
Evaluating the Use of Model-Based Requirement

Verification Method: An Empirical Study

Munmun Gupta, Daniel Aceituna, Gursimran S. Walia, Hyunsook Do
North Dakota State University, Fargo, ND, USA

{munmun.gupta, daniel.aceituna, gursimran.walia, hyunsook.do}@ndsu.edu

Abstract—Requirements engineering is a critical phase in

software development that describes the customer needs and the

specifications for the software solution. Requirements are

gathered through various sources and the output is a list of

requirements for a software product to be developed, written in

Natural Language (NL). NL requirements are fault prone

because stakeholders can interpret NL differently due to the

inherent imprecision, ambiguity, and vagueness of NL. To

address these problems, a model-based requirements verification

method called NL to state transition diagram (STD) is proposed.

This paper evaluates the ability of the NLtoSTD method to detect

faults when used on NL requirements and to improve the

software reliability. Overall, the result shows that the NLtoSTD

is an effective requirements verification method.

I. INTRODUCTION

To ensure software reliability, it is important to detect and
prevent different types of faults during the development of
various software artifacts. Requirements are gathered from
different stakeholders (technical and non-technical) and
recorded in natural language (NL), that describes the customer
needs and the specifications for the software solution. The
output of this phase, a software requirement specification (SRS
- a means of communication among stakeholders), is especially
fault-prone due to the inherent imprecision, ambiguity, and
vagueness of NL. Requirement faults if undetected propagate
to the later phases where they are difficult to find and fix [1-3].

To ensure high-quality requirements, numerous fault-based
verification approaches have been developed and validated for
fault-detection effectiveness [3, 8-11]. In particular, software
inspection, have been empirically validated [3, 9] for early
detection of faults in software artifacts. However, it is
estimated that the software development effort is still spent on
fixing problems that should have fixed early in the lifecycle [1,
2]. This rework stems from the fact that inspectors can have
different interpretations of the requirements and may not notice
the ambiguities and inconsistencies among other problems.

Model based approach, if applied to NL requirements can
be used for verification of NL specifications [6, 10]. However,
building a model from NL requirements is highly subjective.
Consequently, an erroneous translation of NL requirements can
result in the wrong model due to the inherent incompleteness
and ambiguities of NL [11] and, thus, can eventually produce
software that stakeholders do not want. To address this, several
researchers have proposed modeling techniques using an
automated NL translation approach [4,6,10,12]. These methods
include approaches based on translating goals to state machines
[4], and scenarios to state machines [12]. Automation can
certainly improve the translation process, but complete and

error-free automation of this process is not possible because,
often, NL requirements can be interpreted in multiple ways..

To address this problem, we propose a method that
translates NL requirements into a State Transition Diagram
(STD) in an incremental manner (NLtoSTD) and expose
ambiguities, incompleteness, and inconsistencies in NL
requirements. The NLtoSTD is carried out in two steps, where
the first step turns each NL requirement into a STD building
block (NLtoSTD-BB) and the second step then construct the
STD using the STD-BBs (STD-BBtoSTD). Requirements
engineers and stakeholders can detect faults during each step
(NLtoSTD-BB and STD-BBtoSTD) and direct mapping from
NL to model is preserved in the translation process. Each NL
requirement becomes a segment of the STD so that
adjustments made to the model can be directly made to the
requirements, and visa-versa. The results from the previous
study [5] validated the NLtoSTD-BB method and helped us
make revisions. This paper presents an empirical study that
evaluates the fault-detection ability of the revised NLtoSTD-
BB method, and extends the research by evaluating the fault-
detection ability of the STD-BBtoSTD method (used for the
first time). Therefore, the complete NLtoSTD method (i.e.,
NLtoSTD-BB + STD-BBtoSTD) is evaluated in this paper.

II. BACKGROUND

This section describes the basic concepts of the NLtoSTD

method, the revised NLtoSTD-BB, and STD-BBtoSTD step.

A. NLtoSTD: Basic Concepts

 The basic idea of our NLtoSTD method is to translate the
NL requirements into an STD, so that the ambiguity,
incompleteness, and inconsistencies or any problem) in the NL
requirements can be easily detected. The NL to STD
translation first translates NL requirements into STD-BBs
(NLtoSTD-BB) and then creates an STD using the STD-BBs
(STD-BBtoSTD). A high-level overview of the NLtoSTD
method is shown in Fig. 1. Fig.1 highlights the “NLtoSTD-BB”
translation (Step1) and the “STD-BBtoSTD” construction
(Step2). We hypothesize that the NLtoSTD helps discover the
problems in the NL requirements by examining the individual
STD-BBs and the resulting STD.

 As shown in middle part of Fig. 1, the three elements that
make up a STD-BB (i.e., current state (Sc), next state (Sn), and
transition (T)) are precisely extracted from an individual
requirement. The selection of these elements was based upon
the characteristics of an ideal requirement and an inspection
scheme that can help detect the problems that are otherwise left
undetected using traditional inspection methods. As illustrated

This work was supported in part by NSF CAREER Award CCF-1149389
to North Dakota State University.

397

in Fig. 1, each requirement is stated so that it directly maps to
an STD-BB. Each requirement explicitly states its precondition
in the form of the current state (Sc) and its post condition in the
form of the next state (Sn). However, typical NL requirements
do not explicitly state current and next states, thus a
requirement’s preconditions and post conditions are often
inferred causing ambiguities and incompleteness. Similarly, the
absence of the explicit transition (T) can cause difference in the
interpretations of a requirement by different stakeholders. The
NLtoSTD method requires the stakeholders to identify the
aforementioned three elements so that they can detect the
requirement faults while building the STD and ensures that the
requirements are as consistent and concise as possible.

B. Step 1 - NLtoSTD-BB: Application for Fault Detection

The first step of the NLtoSTD method transforms each NL
requirement into an individual STD-BB. The STD-BBs act as a
formalized version of the NL requirements and can lead to the
detection of faults for two reasons: (1) a formalized version of
the NL requirements has only one specific interpretation,
exposing ambiguities in the NL requirements, and, (2) a
formalized version exposes missing requirements more readily,
as compared to a fault-checklist inspection of requirements.

1) Original NLtoSTD-BB [5]

As shown in Fig. 1, each NL requirement is translated into

an STD-BB by extracting three elements {Sc, T, Sn}. The

basis for this transformation is that a functional requirement

should describe an entity transitioning from one state to

another. For example, the requirement “While the car is

moving forward, the driver shall be able to stop it by applying

the brake.” would describe the Car (an entity) transitioning (T)

from moving (Sc) to stopping (Sn), using an STD-BB.

In the above example requirement, the three elements are
explicitly stated, yielding definable values for Sc, T, and Sn. In
practice, however, requirements often ambiguously imply one
or more values for Sc, T, and Sn, thus identifying a value for
each element would not be obvious. For instance, the prior
requirement may have stated: “The driver shall stop the car by
applying the brakes.” Note that Sc is not explicitly stated as
“moving” but, rather, implied. In our original STD-BB, we
used questions marks (???) to denote an element that is not
documented. Thus, in this example, we would define the three
elements as {Sc: ???, T: Applying Brake, Sn: Stop}. It may be
safe to assume that the car is moving prior to stopping, but it
requires an assumption. Undocumented assumptions can be
erroneous and can cause serious defects (especially when the
developers lack appropriate knowledge of the application

domain). In this example, it is not clear whether we assume
“moving forward,” “moving backward,” or both. It is important
to document what may seem obvious, instead of allowing the
possibility of an erroneous assumption. Therefore, the
NLtoSTD-BB helps to expose undocumented assumptions.

We developed a set of three questions to help users
systematically identify the three elements for each requirement
during this step [5]. Asking these three questions identifies
explicit or undocumented values for {Sc, T, Sn}, resulting in an
STD-BB. While the ambiguities and incompleteness may not
be obvious in the NL requirements, they are made obvious in
an STD-BB that stakeholders can work towards its completion.

2) Revised NLtoSTD-BB

The NLtoSTD-BB used during the Sudy 1 showed that the

method was significantly more effective than the fault-

checklist based inspection, when the subjects correctly

extracted the STD-BBs. The variations in performance during

study [5] prompted us to re-evaluate the way that the three

elements (Sc, T, Sn) were determined. This section dicuss the

changes and the revised NLtoSTD-BB method.

Fig. 2 illustrates the revised NLtoSTD-BB method using an

example requirement. In the revised NLtoSTD-BB method, the

three changes are briefly discussed along with their reasoning.

The first change is that we explicitly added an entity to a

state to represent Sc and Sn as follows: entity (state). Allowing

for multiple entities would alleviate the problem encountered

with requirements that are not atomic. Separating the concepts

of an entity and its given states, also makes it easier to derive

Sc and Sn, since the user could first decide which entity is

being affected and then determine the entity states before and

after the effect. Fig. 2 shows that the revisded NLtoSTD-BB

method, can help identify three entities: unit, battery, and user.

The second change in the revised NLtoSTD-BB method is

allowing users to make an assumption. As shown in Fig. 2,

“unit (normalOp?)” has a question mark. This indicates that

the user can assume that it is the intended state and label it for

follow up. This was done to improve the method’s ability to

expose ambiguities. The third change is to allow users to add

conditions when they describe the transition (T). This alleviates

the problem when a requirement seems to state more than one

transition. The revised NLtoSTD-BB method with five

elements (entity, entity’s current state, entity’s next state,

transition, condition for transition) is evaluated in this paper.

C. Step 2 - STD-BBtoSTD: Application and Tool Support:

The final step in the NLtoSTD method is the construction

of STD based on the STD-BBs. The idea is to be able to both

simulate the behaviours described in the requirements and to

Fig. 1. NLtoSTD Method Overview

Fig.2. Revised NLtoSTD-BB

398

analyze these behaviours through the production of path

traversals through the STD. This would potentially expose

inconsistent and/or incorrect behaviours, that can be readily

traced back to the requirements. An incomplete STD would

expose imcompleteness in the requirements verbage. Thus, the

STD-BBtoSTD phase exposes potential faults by analyizing

the STD’s static and dynamic properties.

The STD’s behavior was simulated by computer in order

to expose faults that may not be evident unless the STD is

enacted. There STD can be analyzed automatically by

examining the path traversals, for desired behavior. The

STD’s construction was implemented through a software tool.

The user enters the STD-BB data in an Excel spreadsheet,

which is then read directly into the tool (by the tool’s use of

COM automation). The STD is then displayed in a separate

window, and can be kept opened as more STD-BB data is

being entered. The tool updates the STD, as changes are made

to the STD-BB data. This allows the user to view the STD,

make changes to the STD-BBs that would correct any STD

structural faults, and see the results of those changes in real

time. The subject can record faults during this step.

III. EMPIRICAL STUDY

This study evaluated NLtoSTD-BB translation step at
finding incompleteness and ambiguities during an inspection of
NL requirements. This study also evaluated if additional new
faults can be found during the construction of the STD. The
complete NLtoSTD method was evaluated using a repeated-
measure design in which different student teams (with varying
number of members) developed requirement documents for
different systems. Next, each participant individually inspects
the requirement document (that was developed by them) using
the NLtoSTD-BB step and kept a log of ambiguous, and
missing requirements for respective documents. During the
next step, the student individually worked to create STD from
the STD-BBs (using an automated tool) and then analyzed the
resulting STD to log new faults that were not found previously.

A. Research Questions and Hypotheses

The following research questions were investigated:
RQ1: Is the NLtoSTD-BB effective at detecting incomplete
and ambiguous requirements during requirements inspection?
RQ2: Does creating the STD model result in detection of the
faults in addition to those found during the NLtoSTD-BB?
RQ3: What are the problems faced by the subjects when using
the complete NLtoSTD method?

B. Variables and Measures

Each subject performed an individual inspection of their
requirements document using the NLtoSTD method. Our
dependent variables include: Effectiveness - # of faults found
and Efficiency - # of faults found per hour.

C. Participating Subjects and Requirement Artifacts

Sixteen computer science graduate students at North
Dakota State University (NDSU) worked in teams to develop
requirements document for different projects. Some students
dropped the course resulting in this irregular size of student
teams. There were two phases to this study. First, each team

developed a requirement document for a particular software
system (Table I). Second, each subject inspected the
requirement document developed by their team using the
NLtoSTD-BB followed by STD-BBtoSTD method.

D. Study Procedure

The study details are provided in the following subsections.

1) Phase I – Development of SRS documents: The

participants divided into 5 different teams of three or four

participants developed the requirements documents for their

identified software system. Details are provided in Table I.

2) Phase II– Inspection using NLtoSTD: During this step,

the students in each team individually inspected their own

SRS document using the NLtoSTD method.

a) Training 1 -- NLtoSTD-BB: The participants were

first trained on how to map the NL requirements to STD-BBs.

Next, the participants were instructed how to document the

building block elements on a spreadsheet using few examples.

Next, the participants were instructed how to record

“ambiguities” and “incompleteness” or any other requirement

faults that are found during the application of NLtoSTD-BB.

The subjects were asked to translate few requirements into

STD-BBs and document the faults using the same spreadsheet.

b) Step 1-- Inspection using NLtoSTD-BB: The

participants used the information from Training 1 and

individually inspected their own requirement document using

the NLtoSTD-BB translation. This step resulted in a list of 16

individual speadhseets that contained the STD-BB elements

and the faults found (one per participant).

c) Training 2 - tool support for STD Creation: During

this session, the participants learned about the STD tool. The

subjects were instructed how to load the BBs (from step 1)

into the tool and then, how to construct an STD from the BBs.

The subjects were then instructed to examine the constructed

STD. Finally, the participants learned to record the fault type

in the fault spreadsheet. To ensure that subjects understood,

the subjects practiced these steps through an example system.

d) Step 2 – STD-BBtoSTD and inspectng STD: The

subjects constructed the STD diagram from STD-BB. The

output of this step was 16 individual STD diagrams (one per

participant). The resulting STD diagrams were analyzed for

potential incompleteness, inconsistencies in the behaviours,

or any other requirement faults. The participants analyzed and

recorded the faults during and after the creation of STD. The

students also documented the reason and classification of the

fault (incompleteness, ambiguous, inconsistency or other) in

the fault spreadsheet. This step resulted in 16 individual fault

TABLE I. ARTIFACTS DEVELOPED BY STUDENT TEAMS

Doc Team

No. of

Subjects

System Description Size

(pages)

A 1 4 Parking lot availability system 25

B 2 4 Web portal for student residence 22

C 3 3 Virtual story board system 28
D 4 2 Matbus application for android 25
E 5 3 Professional development

management system
32

399

lists. Finally, subjects provided feedback about the NLtoSTD-

BB and the STD-BBtoSTD. An in-class discussion with

subjects helped researchers better understand the results.

E. Data Collection

The quantitative data included the ambiguous, missing, and
inconsistent faults found by each subject in their SRS
document during: a) translation of NL requirements to the
STD-BBs, and b) construction of STD using the BBs. Each
subject was provided 50 minutes during NLtoSTD-BB step and
30 minutes during STD-BBtoSTD step. The timing data was
used for analyzing the efficiency values. The qualitative data
included student’s rating of NLtoSTD by answering a multi-
question questionnaire based on a 5 point likert-scale. We also
collected feedback post-study with participating subjects.

IV. DATA ANALYSIS AND RESULTS

 This section analyzed the data collected during NLtoSTD-
BB, STD-BBtoSTD, post-study questionnaire and interviews.

A. RQ 1: Effectiveness and Efficiency of NLtoSTD-BB

This section reports the effectiveness and efficiency of the
NLtoSTD-BB during the requirements inspection. Before
analyzing the fault data, the researchers determined the validity
of the faults for each subject by reading through the fault
spreadsheet reported by each participant to remove any false-
positives (or if any faults were unclear). Next, the number of
“Missing Functionality (MF)” and “Ambiguous Information
(AI)” faults reported by each subject during the application of
NLtoSTD-BB for their respective documents were counted.

Since each subject individually inspected their own
document, the document (for each team) was inspected by all
the subjects belonging to that team. Fig. 4 organizes results by
the total number of AI and MF faults found by the member
belonging to each team. Main observations from Fig. 4 follow:

 Fifteen out of sixteen subjects found faults (AI or MF)
during the NLtoSTD-BB based inspection of their
requirements document. The subjects (numbered 6)
reported a lot of faults but none of them represented real
problems;

 There were no consistent differences in the total number of
AI vs. MF faults found by the subjects within each team.
This was major improvement from the results in our
previous study [5] where, the subjects using the NLtoSTD-
BB method consistently found larger number of MF faults
than the AI faults. This is a positive result that the
improved heuristics were able to find both types of faults
when constructing the STD-BBs.

 For each document, the average number of faults was
calculated for each team by dividing the total number of
unique faults by the number of subjects who inspected the
document. The results showed that teams 1 through 5
found an average of 15, 12, 18, 9, and 22 faults
respectively. This demonstrates an improvement in the
performance of student teams from the first study [5] when
using the original NLtoSTD-BB method (teams found an
average of 7 faults at most) as well as a improvement
when considering the inspection results in [5] when using
the fault checklist method (an average of 5 faults).

Therefore, based on these results, fault detection
effectiveness of the NLtoSTD-BB method has improved from
its first evaluation. Additionally, the distribution of faults is
more consistent across both fault types (AI and MF). The
revised NLtoSTD-BB heuristics were able to highlight hidden
ambiguities in individual requirements which are otherwise not
detected when performing a traditional inspection process.

Regarding the efficiency (faults/hour), the student teams
found an average of 19, 7, 10, 10, and 26 faults per hour
respectively. This is also an improvement in comparison to the
results from the first study [5]. The high efficiency values
reported in this study validate the ease of use of the revised
NLtoSTD-BB method. Therefore, the NLtoSTD-BB is an
effective and efficient method for verifying NL requirements.

B. RQ 2: Fault Detection during the STD Creation

The translation of BBs into STD can highlight the
ambiguities and incompleteness in the NL requirements by
examining the gaps (or disconnections) and inconsistent path
traversals in the STD, and to identify the inconsistencies in the
requirements that are not a focus during the NLtoSTD-BB.

To investigate the validity of this step, we counted the
number of new MF, AI and INC faults reported by each subject
after the creation and analysis of STD for their respective
documents. The result on the number of new AI, MF, and Inc
faults found by each subject belonging to a team is shown in
Fig. 5. Interestingly (Fig. 5), each subject found at least one
new fault (AI or MF or Inc) after creating the STD. As
expected, a larger number of “Inc” faults are found during this
step as compared to the AI and MF faults. This is also
consistent across all the teams. The subjects felt it was easy to
observe the inconsistencies when looking at a complete STD as
opposed to translating individual NL requirements (one at a
time) to STD-BBs. Since, the loading of BBs to create the STD
is an automated process (using a tool); it is not surprising that
subjects were able to find additional faults by focusing their
attention on examining the STD and recording faults.

 To better understand the effectiveness of STD-BBtoSTD,
we compared the percentage contribution of the STD-
BBtoSTD relative to the overall NLtoSTD for each team. This
was done by dividing the # of unique faults found during STD-
BBtoSTD by sum of total # of unique faults found during
NLtoSTD-BB and STD-BBtoSTD combined. The student
teams 1-5, after the creation of STD, found 18%, 22%, 14%,
23%, and 12% of total faults respectively. To further verify the
usefulness of the creation and analysis of STD, a one-sample t-

Fig. 4. Number of AI and MF Faults found by Subjects using NLtoSTD-BB

400

test was run separately for each team to determine whether the
number of faults found during re-inspection using STD was
significantly greater than zero (0). The result was found to be
statistically significant (p < 0.001) and indicate a benefit of
creating STD using the BBs, for finding requirement faults.

C. Difficulties Faced by Subjects Using the NLtoSTD Method

The qualitative data collected during this study evaluated
the usability of the NLtoSTD-BB method. To do that, the
participants were asked to rate the difficulty level for finding
the “Entity”, “Initial Status”, “Changed Status”, “How is Status
Changed”, and “Conditions for Change” for NL requirements.

Using a 5-point likert scale (1-very difficult to 5-very easy),
the participants rated the difficulty level for each of the five
elements of an STD-BB. A One-sample Wilcoxon Signed-
Rank test determined whether the medians ratings were
significantly greater than 3 (midpoint of the scale). The results
showed that the NLtoSTD-BB method received positive
ratings (i.e., median value greater than or equal to three), but
not statistically significant. The subjects also rated the
difficulty level during the construction of STD and analyzing
the constructed STD for faults. The results showed that the
STD creation received significantly positive ratings (p < 0.05).

The complete NLtoSTD method was also evaluated using
the feedback from subjects on the following seven attributes:
Simplicity, Ease of Understanding, Ease of Use, Intuitiveness,
Comprehensiveness, Usefulness, and Ease of finding faults.
Each subject rated the attributes on a 5-point scale. The results
from Wilcoxon Signed-Rank test revealed that the NLtoSTD
received significantly positive ratings on Ease of
Understanding, Ease of Use, and Ease of finding faults.

Overall, the subjects felt that the NLtoSTD process helped
them understand the major problems in requirements, and that
the effort spent during the NLtoSTD inspection process was
worthwhile. The potential improvements regarding the tool and
the guidance to help analyze the STD diagram will be
implemented in future evaluations.

V. DISCUSSION OF RESULTS

RQ 1: The NLtoSTD-BB method helped inspectors find
inherent ambiguities and incompleteness in requirements. The
comparison of the results against the previous research results
[5] revealed that the subjects were able to find larger number of
total faults (on average), and the distribution of faults across
fault types (MF and AI) was more consistent. The results also
showed that the NLtoSTD-BB method helped find the faults
faster (i.e., efficiency) when compared to the results in [5].

RQ 2: Based on the results, additional MF and AI fault
types are uncovered during the examination of STD
constructed from the BBs. In particular, the creation of STD
aids inspectors at detecting a large number of “Inc” that are
otherwise not apparent when looking at individual
requirements. The construction of STD is useful for overall
inspection effectiveness using the complete NLtoSTD method.

RQ 3: The subjects provided insights in to the use of the
NLtoSTD method and improvements that can help improve the
performance in future studies. The subjects mentioned that the
tool should guide the NLtoSTD-BBs translation and should at
least highlight parts of STD that are completely disconnected.
We plan to make this process as much automated as possible
without losing the promise of inspections.

VI. CONCLUSION AND FUTURE WORK

Based on these results, the NLtoSTD method is effective
method to detect AI, MF, and Inconsistency fault types during
an inspection of NL requirements. We also identified the areas
of improvement that would benefit the performance of subjects
using the method. Our future work would include more
replications, with a classic control group design so that we can
understand how many faults found during the Phase III are
solely due to the STD creation and not just due to the re-
inspection. We also wish to automate as much of the
heuristics as possible, including the NLtoSTD building
block portion. The STD analysis could be automated as well,
using a reasoning engine written in a logic language such as
Prolog, and this has already been achieved to a certain degree.

REFERENCES

[1] B. Boehm and V. Basili. Software fault reduction top 10 list. IEEE

Computer, pages 135–137, January 2001.
[2] B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[3] B. Brykczynski, A survey of software inspection checklists, ACM SE

Notes, 24(1):82,1999.
[4] C. Damas, B. Lambeau, P. Dupont, and A. Lamsweerde, Generating

annotated behavior models from end-user scenarios,” TSE, 31(12):1056-

1073, 2005.
[5] D. Aceituna, H. Do, G. Walia, and S. Lee. Evaluating the use of

model-based requirements verification method: A feasibility study.

EmpiRE, 2011, pages 13-20, August 30, 2011.
[6] D. Popescu, S. Rugaber, N. Medvidovic, and D. Berry, Reducing

ambiguities in requirements specifications via automatically created
object-oriented models, Monterey Workshop on Computer Packaging,

pp. 103-124, 2007.

[7] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis. Identifying
nocuous ambiguities in natural language requirements. RE, pp 59–68,

2006.

[8] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray,
and M. Wong, Orthogonal fault classification - A concept for in-

process measurements. TSE, 18(11): 943-956, 1992.

[9] S. Sakthivel. Survey of requirements verification techniques. Journal of
Information Technology, pp. 68-79, 1991.

[10] L. Kof, R. Gacitua, M. Rouncefield, and P. Sawyer, Ontology and model

alignment as a means for requirements validation, ICSC, pp. 46-51,
2010.

[11] D. Barry. Ambiguity in natural language requirements documents.

Lecture Notes in Computer Science, LNCS, volume 5320, pages 1-7,
2008.

[12] E. Letier, J. Kramer, J. Magee, and S. Uchitel, Monitoring and control in

scenario-based requirements analysis. In Proceedings of the 27th
International Conference on Software Engineering, pages 382–391,

2005.

Fig. 5. Number of Faults found after the Creation of STD using the STD-BBs

401

