

Evaluating the Use of Model-based Requirements Verification Method:
A Feasibility Study

Daniel Aceituna, Hyunsook Do, Gursimran Singh Walia

Computer Science Department
North Dakota State University

Fargo, ND, USA
{daniel.aceituna, hyunsook.do, gursimran.walia}@ndsu.edu

Seok-Won Lee
Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE, USA
slee@cse.unl.edu

Abstract - Requirements engineering is one of the most
important and critical phases in the software development life
cycle, and should be carefully performed to build high quality
and reliable software. However, requirements are typically
gathered through various sources and represented in natural
language (NL), making requirements engineering a difficult,
fault prone, and a challenging task. To address this challenge,
we propose a model-based requirements verification method
called NLtoSTD, which transforms NL requirements into a
state transition diagram (STD) that can be verified through
automated reasoning. This paper analyzes the effect of
NLtoSTD method in improving the quality of requirements. To
do so, we conducted an empirical study at North Dakota State
University in which the participants employed the NLtoSTD
method during the inspection of requirement documents to
identify the amibiguities and incompleteness of requirements.
The experiment results show that the proposed method is
capable of finding ambiguities and missing functionalities in a
set of NL requirements, and provided us with insights and
feedback to improve the method. The results are promising
and have motivated the refinement of NLtoSTD method and
future empirical evaluation.

Keywords - Requirements verification, inspection,
model-based verification, STD model

I. INTRODUCTION
While all activities in the software development life cycle

should be carefully performed to build high quality and
reliable software, it is well recognized that requirements
engineering is the most important and critical phase to such
success [3, 4]. Typically, requirements are gathered through
various sources and represented in natural language (NL), so
NL requirements can be interpreted differently by various
stakeholders; this makes requirements engineering a
difficult, fault prone, and a challenging task.

To improve the quality of requirements specifications
written in natural language, many approaches have been
developed and validated through controlled and case studies
(e.g., [24-27]). Researchers have devoted a considerable
effort to developing methods for detecting and removing the
early lifecycle faults i.e., mistakes recorded in the
requirements and design documents [19-22].

Researchers have developed and empirically evaluated
fault checklist based inspection methods to help developers
identify different types of early lifecycle faults [19-22].
However, despite the reported success of fault-based

inspection techniques, they do not lead developers to find all
type of problems. Furthermore, previous researchers have
utilized methods beyond standard fault checklist based
inspection to detect the ambiguities and incompleteness in
NL requirements. Most notable amongst these methods
include Walkthroughs [19], Linguistic Analysis [21, 22],
Consistency checking [23]. However, even when faithfully
applying these methods, it is estimated that the majority of
software development effort is still spent on fixing problems
that should have fixed early in the lifecycle [3].

Much of this rework is the result of the fact that the fault-
based inspection methods rely on the reader’s ability to
understand the things the same way as the writer of the
requirements document. Because of the flexibility and
inherently ambiguous nature of NL specifications, different
people can have different interpretations of the requirements
without noticing the ambiguity. Similarly, due to the
requirements amalgamation, it may be difficult to find all the
required requirements and discover the related requirements.

Model-based approaches [10, 12, 13] can detect such
types of defects more easily because when the requirements
are formally modeled or checked by formal methods, the
properties, such as inconsistency and ambiguity, are clearly
addressed and handled. For this reason, to date, many
researchers have utilized the model-based approaches for
verifying the natural language specifications. For example,
Kof [10] proposes a method that analyzes NL requirements
with computational linguistics and generates Message
Sequence Charts to verify NL requirements. Similarly,
Sutcliffe et al. [16, 18] present a method that converts use
cases into scenarios semi-automatically and validates
scenarios using rule-based frames that detect
incomplete/incorrect event patterns. Other researchers have
focused on automating the modeling process using scenarios
collected from end-users [12, 13, 15, 17].

While model-based approaches provide a systematic way
to identify aforementioned requirements problems, building
models often requires NL translation and this translation
process can be problematic due to the inherent
incompleteness and ambiguities of NL [1, 5]. An erroneous
translation of NL requirements can result in a wrong model,
and thus eventually can produce software that stakeholders
do not want. To address this problem, previous researchers
have proposed modeling techniques using an automated NL
translation approach [6-9]. Automation can certainly reduce
human errors and improve the translation process, but

complete automation of this process is not possible because
often NL requirements can be interpreted in multiple ways
and thus human judgment is inevitable to lead
correct/sensible interpretations.

To address this problem, we propose a new method that
translates NL requirements into a State Transition Diagram
(STD) in an incremental manner (hereafter refer to as
NLtoSTD) and allows requirement engineers and other
stakeholders to participate in the translation process. This
approach can correct and refine requirements during the
translation process by identifying ambiguities and
incompleteness in the NL requirements. We define
incompleteness, as a missing requirement or any missing
element that results in a disconnected STD, whereas an
ambiguity results when an element is not explicitly stated,
but its phraseology is such that its value is implied, resulting
in the user’s interpretation and an STD that is partially
defined by the user.

The NLtoSTD method we propose provides a means of
exposing incompleteness and ambiguities in a set of natural
language requirements, while transforming the requirements
into a STD. While both defects have been explored by
others, our method differs from the aforementioned
approaches in that the direct mapping from NL to model is
preserved in the translation process. Each NL requirement
becomes a segment of the STD. This means that any
adjustments made to the model can be directly made to the
requirements, and visa-versa.

To initially investigate the feasibility of our approach, we
conducted a controlled experiment to see whether the
NLtoSTD method can help detect the missing functionalities
and ambiguities in the natural language requirement
specifications. A controlled experiment with university
students was performed to determine if students using the
NLtoSTD method were able to find lager number of
ambiguous and incompleteness faults than using the fault
checklist inspection method. Our results show that the
NLtoSTD can be more effective in exposing missing
functionality and in some cases more ambiguous information
than a fault checklist method. More importantly, the results
provided insights into how the proposed method can be
improved with respect to its effectiveness and efficiency.

The rest of the paper is organized as follows. Section II
describes our NLtoSTD approach in detail. Section III
describes the study design, and Section IV presents data
analysis and results. Section V discusses the threats to
validity. Section VI discusses our results, the lessons learned
from this study, and the suggested improvements for the
proposed method. Finally, Section VII presents conclusions.

II. METHODOLGY
The basis of our NLtoSTD method is to turn a set of

nature language requirements directly into a STD model, by
transforming each requirement into a STD building block
[11]. Requirements engineers and stakeholders can readily
observe where the conceptual gaps and ambiguities lay in the
NL requirements by examining the resulting STD. Once the

faults are corrected in the STD model, the corrections can be
mapped back to the NL requirements, due to the direct
transformation that occurred from the NL to the STD.
Subsequently, the NL requirements can be revised to correct
for the detected ambiguities and incompleteness.

Furthermore, once a STD is obtained, it can be analyzed
automatically to expose other potential faults, such as
inconsistencies by looking for path traversals that are
inconsistent with one another. Whereas, exposing
inconsistencies in the NL representation, by inspection,
involves thorough reviewing of all the requirements and
looking for terms that are semantically contradictory.

To achieve direct traceability between the STD and the
NL, for a given NL requirement, we transform it into the
three elements {Sc, T, Sn} that make up a STD Building
Block (STD-BB) (Figure 1). The building blocks (one per
NL requirement) are then used to construct a STD. The basis
for this NL to STD-BB transformation is that a functional
requirement typically describes an entity transitioning from
one state to another. For example, a requirement: “While the
car is moving forward, the driver shall be able to stop it, by
applying the brake”, would map to the three elements: {Sc:
Moving, T: Applying Brake, Sn: Stop}. The entity (Car) is
described as transitioning (T) from moving (Sc) to stopping
(Sn), which is then represented by a STD-BB (Figure 1). In
this requirement, the three elements are explicitly stated,
yielding definable values for Sc, T, and Sn.

In practice, however, often requirements ambiguously
imply one or more values for Sc, T, and Sn, thus identifying
a value for each element would not be obvious. For instance,
the prior requirement may have stated as: “The driver shall
stop the car, by applying the brakes.” Note that Sc is not
explicitly stated as “Moving”, but rather implied. In our
STD-BB, we use questions marks (???) to denote an element
that is not explicitly specified. Thus, in this example, we
would define the three elements as {Sc: ???, T: Applying
Brake, Sn: Stop}. It may be safe to assume that the car is
moving prior to stopping, but this requires an assumption,
and assumptions can be erroneous. In this example, it is not
clear whether we assume “moving forward”, “moving
backward”, or both. It is better to explicitly state what may
seem obvious than to allow the possibility of an erroneous
(and costly) assumption, therefore a key goal of the
NLtoSTD method is to expose assumptions.

To illustrate the steps of our methodology, we will use a
set of five NL requirements of a simple battery control
system in a cell phone. The left side of Figure. 2 shows these
five requirements. To systematically identify the three
elements, for each of the five requirements, we use the
following three questions:

Figure 1. The STD Building Block (STD-BB)
(Sc: moving forward, T: ApplyingBrakes, and Sn: Stop)

(1) What is currently happening?: This question identifies
the current state (Sc).

(2) What will happen next?: This question identifies next
state (Sn).

(3) What causes the next state to happen?: This question
identifies the transition (T).

 Asking these three questions identifies explicit/implied
values for {Sc, T, Sn}, resulting in a STD-BB (this
transformation from NL to STD-BB is denoted as step {1} of
Figure. 2). Figure. 2 also displays a STD (denoted as step
{3}) that is gradually being constructed piece-wise as each
requirement is transformed into a STD-BB step {2}).

However, the STD is incomplete, reflecting the
ambiguity and incompleteness present in the five NL
requirements. For example, Req1 does not explicitly state
Sn, resulting in a “???” in place of Sn in its STD-BB. This in
turn results in the state on the upper right side of the STD to
be disconnected from the rest of the STD.

The ambiguities and incompleteness may not be obvious
in NL requirements, but they have now been made obvious
in a STD. Requirements engineers and stakeholders can see
what the STD lacks, and together they can work towards its
completion. To produce the complete STD, requirements
engineers and stakeholders would define the implied (???)
elements, add requirements, remove requirements, or do
what it takes to complete the diagram.

In summary, in our NLtoSTD method, the formal
representation (i.e., STD) exposes and subsequently corrects
the ambiguities and incompleteness in the informal
representation (i.e., NL). The result is a complete and well
defined set of NL requirements, and a corresponding STD
that can be used for automated verification. A key to our
method is the manual (versus automatic) translation of the
natural language into a STD, which achieves two important
goals. First of all, the manual translation adds an extra level
of user inspection to the process. Secondly, the automatic
translation processes that we have seen, does not result in the
same bi-directional traceability between the model and NL
that our manual translation produces. This traceability is
important to our method’s ability to correct requirements.

Since this is an initial feasibility investigation, the scope
of this experiment is limited to only evaluating the NL to
STD-BB transformation process (the center part of Figure 2).
This experiment did not include the construction of an STD
from the building blocks from the transformation process
(the rightmost side of Figure 2).

III. EMPIRICAL STUDY
The major goal of this study is to evaluate the usefulness

of the NLtoSTD transformation process as a defect detection
method as it compares to fault checklist inspection. This
experiment is a repeated-measure design [28] in which each
team of three or four participating students developed a
requirement document for a different system. Next, each
subject evaluated two different set of requirement documents
(both of whom were developed by other students). To
evaluate the first document, the subjects used the fault
checklist inspection method and then used NLtoSTD to
inspect the second document. These inspections resulted in a
list of faults for each subject using both methods. The details
of the study are provided in the following subsections.

A. Research Questions
Three research questions were investigated in this study.

RQ1: Is NLtoSTD more effective (i.e., the number of faults)
at detecting incompleteness and ambiguities in requirement
specifications as compared to the fault checklist inspection?
RQ2: Is NLtoSTD more efficient (i.e., faults per hour) at
detecting faults in the requirement documents as compared
to the fault checklist inspection?
RQ3: Is NLtoSTD viewed useful for improving the software
quality?

B. Variable and Measuress
We manipulated one independent variable.
Inspection Method: Each Subject used the fault checkist
method and the NLtoSTD method to inspect two
different sets of requirement documents.
We also measured the following dependent variables.
Effectiveness: the number of faults found by each
subject.

Figure 2. Translation method reveals that the five battery requirements are ambiguous and incomplete because they produce an incomplete STD.

TABLE I. REQUIREMENTS DOCUMENTS USED IN THE EXPERIMENT

Doc Subjects System Description Number of
Pages

A 4 A web-based tool for managing
student elections

42

B 3 A campus event calendar 21

C 3 A help desk management system 28

D 4 An intelligent rating system for
electronic entertainment media

17

E 2 An event registration system 33

Efficiency: the number of faults found by each subject
per hour.

C. Participating Subjects
 Sixteen Computer Science graduate students enrolled in
Requirement Definition and Analysis course at North
Dakota State University participated in this study.

D. Artifacts
There were two phases to this study (development and

inspection). First, during the development phase, each team
of three to four participants developed a requirement
document for a different system. Table I provides a list of
these systems. One subject dropped the course leaving two
subjects that developed Document E. Second, for the
inspection phase, each subject was assigned two different
requirement documents (out of five documents listed Table
I) to inspect using the fault checklist and NLtoSTD methods.

E. Experiment Procedure
The experiment design includes several steps. Figure 3

shows the details of the experiment steps. The details are
provided in the following subsections:

1) Phase I – Developing Requirement Documents:
Sixteen subjects working in five different teams developed
the requirements documents for their identified system as

shown in Table I. This phase resulted in five different
requirement documents (namely A, B, C, D, and E).

2) Phase II – Inspecting Requirement Documents: This
phase involved using the fault checklist and the NLtoSTD
methods to inspect the requirement documents. This phase
included the following steps:

a) Training 1– Fault Checklist Method: During this 30
minute training session, the subjects were given description
of the fault checklist and a list of the fault classes. Subjects
were instructed on how to use the fault checklist to locate
faults present in the requirement documents and how to
record faults using fault form. The fault checklist used in
this experiment has been used in empirical studies for
comparing defect detection methods for inspections [2].

b) Step 1 - Inspecting Requirement Documents Using
Fault Cheklist Method: Using the information from
Training 1, each subject was randomly assigned a
requirement document (with the constraint that the
document was developed by other subjects in class) to
inspect it using a fault checklist. This step resulted in a list
of 16 individual Fault Lists (one per subject).

c) Training 2 - NLtoSTD Method: During this 30
minute training session, the subjects learned about the
NLtoSTD method. The subjects were first trained on how to
map the natural language (NL) requirements to STD
building blocks (STD-BB). Next, the subjects were taught
how to document the buidling block elements (i.e., the
precondition(s), transition, and postcondition(s)) using an
example system using an excel spreadsheet. Next, the
participants were taught how to record the “Ambiguities”
and “Incompleteness” in the requirements found during the
inspection (using NLtoSTD).

d) Step 2 - Inspecting Requirement Documents Using
NLtoSTD Method: Each subject was randomly assigned a
requirement document to inspect that was different from the
document inspected by that subject in Step 1 and with an
additional constraint that the document was developed by
other subjects. Using the knowledge from Training 2, each
subject inspected the assigned requirements document to
detect faults using the NLtoSTD method. The output of this

Figure 3. Experiment Procedure: Experiment Steps, Training Steps and Output Produced

TABLE II. ASSIGNMENT OF DOCUMENTS FOR INSPECTION

 Doc A DocB Doc C Doc D Doc E

Fault
Checklist

4 3 3 3 3

NLtoSTD 4 3 3 3 3

step was 16 individual Fault Lists (one per participant). This
scenario is illustrated in Figure 3, where a subject involved
in the development of Document D was assigned Document
A to inspect it using fault checklist during Step 1, and was
then assigned Document E during Step 2 to inspect it using
the NLtoSTD method. The result of these assignments in
terms of the number of subjects that inspected each
document using both methods is shown in Table II.

e) Step 3 - Post-Study Questionnaire: The subjects
were provided an opportunity to provide feedback about the
fault checklist and NLtoSTD inspection methods to help
researchers better understand the results.

F. Data Collection
This section provides a brief description of data collected

during the experiment run. The data included the faults
found by subjects using the fault checklist and NLtoSTD
methods. The fault checklist technique helps reviewers to
focus on different fault types, namely, Missing Functionality
(MF), Missing Environment (ME), Ambiguous Information
(AI), Inconsistent Information (II), Incorrect Fact (IF),
Extraneous (E), and Miscellaneous (M); whereas the faults
focused during the NLtoSTD inspection were “Ambiguous
Information (AI)” and “Missing functionalities (MF)”.

The fault lists required to students to self-classify the
faults found during each inspection into these fault classes.
The fault lists also required the students to indicate the time
they had found each fault (along with the breaks they took)
during the inspection process. The subjects also rated the
fault checklist and the NLtoSTD method on different
characteristics and answered other survey questions that
were based on a 5 point Likert-scale.

While evaluating the fault data from the individual fault
lists for data analysis, the fault data recorded by students
inspecting Documents D and E using the NLtoSTD method
was excluded from the analysis due to following reasons:
• In Document D, the requirements were written in a high

level of abstraction, thus it was harder for the subjects
to find explicitly stated values for Sc, T, and Sn. In this
situation the subjects should have given “???” for the
vast majority of the values. However, all three subjects
entered values based on their assumptions of what those
values should be, and the majority of their assumptions
were not correct. This resulted in data that did not
represent what the requirements actually express.

• Document E was written using a use case format, with
each use-case’s, multi-step, sequence described in its
entirety. The format of the document made it hard for
subjects to differentiate between the states and

transitions, making the translation process hard to
understand. This resulted in data that is unreliable.

Therefore, Section IV provides the analysis of the fault
data from the documents A, B, and C (as shown in Table I).

IV. DATA ANALYSIS AND RESULTS
This section provides an analysis of the fault data. This

section is organized around the research questions presented
in Section III.A. An alpha value of 0.05 was used for all
statistical tests.

A. Fault Detection Effectiveness (RQ1)
This section compares the number of “Missing

Functionality (MF)” and “Ambiguous Information (AI)”
faults found by subjects during the fault checklist inspection
(Step 1) and the NLtoSTD inspection (Step 2) for each
document.

Because each document was inspected individually by
three or four subjects (depending on the document as shown
in Table II), the individual data from the Step 1 and Step 2
inspections was combined into a team score. The fault
detection effectiveness of a team during fault checklist
inspection (Step 1) was calculated by combining the list of
faults each subject found in a particular document.
Similarly, the fault detection effectiveness of a team during
the NLtoSTD inspection (Step 2) combined the individual
scores for each document. This analysis was performed
separately for Documents A, B, and C. The reason for this
analysis is because we were only interested in the
investigating the coverage of the fault space by individual
team member’s knowledge (as opposed to the list of unique
faults found by the team) when using our NLtoSTD method
to detect the incompleteness and ambiguities in natural
language requirement specifications.

Figure 4 compares the total number of MF and AI faults
found by an inspection team using the fault checklist and
NLtoSTD methods for each document.

Some observations from Figure 4 are as follows:
• For Document C, the team using NLtoSTD was visibly

more effective at detecting the incomplete-ness faults
(MF) than the fault checklist method, finding an
average of 15 faults compared to an average of 5 faults
(per document, the average number of faults was
calculated by dividing the total number of faults by the

Figure 4. Comparison of the Number of Faults found by Subjects

Using Fault Checklist and NLtoSTD method

number of subjects who inspected the document). On
the contrary, for Documents A and B, teams using the
fault checklist method found more MF type faults (an
average of 4 faults for both documents) as compared to
teams using the NLtoSTD method (an average of 3.5
faults for Doc A and 2.5 faults for Doc B).

• Regarding the AI faults, NLtoSTD exposed larger
number of AI faults when applied on Document A, but
the fault checklist method was more effective at finding
the ambiguities in Documents B and C.

• A surprising result was that the team using NLtoSTD to
inspect Document B, did not even find a single AI fault.
While we expected that the subjects would find more

MF faults than the AI faults due to the nature of the
experiment design (i.e., the subjects were not asked to
construct a requirement model using the STD-BBs
which can highlight hidden ambiguities in individual
requirements), this result was unexpected.

To further investigate the research results, the
performance of individual subjects was analyzed to
determine if the result was consistent throughout the sample.
Figure 5 shows the number of MF and AI faults found by
each subject using both inspection methods for all three
documents. Some interesting observations are as follows:
• As the figure shows, the fault data seems to be more

evenly distributed for the fault checklist method. While
each subject using the fault checklist method found
some faults, four subjects (two subjects each in
Documents A and B) did not find any fault using
NLtoSTD.

• Further, we examined the data for these subjects (i.e.,
subjects 3 and 4 inspecting Document A, and subjects 2
and 3 inspecting Document B) that found no faults
using NLtoSTD. Upon examining the data, we found
that these subjects did not have a clear understanding
on how to apply NLtoSTD which in turn, resulted in
choosing incorrect values for Sc, T, and Sn when
transforming NL to STD-BBs.

• As expected, the subjects using NLtoSTD consistently
found larger number of MF faults as compared to the
AI faults. This was especially true in the case of
Document C.

These results showed that the subjects, who had a clear
understanding on how to apply NLtoSTD, were effective at
finding the incompleteness in NL requirements.

B. Fault Detection Efficiency (RQ2)
The efficiency values (i.e., the number of faults found

per hour) for each inspector using the fault checklist and the
NLtoSTD methods were computed. For the fault checklist
inspection, faults include all type of faults (e.g., MF, ME,
IF, AI, II, E, M) found by the subjects. For NLtoSTD, faults
include the MF and AI faults.

The result in Figure 6 shows that NLtoSTD did not
improved participants efficiency in any of the documents

except for two subjects in Document C. This was not
surprising considering the fact that effort spent during the
fault checklist inspection led to a large number of other
types of faults (in addition to MF and AI fault types). In
particular, four subjects inspecting the Documents A and B
(two subjects each in Documents A and B) reported all false
faults and had zero efficiency.

Based on these results, we see rooms for improvement in
the application of NLtoSTD by making it easier to find Sc,
T, and Sn values correctly.

C. Usefulness of the NLtoSTD Method (RQ3)
NLtoSTD was evaluated using feedback from the

subjects on the following eight attributes: simplicity,
understandability, comprehensiveness, intuitiveness, ease of
classifying faults, usability, uniformity across products, and
adequacy of faults found.. Each subject rated the attributes
on a 5-point Likert scale (1-very low, 2-low, 3-medium, 4-

Figure 6. Comparison of the Efficiency Values of Subjects

Using Fault Checklist and NLtoSTD method

Figure 7. The revised STD-BB

high, or 5-very high). A non-parametric binomial test was
conducted to determine whether the mean response was
significantly greater than medium (the midpoint of the 5-
point scale). The result was only significant (p= 0.021) for
the simplicity, and easy to understand attributes. All other
attributes (except the “adequacy of faults found” and “ease
of classifying faults”), were rated positively and the mean
rating was greater than 3 (i.e., the mid-point of scale).

We especially wanted to analyze the feedback from the
subjects who did not clearly understand how to apply
NLtoSTD and reported incorrect values of Sc, T, and Sn (as
discussed in Section IV.A). Since the survey questions were
filled out anonymously, we could not match the responses to
the survey questions with their fault data. However, the
comments and responses to survey questions helped us
improve the process of translating the NL into STD-BBs
and are discussed in Section VI.

V. THREATS TO VALIDITY
 In this study, there were some threats to validity that

were addressed. First, the artifacts inspected in this study
contained naturally occurring defects that were inserted
while developing the artifacts rather than artificially seeded.
Secondly, to reduce the threat due to the learning and
maturation effects, the subjects performed second inspection
using NLtoSTD (that was a new method) on a document
that they were reading for the first time.

 However, there were some validity threats that were not
addressed. The artifacts in this study were developed by
student teams and it may not be representative of industrial
strength document. Also, the nature of faults made by
students can differ from the faults made by professionals.
An important internal validity threat was due to the lack of a
control group: i.e.,we cannot determine the portion of faults
found during the second inspection were due to the use of
NLtoSTD and the portion that were because the subjects
were became experienced at inspecting the requirements
document. We plan to address this threat in future.

VI. DISCUSSION OF RESULTS
 This section discusses the results and their implication

in light of the original research questions. The findings and
the lessons learned from this study are then discussed.

A. Discussion of Major Findings
 Effectiveness: For team effectiveness, the results show

that NLtoSTD is beneficial at finding the incompleteness in
the requirements when the subjects clearly understand the
process of translating the NL to STD-BBs. This is evident
from the inspection results for Document C where the
number of MF faults detected during the NLtoSTD
inspection is threefold that detected during the fault
checklist inspection. However, this is an extremely small
data set to make any definite conclusions.

 Also, we find that the characteristics of the NL
requirement specifications affected the effectiveness results.
For example, the requirements in Document C are written in
a short concise manner, with one functionality per
requirement (i..e., the requirements exhibited high

cohesiveness). NLtoSTD favors high cohesiveness because
its goal is to derive one building block per requirement. By
contrast, in Document B (which exhibited the worse
performance), each requirement describes a sequence of
actions pertaining to one use case. The subjects reported that
the sequence of actions creates multiple candidates for Sc,
T, and Sn, making it difficult to obtain a building block.

 Efficiency: The results clearly show that the fault
checklist method is more efficient at finding faults. This is
mainly because: 1) the fault checklist looks for ten types of
faults whereas NLtoSTD focuses on detecting only two
types of faults (MF and AI); and 2) four (out of 11) subjects
using NLtoSTD found no true faults due to their
misunderstanding of the translation process.

The results from this initial investigation have provided
us with insights to improve the translation process that can
in turn improve the reviewer’s performance. Also, we want
to extend our research method to help detect other important
types of faults (e.g., inconsistencies, and incorrectness).

 Student’s Feedback on the Implementation of NLtoSTD:
The subjects’ responses to post-study survey show that, in
general, NLtoSTD is viewed favorably for most of the
attributes. However, some subjects reported the problems
that they faced while choosing the values for Sc, T, and Sn
when translating NL into STD-BBs. Based on the students’
responses and feedback, we plan to revise NLtoSTD method
to make it easier to understand and apply on NL. The
potential improvements are discussed below.

B. Lessons Learned
 From the results of this study, we learned that NLtoSTD

could provide benefits to developers who use it correctly.
However, document format and variations in subject
performance have prompted us to reevaluate the way that
the three elements Sc, T, and Sn are determined. Figure 7
shows an example of the potential revision of the STD-BB,
using Req2 of the battery charger example used in Section II
(Figure 2). In the revised STD-BB, we will explicitly add an
entity to a state to represent Sc and Sn as follows: entity
(state). Allowing for multiple entities should alleviate the
problem encountered with the requirements that are not
ideally written in an atomic manner. Figure 7 shows an
example of a non-atomic requirement: essentially it
describes three requirements. Based on our new format, we
identify three entities: unit, battery, and user. Each entity
has its own current and next states. For example, the battery
entity has “20%Level” as a current state and “sleepMode”

as a next state.
 Another potential change in the NLtoSTD method is
allowing users to make an assumption. As shown in Figure
7, “unit (normalOp?)” has a question mark. This indicates
that the “normOp” state is not explicitly stated, but the user
can assume that it is the intended state and label it with a
question mark for future follow up. This should improve the
method’s ability to expose ambiguities, since an assumption
on the user’s part means that something was left up to the
user’s interpretation, and needs to be clarified. We also
consider allowing users to add conditions when they
describe the transition (T). This alleviates the problem that
arises when a requirement seems to state more than one
transition.

Finally, the original version of NLtoSTD strictly handled
functional requirements. The proposed improvements has
the potential to model sub-problems, thus, handling non-
functional requirements is a possibility in the future.

VII. CONCLUSION AND FUTURE WORK
Our empirical study revealed two important things. First

it confirmed NLtoSTD’s potential to expose incompleteness
and ambiguous. Second, it revealed areas of improvement
that benefits the method’s applicability in future.

Our future work includes further experimentation using
the improved method suggested by the results from this
experiment, as well as applying the improved method to
various types of requirements documents and applications. A
major motivation in developing this method is to increase the
participation of the non-technical stakeholders in NL to STD
translation and gradually reducing the gap between the
informal and formal requirements space by making the
method more user-friendly to those stakeholders. We also
plan to implement a tool that can automatically determine
which NL requirements need to be addressed, and in what
manner, by assessing the STD’s various properties in its
graph representation.

ACKNOWLEDGMENT
This work was supported in part by NSF under Awards

CNS-0855106 and CCF-1050343 to North Dakota State
University.

REFERENCES
[1] D. Berry, Ambiguity in natural language requirements

documents, LNCS, 2008.
[2] Porter, A.A., Votta, L.G., Basili, V.R., Comparing

detection methods for software requirements inspections: A
replicated experiment, TSE, 21(6): 563-575, 1995.

[3] Boehm, B., and Basili, V.R. Software defect reduction top 10
list, IEEE Computer, 34 (1):135-137, 2001.

[4] B. Nuseibeh and S. Easterbrook, Requirements engineering:
A roadmap, ICSE, p.p35-41, 2000.

[5] D. Gause, User DRIVEN design - The luxury that has
become a necessity, ICRE, Tutorial T7, 2000.

[6] C. Damas, B. Lambeau, and A. Lamsweerde, Scenarios,
goals, and state machines: A win-win partnership for model
synthesis, FSE , pp. 197-207, 2006.

[7] E. Letier. J. Kramer, J. Magee, and S. Uchitel, Monitoring
and control in scenario-based requirements Analysis, ICSE,
pp. 382 - 391, 2005.

[8] R. Alur, K. Etessami, and M. Yannakakis, Inference of
message sequence charts, ICSE, pp. 304-313, 2000.

[9] D. Deeptimahanti and M. Babar, An automated tool for
generationg UML models from natural language
requirements, ASE, pp. 680-682, 2009.

[10] L. Kof, Scenarios: Identifying missing objects and actions by
means of computational linguistics, RE, pp. 121-130, 2007.

[11] D. Aceituna, H. Do, and S. Lee, A human interactive
approach to building requirements models, ISSRE, fast
abstract, 2010.

[12] D. Popescu, S. Rugaber, N. Medvidovic, and D. Berry,
Reducing ambiguities in requirements specifications via
automatically created object-oriented models, Monterey
Workshop, pp. 103-124, 2007.

[13] L. Kof, R. Gacitua, M. Rouncefield, and P. Sawyer, Ontology
and model alignment as a means for requirements validation,
ICSC, pp. 46-51,2010.

[14] L. Kof, From Requirements documents to system models: A
tool for interactive semi-automatic translation, RE, pp. 391 –
392, 2010.

[15] C. Damas, B. Lambeau, and A. Lamsweerde, Scenarios,
goals, and state machines: A win-winpartnership for model
synthesis, FSE, pp. 197-207, 2006.

[16] A. Sutcliffe and M. Ryan, Experience with SCRAM, a
scenario requirements analysis method, RE, pp. 164-171,
1998.

[17] C. Damas, B. Lambeau, P. Dupont, and A. Lamsweerde,
Generating annotated behavior models from end-user
scenarios,” TSE, 31(12):1056-1073, 2005.

[18] A. Sutcliffe, N. Maiden, S. Minocha, and D. Manuel,
Supporting scenario-based requirements engineering, TSE,
24(12): 1072-1088, 1998.

[19] B. Brykczynski, A survey of software inspection checklists,
ACM SE Notes, 24(1):82,1999.

[20] M. Fagan. Advances in software inspections. TSE.,
12(7):744–751, 1986.

[21] D. Berry and E. Kamsties. Perspectives on Software
Requirements, Kluwer Academic Publishers, 2004.

[22] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis.
Identifying nocuous ambiguities in natural language
requirements. RE, pp 59–68, 2006.

[23] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated
consistency checking of requirements specifications,
TOSEM, 5(3):231-261, 1996.

[24] S. Sakthivel. Survey of requirements verification techniques.
Journal of Information Technology, pp. 68-79, 1991.

[25] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D.
Moebus, B. Ray, and M. Wong, Orthogonal defect
classification - A concept for in-process measurements.
TSE, 18(11): 943-956, 1992.

[26] J. Chaar, M. Halliday, I. Bhandari, and R. Chillarege, In-
process evaluation for software inspection and test,
TSE, 19(11): 1055-1070, 1993.

[27] M. Lezak, D. Perry, and D. Stoll, A case study in root cause
defect analysis, ICSE, pp. 428-437, 2000.

[28] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B.
Regnell, A. Wesslen, Experimentation in Software
Engineering An Introduction, Kluwer Academic
Publishers, 2000.

