variance in

the measured variable accounted for by the common

factors) is estimated to be at 1 or greater than 1. Be-

cause it is impossible to account for more than 100%

of the variance in a variable, such an estimate is po-

tentially problematic. Finally, advocates of PCA note

that it is determinate, whereas the common factor

model is not (e.g., Steiger, 1979, 1990; Velicer &

Jackson, 1990a). That is, it is possible to compute an

individual person's score on a principal component,

whereas it is not possible to do so for a common

factor.



276 FABRIGAR. WEGENER, MAcCALLUM, AND STRAHAN

There are, however, reasons to question these ar-

guments. Advances in the speed and memory capa-

bilities of computers have made the advantage of the

computational simplicity of PCA trivial. Also, al-

though PC A and EFA do often produce similar re-

sults, there are some contexts in which this is not the

case (e.g., see Bentler & Kano, 1990; Borgatta,

Kercher, & Stull, 1986; Gorsuch, 1988, 1990; Hub-

bard & Allen, 1987; McArdle, 1990; Snook & Gor-

such, 1989; Tucker, Koopman, & Linn, 1969; Wida-

man, 1990, 1993). Differences in results are most

likely when communalities are low (e.g., .40) and

there are a modest number of measured variables

[e.g., three) per factor (Widaman, 1993). Furthermore,

when the data correspond to assumptions of the com-

mon factor model, EFA produces more accurate re-

sults than PCA (e.g., McArdle, 1990; Snook & Gor-

such, 1989; Tucker et al., 1969; Widaman, 1990,

1993). In contrast, when the data are relatively con-

sistent with the assumptions of PCA (e.g., l i t t le

unique variance present in measured variables), ex-

traction of common factors does as well as extraction

of principal components (e.g., see Gorsuch, 1990;

McArdle, 1990; Velicer et a!., 1982).

The occasional occurrence of Heywood cases

should also not be regarded as a flaw of common

factor analysis. Heywood cases often indicate that a

misspecified model has been fit to the data or that the

data violate assumptions of the common factor model

(van Driel, 1978). Thus, Heywood cases can have

diagnostic value (Velicer & Jackson, 1990a). In con-

trast, because such cases do not occur in PCA, such

problems are not solved but simply go unnoticed

; McArdle, 1990).3

Indeterminacy of individual factor scores in the

common factor model need not be a problem. In most

applications of EFA, this issue is irrelevant in that the

objective is to identify common factors that account

ror the structure of the correlations among the mea-

sured variables. This goal does not require the com-

putation of factor scores but rather only factor load-

ings and factor intercorrelations (McArdle, 1990). In

those situations where factor scores might be of in-

terest, researchers usually obtain scores for the pur-

pose of assessing correlations of factors with other

variables, or using factors as independent variables or

dependent variables in regression models. However,

the development of structural equation modeling

makes it unnecessary to estimate factor scores to ob-

tain such information. One can use structural equation

modeling to specify a model with factors as corre-

lates, predictors, or consequences of other variables

and obtain estimates of the relevant parameters with-

out ever estimating factor scores. Additionally, recent

developments have provided useful nonstructural

equation modeling procedures for estimating the cor-

relations between factors and other variables without

the need to compute factor scores (Gorsuch, 1997).

Finally, advocates of common factor analysis note

that it has certain advantages over PCA when the goal

is to identify latent constructs. They argue that most

measures used in psychological research contain some

random error. Because EFA procedures reflect a rec-

ognition of this fact, whereas PCA does not, the com-

mon factor model is a more realistic model of the

structure or correlations (e.g., see Bentler & Kano,

1990; Gorsuch, 1973; Loehlin, 1990). Additionally,

the common factor model is testable, whereas the

PCA model is not (e.g., see Bentler & Kano, 1990;

McArdle, 1990). The common factor model specifies

certain hypotheses about the data. Thus, it can be fit to

data and the model rejected if the fit is poor. In con-

trast, because PCA does not involve a specific hy-

pothesis to be tested, it does not provide information

on which one could base a decision to reject the

"model."

Therefore, there are clear conceptual distinctions

between PCA and EFA. Although these approaches

often produce similar results, this is not true in certain

contexts. When the goal of the analysis is to identify

latent constructs underlying measured variables, it is

more sensible to use EFA than PCA (see Cattell,

1978; Gorsuch, 1983; McDonald, 1985; Mulaik,

1972).

Assuming that identifying latent variables that ac-

count for the correlations among measured variables

is the goal of the research project, a researcher must

then decide if an exploratory or confirmatory ap-

proach will be used. Both EFA and confirmatory fac-

tor analysis (CFA) are based on the common factor

model, and both seek to represent the structure of

correlations among measured variables using a rela-

1 Furthermore, there might be some cases in which a

Heywood case would not represent a misspecified model

and might not be problematic. For example, circumstances

in which population parameters are close to logical bound-

aries (e.g., if true communalities are close to 1.0) could

produce Heywood cases simply because of expected vari-

ability in parameter estimates resulting from sampling error

(van Driel, 1978).
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lively small set of latent variables. However, EFA is

primarily a data-driven approach. No a priori number

of common factors is specified and few restrictions

are placed on the patterns of relations between the

common factors and the measured variables (i.e., the

factor loadings). EFA provides procedures for deter-

mining an appropriate number of factors and the pat-

tern of factor loadings primarily from the data. In

contrast, CFA requires a researcher to specify a spe-

cific number of factors as well as to specify the pat-

tern of zero and nonzero loadings of the measured

variables on the common factors. Alternatively, a re-

searcher might specify a priori a small set of compet-

ing models postulating differing numbers of factors,

different patterns of factor loadings, or both.

In situations in which a researcher has relatively

little theoretical or empirical basis to make strong

assumptions about how many common factors exist or

what specific measured variables these common fac-

tors are likely to influence, EFA is probably a more

sensible approach than CFA. EFA is likely to be more

desirable in these situations, because the number of

plausible alternative models might be so large that it

would be impractical to specify and test each one in

CFA. Additionally, when a strong basis does not exist

for identifying a single model or a few specific com-

peting models, it is quite possible that a researcher

might fail to identify a number of plausible models.

Therefore, in these contexts, the data-driven approach

of EFA seems advisable.

However, when there is sufficient theoretical and

empirical basis for a researcher to specify the model

or small subset of models that is the most plausible,

CFA is likely to be a better approach. This is because

CFA allows for focused testing of specific hypotheses

about the data (e.g., see Finch & West, 1997; Wege-

ner & Fabrigar, in press). Also, the a priori nature of

CFA makes it less likely that a researcher will capi-

talize on chance characteristics in the data.

It is also often useful to use EFA and CFA in con-

junction with one another. An EFA can be conducted

in an initial study to provide a basis for specifying a

CFA model in a subsequent study. Alternatively, if

the sample size in a single study is sufficiently large,

the sample could be randomly split in half. An EFA

could then be conducted on one half of the data pro-

viding the basis for specifying a CFA model that can

be fit to the other half of the data.

Choice of model-fitting procedure. If EFA is the

most appropriate form of analysis, it is then necessary

to decide what procedure will be used to fit the com-

mon factor model to the data. A number of model-

fitting methods (i.e., factor-extraction procedures) are

available. Most widely used among these are ML,

principal factors with prior estimation of communali-

ties, and iterative principal factors. These are different

methods for estimating the parameters (factor load-

ings and unique variances) of the same model, the

common factor model.4

Although these procedures fit the same model, each

method does have certain advantages and disadvan-

tages. The primary advantage of ML is that it allows

for the computation of a wide range of indexes of the

goodness of fit of the model. ML also permits statis-

tical significance testing of factor loadings and corre-

lations among factors and the computation of confi-

dence intervals for these parameters (Cudeck &

O'Dell, 1994). The primary limitation of ML estima-

tion is its assumption of multivariate normality. When

this assumption is severely violated, this procedure

can produce distorted results (Curran, West, & Finch,

1996; Hu, Bentler, & Kano, 1992). On the other hand,

principal factors methods (both iterated and noniter-

ated) have the advantage of entailing no distributional

assumptions. Principal factors are also less likely than

ML to produce improper solutions (i.e., a solution

with a Heywood case or a solution that fails to con-

verge on a final set of parameter estimates; Finch &

West, 1997). The major drawback of the principal

factor methods is that they provide a much more lim-

ited range of goodness-of-fit indexes and generally do

not allow for computation of confidence intervals and

significance tests. Regardless of these differences,

when the common factor model holds reasonably well

in the population and severe violations of distribu-

tional assumptions are not present, solutions provided

by these methods are usually very similar.

Selecting the number of factors. Determining how

many factors to include in the model requires the

researcher to balance the need for parsimony (i.e., a

model with relatively few common factors) against

the need for plausibility (i.e., a model with a sufficient

number of common factors to adequately account for

4 Although the common factor model makes a further

conceptual distinction by decomposing unique variance into

specific variance and error variance, methods of fitting the

common factor model allow for estimates of the amount of

unique variance only and do not provide separate estimates

of specific variance and error variance.
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the correlations among measured variables). In other

words, the goal of the researcher is to determine the

number of "major" factors underlying a battery of

measures. Importantly, errors in selection of the num-

ber of factors in a model can have a substantial effect

on the results obtained (e.g., Comrey. 1978; Fava &

Velicer, 1992; Levonian & Comrey, 1966; Wood, Ta-

taryn, & Gorsuch, 1996).

Traditionally, methodologists have regarded speci-

fying too few factors in a model (i.e., underfactoring)

as a much more severe error than specifying too many

factors (i.e., overfactoring; see Cattell, 1978; Rum-

mel, 1970; Thurstone, 1947). Empirical research has

generally supported this notion. When too few factors

are included in a model, substantial error is likely

(Fava & Velicer, 1992; Wood et al., 1996). Measured

variables that load on factors not included in the

model can falsely load on factors included in the

model, and poor estimates of the factor loadings can

he obtained for measured variables that do actually

load on the factors included in the model (Wood et al.,

1996). Such distortions can result in rotated solutions

in which two common factors are combined into a

single common factor (thereby obscuring the true fac-

i.or structure) and in solutions with complex patterns

of factor loadings that are difficult to interpret (see

Comrey. 1978).

Empirical research suggests that overfactoring in-

troduces much less error to factor loading estimates

ihan underfactoring (Fava & Velicer. 1992; Wood et

..;!., 1996). Such models often result in rotated solu-

i ions in which the major factors are accurately repre-

sented and the additional factors have no measured

variables that load substantially on them or have only

a single measured variable that loads substantially on

each additional factor. Nonetheless, overfactoring

should be avoided (see Comrey, 1978; Comrey &

Lee, 1992). Solutions with too many factors might

prompt a researcher to postulate the existence of con-

s tracts with little theoretical value and thereby de-

velop unnecessarily complex theories. Additionally,

overfactoring can accentuate poor decisions made at

other steps in a factor analysis. For example, PCA

tends to produce loadings that are larger than factor

loadings (see Snook & Gorsuch, 1989; Widaman.

1993). Thus, solutions using this approach can some-

times make minor components appear to be major

components (Wood et al., 1996).

Given these consequences, it is not surprising that

an extensive methodological literature has developed

exploring the issue of determining the optimal number

of factors. A number of procedures for answering this

question have been proposed. Perhaps the best known

of these procedures is the Kaiser criterion of comput-

ing the eigenvalues for the correlation matrix to de-

termine how many of these eigenvalues are greater

than 1 (for discussion of the nature of eigenvalues, see

Gorsuch, 1983). This number is then used as the num-

ber of factors. Although this procedure is appealing

for its simplicity and objectivity, the approach has

significant problems. First, it is often misapplied by

referring to the eigenvalues of the correlation matrix

with communality estimates in the diagonal (i.e., the

reduced correlation matrix) rather than eigenvalues of

the correlation matrix with unities in the diagonal

(i.e., the unreduced correlation matrix; see Guttman.

1954; Kaiser, 1960). Application of this rule to the

eigenvalues of the reduced correlation matrix is an

erroneous procedure (Gorsuch, 1980; Horn, 1969).

Second, as with any mechanical rule, the procedure

can to some extent be arbitrary. For instance, it is not

really meaningful to claim that a common factor with

an eigenvalue of 1.01 is a "major" factor whereas a

common factor with an eigenvalue of 0.99 is not.

Finally, in numerous studies involving both principal

components and common factors, this procedure has

been demonstrated to lead to substantial overfactoring

and occasionally to underfactoring (Cattell & Jaspers,

1967; Cattell & Vogelmann, 1977; Hakstian, Rogers.

& Cattell, 1982; Linn, 1968; Tucker et al., 1969;

Zwick & Velicer, 1982, 1986). In fact, we know of no

study of this rule that shows it to work well.

Another widely known approach for determining

the number of factors is the "scree test" (Cattell, 1966;

Cattell & Jaspers, 1967). In this procedure, the eig-

envalues of the correlation matrix (or the reduced cor-

relation matrix) are computed and then plotted in or-

der of descending values. This graph is then examined

to identify the last substantial drop in the magnitude

of the eigenvalues. A model with the same number of

common factors as the number of eigenvalues prior to

this last substantial drop is then fit to the data. This

procedure is often used with eigenvalues from the

unreduced correlation matrix. However, when the

goal is to identify common factors, it is more concep-

tually sensible to examine the plot of eigenvalues

from the reduced correlation matrix, because this ma-

trix more directly corresponds to the common factor

model. Regardless of which matrix is used, this pro-

cedure has been criticized (e.g.. Kaiser. 1970) because

of its subjectivity (i.e., there is no clear objective defi-

nition of what constitutes a "substantial" drop in mag-
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nitude). Additionally, sometimes the obtained pattern

of eigenvalues is ambiguous in that no clear substan-

tial drop may be present. However, when strong com-

mon faciors are present in data, studies indicate that

this procedure functions reasonably well (Cattell &

Vogelmann. 1977; Hakstian et al., 1982: Tucker et al.,

1969).

A third factor-number procedure that has been in-

vestigated in the methodological literature is parallel

analysis (Horn, 1965; Humphreys & Ilgen, 1969;

Humphreys & Montanelli, 1975; Montanelli & Hum-

phreys, 1976). This approach is based on a compari-

son of eigenvalues obtained from sample data to eig-

envalues one would expect to obtain from completely

random data (i.e., the predicted means of eigenvalues

producec by repeated sets of random data). Suppose a

set of measured variables observed in a given sample

depends on m major common factors. Parallel analy-

sis is based on the notion that the m largest sample

eigenvalues of the reduced correlation matrix should

be larger than the m largest expected values of eigen-

values obtained from repeated corresponding sets of

random data (based on the same sample size and num-

ber of variables). The eigenvalues that would be ex-

pected from random data are then compared with the

eigenvalues actually produced by the data, and a

model is specified with the same number of common

factors as real eigenvalues that are greater than the

eigenvalues expected from random data. Like other

objective mechanical rules, this procedure can some-

times be arbitrary in that a factor just meeting the

criterion is retained, whereas a factor falling just be-

low the criterion is ignored. This procedure is also not

available in major statistical programs. Nonetheless,

simulation research suggests parallel analysis func-

tions fairly well (Humphreys & Montanelli, 1975).

Parallel analysis methods have also been developed

for use in components analysis and found to function

well in ;his context (Allen & Hubbard. 1986: Lauten-

schlager, 1989; Longman, Cota, Holden, & Fekken,

1989; Zwick & Velicer, 1986).

The methods described to this point for determining

the number of factors to retain involve analysis of

eigenvalues obtained in principal factors or PCA. Al-

though >uch methods of factoring are widely used, the

ML method of factor extraction is becoming increas-

ingly popular. The ML method has a more formal

statistical foundation than the principal factors meth-

ods and thus provides more capabilities for statistical

inference, such as significance testing and determina-

tion of confidence intervals. These capabilities allow

a researcher to adopt a somewhat different approach

to determining the optimal number of factors.

One can conceptualize the number-of-factors issue

as choosing the most appropriate model from a series

of alternative factor analysis models that differ in their

complexity (i.e., the number of factors). The objective

is to select a model that explains the data substantially

better than simpler alternative models (i.e., models

with fewer factors) but does as well or nearly as well

as more complex alternative models (i.e., models with

more factors). Because factor analysis is a special

case of structural equation modeling, many of the pro-

cedures used in structural equation modeling for

model selection can be applied to EFA. That is, the

use of ML estimation for EFA introduces a vast array

of goodness-of-fit information that can be used to

determine the appropriate number of factors (see

Browne & Cudeck, 1992; Hu & Bentler, 1998; Marsh,

Balla, & McDonald, 1988; Mulaik et al., 1989). These

fit measures, which are intended to assess the degree

to which a given model provides an approximation of

observed correlations or covariances, can be applied

to the number-of-factors problem. The general proce-

dure is to fit models with a range of numbers of fac-

tors, beginning with zero, and increasing through

some maximally interesting number. Fit measures for

each model can then be evaluated, and a decision can

be made as to the appropriate number of factors to

retain. The desired model is that which constitutes a

substantial improvement in fit over a model with one

fewer factor but for which a model with one more

factor provides little if any improvement in fit.
5

One common statistic for assessing fit in ML factor

analysis solutions is the likelihood ratio statistic

(Lawley, 1940). If N is sufficiently large and the dis-

tributional assumptions underlying ML estimation are

adequately satisfied, the likelihood ratio statistic ap-

proximately follows a chi-square distribution if the

specified number of factors is correct in the popula-

s
 Ideally, the preferred model should not just fit the data

substantially better than simpler models and as well as more

complex models. The preferred model should also fit the

data reasonably well in an absolute sense. When this is not

the case, a researcher should exercise some caution in in-

terpreting the results. A preferred model that fits the data

poorly might do so, because the data do not correspond to

assumptions of the common factor model. Alternatively, it

might suggest the existence of numerous minor common

factors.
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tion. Thus, this statistic can be used to test the null

hypothesis that the model holds exactly in the popu-

lation with a given number of common factors. This

test can be applied to a series of numbers of factors,

beginning with zero and continuing until a nonsignif-

icant test statistic is obtained, indicating that the com-

mon factor model with the corresponding number of

factors is not rejected as a correct model in the popu-

lation. Although this procedure is intuitively appeal-

ing in that it is based on a clear statistical rationale, it

is susceptible to serious problems. Most importantly,

it is highly influenced by sample size. When N is

large, even trivial discrepancies between the model

and the data are likely to give rise to rejection of the

model with any reasonable number of factors (Haks-

tian et al., 1982; M. L. Harris & Harris, 1971; Hum-

phreys & Montanelli, 1975; MacCallum, 1990). In

situations where N is small, even large discrepancies

between the model and the data may not be statisti-

cally significant, thereby leading to underfactoring

(Humphreys & Montanelli, 1975). In addition, the use

of the likelihood ratio test is problematic, because the

null hypothesis of perfect fit is an unrealistic standard

in that all models are approximations of reality

(Browne & Cudeck, 1992; Cudeck & Henly, 1991;

MacCallum, 1990). The realistic goal in factor analy-

sis is to obtain a parsinomious solution that provides a

good approximation to the real world; thus, the hypoth-

esis of perfect fit is not generally of empirical interest.

Because of these problems, methodologists have

developed an array of alternative "descriptive" mea-

sures of fit. These developments began with the work

of Tucker and Lewis (1973), who proposed a "reli-

ability coefficient" for ML factor analysis solutions,

and have continued through the present day. Our view

is that developments reviewed and illustrated by

lirowne and Cudeck (1992) provide a promising ap-

nroach for assessing fit of these models. Browne and

Cudeck focused on the Root Mean Square Error of

Approximation (RMSEA) fit index (Steiger & Lind,

1980) and the Expected Cross-Validation Index

i ECVI; Browne & Cudeck, 1989) and illustrated their

use for determining the number of factors in EFA.

RMSEA is an estimate of the discrepancy between the

model and the data per degree of freedom for the

model. It has been suggested that values less than 0.05

constitute good fit, values in the 0.05 to 0.08 range

acceptable fit, values in the 0.08 to 0.10 range mar-

ginal fit, and values greater than 0.10 poor fit (see

Browne & Cudeck, 1992; Steiger, 1989).6 ECVI, on

the other hand, is an estimate of how well the solution

obtained from one sample will generalize to other

samples. Although no guidelines exist for interpreting

ECVI in absolute terms, it is useful for relative com-

parisons among alternative models. The smaller the

value of ECVI, the better the expected cross-

validation of the model. An important property of

ECVI discussed by Cudeck and Henly (1991) and

illustrated by Browne and Cudeck (1992) is that it is

sensitive to sample size. ECVI will tend to support the

retention of simpler models (fewer factors) when N is

small and more complex models (more factors) when

N is large. One can think of ECVI as addressing the

following question; Based on the available data, for

how many factors can we obtain accurate and gener-

alizable parameter estimates?

A major advantage of both these indexes is the

availability of confidence intervals. Thus, a researcher

can compare the point estimates and corresponding

confidence intervals of these fit indexes for a series of

models with varying numbers of factors. A model can

be selected that shows fit that is substantially better

than simpler models and fit that is comparable to that

of more complex models. Of course, the logic of the

approach illustrated by Browne and Cudeck (1992) of

using RMSEA and ECVI to determine the number of

factors in EFA can be extended to other descriptive fit

indexes. Thus, a researcher might choose to examine

additional indexes of model fit when determining the

number of factors (for a recent evaluation of fit in-

dexes, see Hu & Bentler, 1998).

Although the use of RMSEA, ECVI, and other de-

scriptive measures of model fit has yet to be exten-

sively tested within the context of determining the

number of factors in EFA, there is a compelling logic

to this approach. Furthermore, many of these indexes

have been tested within the context of more general

covariance structure models. Thus, users of ML factor

analysis would do well to consider the use of these fit

indexes when determining the number of factors to

retain.

In summary, a number of procedures exist to de-

termine the appropriate number of common factors.
7

6 Although these guidelines for RMSEA are generally

accepted, it is of course possible that subsequent research

might suggest modifications.
7 One method that has been found to perform well in

determining the number of principal components to retain is

the minimum average partial procedure (Velicer, 1976;

Zwick & Velicer, 1982, 1986). We do not discuss this pro-
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Some of these procedures are highly problematic (i.e.,

eigenvalues greater than 1, the likelihood ratio statis-

tic), whereas others are likely to perform reasonably

well s'. least under a range of conditions (e.g., scree

test, parallel analysis, descriptive indexes of model fit

such as RMSEA). However, even the best procedures

are not infallible. Furthermore, it is important to re-

member that the decision of how many factors to

include in a model is a substantive issue as well as a

statistical issue. A model that fails to produce a ro-

tated -olution that is interpretable and theoretically

sensible has little value. Therefore, a researcher

should always consider relevant theory and previous

research when determining the appropriate number of

factors to retain. It should also be noted that because

any individual data set is likely to have its own idio-

syncrasies, decisions regarding the appropriate num-

ber of factors can be further improved by examining

the replicability of the decision over multiple data sets

(Catteil, 1978). When a given number of factors for a

battery of measured variables is shown to be appro-

priate in more than one data set (e.g., sensible rules

for determining the number of factors give similar

results, rotated solutions produce similar interpretable

patterns of factor loadings), a researcher can be more

confident that the optimal number of factors has been

extracled.

Factor rotation. For any given solution with two

or more factors (or principal components), there exists

an infinite number of alternative orientations of the

factors in multidimensional space that will explain the

data equally well. This means that EFA models with

more than one factor do not have a unique solution.

Therefore, a researcher must select a single solution

from among the infinite number of equally fitting so-

lutions.

The criterion most commonly used for selecting

among solutions in EFA is the property of simple

cedure, because it is a method for use with principal com-

ponents and has not been developed for use with common

factors. Another approach to determining the number of

components is to examine the comparability of component

scores across split halves of a sample (Everett, 1983). Un-

fortunately, formal approaches for determining the number

of common factors based on the stability of common factors

have nor been extensively developed and tested. Nonethe-

less, approaches based on this logic seem like a promising

direction for future research. Catteil (1978) suggested that

true factors should replicate across samples whereas spuri-

ous factors should be unstable over samples.

structure (Thurstone, 1947). Thurstone proposed that

for any given set of mathematically equivalent solu-

tions, the solution with the best "simple structure"

would generally be the most easily interpretable,

psychologically meaningful, and replicable. Thurst-

one used the term simple structure to refer to solu-

tions in which each factor was defined by a subset

of measured variables that had large loadings rela-

tive to the other measured variables (i.e., high with-

in-factor variability in loadings) and in which each

measured variable loaded highly on only a subset

of the common factors (i.e., low factorial complex-

ity in defining variables). Therefore, Thurstone sug-

gested that factors be rotated in multidimensional

space to arrive at the solution with the best simple

structure.

A number of analytic rotation methods have been

developed to seek simple structure, and numerous ar-

ticles have been published comparing the utility of

these various rotation procedures (e.g., Crawford &

Ferguson, 1970; Dielman, Catteil, & Wagner, 1972;

Gorsuch, 1970; Hakstian, 1971; Hakstian & Boyd,

1972; Hofmann, 1978). Although these rotation

methods differ in a number of respects, perhaps the

most fundamental distinction that can be made is be-

tween orthogonal and oblique rotations. Orthogonal

rotations constrain factors to be uncorrelated. Though

a number have been developed, varimax (Kaiser,

1958) has generally been regarded as the best or-

thogonal rotation and is overwhelmingly the most

widely used orthogonal rotation in psychological re-

search.

In contrast to orthogonal rotations, oblique rota-

tions permit correlations among factors. One common

misconception among researchers is that oblique ro-

tations require factors to be correlated. This is not the

case. If the solution with the best simple structure

involves orthogonal factors, a successful oblique ro-

tation wil l provide estimates of the correlations

among factors that are close to zero and produce a

solution that is quite similar to that produced by a

successful orthogonal rotation (Harman, 1976). How-

ever, in situations in which the best simple structure is

a solution with correlated factors, successful oblique

rotations will produce solutions with correlated fac-

tors. Unlike orthogonal rotation, there is no single

method of oblique rotation that is clearly dominant in

psychological research. Several oblique rotation pro-

cedures are commonly used and have been found to

generally produce satisfactory solutions. These in-

clude direct quartimin rotation (Jennrich & Sampson,
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1966), promax rotation (Hendrickson & White, 1964),

and Harris-Kaiser orthoblique rotation (Harris & Kai-

ser, 1964).
8

Some researchers have indicated a preference for

orthogonal rotation because of its simplicity and con-

ceptual clarity (e.g., Nunnally, 1978). However, there

are a number of reasons to question the wisdom of this

view. First, for many constructs examined in psychol-

ogy (e.g., mental abilities, personality traits, atti-

tudes), there is substantial theoretical and empirical

basis for expecting these constructs (or dimensions of

these constructs) to be correlated with one another.

Therefore, oblique rotations provide a more accurate

and realistic representation of how constructs are

likely to be related to one another. Thus, from a sub-

stantive perspective, the restriction of uncorrelated

factors imposed by varimax and other orthogonal ro-

tations is often unwarranted and can yield misleading

results. Second, because orthogonal rotations require

factors to be oriented at 90° angles from one another

in multidimensional space (i.e., uncorrelated factors)

whereas oblique rotations allow for orientations of

less than 90° (i.e., correlated factors), orthogonal ro-

tations are likely to produce solutions with poorer

simple structure when clusters of variables are less

than 90° from one another in multidimensional space

(i.e., when the true underlying factor structure is

based on correlated factors). Finally, oblique solutions

provide more information than orthogonal rotations.

Oblique rotations produce estimates of the correla-

tions among common factors. Knowing the extent to

vvhich factors are correlated with one another can of-

ren be useful in interpreting the conceptual nature of

i he common factors. Indeed, the existence of substan-

l ia l correlations among factors suggests that higher

order factors may exist. Correlation matrices of fac-

tors can in turn be analyzed to gain insight into the

number and nature of these higher order factors and

thereby further refine a researcher's understanding of

the data (see Gorsuch, 1983). Because orthogonal ro-

tations do not provide correlations among factors, it is

impossible to determine if one or more higher order

factors are present in the data.

Summary and Recommendations

The implementation of EFA requires a researcher

to address five major types of methodological deci-

sions. There are a number of options available for

each decision, and the issues involved in selecting

among these options are sometimes complex. None-

theless, these decisions are not arbitrary in that

some options are clearly more optimal than others.

Thus, the utility of an EFA is likely to be a function

of the decisions made in the design of the study and

the implementation of the analysis. Indeed, it is inter-

esting that some notable examples of the supposed

failure of EFA to provide valid insights into data in-

volved poor factor analytic methodology. For in-

stance, Armstrong's (1967) classic demonstration of

the alleged limitations of EFA used a PCA, the eig-

envalues-greater-than-1 rule, and varimax rotation. In

light of the questionable nature these choices, it is not

surprising the analysis failed to uncover the true struc-

ture of the data.9 Given these facts, some clear rec-

ommendations can be made regarding how EFA

should be conducted.

/. Study design. Because EFA results are likely

to be more accurate if sensible decisions are made in

selecting measured variables and samples, it is essen-

tial that researchers carefully consider both of these

issues. Obviously, because EFA is used in situations

where there is relatively little prior theory and empiri-

cal evidence, variable selection can be difficult. None-

theless, to the extent it is possible, researchers should

try to anticipate the number and nature of the factors

they expect to obtain and use this as a guide for se-

lecting variables. We suggest researchers include at

least four measured variables for each common factor

they expect to emerge and perhaps as many as six

given that there is usually considerable uncertainty

about the nature of the common factors and their re-

lations to the measured variables. Furthermore, al-

though EFA should be based on comprehensive sam-

8 Unfortunately, the selection of oblique rotations offered

in major statistical packages is quite limited. SPSS offers

promax and Harris-Kaiser orthoblique rotations. Direct obli-

min rotation is a family of rotations defined by different

values of the delta parameter, which governs the oblique-

ness of the solution. The default value for this parameter in

SPSS is 0. which corresponds to a direct quartimin rotation.

A new EFA program. CEFA (comprehensive exploratory

factor analysis; Browne. Cudeck, Tateneni. & Mels, 1998)

offers a much wider range of rotations.
9 Additionally, because the data created by Armstrong

have a number of properties that violate assumptions of the

common factor model (e.g., nonlinear relations between fac-

tors and measured variables), his data are not really appro-

priate for EFA. Nonetheless, we found that if one uses more

optimal EFA procedures, the analysis produces a solution

that provides a good representation of the underlying struc-

ture of the data, thus invalidating Armstrong's arguments

against the use of factor analysis.
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pling of measured variables in the domain of interest,

we recommend that researchers carefully consider the

psychometric properties of variables. Variables with

low reliabilities (e.g., below .70) should be avoided,

and when validity information is available, it should

be used as a basis for selecting items. With respect to

determining adequate sample size, the properties of

the measured variables should be taken into account.

Under good conditions (communalities of .70 or

higher, four to five variables for each factor), a sample

size of 100 might well be adequate (although it is

always best to have larger sample sizes if possible).

Under conditions of moderate communalities (e.g.,

.40 to .70) and moderate overdetermination of factors,

a sample of 200 or more seems advisable. Finally,

under poor conditions, no sample size may be suffi-

cient to produce accurate estimates of the population

parameters. However, it seems likely that a sample

less than 400 will lead to distorted results.

2. Appropriateness of EFA. We urge researchers

to carefully consider if EFA is the most appropriate

form of analysis to meet their research objectives.

EFA should be used when the primary goal is to iden-

tify latent constructs and there is insufficient basis to

specify an a priori model (or small subset of models).

CFA should be used when the goal is to identify latent

constructs and a substantial basis exists to specify an

a priori model or small subset of models. PCA should

not be used as a substitute for EFA.

3. M,idel-fitting procedures. With respect to se-

lecting one of the major methods of fitting the com-

mon factor model in EFA (i.e., principal factors, iter-

ated principal factors, maximum likelihood), all three

are reasonable approaches with certain advantages

and disadvantages. Nonetheless, the wide range of fit

indexes available for ML EFA provides some basis

for preferring this approach. However, researchers

should rscognize that this procedure can produce mis-

leading results when assumptions of multivariate nor-

mality are severely violated (see Curran et al., 1996;

Hu et a!., 1992). Therefore, we recommend that the

distributions of measured variables be examined prior

to conducting ML EFA. If nonnormality is severe

(e.g., skew > 2; kurtosis >7; West, Finch, & Curran,

1995), one of several remedies might be employed

(see West et al., 1995). Measured variables could be

transformed to normalize their distributions. Correc-

tions to fit indexes and standard errors could be per-

formed (Bentler & Dudgeon, 1996; Browne, 1984;

Satorra & Bentler, 1994). Alternatively, one might

wish to use a principal factors procedure.10

4. Determining the number of factors. We sug-

gest that researchers rely on multiple criteria when

deciding on the appropriate number of factors to in-

clude in a model. In the use of principal factors meth-

ods, we recommend the scree test and parallel analy-

sis using eigenvalues from the reduced correlation

matrix. In ML factor analysis, we encourage the use

of descriptive fit indexes such as RMSEA and ECVI

as discussed by Browne and Cudeck (1992) along

with more traditional approaches such as the scree test

and parallel analysis. A sensible strategy in most

cases would be to use multiple methods to make this

decision and then carefully examine the rotated solu-

tion for the suggested model to confirm that it is in-

terpretable and theoretically plausible. In situations in

which the sample size is sufficiently large, a re-

searcher might also wish to randomly split the data

and examine the stability of the solution across the

two halves (for a discussion of assessing factor com-

parability across samples, see Gorsuch, 1983). In con-

texts in which procedures suggest different numbers

of factors or in which the procedures produce some-

what ambiguous results, the researcher should exam-

ine the subset of models that these procedures suggest

are most plausible. The rotated solutions for these

models can then be examined to see which model

produces the most readily interpretable and theoreti-

cally sensible pattern of results (Comrey, 1978; Ford

et al., 1986; Hakstian & Muller, 1973; Hakstian et al.,

1982; C. W. Harris, 1967) and when possible which

of these solutions is most stable over different data

sets or split halves of data sets.

5. Rotation. Given the advantages of oblique ro-

tation over orthogonal rotation, we see little justifica-

tion for using orthogonal rotation as a general ap-

proach to achieving solutions with simple structure

(Gorsuch, 1983). Instead, it is most sensible to first

examine the solutions produced by one or more of the

common methods of oblique rotation (e.g., promax,

orthoblique, or direct quartimin). If this solution in-

10 Another approach to addressing violations of normal-

ity is to create "item parcels" (i.e., composites of several

measured variables that tap on the same common factor).

Creation of such item parcels often results in measured vari-

ables with more normal distributions than the individual

items (West et al., 1995). However, such an approach will

often not be feasible in EFA, because little is known re-

garding which measured variables are influenced by the

same common factors, and thus it will be difficult to form

item parcels.
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dicates that the factors are uncorrelated, then it is

reasonable for the researcher to conduct a varimax

rotation and use this as the basis for interpretation

(though this solution will likely be very similar to the

oblique solution). On the other hand, if at least some

of the factors are found to be correlated with one

another, it is most defensible to use the oblique solu-

tion as the basis for interpretation.

Illustration of Consequences of Choices
in Analysis

As noted earlier, some critics of EFA have been

insufficiently sensitive to the extent to which particu-

lar decisions about how the analysis is conducted can

influence the results. In order to illustrate some of the

effects that these decisions can have, we reanalyzed

three data sets from a well-developed psychological

literature on the tripartite model of attitude structure.

According to the tripartite model (Rosenberg &

Hovland, 1960; Smith, 1947), attitudes have affective,

cognitive, and behavioral components. That is, feel-

ings experienced when in the presence of an attitude

object, beliefs about the attributes of the object, and

past or present behaviors relevant to the object make

up the structure underlying overall summary evalua-

tions (see Eagly & Chaiken, 1998; Petty, Priester, &

Wegener, 1994; Wegener & Gregg, in press, for more

recent discussions). Numerous studies have investi-

gated the hypothesized tripartite nature of attitudes

(e.g., Breckler, 1984; Kothandapani, 1971; Ostrom,

•969), and in particular, the affective and cognitive

components have received a great deal of attention as

-.eparable aspects of attitude structure. For example,

assessments of the affect and cognition associated

with particular attitude objects have independently

predicted attitudes in a variety of settings (e.g., Abel-

•on. Kinder, Peters, & Fiske, 1982; Crites, Fabrigar,

& Petty, 1994), and confirmatory analyses have sup-

ported multifactor (tripartite) rather than single-factor

models of these attitude structures (Breckler, 1984).

Moreover, attitudes primarily based on affect versus

cognition predict different classes of behaviors (e.g.,

Millar & Tesser, 1986, 1989) and are differentially

influenced by affective versus cognitive persuasive

appeals (e.g., Edwards, 1990; Fabrigar & Petty, 1999;

Millar & Millar, 1990). Therefore, there are compel-

ling theoretical and empirical rationales for separating

affect and cognition in attitude structure. Because of

this, there is a strong basis for expecting that EFA

should ideally recover separable affect, cognition, and

(perhaps) behavior factors when examining relevant

data sets.

We addressed this question by reanalyzing three

data sets from this literature. First, we analyzed two

9-item matrices from Breckler (1984). In these matri-

ces, three items each had been designed to assess

affective, cognitive, and behavioral aspects of atti-

tudes, respectively (see Breckler, 1984, for detail on

the measures). We took the third data set from Crites

et al. (1994), in which general measures were devel-

oped to assess the affective and cognitive bases of

attitudes (three types of measures for each). In order

to take advantage of the existence of an additional

measure of affect and an additional measure of cog-

nition specific to one of the attitude objects (snakes;

Breckler, 1984), we analyzed 8 items from Study 1 of

the Crites et al. (1994) article, in which people re-

sponded to the attitude object "snakes" (see Breckler,

1984; Crites et al., 1994, for additional detail on the

measures).

We wished to use these data sets to illustrate how

different procedures in conducting EFA analyses

could lead one to either accurately or inaccurately

identify the number and nature of the common factors

underlying these data sets. We submitted the matrices

to a PCA, examining both a varimax (orthogonal) and

a direct quartimin (oblique) rotation. We also submit-

ted the same matrices to a ML factor analysis, again

examining both the varimax and direct quartimin ro-

tations. In order to determine the number of factors,

we examined the eigenvalues from the unreduced cor-

relation matrices applying the eigenvalues-greater-

than-1 rule. For the ML factor analysis models, we

also examined the RMSEA and ECVI indexes of

model fit, as well as the scree test and parallel analysis

(Montanelli & Humphreys, 1976) for the eigenvalues

from the reduced correlation matrix.

The sample sizes were 138, 105, and 164, for

Breckler (1984) Studies 1 and 2 and Crites et al.

(1994) Study 1, respectively. Though the sample sizes

are a bit smaller than one might want, the sampling

error that might occur in small samples would only

work against the observation of consistent results

across data sets. Therefore, consistency across the

samples would increase confidence in the obtained

results, despite any concerns about small samples.

The initial communality estimates (squared multiple

correlations) are somewhat variable in each study (see

Table 1). For Breckler, Study I , the estimates ranged

from .61 to .25 with M = .42. For Breckler, Study 2.

the estimates ranged from .81 to .37 with M = .62.
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Table 1

Squared Multiple Correlations (SMCs) for Items in

Breckler (1984; Studies I and 2) and Crites, Fabrigar,

and Petn (1994; Studv I)

SMCs

Item Study 1

Breckler

Study

Affect

Thurstone affect

Mood Checklist (+)

Mood Checklist (-)

Behavior

Action sequence

Distance

Thurstone behavior

Cognition

Thurstone cognition

Semantic differential

Listed thoughts

Crites et al.

Affect

Multiresponse Checklist

Dichctomous Checklist

Semantic differential

Thurstone affect

Cognition

Multiresponse Checklist

Dichotomous Checklist

Semantic differential

Thurstone cognition

0.43

0.25

0.33

0.53

0.37

0.56

0.38

0.61

0.35

0.82

0.78

0.78

0.34

0.85

0.79

0.85

0.56

0.54

0.37

0.51

0.73

0.81

0.77

0.50

0.76

0.58

For Crites et al., Study 1, the estimated ranged from

.85 to 34 with M = .72. However, these average

communalities, especially for Study 2 of Breckler

(1984) and Study 1 of Crites et al. (1994), are actually

higher man the initial communalities that often occur

in applied research (see later discussion). Of course,

most variables in real data will have substantial

unique variance, and such conditions should be espe-

cially likely to lead to differences between EFA

(which separately represents common and unique

variance in the model) and PC A (which does not dif-

ferentiate between common and unique variance).

Unfortunately, information about the distributional

properties of the items in the Breckler (1984) data sets

was unavailable. For the Crites et al. (1994) data,

however, the skew (-0.77 to 0.73, lAfl = 0.41) and

kurtosis (-1.02 to 3.28. IA/1 = 0.79) of the items were

far smaller than the recommended thresholds for

questioning the adequacy of ML estimation methods

(skew > 2, kurtosis > 7; West et al., 1995). Therefore,

across the data sets we analyzed, consistency in solu-

tions could provide a compelling illustration of how

the various decisions can influence the results for real

data.

Number of Factors

Table 2 provides the eigenvalues for the reduced

and unreduced correlation matrices for each data set.

As can be seen from the eigenvalues for the unre-

duced correlation matrix, the eigenvalues-greater-

than-1 rule suggested two-factor and one-factor mod-

els for the Breckler (1984) data sets (Studies 1 and 2,

respectively). For the Crites et al. (1994) data, the rule

suggested a one-factor model (see Table 1). Scree

plots of these values, though a bit ambiguous, would

perhaps suggest one-factor models for all three stud-

ies. However, given that the goal is to identify com-

mon factors, it is more sensible to examine the scree

plots of the eigenvalues from the reduced correlation

matrices. These plots would once again perhaps sug-

Table 2

Eigenvalues for Breckler (1984; Studies 1 and 2) and Crites, Fabrigar, and Petty (1994;

Studv I), From the Unreduced and Reduced Correlation Matrices

Factor number

Correlation matrices

Breckler Study 1

Unreduced

Reduced

Breckler Study 2

Unreduced

Reduced

Crites et al. Study 1

Unreduced

Reduced

3

3

5

5

5

5

.84

.30

.59

.24

.72

.48

1.20

0.60

0.91

0.40

0.88

0.50

0.

0,

0,

0,

0,

.98

.39

.70

.34

.46

0.07

0.85

0.20

0.50

0.05

0.38

0.01

0.65

0.02

0.42

-0.04

0.19

-0.05

0.47

-0.10

0.34

-0.07

0.17

-0.06

0.41

-0.12

0.23

-0.09

0.12

-0.08

0.35

-0.21

0.19

-0.13

-0.09

-0.09

0.25

-0.27

0.13

-0.14
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gest a one-factor model for the three data sets. How-

ever, on the basis of these scree plots, one might also

argue for a four-factor model in the Breckler Study 1

data set, a three-factor model in the Breckler Study 2

data set, and two-factor model in the Crites et al. data

set.

When one examines the parallel analysis performed

on the reduced correlation matrix (Montanelli &

Humphreys, 1976), a one-factor solution appears less

reasonable. For Breckler (1984) Study 1, the first four

eigenvalues expected for random data (0.51, 0.34,

0.25, 0.17) fall below the observed eigenvalues from

the reduced matrix (3.30, 0.60, 0.39, 0.20). For Breck-

ler (1984) Study 2, three of the first four eigenvalues

expected for random data (0.60, 0.40, 0.29, 0.20) fall

at or below the observed eigenvalues from the re-

duced correlation matrix (5.24. 0.40, 0.34, 0.05) with

Table 3

Selected Fit Indexes for Analyses of Breckler (1984;

Studies I and 2) and Crites, Fabrigar, and Petty (1994;

Study 1): RMSEAs and ECVls From ML and PACE

Factor Analyses

Model-fitting procedure

Breckler Study 1 (n =

RMSEA

ML

PACE

ECVI

ML

PACE

1

138)

0.15

0.13

1.04

0.93

Number

2

0.12"

0.14

0.79

0.87

of factors

3

0.03"

0.08

0.58

0.65

4

0.00"

0.25

0.59

0.97

Breckler Study 2 (n = 105)

RMSEA

ML

PACE

ECVI

ML

PACE

Crites et al. Study 1 (n

RMSEA

ML

PACE

ECVI

ML

PACE

0.14

0.14

1.16

1 . 1 1

= 164)

0.23

0.23

1.41

1.38

0.09

0.09

0.85

0.85

0.06

0.06

0.42

0.41

0.00

0.00

0.68

0.69

0.02

0.04

0.40

0.41

0.00

0.00

0.76

0.76

h'ote. Noniterated principal factoring and PACE factoring pro-
cjce similar solutions with no boundary estimates. (See Footnote
12 fora description of this analysis.) RMSEA = root mean square
eiror of approximation; ECVI = expected cross-validation index;
ML = maximum likelihood; PACE = partitioned covariance es-
timator.
"The solutions noted included one or two boundary estimates (0) for
unique variances.

the fourth observed eigenvalue falling far below the

fourth value for random data. For Crites et al. (1994)

Study 1, two of the four eigenvalues expected for

random data (0.42, 0.27, 0.19. 0.11) fall below the

observed eigenvalues (5.48. 0.50, 0.07, 0.01). ' ' Thus,

the parallel analyses question the one-factor decision

that might come from the eigenvalues-greater-than-1

rule. They suggest a three-factor solution in one of the

Breckler data sets and a two-factor solution in the

Crites et al. data set (both as expected given past data

and theory), but they suggest a four-factor solution for

Study 1 of the Breckler (1984) data.

The goodness-of-fit indexes, however, strongly

suggest the theoretically expected factor structures

(see Table 3). For the Breckler (1984) data sets.

RMSEA shows poor fit with the one-factor model and

presents substantial improvement with a three-factor

model. Moreover, overall fit becomes quite good (see

Browne & Cudeck, 1992) when the third factor is

added. There is also very little overlap in the 90%

confidence intervals (CI) for the two-factor (RMSEA

= 0.12, CI = 0.09-0.16 for Study 1; RMSEA =

0.09, CI = 0.04-0.14 for Study 2) and three-factor

models (RMSEA = 0.03, CI = 0.00-0.10 for Study

1; RMSEA = 0.00, CI = 0.00-0.00 for Study 2) but

complete overlap between the three- and four-factor

models (RMSEA = 0.00, CI = 0.00-0.07 for Study

1: RMSEA = 0.00, CI = 0.00-0.00 for Study 2). The

ECVI has it lowest value (i.e., the smallest point es-

timate for a predicted discrepancy in a new sample)

for the three-factor model. This pattern clearly sug-

gests the three-factor model as superior to the one- or

two-factor models. For the Crites et al. (1994) data,

the expected two-factor structure is strongly sug-

gested. The model has quite poor fit with one factor

1 ' As noted earlier, there have also been parallel analyses

developed for determining the number of components to

retain (e.g., Longman et al., 1989). Given our interest of

determining the number of factors underlying the data, how-

ever, it seems most reasonable to use the parallel analysis

method designed for determining the number of common

factors (i.e., parallel analysis with squared multiple corre-

lations in the diagonal of the correlation matrix). Using

parallel analyses for the unreduced matrix suggests extrac-

tion of a single principle component (though such a conclu-

sion is questioned by the parallel analysis on the reduced

matrix and by the indexes of EFA model fit). Moreover, one

would want to be cautious about accepting a single factor

model in this context given that underfactoring is often

thought to be a more severe error than overfactoring.
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and acceptable fit with two factors. Moreover, there is

no overlap in the 90% CIs for the one-factor (RMSEA

= 0.23, CI = 0.20-0.26) and two-factor models

(RMSEA = 0.06, CI = 0.00-0.11) but nearly com-

plete overlap between the two- and three-factor mod-

els (RMSEA = 0.02, CI = 0.00-0.10). Again, ECVI

fails to improve beyond the level obtained with the

theoretically expected number of factors.

When taken together, these analyses provide a use-

ful illustration of how nonoptimal procedures can lead

a researcher to misleading conclusions regarding the

appropriate number of factors. The eigenvalues-

greater-i ban-1 rule consistently suggested fewer fac-

tors than past research and theory would indicate was

most plausible for each data set. The scree test pro-

vided somewhat ambiguous information. In contrast,

parallel analysis suggested the most plausible number

of factors for two of the three data sets, and model fit

suggested the most plausible number of factors in all

three data sets. Thus, consistent with the methodologi-

cal literature, a researcher clearly would have been

better served relying on parallel analysis and model fit

than the eigenvalues-greater-than-1 rule when deter-

mining the number of factors for these data.

Orthogonal Versus Oblique Rotations

Researchers are often tempted to seek "conceptu-

ally distinct" factors by conducting varimax (orthogo-

nal) rotations in factor analyses. It is sometimes

thought that this retention of statistically independent

factors "cleans up" and clarifies solutions, making

them easier to interpret. Unfortunately, this intuition

is exact.ly the opposite of what the methodological

literature suggests, and the present results bear out the

methodology-based conclusions. Tables 4, 5, and 6

present PCA and ML factor analysis results (the left

and right columns) using varimax and direct quarti-

min rotations (the top and bottom portions of the

tables). For ease of examination, loadings above 0.30

are presented in bold face. We have ordered factors

similarly for each analysis (for the Breckler data sets,

with the most "affective" factors first, most "behav-

ioral" factors second, and most "cognitive" factors

third; for the Crites et al. data, with the most "affec-

tive" factor first, and most "cognitive" factor second).

For each of the studies, it would have been unfor-

tunate for a researcher to rely solely on a varimax

rotation. Examining only those loadings above 0.30,

there are many more cross-factor loadings (i.e., items

that load above 0.30 for more than one factor) with

the orthogonal rotation. Across the six varimax rota-

tions reported in Tables 4, 5, and 6, there are 28 times

that an item is found to load on more than one factor

(or component). However, the six direct quartimin

rotations reported in Tables 4, 5, and 6 produce only

eight cross-factor loadings. Examining the loadings

below 0.30, the varimax rotation produced only 13%

with magnitudes (ignoring sign) of less than 0.10;

42.6% had values between 0.10 and 0.20, and 44.4%

had values greater than 0.20. Using the direct quarti-

min rotation, 60.8% of the loadings below 0.30 had

magnitudes equal or less than 0.10; 25.3% had values

between 0.10 and 0.20, and only 13.9% had values

greater than 0.20 (despite including the 25 loadings

that fell below 0.30 using direct quartimin but were

above 0.30 using varimax). Therefore, it seems quite

clear that direct quartimin (the oblique rotation) pro-

vided superior simple structure.

Besides the "cleaner" solutions provided by the ob-

lique rotation, a researcher relying on an orthogonal

rotation would also forfeit any knowledge of the ex-

isting correlations among factors. Although some of

the varimax solutions for the current data (e.g., the

ML factor analysis solution for Breckler, 1984, Study

1) might have led the researcher to think in terms of

"affect, behavior, and cognition," he or she might

have thought that there was little reason to think of the

three factors as correlated (given the orthogonal rota-

tion). Yet, when the direct quartimin rotation was

used on the same data, it not only produced better

simple structure clearly breaking along affective, be-

havioral, and cognitive lines, but it also revealed that

the factors were correlated in the .4-.6 range (see

Tables 4, 5, and 6).

Factor Analysis Versus Principal Components

Comparing the PCA and EFA columns also pro-

vides some useful information. As noted earlier,

Widaman (1993) used simulation data to show that

PCA inflates loadings when compared with factor

analysis. Widaman found that "salient" loadings (i.e.,

the highest loadings on a given factor) are higher in

PCA than in factor analysis and that such inflation is

greater when the salient loadings are more moderate

in value (e.g., 0.40 in the population) rather than high

(e.g., 0.80 in the population). Because factor and com-

ponent analyses lead to some differences in the pat-

terns of loadings across factors in the current data,

direct comparisons of loadings might not always be

meaningful. Yet, an overall pattern consistent with

Widaman's (1993) analyses seems to be present.
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Table 4

Loadings for Principal Components and Common Factors Using Varimax and Direct

Quartimin Rotations: Breckler (1984: Study I)

Rotation

Item

Principal components

analysis (components)

1 2 3

Maximum likelihood

factor analysis (factors)

1 2 3

Varimax

Affect

Thurstone affect 0.83 0.29 0.09 0.99 0.10 0.11

Mood Checklist (+) 0.47 0.57 -0.19 0.43 0.15 0.13

Mood Checklist (-) 0.77 -0.05 0.34 0.46 0.23 0.16

Behavior

Action sequence 0.25 0.66 0.37 0.24 0.86 0.20

Distance -0.05 0.80 0.25 0.15 0.49 0.34

Thurstone behavior 0.19 0.66 0.46 0.28 0.60 0.40

Cognition

Thurstone cognition 0.03 0.11 0.78 0.10 0.17 0.58

Semantic differential 0.12 0.39 0.77 0.17 0.26 0.95

Listed thoughts 0.26 0.17 0.68 0.23 0.27 0.47

Direct quartimin

Affect

Thurstone affect

Mood Checklist (+)

Mood Checklist (-)

Behavior

Action sequence

Distance

Thurstone behavior

Cognition

Thurstone cognition

Semantic differential

Listed thoughts

0.82

0.40

0.81

0.14

-0.20

0.08

0.00

0.04

0.23

Correlations
j _

2

3

.32

.18

0.18

0.57

-0.20

0.64

0.84

0.64

0.04

0.34

0.08

among factors

.28

-0.06

-0.35

0.26

0.23

0.12

0.33

0.78

0.71

0.63

1.08

0.43

0.45

0.03

-0.01

0.10

-0.01

-0.01

0.12

-0.14

0.04

0.13

0.97

0.47

0.56

-0.01

-0.04

0.13

-0.05

0.03

0.03

-0.12

0.20

0.21

0.62

1.02

0.43

or components

—

.51

.42 .60 —

Note. Loadings in bold are values above 0.30.

If one takes all the loadings that are above 0.30 for

at least one of the analyses (PCA or ML factor analy-

sis) and compares the magnitude of those loadings

across methods, the PCA loadings tend to be higher.

For example, the salient loadings for Component 2 of

the varimax rotation in Study 1 (in bold on Table 4)

have values of 0.57, 0.66, 0.80, 0.66, and 0.39 (M =

0.62). The corresponding loadings for the ML factor

analysis (Factor 2) are 0.15, 0.86, 0.49, 0.60, and 0.26

(M = 0.47). There are 16 such comparisons across

the analyses presented, and 12 of the comparisons

show higher salient loadings for components than for

factors. Although existing work has generally exam-

ined possible inflation of salient loadings, some of the

inflations in the current data are "nonsalient" loadings

from factor analyses that become large enough for

some researchers to consider them salient in defining

a component. Such inflations would pose a potentially

major problem, because they could change the pre-

sumed nature and interpretation of the constructs un-

der investigation. One possible instance of such infla-

tion is the creation of a sizeable loading of the Affect

Dichotomous Checklist (0.57) in the PCA solution for

Crites et al. (1994) Study 1 in which the direct quar-

timin rotation was used (see Table 4). The same load-

ing (of an "affect" item on a primarily "cognitive"
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Table 5

Loadings for Principal Components and Common Factors Using Varimax and Direct

Quartimin Rotations: Breckler (1984; Study 2)

Rotation

Item

Varimax

Affect

Thurstone affect

Mood Checklist (+)

Mood Checklist (-)

Behavior

Action sequence

Distance

Thurstone behavior

Cognition

Thurstone cognition

Semantic differential

Listed thoughts

Direct Quartimin

Affect

Thurstone affect

Mood Checklist (+)

Mood Checklist (-)

Behavior

Action sequence

Distance

Thurstone behavior

Cognition

Thurstone cognition

Semantic differential

Listed thoughts

Principal components

analysis (components)

1

0.72

0.89

0.31

0.27

0.25

0.24

0.08

0.36

0.53

0.68

0.98

0.11

0.01

-0.05

-0.04

-0.05

0.18

0.42

2

0.43

0.18

0.69

0.81

0.89

0.84

0.22

0.55

0.49

0.24

-0.11

0.72

0.87

1.01

0.90

-0.07

0.36

0.32

3

0.18

0.07

0.19

0.27

0.19

0.29

0.94

0.65

0.39

0.03

-0.04

-0.01

0.04

-0.07

0.07

1.02

0.56

0.26

Maximum likelihood

factor analysis (factors)

1

0.75

0.63

0.40

0.39

0.32

0.36

0.13

0.43

0.57

0.81

0.71

0.22

0.10

-0.09

0.04

-0.06

0.24

0.51

2

0.32

0.24

0.53

0.69

0.90

0.73

0.22

0.44

0.38

0.02

-0.01

0.49

0.72

1.10

0.79

-0.01

0.19

0.14

3

0.20

0.12

0.28

0.34

0.24

0.36

0.76

0.70

0.39

0.01

-0.05

0.08

0.10

-0.10

0.11

0.84

0.63

0.25

Correlations among factors or components

.59

.35 .56

.73

.52 .64

Note. Loadings in bold are values above 0.30.

component) was 0.09 in the factor analysis. It is clear

to see that the direct quartimin ML solutions are sub-

stantially "cleaner" than the same rotation of the PCA

solutions.

Another notable difference between the PCA and

ML solutions concerns the identified correlations

among factors. Consistent with Widaman's (1993)

simulations, the correlations identified by oblique ro-

tation of the PCA solution were substantially lower

than the correlations identified by the same rotation of

the ML factor analysis. It makes sense that PCAs

should generally underestimate relations among the

constructs, because random error is included in the

components. Because factor analyses remove random

error from the factors, the relations among factors are

more likely to approach the population values. Such

differences are especially evident in analyses of

Breckler (1984) Study 1. The correlations among

components (i.e., .32, .18, and .28) were roughly half

the magnitude of the correlations among factors (i.e.,

.51, .42, and .60). If a researcher had used a PCA, he

or she would have been tempted to conclude that the

components were largely independent. However, us-

ing an EFA, the same researcher would have realized

that the smallest of the interfactor correlations was

actually greater than 0.4. These would certainly be

rather different conclusions. Similar deflations of cor-

relations occur for the PCAs of Breckler (1984) Study
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Table 6

Loadings for Principal Components and Common Factors Using Varimax and Direct

Quartimin Rotations: Criles, Fabrigar, and Petty (1994; Study 1)

Principal components Maximum likelihood

D t t- audi^M* ^uiiipuiicHUV idt-iui analysis uacioisj

Item

Varimax

Affect

Multiresponse Checklist

Dichotomous Checklist

Semantic differential

Thurstone affect

Cognition

Multiresponse Checklist

Dichotomous Checklist

Semantic differential

Thurstone cognition

Direct Quartimin

Affect

Multiresponse Checklist

Dichotomous Checklist

Semantic differential

Thurstone affect

Cognition

Multiresponse Checklist

Dichotomous Checklist

Semantic differential

Thurstone cognition

Correlations

1
2

1

0.63

0.67

0.57

0.91

0.27

0.31

0.28

0.15

0.42

0.49

0.35

0.94

-0.04

0.01

-0.04

-0.15

among

—

.46

i

0.66

0.61

0.70

0.09

0.89

0.86

0.90

0.83

0.64

0.57

0.69

-0.04

0.95

0.90

0.95

0.90

factors or components

—

1

0.81

0.80

0.74

0.56

0.38

0.40

0.41

0.38

0.82

0.84

0.70

0.66

-0.04

0.02

0.01

0.11

—

.77

2

0.48

0.44

0.52

0.20

0.87

0.81

0.85

0.64

0.15

0.09

0.24

-0.09

0.98

0.89

0.94

0.66

—

Note. Loadings in bold are values above 0.30.

2 (see Table 5) and Crites et al. (1994) Study 1 (see

Table 6) . l 2

The analyses of the Breckler (1984) and Crites et

al. (1994) data provide examples of how questionable

12 It is worth noting that some parameter estimation prob-

kms were encountered in the ML analyses of the Breckler

(1984) Study 1 data set. Heywood cases were encountered

f.ir the two-, three-, and four-factor models. It is perhaps not

surprising that difficulties were encountered for one of the

f lur-factor models given that this model is almost certainly

inappropriate for the present data (i.e., the model is over-

factored). One common reason for encountering such esti-

mation problems is when a misspecified model is fit to the

data. In the case of the three-factor model for Study 1, the

theoretical plausibili ty of the solution and the comparability

of this solution with the three-factor model solution for

Study 2 and the two-factor solution from the Crites et al.

( !994) data suggest that the existence of Heywood cases

d.ies not constitute a serious problem. Nonetheless, to ex-

amine if the results of the ML analyses had produced un-

u-ual results as a function of severe nonnormality in the data

(which could not be tested for the Breckler data sets), we

conducted noniterated principal factor analyses for these

data. These analyses produced results very similar to those

of the ML analyses. Additionally, the noniterated principal

factor solutions for the four-factor models confirmed that a

four-factor model was in fact inappropriate for these data.

The four-factor models (as was the case for the ML analy-

ses) failed to produce readily interpretable or plausible so-

lutions. No estimation problems were encountered in any of

the analyses of the Crites et al. (1994) data set, and not

surprisingly the noniterated principal factor analyses of

these data produced solutions very similar to the ML analy-

ses. Finally, to further test the stability of the ML solutions

across all three data sets, we conducted analyses using Par-

tit ioned Covariance Matr ix Estimator Factor Analysis

(PACE; Cudeck. 1991). This procedure is available in the

program CEFA (Browne et al.. 1998). It is a noniterated

common factor model-fitting procedure that permits the

computation of the same fit indexes available in ML. The

PACE analyses produced patterns of fit indexes across the

models that were comparable to those of the ML analyses.

The solutions obtained from the PACE analyses were also

quite similar to those of the ML analyses.
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procedures can produce results that are rather confus-

ing and misleading. For all three studies, an EFA with

an oblique rotation provides much better simple struc-

ture, more interpretable results, and more theoretically

plausible representations of the data than a PCA with

an orthogonal rotation. Moreover, the oblique rotation

(especially when paired with EFA rather than PCA)

provides important information concerning the rela-

tions among extracted factors. Across the example

data sets, we see that different procedures for deter-

mining the appropriate number of factors, different

analytic methods (PCA vs. EFA), and different rota-

tion procedures all have an effect on results and in-

terpretations.

The Use of Factor Analysis in Current

Psychological Research

One obvious question that arises from our review

and illustration is the issue of the extent to which

researchers actually use the procedures we have

shown to produce misleading results. An answer to

this question is not readily available. Although meth-

odologists have often commented on the use of factor

analysis in psychology (e.g., Comrey, 1978; Ford et

al., 1986; McNemar, 1951; Skinner, 1980; see also

Gorsuch. 1983), most of these criticisms have been

based on subjective impressions rather than system-

atic reviews of published applications. One exception

is a review of EFA practices reported by Ford et al.

(1986). They systematically examined applications of

EFA published between 1975 and 1984 in the area of

industr ial-organizat ional psychology. They con-

cluded that factor analytic practices within this area

were generally inconsistent with the methodological

literature. However, their review did not fully address

study design issues, was confined to a single area of

psychology, and covered applications published 14 or

more y;:ars ago.

Assessing Current Factor Analytic Practices

To explore the question of how factor analysis is

currently used in psychological research, we con-

ducted a systematic review of articles published from

1991 through 1995 in the Journal of Personality and

Social Psychology (JPSP) and the Journal of Applied

Psychology (JAP). We selected these journals, be-

cause they represent two areas of psychology (person-

ality-social psychology and industrial-organizational

psychology) in which EFA has been widely used. We

also chose these particular journals, because both are

among the most prestigious journals in their respec-

tive areas, so the articles found in these journals

should presumably reflect methodologically rigorous

work.

In our review, we examined every article published

in these journals during the specified time period to

determine if any of the statistical analyses reported in

the article addressed an exploratory factor analytic

question. If one or more analyses of this type was

conducted, we then examined the description of each

analysis. Studies were coded for the ratio of measured

variables to factors, average reliability (or communal-

ity) of the measured variables, sample size, examina-

tion of common factors versus principal components,

model-fitting procedure, method for determining the

number of factors, and rotation procedure. The results

of this review are presented in Table 7. The first two

columns of the table indicate the number of articles

and corresponding percentage of total number of ar-

ticles falling into each category for JPSP. The third

and fourth columns present the same information for

JAP.

There are several aspects of these results that merit

commentary. First, our review indicates that EFA

continues to be an extremely popular statistical pro-

cedure in psychological research. A total of 159 of the

883 articles published in 60 issues of JPSP over a

5-year period reported EFAs. A total of 58 of 455

articles published in 30 issues of JAP over the same

5-year period reported EFAs. Thus, the typical issue

of these journals contained two or three articles using

EFA.

The first section of Table 7 shows the distribution

of variable to factor ratios. These results indicate that

the great majority of analyses were based on ratios of

at least 4; 1. Thus, in most analyses, factors were prob-

ably adequately overdetermined. However, there was

a nontrivial number of articles (i.e., about one in five)

with ratios below 4:1. This finding is noteworthy,

because one condition in which PCAs produce sub-

stantially inflated estimates of factor loadings is when

the ratio is 3:1 or less (Widaman, 1993).

The next section of Table 7 shows the distribution

of the average reliability of measured variables in

analyses. These results show that when researchers

reported the reliability of their measured variables, the

values were generally high (i.e.. .70 or greater). One

might conclude from this finding that the psychomet-

ric properties of variables analyzed in EFA are typi-
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Table 7

Summary Information of Current Practices in the Use of

Factor Analysis

Journal of

Personality

and Social

Psychology

Variable

Ratio of variable to factors

Less than 3:1

3:1

4:1

5:1

6:1

More than 6: 1

Unknown

N

1

28

26

14

13

74
2

%

0.6

17.6

16.4

8.8

8.2

46.5

1.3

Journal of

Applied

Psychology

N

1

9

10

10

6

18

4

%

1.7

15.5

17.2

17.2

10.3

31.0

6.9

Average reliability of variables

Less than .60

.60-.69

.70-79

.80-.89

.90-1.00

Unknown

Sample size

100 or less

101-200

201-300

301^00

More than 400

Type of analysis

Principal components

Common factors

Multiple methods

Other

Unknown

Factor-component number

Eigenvalue > 1 .0

Scree Test

Parallel analysis

Model fit

Theory

Interpretability

Multiple methods

Other

Unknown

Factor-component rotation

Varimax

Harris-Kaiser

Promax

Direct quartimin

No rotation

Multiple methods

Other

Unknown

3

6

33

33

14

70

30

44

25

13

47

84

31

8

1

35

procedure

25

24

1

0

2

4

35

2

66

87

1

2

21

23

3

1

21

1.9

3.8

20.8

20.8

8.8

44.0

18.9

27.7

15.7

8.2

29.6

52.8

19.5

5.0

0.6

22.0

15.7

15.1

0.6

0.0

1.3

2.5

22.0

1.3

41.5

54.7

0.6

1.3

13.2

14.5

1.9

0.6

13.2

2

5

9

11

9

22

8

14

9

2

25

28

13
2

0

15

11

9

0

0

4

0

12

0

22

28

1
2

9

4

2

0

12

3.4

8.6

15.5

19.0

15.5

37.9

13.8

24.1

15.5

3.4

43.1

48.3

22.4

3.4

0.0

25.9

19.0

15.5

0.0

0.0

6.9

0.0

20.7

0.0

37.9

48.3

1.7

3.4

15.5

6.9

3.4

0.0

20.7

cally quite good. However, in both journals about

40% of analyses did not include reports of the reli-

ability of the measured variables. A large number of

the analyses in which reliabilities were not reported

involved single-item measures, whereas those for

which reliabilities were reported involved multi-item

measures. Because single-item variables are likely to

be considerably less reliable than multi-item vari-

ables, it seems probable that many of the analyses

reported in these journals were based on variables

with less than optimal psychometric properties. Also

of interest is the fact that we found virtually no cases

in which authors reported the communalities of their

measured variables. This practice is unfortunate given

that, in some ways, the communalities are more in-

formative than the reliabilities regarding the sound-

ness of the EFA results. However, for 18 data sets we

were able to obtain the correlation matrices on which

the authors' factor analyses were based. This allowed

us to index the communalities by examining the

squared multiple correlations associated with each

data set. The average communality associated with

each data set ranged from .12 to .65 with the median

of these averages being .425.

The third section of Table 7 presents the distribu-

tion of sample sizes across articles. More than a third

of the articles across the two journals conducted EFA

based on modest-to-small sample sizes (i.e., samples

of 200 or less). A somewhat smaller number of ar-

ticles used moderate sample sizes (i.e., 201 to 400),

and about a third or more used large samples (i.e.,

greater than 400). Thus, there was a substantial num-

ber of articles based on sample sizes sufficiently small

that results could have been distorted if the measured

variables included in the analysis were less than op-

timal or the factors were underdetermined.

The next section of Table 7 indicates the greater

popularity of PCA relative to EFA. Approximately

half of the published applications reported using the

PCA method. This method was used despite the fact

that in the vast majority of these articles, the primary

goal was to identify latent constructs underlying mea-

sured variables rather than data reduction per se. In

contrast, only about 20% of analyses used some form

of EFA (with some type of principal factors analysis

accounting for three out of every four articles using

common factor analysis). In approximately a fourth of

the articles in both journals, it was impossible to de-

termine what method was used.

The next section of Table 7 reports the distribution

of articles across different procedures for determining
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the number of factors. The eigenvalue-greater-than-1

rule was the most popular single procedure in both

journals, followed closely by the scree test. Use of

other methods of determining the number of factors

was relatively rare. A fairly sizable number of articles

(i.e., about 20%) reported using multiple methods. In

the overwhelming majority of these cases, multiple

methods involved some combination of the eigenval-

ues-greaier-than-1 rule, scree test, or factor interpret-

ability-a priori theory. However, it was extremely

common (i.e., about 40% of the time) for authors to

fail to clearly indicate how they arrived at their deci-

sions as to the number of factors to include.

The final section of Table 7 provides the distribu-

tion of articles across different methods of rotation.

Varimax rotation was clearly the most commonly

used rotation with approximately half of all factor

analyses in both journals using this procedure. The

second most popular method of rotation was direct

quartimin although this rotation was used in only

about a third to a fourth as many articles as varimax

rotation. A nontrivial number of articles (i.e., 13% to

21%) failed to indicate the rotation used.

When viewed in their entirety, the results reported

in Table 7 are discouraging. A fair number of analyses

were based on studies in which at least one design

feature was marginal (i.e., low measured variable to

factor ratios, modest sample sizes, or both). A sizable

number of analyses provided no information regard-

ing the psychometric properties of the measured vari-

ables. Trie most popular types of analysis and rotation

(i.e., PC A and varimax rotation) were not optimal or

even ne;;.r-optimal choices. In the case of determining

the number of factors, the largest proportion of pub-

lished articles indicated that multiple methods were

used. Such an approach seems sensible in light of the

methodological literature. However, exclusive use of

the largely discredited eigenvalues-greater-than-1 rule

was the second most popular choice. Thus, it appears

that the same poor choices found to be problematic in

the methodological literature and demonstrated to

produce the misleading results in our examples are

popular among researchers. Equally disconcerting, the

results in Table 7 indicated that researchers often

failed to provide adequate information about the pro-

cedures used. In 15.7% of JPSP factor analyses and

22.4% of JAP factor analyses it was impossible to

determine what procedures were used for at least two

of the three major analytic decisions. In more than

half of all factor analyses reviewed, information was

not provided concerning at least one of the decisions.

Implications of Current Practices for
Psychological Research

Given the prevalence of poor decision making by

researchers in the use of EFA, many readers might

wonder what the implications of such practices are for

the interpretations and conclusions reached in these

articles. A precise answer to this question is not pos-

sible. Although the methodological literature suggests

(and the examples presented in this article illustrate)

that different choices in designing studies and select-

ing factor analytic procedures can produce substantial

differences in results, there are clearly many cases in

which this does not occur. The methodological litera-

ture has delineated some of the conditions under

which differences in procedures will produce substan-

tial differences in results. However, understanding of

these issues is far from complete. Furthermore, in

many cases, it is impossible to know how often these

conditions exist in actual data. One method for an-

swering this question would be to conduct compre-

hensive reanalyses of published data sets. Unfortu-

nately, such an approach is not practical. Beyond the

fact that such a study would require the reanalysis of

hundreds of data sets, access to data sets is very dif-

ficult. It is relatively rare for researchers to report the

correlation matrix on which their factor analyses are

based, and requesting access to data is often unsuc-

cessful.13

Nonetheless, we were able to address this question

in a somewhat informal manner by reanalyzing those

data sets for which we had access to the correlation

matrices (a total of 18 data sets). These analyses re-

vealed a number of cases in which extracting factors

versus components, using different procedures to de-

termine the number of factors, or using different ro-

tation methods produced changes in results suffi-

ciently substantial to have altered the conclusions a

11 Interestingly, when we contacted authors to request

their data, we found that a relatively small proportion of

them agreed to our request. In the majority of cases, authors

did not answer our request even after reminder letters were

sent. In other cases, authors indicated that the data were no

longer available. Finally, in a few cases, authors indicated

that they would send the data but did not or directly refused

to send the data at all. This last situation is particularly

interesting given that current APA ethical guidelines specify

that authors publishing in APA journals must make their

data available to third parties for a period of 5 years fol-

lowing publication.
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researcher might have reached concerning the data.

For example, we compared the solutions produced by

ML factor analysis and PCA for models with the same

number of factors retained by the authors and using a

rotation comparable to that used by the authors. We

found that there were differences between PCA and

ML sufficiently substantial that a researcher could

have reached a different interpretation of the factors in

5 of the 18 data sets. That is, for 5 of these data sets,

one or more measured variables changed the factors

on which they had their primary loadings across the

two types of analysis. Interestingly, for 4 of the data

sets, it was impossible to compare the PCA and ML

solutions. The solutions could not be compared, be-

cause the authors in their original analyses retained so

many components relative to the number of measured

variables that the corresponding ML factor analysis

models would have had negative degrees of freedom.

Using the same models (i.e., common factor or

principal component) and fitting procedures used by

:he authors and the same number of factors retained

by the authors, we also compared varimax rotation

and direct quartimin rotation. We found that direct

quartimin rotations often produced slightly better

simple structure than varimax rotation when the fac-

lors were correlated, but the pattern of loadings was

substantially different (i.e., there were changes in the

factors on which one or more of the measured vari-

ables had their primary loadings) in only 1 of the data

sets.

Finally, using the eigenvalues-greater-than-1 rule,

-cree test, and model fit (as indexed by RMSEA), we

also examined the issue of the appropriate number of

factors. In 7 of the 18 data sets, the scree test, model
T i t , or both contradicted the eigenvalues-greater-

i.han-1 rule. Interestingly, when we examined the re-

sults of the scree test and model fit (two of the better

procedures for determining the number of factors), we

found that the results often contradicted the decisions

made by the authors in the original articles. In 3 of the

data sets, both model fit and the scree test clearly

suggested a different number of factors than that re-

tained by the authors. In 5 of the data sets, model fit

clearly suggested a different number of factors. In 1

data set, the scree test clearly suggested an alternative

number of factors.14

Although this small sample of data sets cannot be

regarded as ful ly representative of the entire applied

EFA literature, it does suggest that differences in re-

sults due to changes in EFA procedures might be

more common than many researchers realize. Addi-

tionally, our survey indicated that many researchers

made more than one poor decision. The combination

of several poor decisions is likely to produce even

more serious distortions. For example, it was rela-

tively common for researchers to conduct a PCA, re-

tain as many factors as eigenvalues greater than 1, and

conduct a varimax rotation. This particular "package"

of decisions is especially likely to result in poor re-

covery of the underlying factors.
IS

General Discussion

We began our article by noting that researchers

must consider five major methodological issues when

conducting a factor analysis. We argued that the

methodological literature suggests that not all options

available to researchers for each of these decisions are

equally sound and that poor choices in designing the

study and conducting the factor analysis can produce

poor results. To further illustrate this point, we reana-

lyzed previously published data sets and showed that

the (mis)use of EFA can produce misleading results.

We demonstrated that the misleading results obtained

in these analyses did not really reflect a fundamental

weakness in EFA but instead demonstrated the con-

sequences of using questionable analytic procedures.

We then went on to establish that the same question-

able procedures used in our examples are in fact quite

prevalent in current empirical research using factor

analysis.

We believe that our review highlights two impor-

tant points that should be brought to the attention of

researchers using EFA and to readers of articles in

which EFAs are reported. First, contrary to what

many researchers probably believe, the decisions in

the design of studies and in selecting factor analytic

procedures are not arbitrary and inconsequential.

There is reason to consider some design features and

14 In those cases in which model fit clearly contradicted

either the eigenvalues-greater-than-1 rule or the original de-

cisions made by the authors but the scree test did not, it was

almost never the case that the scree test supported the eig-

envalues-greater-than-1 rule or the original decision. In-

stead, in these cases, the scree test was sufficiently ambigu-

ous that it was difficult to argue that it clearly indicated an

appropriate number of factors.
1? It is perhaps not surprising that this particular choice of

options is so popular. This set of decisions are the default

options for the factor analysis procedure in SPSS.
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EFA procedures to be markedly better than others.

Second, this article suggests that the quality of EFAs

reported in psychological research is routinely quite

poor. Researchers sometimes base their analyses on

studies with less than optimal features, commonly

make questionable choices when selecting analytic

procedures, and do not provide sufficient information

for readers to make informed judgements of the

soundness of the EFA being reported.

One obvious question that arises from these obser-

vations is why factor analysis is so poorly used. There

are several possible reasons. One is that researchers

are ill-informed regarding the use of EFA. Although

there is a substantial methodological literature on

EFA, much of this literature is relatively complex and

published in quantitatively oriented journals that most

psychologists are unlikely to read on a regular basis.

With a few exceptions (e.g., Finch & West, 1997),

nontechnical, concise, and up-to-date reviews of this

literature have generally not been available to re-

searchers. Furthermore, most researchers probably re-

ceive little formal training in EFA. Although it is

common for graduate programs to require their stu-

dents to take courses on the use of analysis of variance

(ANOVA), it is much rarer for this to be the case for

EFA (-,ee Aiken, West, Sechrest, & Reno, 1990).

Many graduate programs do not offer courses that

cover factor analysis or devote only 1 week or 2 to

this topic as part of a broad survey course covering

different multivariate statistical procedures. There-

fore, it is not surprising that many researchers are

relatively uninformed regarding the implications of

study design features and choosing different factor

analytic procedures.

A second major reason why factor analyses are

poorly conducted is simple tradition. There is a strong

tendency for researchers to conduct analyses in a

manner that is similar to what has been done before.

Researchers do so because (a) they wish for their re-

sults to be directly comparable to past studies, (b) they

naively believe that procedures must be reasonable if

so many people have used them in the past, or (c) they

feel (perhaps correctly) that the surest way to avoid

difficulties in the peer review process is to do what

has been done before.

Finally, another reason for the poor use of EFA has

to do w ith the statistical software currently popular in

psychological research. Such programs are likely to

exert a tremendous influence on the way analyses are

conducted. For example, many researchers probably

follow the default options of their programs, because

they believe that these options would not be the de-

faults unless they were the most acceptable methods

currently available. Additionally, if a particular pro-

cedure is not offered in these programs, it is unlikely

that a researcher will or can even be expected to use

it. Unfortunately, the factor analytic procedures of-

fered in the major statistical programs are far from

ideal (e.g., see MacCallum, 1983; Wood et al., 1996).

Given the inadequacies of these programs, it is not

surprising that factor analyses conducted in psycho-

logical research are often far from optimal.

Although it is relatively easy to understand why

EFA is often misused, it is more difficult to formulate

how such practices might be changed. It seems un-

likely that psychology departments will be able or

willing to invest the resources necessary to substan-

tially upgrade their statistics courses. However, meth-

odologists could accept a greater responsibility for

educating the research community regarding the use

of EFA and other statistical procedures. This would

require them not only to write highly technical papers

targeted at the quantitative methodology community

(which are undeniably important) but also to write

less technical papers clearly explaining the practical

implications of this methodological research. Further-

more, editors must be willing to publish these articles

in nonquantitative journals that are likely to be read

by researchers. The use of EFA might also be im-

proved by editors of journals adopting higher stan-

dards for the manner in which factor analyses are

conducted and reported. At the very least, researchers

should be required to report what procedures they

used when conducting an EFA. Researchers should

also be expected to offer a brief rationale for their

design decisions and choices of EFA procedures. Fi-

nally, developers and users of EFA should more ac-

tively pressure the manufacturers of the major statis-

tical programs to improve their products. Taken

together, these initiatives would be a good start to-

ward improving the use of EFA in psychological re-

search.
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