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Abstract—Requirements engineering is a critical phase in 

software development that describes the customer needs and the 

specifications for the software solution. Requirements are 

gathered through various sources and the output is a list of 

requirements for a software product to be developed, written in 

Natural Language (NL). NL requirements are fault prone 

because stakeholders can interpret NL differently due to the 

inherent imprecision, ambiguity, and vagueness of NL. To 

address these problems, a model-based requirements verification 

method called NL to state transition diagram (STD) is proposed. 

This paper evaluates the ability of the NLtoSTD method to detect 

faults when used on NL requirements and to improve the 

software reliability. Overall, the result shows that the NLtoSTD 

is an effective requirements verification method.   

I. INTRODUCTION 

To ensure software reliability, it is important to detect and 
prevent different types of faults during the development of 
various software artifacts. Requirements are gathered from 
different stakeholders (technical and non-technical) and 
recorded in natural language (NL), that describes the customer 
needs and the specifications for the software solution. The 
output of this phase, a software requirement specification (SRS 
- a means of communication among stakeholders), is especially 
fault-prone due to the inherent imprecision, ambiguity, and 
vagueness of NL. Requirement faults if undetected propagate 
to the later phases where they are difficult to find and fix [1-3]. 

To ensure high-quality requirements, numerous fault-based 
verification approaches have been developed and validated for 
fault-detection effectiveness [3, 8-11]. In particular, software 
inspection, have been empirically validated [3, 9] for early 
detection of faults in software artifacts. However, it is 
estimated that the software development effort is still spent on 
fixing problems that should have fixed early in the lifecycle [1, 
2]. This rework stems from the fact that inspectors can have 
different interpretations of the requirements and may not notice 
the ambiguities and inconsistencies among other problems.  

Model based approach, if applied to NL requirements can 
be used for verification of NL specifications [6, 10]. However, 
building a model from NL requirements is highly subjective. 
Consequently, an erroneous translation of NL requirements can 
result in the wrong model due to the inherent incompleteness 
and ambiguities of NL [11] and, thus, can eventually produce 
software that stakeholders do not want. To address this, several 
researchers have proposed modeling techniques using an 
automated NL translation approach [4,6,10,12]. These methods 
include approaches based on translating goals to state machines 
[4], and scenarios to state machines [12]. Automation can 
certainly improve the translation process, but complete and 

error-free automation of this process is not possible because, 
often, NL requirements can be interpreted in multiple ways.. 

To address this problem, we propose a method that 
translates  NL  requirements  into  a  State  Transition  Diagram 
(STD)  in  an  incremental  manner  (NLtoSTD) and expose 
ambiguities, incompleteness, and inconsistencies in NL 
requirements. The NLtoSTD is carried out in two steps, where 
the first step turns each NL requirement into a STD building 
block (NLtoSTD-BB) and the second step then construct the 
STD using the STD-BBs (STD-BBtoSTD). Requirements 
engineers and stakeholders can detect faults during each step 
(NLtoSTD-BB and STD-BBtoSTD) and direct mapping from 
NL to model is preserved in the translation process. Each NL 
requirement becomes a segment of the STD so that 
adjustments made to the model can be directly made to the 
requirements, and visa-versa. The results from the previous 
study [5] validated the NLtoSTD-BB method and helped us 
make revisions. This paper presents an empirical study that 
evaluates the fault-detection ability of the revised NLtoSTD-
BB method, and extends the research by evaluating the fault-
detection ability of the STD-BBtoSTD method (used for the 
first time). Therefore, the complete NLtoSTD method (i.e., 
NLtoSTD-BB + STD-BBtoSTD) is evaluated in this paper.  

II. BACKGROUND  

This section describes the basic concepts of the NLtoSTD 

method, the revised NLtoSTD-BB, and STD-BBtoSTD step.  

A. NLtoSTD: Basic Concepts  

 The basic idea of our NLtoSTD method is to translate the 
NL requirements into an STD, so that the ambiguity, 
incompleteness, and inconsistencies or any problem) in the NL 
requirements can be easily detected. The NL to STD 
translation first translates NL requirements into STD-BBs 
(NLtoSTD-BB) and then creates an STD using the STD-BBs 
(STD-BBtoSTD). A high-level overview of the NLtoSTD 
method is shown in Fig. 1. Fig.1 highlights the “NLtoSTD-BB” 
translation (Step1) and the “STD-BBtoSTD” construction 
(Step2). We hypothesize that the NLtoSTD helps discover the 
problems in the NL requirements by examining the individual 
STD-BBs and the resulting STD.  

 As shown in middle part of Fig. 1, the three elements that 
make up a STD-BB (i.e., current state (Sc), next state (Sn), and 
transition (T)) are precisely extracted from an individual 
requirement. The selection of these elements was based upon 
the characteristics of an ideal requirement and an inspection 
scheme that can help detect the problems that are otherwise left 
undetected using traditional inspection methods. As illustrated 
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in Fig. 1, each requirement is stated so that it directly maps to 
an STD-BB. Each requirement explicitly states its precondition 
in the form of the current state (Sc) and its post condition in the 
form of the next state (Sn). However, typical NL requirements 
do not explicitly state current and next states, thus a 
requirement’s preconditions and post conditions are often 
inferred causing ambiguities and incompleteness. Similarly, the 
absence of the explicit transition (T) can cause difference in the 
interpretations of a requirement by different stakeholders. The 
NLtoSTD method requires the stakeholders to identify the 
aforementioned three elements so that they can detect the 
requirement faults while building the STD and ensures that the 
requirements are as consistent and concise as possible.  

B. Step 1 - NLtoSTD-BB: Application for Fault Detection 

The first step of the NLtoSTD method transforms each NL 
requirement into an individual STD-BB. The STD-BBs act as a 
formalized version of the NL requirements and can lead to the 
detection of faults for two reasons: (1) a formalized version of 
the NL requirements has only one specific interpretation, 
exposing ambiguities in the NL requirements, and, (2) a 
formalized version exposes missing requirements more readily, 
as compared to a fault-checklist inspection of requirements.  

1) Original NLtoSTD-BB [5]  

As shown in Fig. 1, each NL requirement is translated into 

an STD-BB by extracting three elements {Sc, T, Sn}. The 

basis for this transformation is that a functional requirement 

should describe an entity transitioning from one state to 

another. For example, the requirement “While the car is 

moving forward, the driver shall be able to stop it by applying 

the brake.” would describe the Car (an entity) transitioning (T) 

from moving (Sc) to stopping (Sn), using an STD-BB. 

In the above example requirement, the three elements are 
explicitly stated, yielding definable values for Sc, T, and Sn. In 
practice, however, requirements often ambiguously imply one 
or more values for Sc, T, and Sn, thus identifying a value for 
each element would not be obvious. For instance, the prior 
requirement may have stated: “The driver shall stop the car by 
applying the brakes.” Note that Sc is not explicitly stated as 
“moving” but, rather, implied. In our original STD-BB, we 
used questions marks (???) to denote an element that is not 
documented. Thus, in this example, we would define the three 
elements as {Sc: ???, T: Applying Brake, Sn: Stop}. It may be 
safe to assume that the car is moving prior to stopping, but it 
requires an assumption. Undocumented assumptions can be 
erroneous and can cause serious defects (especially when the 
developers lack appropriate knowledge of the application 

domain). In this example, it is not clear whether we assume 
“moving forward,” “moving backward,” or both. It is important 
to document what may seem obvious, instead of allowing the 
possibility of an erroneous assumption. Therefore, the 
NLtoSTD-BB helps to expose undocumented assumptions. 

We developed a set of three questions to help users 
systematically identify the three elements for each requirement 
during this step [5]. Asking these three questions identifies 
explicit or undocumented values for {Sc, T, Sn}, resulting in an 
STD-BB. While the ambiguities and incompleteness may not 
be obvious in the NL requirements, they are made obvious in 
an STD-BB that stakeholders can work towards its completion. 

2) Revised NLtoSTD-BB  

The NLtoSTD-BB used during the Sudy 1 showed that the 

method was significantly more effective than the fault-

checklist based inspection, when the subjects correctly 

extracted the STD-BBs. The variations in performance during 

study [5] prompted us to re-evaluate the way that the three 

elements (Sc, T, Sn) were determined. This section dicuss the 

changes and the revised NLtoSTD-BB method. 

Fig. 2 illustrates the revised NLtoSTD-BB method using an 

example requirement. In the revised NLtoSTD-BB method, the 

three changes are briefly discussed along with their reasoning. 

The first change is that we explicitly added an entity to a 

state to represent Sc and Sn as follows: entity (state). Allowing 

for multiple entities would alleviate the problem encountered 

with requirements that are not atomic. Separating the concepts 

of an entity and its given states, also makes it easier to derive 

Sc and Sn, since the user could first decide which entity is 

being affected and then determine the entity states before and 

after the effect. Fig. 2 shows that the revisded NLtoSTD-BB 

method, can help identify three entities: unit, battery, and user. 

The second change in the revised NLtoSTD-BB method is 

allowing users to make an assumption. As shown in Fig. 2, 

“unit (normalOp?)” has a question mark. This indicates that 

the user can assume that it is the intended state and label it for 

follow up. This was done to improve the method’s ability to 

expose ambiguities. The third change is to allow users to add 

conditions when they describe the transition (T). This alleviates 

the problem when a requirement seems to state more than one 

transition. The revised NLtoSTD-BB method with five 

elements (entity, entity’s current state, entity’s next state, 

transition, condition for transition) is evaluated in this paper.    

C. Step 2 - STD-BBtoSTD: Application and Tool Support:  

The final step in the NLtoSTD method is the construction 

of STD based on the STD-BBs. The idea is to be able to both 

simulate the behaviours described in the requirements and to 

 
Fig. 1. NLtoSTD Method Overview  

 

 
Fig.2. Revised NLtoSTD-BB  
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analyze these behaviours through the production of path 

traversals through the STD. This would potentially expose 

inconsistent and/or incorrect behaviours, that can be readily 

traced back to the requirements. An incomplete STD would 

expose imcompleteness in the requirements verbage. Thus, the 

STD-BBtoSTD phase exposes potential faults by analyizing 

the STD’s static and dynamic properties.  

The STD’s behavior was simulated by computer in order 

to expose faults that may not be evident unless the STD is 

enacted. There STD can be analyzed automatically by 

examining the path traversals, for desired behavior. The 

STD’s construction was implemented through a software tool. 

The user enters the STD-BB data in an Excel spreadsheet, 

which is then read directly into the tool (by the tool’s use of 

COM automation). The STD is then displayed in a separate 

window, and can be kept opened as more STD-BB data is 

being entered. The tool updates the STD, as changes are made 

to the STD-BB data. This allows the user to view the STD, 

make changes to the STD-BBs that would correct any STD 

structural faults, and see the results of those changes in real 

time. The subject can record faults during this step. 

III. EMPIRICAL STUDY  

This study evaluated NLtoSTD-BB translation step at 
finding incompleteness and ambiguities during an inspection of 
NL requirements. This study also evaluated if additional new 
faults can be found during the construction of the STD. The 
complete NLtoSTD method was evaluated using a repeated-
measure design in which different student teams (with varying 
number of members) developed requirement documents for 
different systems. Next, each participant individually inspects 
the requirement document (that was developed by them) using 
the NLtoSTD-BB step and kept a log of ambiguous, and 
missing requirements for respective documents. During the 
next step, the student individually worked to create STD from 
the STD-BBs (using an automated tool) and then analyzed the 
resulting STD to log new faults that were not found previously. 

A. Research Questions and Hypotheses 

The following research questions were investigated:  
RQ1: Is the NLtoSTD-BB effective at detecting incomplete 
and ambiguous requirements during requirements inspection?  
RQ2: Does creating the STD model result in detection of the 
faults in addition to those found during the NLtoSTD-BB?  
RQ3: What are the problems faced by the subjects when using 
the complete NLtoSTD method?  

B. Variables and Measures 

Each subject performed an individual inspection of their 
requirements document using the NLtoSTD method. Our 
dependent variables include: Effectiveness - # of faults found 
and Efficiency - # of faults found per hour.  

C. Participating Subjects and Requirement Artifacts 

Sixteen computer science graduate students at North 
Dakota State University (NDSU) worked in teams to develop 
requirements document for different projects. Some students 
dropped the course resulting in this irregular size of student 
teams. There were two phases to this study. First, each team 

developed a requirement document for a particular software 
system (Table I). Second, each subject inspected the 
requirement document developed by their team using the 
NLtoSTD-BB followed by STD-BBtoSTD method.  

D. Study Procedure 

The study details are provided in the following subsections. 

1) Phase I – Development of SRS documents: The  

participants divided into 5 different teams of three or four 

participants developed the requirements documents for their 

identified software system. Details are provided in Table I.  

2) Phase II– Inspection  using NLtoSTD: During this step, 

the students in each team individually inspected their own 

SRS document using the NLtoSTD method. 

a) Training 1 -- NLtoSTD-BB: The participants were 

first trained on how to map the NL requirements to STD-BBs. 

Next, the participants were instructed how to document the 

building block elements on a spreadsheet using few examples. 

Next, the participants were instructed how to record 

“ambiguities” and “incompleteness” or any other requirement 

faults that are found during the application of NLtoSTD-BB. 

The subjects were asked to translate few requirements into 

STD-BBs and document the faults using the same spreadsheet.  

b) Step 1-- Inspection using NLtoSTD-BB: The 

participants used the information from Training 1 and 

individually inspected their own requirement document using 

the NLtoSTD-BB translation. This step  resulted in a list of 16 

individual speadhseets that contained the STD-BB elements 

and the faults found (one per participant). 

c) Training 2 - tool support for STD Creation: During 

this session, the participants learned about the STD tool. The 

subjects were instructed how to load the BBs (from step 1) 

into the tool and then, how to construct an STD from the BBs. 

The subjects were then instructed to examine the constructed 

STD. Finally, the participants learned to record the fault type 

in the fault spreadsheet. To ensure that subjects understood, 

the subjects practiced these steps through an example system.  

d) Step 2 – STD-BBtoSTD and inspectng STD: The 

subjects constructed the STD diagram from STD-BB. The 

output of this step was 16 individual STD diagrams (one per 

participant). The resulting STD diagrams were analyzed for 

potential incompleteness,  inconsistencies in the behaviours, 

or any other requirement faults. The participants analyzed and 

recorded the faults during and after the creation of STD. The 

students also documented the reason and classification of the 

fault (incompleteness, ambiguous, inconsistency or other) in 

the fault spreadsheet. This step resulted in 16 individual fault 

TABLE I. ARTIFACTS DEVELOPED BY STUDENT TEAMS  

Doc Team 

# 

No. of 

Subjects 

System Description Size 

(pages) 

A 1 4 Parking lot availability system 25 

B 2 4 Web portal for student residence  22 

C 3 3 Virtual story board system 28 
D 4 2 Matbus application for android 25 
E 5 3 Professional development 

management system 
32 
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lists. Finally, subjects provided feedback about the NLtoSTD-

BB and the STD-BBtoSTD. An in-class discussion with 

subjects helped researchers better understand the results. 

E. Data Collection 

The quantitative data included the ambiguous, missing, and 
inconsistent faults found by each subject in their SRS 
document during: a) translation of NL requirements to the 
STD-BBs, and b) construction of STD using the BBs. Each 
subject was provided 50 minutes during NLtoSTD-BB step and 
30 minutes during STD-BBtoSTD step. The timing data was 
used for analyzing the efficiency values. The qualitative data 
included student’s rating of NLtoSTD by answering a multi-
question questionnaire based on a 5 point likert-scale. We also 
collected feedback post-study with participating subjects. 

IV. DATA ANALYSIS AND RESULTS 

  This section analyzed the data collected during NLtoSTD-
BB,  STD-BBtoSTD, post-study questionnaire and interviews. 

A. RQ 1: Effectiveness and Efficiency of NLtoSTD-BB  

This section reports the effectiveness and efficiency of the 
NLtoSTD-BB during the requirements inspection. Before 
analyzing the fault data, the researchers determined the validity 
of the faults for each subject by reading through the fault 
spreadsheet reported by each participant to remove any false-
positives (or if any faults were unclear). Next, the number of 
“Missing Functionality (MF)” and “Ambiguous Information 
(AI)” faults reported by each subject during the application of 
NLtoSTD-BB for their respective documents were counted.  

Since each subject individually inspected their own 
document, the document (for each team) was inspected by all 
the subjects belonging to that team. Fig. 4 organizes results by 
the total number of AI and MF faults found by the member 
belonging to each team. Main observations from Fig. 4 follow: 

 Fifteen out of sixteen subjects found faults (AI or MF) 
during the NLtoSTD-BB based inspection of their 
requirements document. The subjects (numbered 6) 
reported a lot of faults but none of them represented real 
problems;  

 There were no consistent differences in the total number of 
AI vs. MF faults found by the subjects within each team. 
This was major improvement from the results in our 
previous study [5] where, the subjects using the NLtoSTD-
BB method consistently found larger number of MF faults 
than the AI faults. This is a positive result that the 
improved heuristics were able to find both types of faults 
when constructing the STD-BBs.   

 For each document, the average number of faults was 
calculated for each team by dividing the total number of 
unique faults by the number of subjects who inspected the 
document. The results showed that teams 1 through 5 
found an average of 15, 12, 18, 9, and 22 faults 
respectively. This demonstrates an improvement in the 
performance of student teams from the first study [5] when 
using the original NLtoSTD-BB method (teams found an 
average of 7 faults at most) as well as a improvement 
when considering the inspection results in [5] when using 
the fault checklist method (an average of 5 faults).     

Therefore, based on these results, fault detection 
effectiveness of the NLtoSTD-BB method has improved from 
its first evaluation. Additionally, the distribution of faults is 
more consistent across both fault types (AI and MF). The 
revised NLtoSTD-BB heuristics were able to highlight hidden 
ambiguities in individual requirements which are otherwise not 
detected when performing a traditional inspection process. 

Regarding the efficiency (faults/hour), the student teams 
found an average of 19, 7, 10, 10, and 26 faults per hour 
respectively. This is also an improvement in comparison to the 
results from the first study [5]. The high efficiency values 
reported in this study validate the ease of use of the revised 
NLtoSTD-BB method. Therefore, the NLtoSTD-BB is an 
effective and efficient method for verifying NL requirements.  

B. RQ 2: Fault Detection during the STD Creation 

The translation of BBs into STD can highlight the 
ambiguities and incompleteness in the NL requirements by 
examining the gaps (or disconnections) and inconsistent path 
traversals in the STD, and to identify the inconsistencies in the 
requirements that are not a focus during the NLtoSTD-BB.     

To investigate the validity of this step, we counted the 
number of new MF, AI and INC faults reported by each subject 
after the creation and analysis of STD for their respective 
documents. The result on the number of new AI, MF, and Inc 
faults found by each subject belonging to a team is shown in 
Fig. 5. Interestingly (Fig. 5), each subject found at least one 
new fault (AI or MF or Inc) after creating the STD. As 
expected, a larger number of “Inc” faults are found during this 
step as compared to the AI and MF faults. This is also 
consistent across all the teams. The subjects felt it was easy to 
observe the inconsistencies when looking at a complete STD as 
opposed to translating individual NL requirements (one at a 
time) to STD-BBs. Since, the loading of BBs to create the STD 
is an automated process (using a tool); it is not surprising that 
subjects were able to find additional faults by focusing their 
attention on examining the STD and recording faults. 

 To better understand the effectiveness of STD-BBtoSTD, 
we compared the percentage contribution of the STD-
BBtoSTD relative to the overall NLtoSTD  for each team. This 
was done by dividing the # of unique faults found during STD-
BBtoSTD by sum of total # of unique faults found during 
NLtoSTD-BB and STD-BBtoSTD combined. The student 
teams 1-5, after the creation of STD, found 18%, 22%, 14%, 
23%, and 12% of total faults respectively. To further verify the 
usefulness of the creation and analysis of STD, a one-sample t-

 

Fig. 4. Number of AI and MF Faults found by Subjects using NLtoSTD-BB 
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test was run separately for each team to determine whether the 
number of faults found during re-inspection using STD was 
significantly greater than zero (0). The result was found to be 
statistically significant (p < 0.001) and indicate a benefit of 
creating STD using the BBs, for finding requirement faults.   

C. Difficulties Faced by Subjects Using the NLtoSTD Method 

The qualitative data  collected during this study evaluated 
the usability of the NLtoSTD-BB method. To do that, the 
participants were asked to rate the difficulty level for finding 
the “Entity”, “Initial Status”, “Changed Status”, “How is Status 
Changed”,  and “Conditions for Change” for NL requirements.  

Using a 5-point likert scale (1-very difficult to 5-very easy), 
the participants rated the difficulty level for each of the five 
elements of an STD-BB. A One-sample Wilcoxon Signed-
Rank test determined whether the medians ratings were 
significantly greater than 3 (midpoint of the scale). The results 
showed that the NLtoSTD-BB method received positive 
ratings (i.e., median value greater than or equal to three), but 
not statistically significant. The subjects also rated the 
difficulty level during the construction of STD and analyzing 
the constructed STD for faults. The results showed that the 
STD creation received significantly positive ratings (p < 0.05). 

The complete NLtoSTD method was also evaluated using 
the feedback from subjects on the following seven attributes: 
Simplicity, Ease of Understanding, Ease of Use, Intuitiveness, 
Comprehensiveness, Usefulness, and Ease of finding faults. 
Each subject rated the attributes on a 5-point scale. The results 
from Wilcoxon Signed-Rank test revealed that the NLtoSTD 
received significantly positive ratings on Ease of 
Understanding, Ease of Use, and Ease of finding faults.  

Overall, the subjects felt that the NLtoSTD process helped 
them understand the major problems in requirements, and that 
the effort spent during the NLtoSTD inspection process was 
worthwhile. The potential improvements regarding the tool and 
the guidance to help analyze the STD diagram will be 
implemented in future evaluations.   

V. DISCUSSION OF RESULTS 

RQ 1: The NLtoSTD-BB method helped inspectors find 
inherent ambiguities and incompleteness in requirements. The 
comparison of the results against the previous research results 
[5] revealed that the subjects were able to find larger number of 
total faults (on average), and the distribution of faults across 
fault types (MF and AI) was more consistent. The results also 
showed that the NLtoSTD-BB method helped find the faults 
faster (i.e., efficiency) when compared to the results in [5].  

RQ 2: Based on the results, additional MF and AI fault 
types are uncovered during the examination of STD 
constructed from the BBs. In particular, the creation of STD 
aids inspectors at detecting a large number of “Inc” that are 
otherwise not apparent when looking at individual 
requirements. The construction of STD is useful for overall 
inspection effectiveness using the complete NLtoSTD method. 

RQ 3: The subjects provided insights in to the use of the 
NLtoSTD method and improvements that can help improve the 
performance in future studies. The subjects mentioned that the 
tool should guide the NLtoSTD-BBs translation and should at 
least highlight parts of STD that are completely disconnected. 
We plan to make this process as much automated as possible 
without losing the promise of inspections.     

VI. CONCLUSION AND FUTURE WORK 

Based on these results, the NLtoSTD method is effective 
method to detect AI, MF, and Inconsistency fault types during 
an inspection of NL requirements. We also identified the areas 
of improvement that would benefit the performance of subjects 
using the method. Our future work would include more 
replications, with a classic control group design so that we can 
understand how many faults found during the Phase III are 
solely due to the STD creation and not just due to the re-
inspection. We also wish  to  automate  as  much  of  the  
heuristics  as  possible,  including  the  NLtoSTD  building  
block  portion. The STD analysis could be automated as well, 
using a reasoning engine written in a logic language such as 
Prolog, and this has already been achieved to a certain degree.  
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