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Abstract - Requirements engineering is one of the most 
important and critical phases in the software development life 
cycle, and should be carefully performed to build high quality 
and reliable software. However, requirements are typically 
gathered through various sources and represented in natural 
language (NL), making requirements engineering a difficult, 
fault prone, and a challenging task. To address this challenge, 
we propose a model-based requirements verification method 
called NLtoSTD, which transforms NL requirements into a 
state transition diagram (STD) that can be verified through 
automated reasoning. This paper analyzes the effect of 
NLtoSTD method in improving the quality of requirements. To 
do so, we conducted an empirical study at North Dakota State 
University in which the participants employed the NLtoSTD 
method during the inspection of requirement documents to 
identify the amibiguities and incompleteness of requirements. 
The experiment results show that the proposed method is 
capable of finding ambiguities and missing functionalities in a 
set of NL requirements, and provided us with insights and 
feedback to improve the method. The results are promising 
and have motivated the refinement of NLtoSTD method and 
future empirical evaluation.  

Keywords - Requirements verification, inspection, 
model-based verification,  STD model 

I.  INTRODUCTION  
While all activities in the software development life cycle 

should be carefully performed to build high quality and 
reliable software, it is well recognized that requirements 
engineering is the most important and critical phase to such 
success [3, 4]. Typically, requirements are gathered through 
various sources and represented in natural language (NL), so 
NL requirements can be interpreted differently by various 
stakeholders; this makes requirements engineering a 
difficult, fault prone, and a challenging task.   

To improve the quality of requirements specifications 
written in natural language, many approaches have been 
developed and validated through controlled and case studies 
(e.g., [24-27]). Researchers have devoted a considerable 
effort to developing methods for detecting and removing the 
early lifecycle faults i.e., mistakes recorded in the 
requirements and design documents [19-22 ].  

Researchers have developed and empirically evaluated 
fault checklist based inspection methods to help developers 
identify different types of early lifecycle faults [19-22]. 
However, despite the reported success of fault-based 

inspection techniques, they do not lead developers to find all 
type of problems. Furthermore, previous researchers have 
utilized methods beyond standard fault checklist based 
inspection to detect the ambiguities and incompleteness in 
NL requirements. Most notable amongst these methods 
include Walkthroughs [19], Linguistic Analysis [21, 22], 
Consistency checking [23]. However, even when faithfully 
applying these methods, it is estimated that the majority of 
software development effort is still spent on fixing problems 
that should have fixed early in the lifecycle [3].  

Much of this rework is the result of the fact that the fault-
based inspection methods rely on the reader’s ability to 
understand the things the same way as the writer of the 
requirements document. Because of the flexibility and 
inherently ambiguous nature of NL specifications, different 
people can have different interpretations of the requirements 
without noticing the ambiguity. Similarly, due to the 
requirements amalgamation, it may be difficult to find all the 
required requirements and discover the related requirements.            

Model-based approaches [10, 12, 13] can detect such 
types of defects more easily because when the requirements 
are formally modeled or checked by formal methods, the 
properties, such as  inconsistency and ambiguity, are clearly 
addressed and handled. For this reason, to date, many 
researchers have utilized the model-based approaches for 
verifying the natural language specifications. For example, 
Kof [10] proposes a method that analyzes NL requirements 
with computational linguistics and generates Message 
Sequence Charts to verify NL requirements. Similarly, 
Sutcliffe et al. [16, 18] present a method that converts use 
cases into scenarios semi-automatically and validates 
scenarios using rule-based frames that detect 
incomplete/incorrect event patterns. Other researchers have 
focused on automating the modeling process using scenarios 
collected from end-users [12, 13, 15, 17].  

While model-based approaches provide a systematic way 
to identify aforementioned requirements problems, building 
models often requires NL translation and this translation 
process can be problematic due to the inherent 
incompleteness and ambiguities of NL [1, 5]. An erroneous 
translation of NL requirements can result in a wrong model, 
and thus eventually can produce software that stakeholders 
do not want. To address this problem, previous researchers 
have proposed modeling techniques using an automated NL 
translation approach [6-9]. Automation can certainly reduce 
human errors and improve the translation process, but 



 
 

complete automation of this process is not possible because 
often NL requirements can be interpreted in multiple ways 
and thus human judgment is inevitable to lead 
correct/sensible interpretations.  

To address this problem, we propose a new method that 
translates NL requirements into a State Transition Diagram 
(STD) in an incremental manner (hereafter refer to as 
NLtoSTD) and allows requirement engineers and other 
stakeholders to participate in the translation process. This 
approach can correct and refine requirements during the 
translation process by identifying ambiguities and 
incompleteness in the NL requirements. We define 
incompleteness, as a missing requirement or any missing 
element that results in a disconnected STD, whereas an 
ambiguity results when an element is not explicitly stated, 
but its phraseology is such that its value is implied, resulting 
in the user’s interpretation and an STD that is partially 
defined by the user. 

The NLtoSTD method we propose provides a means of 
exposing incompleteness and ambiguities in a set of natural 
language requirements,  while transforming the requirements 
into a STD. While both defects have been explored by 
others, our method differs from the aforementioned 
approaches in that the direct mapping from NL to model is 
preserved in the translation process. Each NL requirement 
becomes a segment of the STD. This means that any 
adjustments made to the model can be directly made to the 
requirements, and visa-versa.  

To initially investigate the feasibility of our approach, we 
conducted a controlled experiment to see whether the 
NLtoSTD method can help detect the missing functionalities 
and ambiguities in the natural language requirement 
specifications. A controlled experiment with university 
students was performed to determine if students using the 
NLtoSTD method were able to find lager number of 
ambiguous and incompleteness faults than using the fault 
checklist inspection method. Our results show that the 
NLtoSTD can be more effective in exposing missing 
functionality and in some cases more ambiguous information 
than a fault checklist method. More importantly, the results 
provided insights into how the proposed method can be 
improved with respect to its effectiveness and efficiency.  

The rest of the paper is organized as follows. Section II 
describes our NLtoSTD approach in detail. Section III 
describes the study design, and Section IV presents data 
analysis and results. Section V discusses the threats to 
validity. Section VI discusses our results, the lessons learned 
from this study, and the suggested improvements for the 
proposed method. Finally, Section VII presents conclusions. 

II. METHODOLGY 
The basis of our NLtoSTD method is to turn a set of 

nature language requirements directly into a STD model, by 
transforming each requirement into a STD building block 
[11]. Requirements engineers and stakeholders can readily 
observe where the conceptual gaps and ambiguities lay in the 
NL requirements by examining the resulting STD. Once the 

faults are corrected in the STD model, the corrections can be 
mapped back to the NL requirements, due to the direct 
transformation that occurred from the NL to the STD. 
Subsequently, the NL requirements can be revised to correct 
for the detected ambiguities and incompleteness. 

Furthermore, once a STD is obtained, it can be analyzed 
automatically to expose other potential faults, such as 
inconsistencies by looking for path traversals that are 
inconsistent with one another. Whereas, exposing 
inconsistencies in the NL representation, by inspection, 
involves thorough reviewing of all the requirements and 
looking for terms that are semantically contradictory. 

To achieve direct traceability between the STD and the 
NL, for a given NL requirement, we transform it into the 
three elements {Sc, T, Sn} that make up a STD Building 
Block (STD-BB) (Figure 1). The building blocks (one per 
NL requirement) are then used to construct a STD. The basis 
for this NL to STD-BB transformation is that a functional 
requirement typically describes an entity transitioning from 
one state to another. For example, a requirement: “While the 
car is moving forward, the driver shall be able to stop it, by 
applying the brake”, would map to the three elements: {Sc: 
Moving, T: Applying Brake, Sn: Stop}. The entity (Car) is 
described as transitioning (T) from moving (Sc) to stopping 
(Sn), which is then represented by a STD-BB (Figure 1). In 
this requirement, the three elements are explicitly stated, 
yielding definable values for Sc, T, and Sn.  

In practice, however, often requirements ambiguously 
imply one or more values for Sc, T, and Sn, thus identifying 
a value for each element would not be obvious. For instance, 
the prior requirement may have stated as: “The driver shall 
stop the car, by applying the brakes.” Note that Sc is not 
explicitly stated as “Moving”, but rather implied. In our 
STD-BB, we use questions marks (???) to denote an element 
that is not explicitly specified. Thus, in this example, we 
would define the three elements as {Sc: ???, T: Applying 
Brake, Sn: Stop}. It may be safe to assume that the car is 
moving prior to stopping, but this requires an assumption, 
and assumptions can be erroneous. In this example, it is not 
clear whether we assume “moving forward”, “moving 
backward”, or both. It is better to explicitly state what may 
seem obvious than to allow the possibility of an erroneous 
(and costly) assumption, therefore a key goal of the 
NLtoSTD method is to expose assumptions.  

To illustrate the steps of our methodology, we will use a 
set of five NL requirements of a simple battery control 
system in a cell phone. The left side of Figure. 2 shows these 
five requirements. To systematically identify the three 
elements, for each of the five requirements, we use the 
following three questions:  

 
 

Figure 1. The STD Building Block (STD-BB) 
(Sc: moving forward, T: ApplyingBrakes, and Sn: Stop) 



 
 

(1) What is currently happening?: This question identifies 
the current state (Sc). 

(2) What will happen next?: This question identifies next 
state (Sn). 

(3) What causes the next state to happen?: This question 
identifies the transition (T). 

     Asking these three questions identifies explicit/implied 
values for {Sc, T, Sn}, resulting in a STD-BB (this 
transformation from NL to STD-BB is denoted as step {1} of 
Figure. 2). Figure. 2 also displays a STD    (denoted as step 
{3})   that is gradually  being constructed piece-wise as each 
requirement is transformed into a STD-BB step {2}).  

However, the STD is incomplete, reflecting the 
ambiguity and incompleteness present in the five NL 
requirements. For example, Req1 does not explicitly state 
Sn, resulting in a “???” in place of Sn in its STD-BB. This in 
turn results in the state on the upper right side of the STD to 
be disconnected from the rest of the STD.  

The ambiguities and incompleteness may not be obvious 
in NL requirements, but they have now been made obvious 
in a STD. Requirements engineers and stakeholders can see 
what the STD lacks, and together they can work towards its 
completion. To produce the complete STD, requirements 
engineers and stakeholders would define the implied (???) 
elements, add requirements, remove requirements, or do 
what it takes to complete the diagram.  

In summary, in our NLtoSTD method, the formal 
representation (i.e., STD) exposes and subsequently corrects 
the ambiguities and incompleteness in the informal 
representation (i.e., NL). The result is a complete and well 
defined set of NL requirements, and a corresponding  STD 
that can be used for automated verification. A key to our 
method is the manual (versus automatic) translation of the 
natural language into a STD, which achieves two important 
goals. First of all, the manual translation adds an extra level 
of user inspection to the process. Secondly, the automatic 
translation processes that we have seen, does not result in the 
same bi-directional traceability between the model and NL 
that our manual translation produces. This traceability is 
important to our method’s ability to correct requirements. 

Since this is an initial feasibility investigation, the scope 
of this experiment is limited to only evaluating the NL to 
STD-BB transformation process (the center part of Figure 2). 
This experiment did not include the construction of an STD 
from the building blocks from the transformation process 
(the rightmost side of Figure 2).  

III. EMPIRICAL STUDY 
The major goal of this study is to evaluate the usefulness 

of the NLtoSTD transformation process as a defect detection 
method as it compares to fault checklist inspection. This 
experiment is a repeated-measure design [28] in which each 
team of three or four participating students developed a 
requirement document for a different system. Next, each 
subject evaluated two different set of requirement documents 
(both of whom were developed by other students). To 
evaluate the first document, the subjects used the fault 
checklist inspection method and then used NLtoSTD to 
inspect the second document. These inspections resulted in a 
list of faults for each subject using both methods. The details 
of the study are provided in the following subsections. 

A. Research Questions 
Three research questions were investigated in this study.  

RQ1: Is NLtoSTD more effective (i.e., the number of faults) 
at detecting incompleteness and ambiguities in requirement 
specifications as compared to the fault checklist inspection? 
RQ2: Is NLtoSTD more efficient (i.e., faults per hour) at 
detecting faults in the requirement documents as compared 
to the fault checklist inspection?  
RQ3: Is NLtoSTD viewed useful for improving the software 
quality? 

B. Variable and Measuress 
We manipulated one  independent variable. 
Inspection Method: Each Subject used the fault checkist 
method and the NLtoSTD method to inspect two 
different sets of requirement documents. 
We also measured the following dependent variables. 
Effectiveness: the number of faults found by each 
subject. 

 

  
Figure 2. Translation method reveals that the five battery requirements are ambiguous and incomplete because they produce an incomplete STD. 



 
 

TABLE I. REQUIREMENTS DOCUMENTS USED IN THE EXPERIMENT 

Doc Subjects System Description Number of 
Pages 

A 4 A web-based tool for managing 
student elections 

42 

B 3 A campus event calendar 21 

C 3 A help desk management system  28 

D 4 An intelligent rating system for 
electronic entertainment media 

17 

E 2 An event registration system 33 

Efficiency: the number of faults found by each subject 
per hour. 

C. Participating Subjects 
      Sixteen Computer Science graduate students enrolled in 
Requirement Definition and Analysis course at North 
Dakota State University participated in this study. 

D.  Artifacts 
There were two phases to this study (development and 

inspection). First, during the development phase, each team 
of three to four participants developed a requirement 
document for a different system. Table I provides a list of 
these systems. One subject dropped the course leaving two 
subjects that developed Document E. Second, for the 
inspection phase, each subject was assigned two different 
requirement documents (out of five documents listed Table 
I) to inspect using the fault checklist and NLtoSTD methods.  

E. Experiment Procedure 
The experiment design includes several steps. Figure 3 

shows the details of the experiment steps. The details are 
provided in the following subsections: 

1) Phase I – Developing Requirement Documents: 
Sixteen subjects working in five different teams developed 
the requirements documents for their identified system as 

shown in Table I. This phase resulted in five different 
requirement documents (namely A, B, C, D, and E).  

2) Phase II – Inspecting Requirement Documents: This 
phase involved using the fault checklist and the NLtoSTD 
methods to inspect the requirement documents. This phase 
included the following steps:  

a) Training 1– Fault Checklist Method: During this 30 
minute training session, the subjects were given description 
of the fault checklist and a list of the fault classes. Subjects 
were instructed on how to use the fault checklist to locate 
faults present in the requirement documents and how to 
record faults using fault form. The fault checklist used in 
this experiment has been used in empirical studies for 
comparing defect detection methods for inspections [2].    

b) Step 1 - Inspecting Requirement Documents Using 
Fault Cheklist Method: Using the information from 
Training 1, each subject was randomly assigned a 
requirement document (with the constraint that the 
document was developed by other subjects in class) to 
inspect it using a fault checklist. This step resulted in a list 
of 16 individual Fault Lists (one per subject).   

c) Training 2 - NLtoSTD Method: During this 30 
minute training session, the subjects learned about the 
NLtoSTD method. The subjects were first trained on how to 
map the natural language (NL) requirements to STD 
building blocks (STD-BB). Next, the subjects were taught 
how to document the buidling block elements (i.e., the 
precondition(s), transition, and postcondition(s)) using an 
example system using an excel spreadsheet. Next, the 
participants were taught how to record the “Ambiguities” 
and “Incompleteness” in the requirements found during the 
inspection (using NLtoSTD).    

d) Step 2 -  Inspecting Requirement Documents Using 
NLtoSTD Method: Each subject was randomly assigned a 
requirement document to inspect that was different from the 
document inspected by that subject in Step 1 and with an 
additional constraint that the document was developed by 
other subjects. Using the knowledge from Training 2, each 
subject inspected the assigned requirements document to 
detect faults using the NLtoSTD method. The output of this 

 
 

Figure 3. Experiment Procedure: Experiment Steps, Training Steps and Output Produced 
 



 
 

TABLE II. ASSIGNMENT OF DOCUMENTS FOR INSPECTION 

 Doc A DocB Doc C Doc D Doc E 

Fault 
Checklist 

4 3 3 3 3 

NLtoSTD 4 3 3 3 3 

step was 16 individual Fault Lists (one per participant). This 
scenario is illustrated in Figure 3, where a subject involved 
in the development of Document D was assigned Document 
A to inspect it using fault checklist during Step 1, and was 
then assigned Document E during Step 2 to inspect it using 
the NLtoSTD method. The result of these assignments in 
terms of the number of subjects that inspected each 
document using both methods is shown in Table II.      

e) Step 3 - Post-Study Questionnaire: The subjects 
were provided an opportunity to provide feedback about the 
fault checklist and NLtoSTD inspection methods to help 
researchers better understand the results.  

F. Data Collection 
This section provides a brief description of data collected 

during the experiment run. The data included the faults 
found by subjects using the fault checklist and NLtoSTD 
methods. The fault checklist technique helps reviewers to 
focus on different fault types, namely, Missing Functionality 
(MF), Missing Environment (ME), Ambiguous Information 
(AI), Inconsistent Information (II), Incorrect Fact (IF), 
Extraneous (E), and Miscellaneous (M); whereas the faults 
focused during the NLtoSTD inspection were “Ambiguous 
Information (AI)” and “Missing functionalities (MF)”.  

The fault lists required to students to self-classify the 
faults found during each inspection into these fault classes.    
The fault lists also required the students to indicate the time 
they had found each fault (along with the breaks they took) 
during the inspection process. The subjects also rated the 
fault checklist and the NLtoSTD method on different 
characteristics and answered other survey questions that 
were based on a 5 point Likert-scale.  

While evaluating the fault data from the individual fault 
lists for data analysis, the fault data recorded by students 
inspecting Documents D and E using the NLtoSTD method 
was excluded from the analysis due to following reasons: 
• In Document D, the requirements were written in a high 

level of abstraction, thus it was harder for the subjects 
to find explicitly stated values for Sc, T, and Sn. In this 
situation the subjects should have given “???” for the 
vast majority of the values. However, all three subjects 
entered values based on their assumptions of what those 
values should be, and the majority of their assumptions 
were not correct. This resulted in data that did not 
represent what the requirements actually express.  

• Document E was written using a use case format, with 
each use-case’s, multi-step, sequence described in its 
entirety. The format of the document made it hard for 
subjects to differentiate between the states and 

transitions, making the translation process hard to 
understand. This resulted in data that is unreliable.   

Therefore, Section IV provides the analysis of the fault 
data from the documents A, B, and C (as shown in Table I).  

IV. DATA ANALYSIS AND RESULTS 
This section provides an analysis of the fault data. This 

section is organized around the research questions presented 
in Section III.A. An alpha value of 0.05 was used for all 
statistical tests.  

A. Fault Detection Effectiveness (RQ1) 
This section compares the number of “Missing 

Functionality (MF)” and “Ambiguous Information (AI)” 
faults found by subjects during the fault checklist inspection 
(Step 1) and the NLtoSTD inspection (Step 2) for each 
document.  

Because each document was inspected individually by 
three or four subjects (depending on the document as shown 
in Table II), the individual data from the Step 1 and Step 2 
inspections was combined into a team score. The fault 
detection effectiveness of a team during fault checklist 
inspection (Step 1) was calculated by combining the list of 
faults each subject found in a particular document. 
Similarly, the fault detection effectiveness of a team during 
the NLtoSTD inspection (Step 2) combined the individual 
scores for each document. This analysis was performed 
separately for Documents A, B, and C. The reason for this 
analysis is because we were only interested in the 
investigating the coverage of the fault space by individual 
team member’s knowledge (as opposed to the list of unique 
faults found by the team) when using our NLtoSTD method 
to detect the incompleteness and ambiguities in natural 
language requirement specifications.  

Figure 4 compares the total number of MF and AI faults 
found by an inspection team using the fault checklist and 
NLtoSTD methods for each document.  

Some observations from Figure 4 are as follows: 
• For Document C, the team using NLtoSTD was visibly 

more effective at detecting the incomplete-ness faults 
(MF) than the fault checklist method, finding an 
average of 15 faults compared to an average of 5 faults 
(per document, the average number of faults was 
calculated by dividing the total number of faults by the 

 
Figure 4. Comparison of the Number of Faults found by Subjects 

Using Fault Checklist and NLtoSTD method 



 
 

number of subjects who inspected the document). On 
the contrary, for Documents A and B, teams using the 
fault checklist method found more MF type faults (an 
average of 4 faults for both documents) as compared to 
teams using the NLtoSTD method (an average of 3.5 
faults for Doc A and 2.5 faults for Doc B).   

• Regarding the AI faults, NLtoSTD exposed larger 
number of AI faults when applied on Document A, but 
the fault checklist method was more effective at finding 
the ambiguities in Documents B and C.   

• A surprising result was that the team using NLtoSTD to 
inspect Document B, did not even find a single AI fault. 
While we expected that the subjects would find more 

MF faults than the AI faults due to the nature of the 
experiment design (i.e., the subjects were not asked to 
construct a requirement model using the STD-BBs 
which can highlight hidden ambiguities in individual 
requirements), this result was unexpected.  

To further investigate the research results, the 
performance of individual subjects was analyzed to 
determine if the result was consistent throughout the sample. 
Figure 5 shows the number of MF and AI faults found by 
each subject using both inspection methods for all three 
documents. Some interesting observations are as follows: 
• As the figure shows, the fault data seems to be more 

evenly distributed for the fault checklist method. While 
each subject using the fault checklist method found 
some faults, four subjects (two subjects each in 
Documents A and B) did not find any fault using 
NLtoSTD.  

• Further, we examined the data for these subjects (i.e., 
subjects 3 and 4 inspecting Document A, and subjects 2 
and 3 inspecting Document B) that found no faults 
using NLtoSTD. Upon examining the data, we found 
that these subjects did not have a clear understanding 
on how to apply NLtoSTD which in turn, resulted in 
choosing incorrect values for Sc, T, and Sn when 
transforming NL to STD-BBs. 

• As expected, the subjects using NLtoSTD consistently 
found larger number of MF faults as compared to the 
AI faults. This was especially true in the case of 
Document C. 

These results showed that the subjects, who had a clear 
understanding on how to apply NLtoSTD, were effective at 
finding the incompleteness in NL requirements. 

B. Fault Detection Efficiency (RQ2) 
The efficiency values (i.e., the number of faults found 

per hour) for each inspector using the fault checklist and the 
NLtoSTD methods were computed. For the fault checklist 
inspection, faults include all type of faults (e.g., MF, ME, 
IF, AI, II, E, M) found by the subjects. For NLtoSTD, faults 
include the MF and AI faults.  

The result in Figure 6 shows that NLtoSTD did not 
improved participants efficiency in any of the documents 

except for two subjects in Document C. This was not 
surprising considering the fact that effort spent during the 
fault checklist inspection led to a large number of other 
types of faults (in addition to MF and AI fault types). In 
particular, four subjects inspecting the Documents A and B 
(two subjects each in Documents A and B) reported all false 
faults and had zero efficiency.  

Based on these results, we see rooms for improvement in 
the application of NLtoSTD by making it easier to find Sc, 
T, and Sn values correctly.   

C. Usefulness of the NLtoSTD Method (RQ3) 
NLtoSTD was evaluated using feedback from the 

subjects on the following eight attributes: simplicity, 
understandability, comprehensiveness, intuitiveness, ease of 
classifying faults, usability, uniformity across products, and 
adequacy of faults found.. Each subject rated the attributes 
on a 5-point Likert scale (1-very low, 2-low, 3-medium, 4-

 
Figure 6. Comparison of the Efficiency Values of Subjects 

Using Fault Checklist and NLtoSTD method



 
 

 
Figure 7. The revised STD-BB 

high, or 5-very high). A non-parametric binomial test was 
conducted to determine whether the mean response was 
significantly greater than medium (the midpoint of the 5-
point scale). The result was only significant (p= 0.021) for 
the simplicity, and easy to understand attributes. All other 
attributes (except the “adequacy of faults found” and “ease 
of classifying faults”), were rated positively and the mean 
rating was greater than 3 (i.e., the mid-point of scale).  

We especially wanted to analyze the feedback from the 
subjects who did not clearly understand how to apply 
NLtoSTD and reported incorrect values of Sc, T, and Sn (as 
discussed in Section IV.A). Since the survey questions were 
filled out anonymously, we could not match the responses to 
the survey questions with their fault data. However, the 
comments and responses to survey questions helped us 
improve the process of translating the NL into STD-BBs 
and are discussed in Section VI.     

V.     THREATS TO VALIDITY 
  In this study, there were some threats to validity that 

were addressed. First, the artifacts inspected in this study 
contained naturally occurring defects that were inserted 
while developing the artifacts rather than artificially seeded. 
Secondly, to reduce the threat due to the learning and 
maturation effects, the subjects performed second inspection 
using NLtoSTD (that was a new method) on a document 
that they were reading for the first time.     

  However, there were some validity threats that were not 
addressed. The artifacts in this study were developed by 
student teams and it may not be representative of industrial 
strength document. Also, the nature of faults made by 
students can differ from the faults made by professionals. 
An important internal validity threat was due to the lack of a 
control group: i.e.,we cannot determine the portion of faults 
found during the second inspection were due to the use of 
NLtoSTD and the portion that were because the subjects 
were became experienced at inspecting the requirements 
document. We plan to address this threat in future.      

VI.     DISCUSSION OF RESULTS 
  This section discusses the results and their implication 

in light of the original research questions. The findings and 
the lessons learned from this study are then discussed.  

A. Discussion of Major Findings 
  Effectiveness: For team effectiveness, the results show 

that NLtoSTD is beneficial at finding the incompleteness in 
the requirements when the subjects clearly understand the 
process of translating the NL to STD-BBs. This is evident 
from the inspection results for Document C where the 
number of MF faults detected during the NLtoSTD 
inspection is threefold that detected during the fault 
checklist inspection. However, this is an extremely small 
data set to make any definite conclusions.  

  Also, we find that the characteristics of the NL 
requirement specifications affected the effectiveness results. 
For example, the requirements in Document C are written in 
a short concise manner, with one functionality per 
requirement (i..e., the requirements exhibited high 

cohesiveness). NLtoSTD favors high cohesiveness because 
its goal is to derive one building block per requirement. By 
contrast, in Document B (which exhibited the worse 
performance), each requirement describes a sequence of 
actions pertaining to one use case. The subjects reported that 
the sequence of actions creates multiple candidates for Sc, 
T, and Sn, making it difficult to obtain a building block.      

   Efficiency: The results clearly show that the fault 
checklist method is more efficient at finding faults. This is 
mainly because: 1) the fault checklist looks for ten types of 
faults whereas NLtoSTD focuses on detecting only two 
types of faults (MF and AI); and 2) four (out of 11) subjects 
using NLtoSTD found no true faults due to their 
misunderstanding of the translation process.  

The results from this initial investigation have provided 
us with insights to improve the translation process that can 
in turn improve the reviewer’s performance. Also, we want 
to extend our research method to help detect other important 
types of faults (e.g., inconsistencies, and incorrectness).  

  Student’s Feedback on the Implementation of NLtoSTD: 
The subjects’ responses to post-study survey show that, in 
general, NLtoSTD is viewed favorably for most of the 
attributes. However, some subjects reported the problems 
that they faced while choosing the values for Sc, T, and Sn 
when translating NL into STD-BBs. Based on the students’ 
responses and feedback, we plan to revise NLtoSTD method 
to make it easier to understand and apply on NL. The 
potential improvements are discussed below.     

B. Lessons Learned 
  From the results of this study, we learned that NLtoSTD 

could provide benefits to developers who use it correctly. 
However, document format and variations in subject 
performance have prompted us to reevaluate the way that 
the three elements Sc, T, and Sn are determined. Figure 7 
shows an example of the potential revision of the STD-BB, 
using Req2 of the battery charger example used in Section II 
(Figure 2). In the revised STD-BB, we will explicitly add an 
entity to a state to represent Sc and Sn as follows: entity 
(state). Allowing for multiple entities should alleviate the 
problem encountered with the requirements that are not 
ideally written in an atomic manner. Figure 7 shows an 
example of a non-atomic requirement: essentially it 
describes three requirements. Based on our new format, we 
identify three entities: unit, battery, and user. Each entity 
has its own current and next states. For example, the battery 
entity has “20%Level” as a current state and “sleepMode” 



 
 

as a next state.  
     Another potential change in the NLtoSTD method is 
allowing users to make an assumption. As shown in Figure 
7, “unit (normalOp?)” has a question mark. This indicates 
that the “normOp” state is not explicitly stated, but the user 
can assume that it is the intended state and label it with a 
question mark for future follow up. This should improve the 
method’s ability to expose ambiguities, since an assumption 
on the user’s part means that something was left up to the 
user’s interpretation, and needs to be clarified. We also 
consider allowing users to add conditions when they 
describe the transition (T). This alleviates the problem that 
arises when a requirement seems to state more than one 
transition. 

Finally, the original version of NLtoSTD strictly handled 
functional requirements. The proposed improvements has 
the potential to model sub-problems, thus, handling non-
functional requirements is a possibility in the future. 

 

VII. CONCLUSION AND FUTURE WORK  
Our empirical study revealed two important things. First 

it confirmed NLtoSTD’s potential to expose incompleteness 
and ambiguous. Second, it revealed areas of improvement 
that benefits the method’s applicability in future.  

Our future work includes further experimentation using 
the improved method suggested by the results from this 
experiment, as well as applying the improved method to 
various types of requirements documents and applications. A 
major motivation in developing this method is to increase the 
participation of the non-technical stakeholders in NL to STD 
translation and gradually reducing the gap between the 
informal and formal requirements space by making the 
method more user-friendly to those stakeholders.  We also 
plan to implement a tool that can automatically determine 
which NL requirements need to be addressed, and in what 
manner, by assessing the STD’s various properties in its 
graph representation.  
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