
Evaluating the Viability of Process Replication Reliability
for Exascale Systems

Kurt Ferreira, Jon Stearley, James H. Laros III, Ron Oldfield,
Kevin Pedretti, and Ron Brightwell
Scalable System Software Department

Sandia National Laboratories∗

{kbferre | jrstear | jhlaros | raoldfi | ktpedre | rbbrigh}@sandia.gov

Rolf Riesen
IBM Research, Ireland
rolf.riesen@ie.ibm.com

Patrick G. Bridges and Dorian Arnold
Department of Computer Science

University of New Mexico
{bridges | darnold}@cs.unm.edu

ABSTRACT
As high-end computing machines continue to grow in size,
issues such as fault tolerance and reliability limit applica-
tion scalability. Current techniques to ensure progress across
faults, like checkpoint-restart, are increasingly problematic
at these scales due to excessive overheads predicted to more
than double an application’s time to solution. Replicated
computing techniques, particularly state machine replica-
tion, long used in distributed and mission critical systems,
have been suggested as an alternative to checkpoint-restart.
In this paper, we evaluate the viability of using state ma-
chine replication as the primary fault tolerance mechanism
for upcoming exascale systems. We use a combination of
modeling, empirical analysis, and simulation to study the
costs and benefits of this approach in comparison to check-
point/restart on a wide range of system parameters. These
results, which cover different failure distributions, hardware
mean time to failures, and I/O bandwidths, show that state
machine replication is a potentially useful technique for meet-
ing the fault tolerance demands of HPC applications on fu-
ture exascale platforms.

1. INTRODUCTION
Process replication, generally referred to as state machine

replication [36], is a well-known technique for tolerating faults
in systems that target high-availability. In this approach, a
process’s state is replicated such that if the process fails,
its replica is available or can be generated to assume the

∗Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

original process’s role without disturbing the other applica-
tion processes. Process replication can be costly in terms of
space if replicas have dedicated resources or time if replicas
are co-located with other primary processes. However, pro-
cess replication can dramatically increase an application’s
mean time to interrupt (MTTI). Additionally, variants of
this technique can detect or correct faults that do not crash
a process but instead cause it to yield incorrect results [7].

Primarily due to its high costs, process replication has
been examined only in a limited manner for high perfor-
mance computing (HPC) systems [40]. Instead, HPC ap-
plications have relied primarily on rollback recovery tech-
niques [13], particularly coordinated checkpoint/restart, where
application state is periodically written to stable storage
(checkpointed), and when failures occur, this state is used
to recover the application to a previously known-good state.
However, future exascale systems are expected to present a
much more challenging fault tolerance environment to appli-
cations than current systems [4]. Additionally, recent studies
conclude that for these systems, high failure rates coupled
with high checkpoint/restart overheads will render current
rollback-recovery approaches infeasible. For example, sev-
eral independent studies have concluded that potential ex-
ascale systems could spend more than 50% of their time
reading and writing checkpoints [12, 28, 38].

Such concerns have motivated the exploration of new tech-
niques to enhance the scalability of checkpoint/restart [8,
20, 27]. Most of these approaches require additional system
resources such as local storage devices, inter-node commu-
nication, or memory capacity compared to the traditional
approach. Researchers also have been reexamining the appli-
cability of existing fault-tolerance mechanisms such as pro-
cess replication in light of the fault tolerance challenges in
upcoming exascale systems [38, 41, 14].

In this paper, we examine the viability of the process repli-
cation paradigm as a primary exascale fault tolerance mech-
anism, with checkpoint/restart providing secondary fault
tolerance when necessary. Our goal is to understand the ad-
vantages and limitations of this approach for extreme scale
computing systems. We focus on exascale MPI applications:
redundant copies of MPI processes provide failover capa-
bilities, which allow these applications to transparently run
through most errors without the need for rollback. Check-
point/restart augments our process replication scheme in

cases where process replication is insufficient, for example,
if all replicas of a process crash simultaneously or become
inconsistent due to faults corrupting the machine state.

To summarize, we present a study of redundant computing
for exascale applications to address the scalability concerns
of disk-oriented coordinated checkpoint/restart techniques
(Section 2.1) and the inability of checkpoint/restart meth-
ods to tolerate undetected hardware errors and non-crash
failures (Section 2.2). Our results show that redundant com-
puting should be considered as a viable approach for exascale
systems because:

• Even at system scales less than those projected for
exascale systems, our model-based analysis shows that
process replication’s hardware overheads are less than
those of traditional checkpoint/restart (Section 5);

• Based on a full implementation MPI process replica-
tion that has been evaluated on more than 4000 nodes
of a Cray XT-3/4 system, our empirical analysis shows
that process replication overheads are minimal for real
HPC applications (Section 6);

• Additional simulation-based analysis that includes both
software and hardware overheads shows that process
replication is a viable alternative to traditional check-
point/restart on systems with more than 20,000 sock-
ets (Section 7), depending on system checkpoint I/O
bandwidth and per-socket mean time between failures
(MTBF); and,

• Alternative approaches to scaling checkpoint/restart
for exascale systems have hardware requirements com-
parable to replication-based approaches (Section 8).

2. BACKGROUND

2.1 Disk-based Coordinated Checkpoint/Restart

2.1.1 Current State of Practice
Disk-based coordinated checkpoint/restart has been the

dominant fault tolerance mechanism in high performance
computing systems for at least the last 30 years. In cur-
rent large distributed memory HPC systems, this approach
generally works as follows:

1. Applications periodically quiesce all activity at a global
synchronization point, for example a barrier;

2. After synchronization, all nodes send some fraction
of application and system state, generally comprising
most of system memory, over the network to dedicated
I/O nodes;

3. These I/O nodes store received checkpoint informa-
tion data to stable storage, currently hard disk-based
storage;

4. In the event of application crash, the stored checkpoint
can be used to restart the application at a prior known-
good state.

The dominance of coordinated checkpoint-restart as the
primary HPC fault tolerance technique rests on a number
of key assumptions that have thus far remained true:

1. Application state can be saved and restored much more
quickly than a system’s mean time to interrupt (MTTI);

2. The hardware and upkeep (e.g. power) costs of sup-
porting frequent checkpointing are a modest portion
(currently perhaps 10-20%) of the system’s overall cost;
and

3. System faults that do not crash (fail-stop) the system
are very rare.

Heroic work in both I/O systems and hardware error detec-
tion has largely kept these assumptions valid through the
present day, allowing large parallel applications to scale to
over a petaflop of sustained performance in the face of oc-
casional fault-induced system crashes.

2.1.2 Scaling of Coordinated Disk-based Checkpoint-
/Restart

There are a number of excellent studies investigating the
efficiency of disk-based checkpoint/restart for large scale sys-
tems, including past petascale systems [12, 29, 13] and up-
coming exascale systems [38, 2, 4]. These projections inval-
idate essentially all of the assumptions on which traditional
checkpoint/restart depend. For example, these studies sug-
gest exascale MTTIs ranging from 3-37 minutes, checkpoint
times for low memory systems taking up to five hours, and
significant non-crash system failures, for example undetected
DRAM errors.

We begin by assuming a 15-minute checkpoint time, a
modest improvement over the approximate 20 minute check-
point time that supercomputers both a decade ago (ASCI
Red [25]) and today (BlueGene and Jaguar [6]) achieve. We
also assume a one hour system MTTI, again a generous as-
sumption given recent studies. Daly’s model [10] estimates
that such a system should checkpoint once every 27 min-
utes and would achieve only 44% system utilization. Scal-
ing the I/O system to achieve a utilization greater than
80% would require checkpoint times of approximately one
minute. Assuming that the I/O system supporting that 15
minute checkpoint took only 10% of the system’s original
budget and I/O throughput scaled up perfectly, a simple
Amdahl’s law calculation shows that an I/O supporting such
checkpoint speeds would comprise 63% of the total cost of
the system!

Checkpoint-restart is also problematic when dealing with
non-crash failures such as so-called “soft errors”. In particu-
lar, checkpoint-restart preserves the impact of failures that
corrupt application state. Addressing this would require ap-
plication developers to either restart an application from
scratch or analyze the contents of their checkpoints looking
for one prior to when the fault that corrupted application
state occurred.

2.2 State Machine Replication
Redundant computation, process replication, and state

machine replication have long histories and have been used
extensively in both distributed [16, 9] and mission critical
systems [26, 3, 30, 36] as a technique to improve fault tol-
erance. State machine replication, the focus of this paper,
maintains one or more replicas of each node and assumes ev-
ery node computes deterministically in response to a given
external input, for example a message being received. It
then uses an ordering protocol to guarantee all replicas see

the same inputs in the same order, and additional commu-
nication to detect and recover from failures.

State machine replication offers a different set of trade-
offs compared to rollback recovery techniques such as check-
point/restart. In particular, it completely masks a large
percentage of system faults, preventing them from caus-
ing application failures without the need for rollback. Some
forms of state machine replication can also be used to de-
tect and recover from a wider range of failures than check-
point/restart, potentially including Byzantine failures [7].
Unlike checkpoint/restart, however, state machine replica-
tion is not sufficient by itself to recover from all node crash
failures; faults that crash all of a node’s replicas will cause
a computation to fail.

This approach has previously been dismissed in HPC as
being too expensive for the meager benefits that are seen
at present machine scale. For the reasons described above
in Section 2.1, however, several authors have recently sug-
gested using this technique in HPC systems [38, 41, 14]. In
the remainder of this paper, we examine the suitability of a
specific type of state machine replication in HPC systems.

3. REPLICATION FOR MESSAGE PASSING
HPC APPLICATIONS

3.1 Overview
State machine replication is conceptually straightforward

in message passing-oriented HPC applications. In this ap-
proach, each replica is created on independent hardware for
every processor rank in the original application of which fail-
ure cannot easily be tolerated. Note that we do not require
all ranks to be replicated—in master/slave-style computa-
tions where the master can recover from the loss of slaves,
only the master might be replicated.

The replication system then guarantees that every replica
receives the same messages in the same order and that a copy
of each message from one rank is sent to each replica in the
destination rank. In addition, the replication system must
detect replica failures, repair failed nodes when possible, and
restart failed nodes from active replicas. The replication sys-
tem may also periodically check that replicated ranks have
the same state.

Checkpoint/restart recovery is still required in this ap-
proach for recovery from faults that fail all replicas of a
particular process rank. It is also used to recover from situ-
ations where replica state becomes inconsistent, for example
due to silent (undetected) failures.

3.2 Costs and Benefits
This approach requires significantly increased computa-

tional resources—at least double the hardware for replicated
ranks. In cases where only portions of an application must
be replicated, these requirements are potentially modest.
For many HPC applications (e.g. traditional stencil calcula-
tions), however, this approach doubles the required hardware—
2N nodes are required to fully replicate a job that would oth-
erwise run (perhaps much more slowly) on N nodes. In ad-
dition, there are runtime overheads for maintaining replica
consistency.

With these costs, however, come significant advantages:

• Dramatically increased system MTTI. This ap-
proach dramatically reduces the number of faults vis-

ible to applications. Specifically, the application only
sees faults that crash (or otherwise fail) all replicas of
a particular rank.

• Significantly reduced I/O requirements. Increased
system MTTI reduces the speed at which checkpoints
must be written to storage to allow applications to ef-
fectively utilize the system. A smaller fraction of the
system cost and power budget must as a result be spent
on the I/O system.

• Detection of “soft errors”. By comparing the state
of multiple replicas (e.g. using memory checksums)
prior to writing a checkpoint, replication can detect
if application state has been corrupted and trigger
restart from a previous checkpoint.

• Increased system flexibility. The extra nodes used
for redundant computation when running the largest
jobs can be used for providing extra system capacity
when running multiple smaller jobs for which fault tol-
erance is less of a concern. A system that uses N
nodes and an expensive I/O system to reach exascale
can only run 100 10PF jobs at a time, for example. A
system that uses 2N nodes and a less expensive I/O
system to reach exascale, however, can potentially run
200 10PF jobs at a time.

4. EVALUATING REPLICATION IN EXA-
SCALE SYSTEMS

The advantages described in Section 3 provide a com-
pelling reason to examine the viability of state machine repli-
cation for extreme-scale HPC systems. Without quantifiable
performance benefits compared to other approaches, how-
ever, state machine replication will not be viable for use in
exascale systems. The remainder of this paper therefore ex-
amines the performance costs and benefits of state machine
replication.

4.1 Comparison Approach
Our primary performance evaluation criteria is: at what

node counts, if any, state machine replication provides quan-
titative performance advantages over past approaches par-
ticularly in terms of system utilization, after accounting for
the overheads of state machine replication. If, for example,
state machine replication achieves 46% utilization at a given
system socket count and another technique only achieves
40% system utilization, we regard state machine replication
as superior at that point.

We use traditional checkpoint/restart fault tolerance as
the baseline technique against which to compare because its
performance characteristics are well-understood. We hope
that comparing against a well-understood baseline will fa-
cilitate future comparisons against other proposed exascale
fault tolerance techniques as their costs and benefits at scale
are more fully quantified. A brief qualitative comparison
with several such techniques, however, is provided in Sec-
tion 8.

4.2 Assumptions
Because we are comparing a new technique on projected

hardware systems, our comparisons make a number of as-
sumptions that are important to make explicit:

1. Full dual hardware redundancy for all applications, re-
sulting in a maximum possible efficiency for state ma-
chine replication of 50%.

2. The MPI library is the only potential source of non-
determinism in the application.

3. Machines suffer only crash failures, not more general
failures from which checkpoint/restart may not be able
to recover. While this replication approach can handle
a more general fault model, the numbers in this paper
do not include the checks required to handle a more
general fault model.

4. Based on past study results [37], system MTTI de-
creases linearly with increased system socket count.

5. MODEL-BASED ANALYSIS
We first examine the performance benefits of state ma-

chine replication compared to its fundamental redundant
hardware costs. For this initial comparison, we assume every
MPI process is replicated, and make very simple assump-
tions about system characteristics, particularly that there
is no software overhead for maintaining replica consistency,
that the system can checkpoint in a fixed amount of time
regardless of scale, and that all failures follow a simple expo-
nential distribution. These assumptions will be successively
relaxed in the following sections.

When two nodes are used to represent the same MPI rank,
the failure of one node in a pair does not interrupt the ap-
plication. Only when both nodes fail does the application
need to restart. The frequency of that occurring is much
lower than the occurrence of a single node fault and can be
characterized using the well-known birthday problem.

One version of the birthday problem asks how many peo-
ple on average need to be brought together until there are
enough to have a greater than 50% chance that two of them
share the same birth month and day. If we equate days in a
year with nodes and let the number of people represent the
faults occurring, we can use the birthday problem to calcu-
late how many faults can occur until both nodes in a pair
are damaged and cause an application interrupt.

Equation 1, from [24, 19], shows how to calculate this
version of the birthday problem.

F (n) = 1 +
n

X

k=1

n!

(n − k)! · nk
≈

r

πn

2
+

2

3
(1)

Essentially, replicas act like a filter between the system
and an application, and the birthday problem helps us esti-
mate how many faults can be absorbed before the applica-
tion is interrupted.

Figure 1 estimates the resulting application efficiency with
optimal checkpoint intervals for both state machine replica-
tion and using only traditional checkpoint/restart. MTTI
was computed directly from the birthday problem approxi-
mation in Equation 1, while the resulting efficiency is com-
puting using Daly’s higher-order checkpoint/restart model
and optimal checkpoint interval [10]. These calculations as-
sume a 43800 hour (5 year) per-socket MTBF based on past
studies [37, 18], 15 minute checkpoint times as discussed in
Section 2.1, and a 168 hour application solve time.

These results show the dramatic increase in system MTTI
that state machine replication provides, allowing it to main-
tain efficiency close to 50% as system socket count increases

%
 E

ffi
ci

en
cy

Application-visible System Sockets

Replication
No Replication

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

Figure 1: Modeled application efficiency with and
without state machine replication for a 168-hour ap-
plication, 5-year per-socket MTBF, and 15 minute
checkpoint times. Shaded region corresponds to
possible socket counts for an exascale class machine
[4].

dramatically towards the 200,000 heavyweight sockets sug-
gested for exascale systems [4]. In contrast, the efficiency of
a checkpointing-only approach drops precipitously as system
scales approach those of upcoming exascale systems.

6. RUNTIME OVERHEAD OF REPLICATION
While the previous sections demonstrate that state ma-

chine replication is viable at exascale in terms of the basic
hardware costs, they do not evaluate the runtime overhead of
the necessary consistency management protocols. Transpar-
ently supporting state machine replication for MPI applica-
tions on HPC systems requires maintaining sequential con-
sistency between replicas. It also requires protocols for de-
tecting and repairing failures. As mentioned in Section 2.2,
these are potentially expensive in communication-intensive
HPC systems as every replica must see messages arrive in
the same order.

To study this overhead, we designed and implemented
rMPI, a portable user-level MPI library that provides re-
dundant computation transparently to deterministic MPI
applications. rMPI is implemented on top of an existing
MPI implementation using MPI profiling hooks. In the re-
mainder of this section, we outline the basic design and im-
plementation of rMPI and measure the runtime overhead of
this implementation for several real applications on a large
scale Cray XT-3/4 system. A complete description of rMPI,
including low-level protocol and implementation details is
available elsewhere [15, 5].

6.1 rMPI Design
The basic idea for the rMPI library is simple: replicate

each MPI rank in an application and let the replicas continue
when an original rank fails. To ensure consistent replica
state, rMPI implements protocols that ensure identical mes-
sage ordering between replicas. Unlike more general state
machine replication protocols [36, 7], these protocols are spe-
cific to the needs of MPI in an attempt to reduce runtime
overheads. In addition, rMPI uses the underlying Relia-
bility, Availability and Serviceability (RAS) system to de-
tect node failures, and implements simple recovery protocols
based on the consistency protocol used.

6.1.1 Basic Consistency Protocols
rMPI implements two different consistency protocols, named

mirror and parallel , to ensure that every replica receives
a copy of every message and to order message reception
at replicas. Both protocols take special care when dealing
with MPI operations that could potentially result in differ-
ent message orders or MPI results being seen at different
replicas. Note that collective operations in rMPI call the
point-to-point operations internal to rMPI.

Figure 2(a) shows the basic organization of how the mir-
ror protocol ensure that all replicas see the same messages.
In this figure, A and B represent distinct MPI ranks and A’
and B’ are A’s and B’s replicas respectively. In this protocol,
each sender transmits duplicate messages to each of the des-
tinations. Similarly, receivers must post multiple receives for
the duplicate messages, but only require one of those mes-
sages to arrive in order to progress. This eases recovery after
a failure, but doubles network bandwidth requirements.

The parallel protocol, in comparison, is shown in Fig-
ure 2(b). In this approach, each replica has a single cor-
responding replica for each other rank with which it com-
municates in non-failure scenarios. In the case of failure, one
of the remaining replicas of a rank takes over sending and
receiving for the failed node. This failure detection requires
frequent message-based interaction with the reliability sys-
tem on current systems. As a result, the parallel protocol
will initiate approximately double the number of messages
for each send operation. These extra messages contain MPI
envelope information and are small. Therefore, the paral-
lel protocol reduces network bandwidth requirements for an
increased number of short messages.

6.1.2 MPI Consistency Requirements
rMPI assumes that only MPI operations can result in non-

deterministic behavior, and there are a few specific MPI op-
erations that can result in application-visible non-deterministic
results. For example, rMPI must address non-blocking op-
erations, wildcard (e.g. MPI_ANY_SOURCE and MPI_ANY_TAG) re-
ceives, and operations such as MPI_Wtime. As a first step,
both rMPI protocols use the notion of a leader node for each
replicated MPI rank, while non-leader nodes are referred to
as replicas or redundant nodes. When a leader drops out of a
computation, the protocol chooses a new replica from among
those remaining for a rank to take over as leader. rMPI uses
one high order bit in the tag to distinguish messages from
leader and replica nodes.

For the remainder of consistency protocol discussions, we
focus on the mirror protocol implementation; the parallel
protocol implementation is generally similar and described
in more depth elsewhere [15]. For blocking non-wildcard
receives, one of the the most common forms of MPI commu-
nication, rMPI posts a receive for both senders A and A’ into
the buffer provided by the user. Since the data in the two
arriving messages is identical, there is no danger of corrupt-
ing the user buffer. If multiple messages from the replica set
A arrive with the same tag, rMPI must make sure that the
first active and first redundant message arrive in the first
buffer, and the second active and second redundant in the
second buffer. rMPI achieves this by using one high-order
tag bit, setting it on all outgoing redundant messages and
setting the same bit for all receives of redundant messages.

Due to MPI message-passing semantics and the possibil-
ity of wildcard source receives, this basic approach is not

completely sufficient. To handle MPI_ANY_SOURCE and MPI_-

ANY_TAG, rMPI relies on explicit communication between the
leader of each rank and other replicas. Essentially, rMPI
allows only one actual wildcard receive to be posted at any
time on a node, and then only on the leader. When a wild-
card receive is matched, the leader then sends the MPI en-
velope information to replica nodes which then post for the
actual message needed. The situation is more complicated
for non-blocking wildcard receives, test, and wait operations,
requiring a queue of outstanding wildcard receives, but the
basic approach is similar.

Finally, rMPI must guarantee that operations such as
MPI_Wtime() return the same value on active and redundant
nodes, as some applications make decisions based on the
amount of time elapsed. For these situations, the leader
node sends its computed value to the redundant node. As an
option, rMPI can synchronize the MPI_Wtime() clocks across
the nodes [23].

6.1.3 Failure Detection
rMPI’s failure detection requirements are relatively mod-

est, and it assumes the underlying supercomputer RAS sys-
tem can provide much of this functionality. Both mirror and
parallel protocols require that messages from failed nodes
will be consumed and do not deadlock the network or cause
other resources, such as status in the underlying MPI im-
plementation, to be consumed. Furthermore, failing nodes
must not corrupt state on other nodes. I.e., corrupted or
truncated messages in flight must be discarded. Most sys-
tems already do this using CRC or other mechanisms to
detect corrupt messages. The RAS system is responsible
for ensuring that messages are not continually retransmit-
ted from and to failed nodes .

For the parallel protocol we expect that there is a method
to learn whether a given node is available or has failed. On
our test systems, we emulate a RAS system at the user-level.
This consists of a table which rMPI consults, and the RAS
system updates, when a node’s status changes. It could also
be an event mechanism that informs rMPI whenever the
RAS system detects a failed node.

6.2 Evaluation

6.2.1 Methodology
From the discussion in the previous sections it should be

clear that rMPI will add overhead and lengthen the execu-
tion time of an application. To measure this overhead we
ran multiple tests with applications on the Cray Red Storm
system at Sandia National Laboratories compiled with both
rMPI and the original unmodified Cray MPI library. Red
Storm is a XT-3/4 series machine consisting of over 13,000
nodes, with each compute node containing a 2.2 GHz quad-
core AMD Opteron processor and 8 GB of main memory. To
ensure leader and replica are on separate physical nodes, and
to avoid memory bandwidth bottlenecks on the nodes them-
selves, we only used one core on each of the CPU sockets.
Note, this memory bandwidth bottleneck can be removed
from rMPI by having the NIC duplicate messages rather
than the host CPU at the cost of the libraries portability.

We used four applications tested on up to 2,048 application-
visible nodes (4096 total nodes in the case of replication):
CTH [11], SAGE [22], LAMMPS [33, 34], and HPCCG [35].
These application represent a range of computational tech-

(a) Mirror Protocol (b) Parallel Protocol

Figure 2: Basic replicated communication strategies for two different rMPI message consistency protocols.
Additional protocol exchanges are needed in special cases such as MPI_ANY_SOURCE.

niques, are frequently run at very large scales, and are key
simulation workloads for the US DOD and DOE. These four
applications represent both different communication charac-
teristics and compute-to-communication ratios. Therefore,
the overhead of rMPI affects them in different ways.

Because a given node allocation may impact the perfor-
mance of an application, we ran our tests in three different
modes. The first mode, called forward, assigns rank n/2 as
a redundant node to rank 0, rank n/2 + 1 to rank 1, and
so on resulting in a mapping like this: ABCD|A’B’C’D’.
Reverse mode is ABCD|D’C’B’A’, and shuffle mode is a
random shuffle (Fisher/Yates) such as ABCD|C’B’D’A’.

6.2.2 LAMMPS
Figure 3 shows the performance impact of rMPI with both

the mirror and parallel protocol. The impact of each redun-
dancy protocol is less than 5%, independent of the nodes
used, while the baseline overhead for each is negligible.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Native
parallel and mirror base

parallel and mirror base %
mirror redundant

mirror redundant %
parallel redundant

parallel redundant %

0.0 s

50.0 s

100.0 s

150.0 s

200.0 s

250.0 s

300.0 s

350.0 s

400.0 s

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 3: LAMMPS rMPI performance compar-
ison. For both mirror and parallel baseline per-
formance overhead is equivalent. For this applica-
tion the performance of forward, reverse, and shuffle
fully redundant is equivalent.

6.2.3 SAGE
Figure 4 shows the rMPI performance for SAGE. Similar

to LAMMPS, the baseline performance degradation is neg-
ligible. Also similar to LAMMPS, the parallel protocol per-
formance remains nearly constant and performance decrease

is negligible in the tested node range; with performance over-
head generally less than 5%. In contrast, full redundancy for
the mirror protocol loses about 10% performance over na-
tive, with performance increasing with scale. We attribute
the performance degradation for SAGE to the factor of two
increase of large network messages sent by SAGE and the
limited available network bandwidth.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Native
mirror redundant

mirror redundant %
parallel redundant

parallel redundant %
parallel and mirror base

parallel and mirror base %

0.0 s

200.0 s

400.0 s

600.0 s

800.0 s

1.0 ks

1.2 ks

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 4: SAGE rMPI performance comparison.
For both mirror and parallel baseline performance
overhead is equivalent. For this application the per-
formance of forward, reverse, and shuffle fully re-
dundant is equivalent.

6.2.4 CTH
In Figure 5 we see the impact of our consistency protocols

for CTH at scale. Again, baseline for both mirror and paral-
lel shows little performance difference. For CTH, mirror has
the greatest impact on performance with full redundancy.
This impact, which is nearly 20% at the largest scale, is
due to CTH’s known sensitivity to network bandwidth [31]
(the greatest of each of the applications tested) and the in-
creased bandwidth requirements of the mirror protocol. In-
terestingly, the parallel protocol version of CTH runs slightly
faster then the native versions (around 5-8%) for forward,
reverse, and shuffle replica node mappings. Though further
testing is needed, current performance analysis results sug-
gest this decrease in application runtime is due to parallel
reducing the number of unexpected messages received.

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Native
mirror and parallel base

mirror and parallel %

mirror redundant
mirror redundant %
parallel redundant

parallel redundant %

0.0 s

50.0 s

100.0 s

150.0 s

200.0 s

250.0 s

300.0 s

350.0 s

400.0 s

450.0 s

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 5: CTH rMPI performance comparison. For
both mirror and parallel baseline performance over-
head is equivalent. For this application the perfor-
mance of forward, reverse, and shuffle fully redun-
dant is equivalent.

6.2.5 HPCCG
Figure 6 shows the performance impact of rMPI on the

HPCCG mini-application. In contrast to the other results
presented in this section we present the mirror and paral-
lel results separately. Though the results presented in Fig-
ure 6(a) and Figure 6(b) represent the same computational
problem, the native results of each vary due to different
node allocations between the two plots. Allocation issues
aside, we see that mirror has very little impact. Parallel
on the other hand shows a significant impact at higher node
counts, with slowdowns of around 10% at 1,024 nodes. Also,
in contrast to all the other applications tested, impact from
the parallel protocol is greater than that of mirror. This is
because unlike other applications, HPCCG stresses the sys-
tem’s message rate and parallel’s synchronization messages
are causing it to reach the maximum messaging rate of a
node.

6.3 Analysis and Summary
Our results evaluating the runtime overhead of state ma-

chine replication show that the runtime costs of implement-
ing state machine replication for a wide range of produc-
tion HPC applications at significant scale is minimal. In
particular, for each application, either the parallel or mirror
protocol provides almost negligible performance impact. Ex-
amining the best protocol for each application, SAGE has
the highest net overhead, 2.2% at 2048 application-visible
nodes, using the best protocol.

To project these overheads to future systems, we take
a basic curve-fitting approach. We expect communication
overheads to be sublinear because replication’s communica-
tion overheads are proportional to the application’s commu-
nication demands, and scalable application must keep com-
munication overheads sublinear with increasing node counts.
This analysis shows that a logarithmic curve, shown in Equa-
tion 2, can be used to characterize the overhead for the
worst-case application, SAGE.

g(S) =
1

10
log S + 3.67 (2)

This curve would result in a 4.9% additional overhead on

a projected exascale system with 200,000 sockets.
Note, however, that this analysis assumes the absence of

hardware bottlenecks such as observed for the mirror pro-
tocol for HPCCG. More sophisticated techniques, for exam-
ple ones based upon the simulation of exascale networking
hardware, would be necessary to account for such bottle-
necks. Based on our experience so far, however, we expect
that either the mirror or parallel protocol could avoid such
bottlenecks.

7. SIMULATION-BASED ANALYSIS

7.1 Overview
In this section, we use a simulation-based approach to

verify, integrate, and expand the results from the previous
sections into a more complete analysis of the costs and ben-
efits of state machine replication for HPC systems. This
approach allows us to examine real failure distributions de-
rived from studies of failures of real HPC systems in addi-
tion to the exponential distributions assumed in analytical
models such as those of the Daly model or the birthday
problem. We also use it to examine additional machine pa-
rameters and their impact on the viability of state machine
replication, particularly variations in available I/O system
bandwidth and failure rates of components.

In the remainder of this section, all results assume soft-
ware runtime overheads as shown in Equation 2; efficiency
results also include a factor of two reduction for replication
because of the required redundant hardware. Unless oth-
erwise stated, we also continue to assume checkpoint and
restart times of 15 minutes as in previous sections.

7.2 Combined Hardware and Software Over-
heads

As a first study, we reexamine state machine replication
under exponential failure distributions with a 5 year per-
socket MTTI as in Sections 2 and 5, but this time including
projected software runtime overheads from Section 6. As
can be seen in Figure 7, these results are similar to those
of Figure 1, with the break-even point for state machine
replication shifted to a somewhat higher socket count due
to the additional software runtime overheads. Despite this,
state machine replication still outperforms traditional check-
point/restart at socket counts currently projected for use in
exascale systems.

7.3 Scaling at Different Failure Rates
While the 5 year per-socket MTBFs used above are based

on well-known studies of large-scale systems, the challenges
of exascale systems make changes to these reliability statis-
tics likely. For example, more reliable nodes could be de-
ployed to address fault tolerance concerns, or power con-
servation, miniaturization, or cost concerns could lead to a
reduced per-socket MTBF. Because of this, we also exam-
ined the viability of state machine replication over a range
of per-socket MTBFs.

This evaluation focuses on determining the break-even point
in number of system sockets for state machine replication
compared to traditional checkpoint/restart. This is the num-
ber of sockets above which state machine replication is more
efficient than traditional checkpoint/restart even account-
ing for replication’s software and hardware overheads. At
socket counts greater than or MTBFs less than this break-

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

40.0 s

4 8 16 32 64 128
256

512
1,024

0 %

20 %

40 %

60 %

80 %

100 %

(a) Mirror protocol

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Base
Base %

Reverse
Reverse %

Shuffle
Shuffle %

Forward
Forward %

Native

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

40.0 s

8 16 32 64 128
256

512
1,024

0 %

20 %

40 %

60 %

80 %

100 %

(b) Parallel protocol

Figure 6: HPCCG rMPI performance comparison. Varying performance for native and baseline between
mirror and parallel protocols is due to different node allocations.

%
 E

ffi
ci

en
cy

Application-visible System Sockets

No Replication
Replication

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1000

2000
5000

10000

20000

50000

100000

200000

Figure 7: Simulated application efficiency with and
without replication including rMPI run time over-
heads. Shaded region corresponds to possible socket
counts for an exascale class machine [4].

even point, replication is preferable; at socket counts less
than this or MTBFs above it, traditional checkpoint/restart
is preferable.

Figure 8 shows these results for per-socket MTBFs up to
100 years; socket counts and per-socket MTBF commonly
discussed for exascale systems (socket counts above 25,000
and MTBFs between 4 and 50 [4]) are shaded; the shaded
area above and to the left of the break-even curve repre-
sents the portion of the exascale design space in which state
machine replication is beneficial.

These results show that state machine replication is vi-
able for a large range of socket MTBFs and node counts
in the exascale design space, but not the entire space. In
particular, state machine replication performs worse that
traditional checkpoint/restart for low socket-count systems
with MTBFs greater than about 10 years. For socket MTBF
above 50 years, state machine replication is outperformed by
traditional checkpoint/restart at all expected socket counts.

7.4 Scaling at Different Checkpoint I/O Rates
We also examined the viability of replication at a wide

range of checkpoint I/O rates. Because checkpoint I/O is an
area of active study, including work on a wide range of hard-
ware and software techniques to improve its performance for

N
um

be
r

of
 S

oc
ke

ts
 fo

r
br

ea
k

ev
en

Socket MTBF (years)

Break Even (δ = 15 min)

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 5 10 25 50 100

Figure 8: Simulated replication break-even point as-
suming a constant checkpoint time (δ) of 15 minutes.
Shaded region corresponds to possible socket counts
and MTBFs for an exascale class machine [4]. Areas
of the shaded region where replication uses less re-
sources are above the curve. Areas below the curve
are where traditional checkpoint/restart uses lower
resources.

exascale systems (as described later in Section 8), under-
standing the potential impact of this research on exascale
fault tolerance approaches is critical.

For this analysis, we used recent modeling work which ex-
tends Daly’s checkpoint modeling work to account for how
variations in checkpoint system throughput impact check-
point times and system utilization [28]. We assume each
socket in the system has 16 GB of memory associated with
it, and again examine the break-even point for replication
over checkpoint/restart at a range of checkpoint I/O band-
widths and socket MTBFs. We choose an aggressive range
of such bandwidths ranging from 500 GB/sec to 30 TB/sec
to fully understand the impact of dramatic increases in I/O
rates on the viability of replication.

N
um

be
r

of
 S

oc
ke

ts
 fo

r
br

ea
k

ev
en

Socket MTBF (years)

500GB/s
1TB/s
5TB/s

10TB/s
30TB/s

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 5 10 25 50 100

Figure 9: “Break even”points for replication for var-
ious checkpoint bandwidth rates. The shaded region
corresponds to possible socket counts and socket
MTBFs for exascale class machines [4]. State ma-
chine replication is a viable approach for most check-
point bandwidths, but with a checkpoint bandwidth
greater than 30TB/sec, replication is inappropriate
for the majority of the exascale design space. Areas
of the shaded region where replication uses less re-
sources are above the curve. Areas below the curve
are where traditional checkpoint/restart uses lower
resources.

Figure 9 shows the results of this analysis. Replication
outperforms checkpointing for the vast majority of the exas-
cale design space at checkpoint I/O bandwidths of 1 TB/sec
or less. However, beginning at I/O bandwidths of approx-
imately 5 TB/sec, checkpoint/restart becomes competitive
for a substantial fraction of the design space, particularly
systems with high per-socket MTBFs and low numbers of
sockets. At checkpoint bandwidths of 30 TB/sec or higher,
several orders of magnitude faster than current I/O systems,
checkpoint/restart is preferable across a large majority of
the design space.

7.5 Non-Exponential Failure Distributions
Finally, we also examine the viability of replication with

more realistic failure distributions. For failure information,
we use numbers from a recent study of failures on two Blue-
Gene supercomputer systems, a 16,384 node system at Ren-
nesseler Polytechnic Institute (RPI) and a 4,096 node system

at École Polytechnique Fédérale de Lausanne (EPFL) [18].
This study shows that failures in these systems are best

described by a Weibull distribution with MTBFs of 6.6 hours
(11.7 years/socket) and 8.4 hours (3.9 years/socket), and
shape (β) values of 0.156 and 0.469, respectively. These
β values (β < 1.0) describe distributions that decrease in
probability over time; in HPC systems, this indicates that
failures are more likely to happen at the start of a system’s
lifetime or an application run and reduce in frequency as the
system runs.

To examine the impact of these failure distributions, we
build on the results of the previous subsection and exam-
ine how the efficiency of replication and checkpoint/restart
change under Weibull failures assuming a fixed 1 TB/sec
checkpoint bandwidth and 16 GB of memory per socket.
Note that the systems from which these distributions were
measured experienced a significant number of I/O system
failures, and it is unclear how these failures should be prop-
erly scaled up to larger systems. As a result, we use the
failure data from the larger of the two systems (the RPI
system), and focus on how Weibull distributions change the
efficiency of replication and checkpoint/restart approach as
opposed to the specific efficiency crossover point.

Figure 10 presents impact of these failure distributions on
both a replication-based approach and a purely checkpoint-
based approach. These results show that Weibull failures
experienced by real-world systems result in a much more
challenging fault tolerance environment, reducing the effec-
tiveness of both replication and traditional checkpointing
approaches. However, replication is less severely impacted
than traditional checkpointing, again pointing to the poten-
tial viability of a replication-based fault tolerance approach
for exascale systems.

8. ALTERNATIVE APPROACHES
In addition to state machine replication, a number of al-

ternatives have also been suggested for scaling fault tol-
erance methods to HPC systems. Essentially all of these
approaches attempt to improve the performance of check-
point/restart. In the remainder of this section, we describe
these approaches and briefly discuss their potential benefits
and costs as an exascale fault tolerance methods.

8.1 High-speed Storage for Checkpoint/Restart
High speed local storage, for example local disk and flash

memory systems has periodically been proposed to speed
up checkpoint/restart systems by placing large amounts of
high-speed storage near the data that must be checkpointed.
The Exascale planning report cited earlier notes that plac-
ing spinning storage and a flash RAM in each system node
would allow nodes to checkpoint in between 4 minutes and
1 second. This would in turn increase system utilization
to from 59% to 97% ([4], Table 7.12, revised using Daly’s
second order model.)

Actually deploying large amounts of local non-volatile stor-
age in an exascale system is potentially very challenging,
however. Local disk-based storage has traditionally been
avoided because of the increased failures it causes, for ex-
ample. Upcoming non-volatile phase change PCRAM and
resistive RRAM devices provide high bandwidth and relia-
bility, but are potentially very expensive. Unless their cost
per bit rivals that of DRAM, using such technologies for
checkpoint/restart purposes would result in checkpointing

%
 E

ffi
ci

en
cy

Application-visible System Sockets

No Replication
Replication

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1000

2000
5000

10000

20000

50000

100000

200000

(a) Weibull β = 0.156, socket MTBF = 12 years

%
 E

ffi
ci

en
cy

Application-visible System Sockets

No Replication
Replication

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1000

2000
5000

10000

20000

50000

100000

200000

(b) Exponential, socket MTBF = 12 years

Figure 10: Comparison of simulated application efficiency with and without replication, including rMPI
run time overheads, using a Weibull and Exponential fault distribution. In both these figures we assume
a checkpoint bandwidth of 1TB/sec. The shape parameter (β) 0.156 and MTBF corresponds to the RPI
BlueGene system [18]. Shaded region corresponds to possible socket counts for an exascale class machine [4].

hardware that makes up a much larger portion of the sys-
tem cost.

Modern NAND and NOR flash technologies are poten-
tially the most promising for buffering and storing local
checkpoints because of their comparatively low cost, high
density, and high reliability. NAND flash write bandwidths
are currently in the low GB/s range, allowing them to check-
point a node in a few minutes. Assuming that exascale
MTTIs can be kept at or above one hour, this would re-
sult in system utilization’s of 80% or higher. However, their
write durability would require periodically replacing all flash
memory in the system.

8.2 Asynchronous Checkpointing and Message
Logging

Another approach that has been suggested to improve
the performance of checkpointing systems is uncoordinated
or asynchronous checkpointing [1, 20, 21]. In these sys-
tems, nodes generally checkpoint and restore from local stor-
age without the synchronization used by coordinated check-
pointing. To support a node restoring from a local asyn-
chronous checkpoint, nodes in this approach keep a log of
recent messages that they have sent. When a node restores
from a previous checkpoint, it can then replay reception of
messages using remote nodes’ logs.

While this approach can increase checkpointing perfor-
mance, it also generally assumes the availability of local
storage. In addition, logging increases the latency of messag-
ing operations and potentially takes significant amounts of
space. Finally, asynchronous checkpointing approaches can
result in cascading rollbacks; recent work attempts to bound
the amount of rollback that may be necessary [17], but also
places non-trivial limits on application behavior. We are un-
aware of any studies examining performance of more general
message logging approaches at large scales (e.g. thousands
of nodes or larger).

8.3 Other Checkpointing Systems
Memory-based checkpointing [32, 39] uses the memory of

a remote machine to checkpoint node state. Unless node
memory is primarily read-only (in which case RAID 5-like
techniques can be used), this approach doubles the mem-
ory demands of an application. Since memory is regarded

as a key budget and power constraint in exascale systems,
it is unclear if the benefits of replicating only memory are
superior to the qualitative advantages of state machine repli-
cation described in Section 3.

Multi-level checkpointing [27] is a library-based approach
for controlling checkpointing to multiple storage targets, in-
cluding memory-based checkpoints, local checkpoint stor-
age, and remote checkpoints, into a single system. Because
of this, it shares some of the advantages and disadvantages of
memory-based checkpointing and local storage techniques.
Unlike these techniques, however, multi-level checkpointing
has the flexibility to choose between multiple levels of stor-
age based on system design parameters, making it a promis-
ing technique for exascale systems.

9. SUMMARY AND FUTURE WORK
In this paper, we evaluated the suitability of replication,

an approach well-studied in other fields, as the primary fault
tolerance methods for upcoming exascale high performance
computing systems. A combination of modeling, empirical
evaluation, and simulation were used to study the various
costs and benefits of state machine replication over a wide
range of potential system parameters. This included both
the hardware and software costs of state machine replica-
tion for MPI applications, and covered different failure dis-
tributions, system mean time to interrupt ranges, and I/O
speeds.

Our results show that a state machine replication ap-
proach to exascale resilience outperforms traditional check-
point/restart approaches over a wide range of the exascale
system design space, though not the entire design space.
In particular, state machine replication is a particularly vi-
able technique for the large socket counts and limited I/O
bandwidths frequently anticipated at exascale. However,
replication-based approaches are less relevant for designs
that have per-socket MTBFs of 50 years or more, less than
50,000 sockets, and checkpoint bandwidths of 30 terabytes
per second.

Outside of its performance benefits, using replication as
the primary exascale fault tolerance methods provides a
number of other advantages. First among these is that it can
be used to detect and aid in the recovery from faults that cor-

rupt system state instead of crashing the system, sometimes
referred to under the banner of silent errors. Checkpoint-
based approaches, on the other hand, potentially preserve
such errors. In addition, while the extra hardware nodes
needed to support replication-based approaches can also be
used to increase the capacity of exascale systems when it
runs more but smaller (e.g. 1-10 petaflop-scale) jobs.

While the research described outlines most of the poten-
tial costs and benefits of HPC-oriented state machine repli-
cation, there is a wide range of additional work that remains.
In terms of state machine replication, more work is needed
quantifying the software costs of using replication to detect
silent errors. While such techniques are well known in other
communities, it is unclear what their cost would be for HPC
applications; the quantitative results in this paper do not at-
tempt to measure these costs and focus only on using repli-
cation to mask the pressing issue of frequent crash failures
on exascale systems.

In addition, more detailed studies of the scaling, benefits,
and hardware costs of the various alternative methods to
scaling exascale fault tolerance described in Section 8 are
needed. While state machine replication appears viable at
exascale, other approaches may still be superior; careful in-
vestigation of such approaches is needed to understand their
comparative costs and benefits.

Finally, we are investigating an alternative method to en-
able redundant computing that has a lower resource over-
head then what is presented here. Rather than having a
replica specific to a particular rank, we are looking into
methods that would aggregate a number of replicated ranks
onto one node and spread state throughout all of these ag-
gregate replicas in a job. This would allow an aggregate
replica, on demand, to replace a certain rank and could pos-
sibly allow the application to avoid checkpointing altogether.

10. REFERENCES
[1] Ahn, J. 2-step algorithm for enhancing effectiveness

of sender-based message logging. In SpringSim ’07:
Proceedings of the 2007 spring simulation
multiconference (2007), pp. 429–434.

[2] Amarasinghe, S., and et al. Exascale software
study: Software challenges in extreme scale systems.
http://users.ece.gatech.edu/mrichard/

ExascaleComputingStudyReports/ECSS%20report%

20101909.pdf, Sept. 2009.

[3] Bartlett, J. F. A nonstop kernel. In SOSP ’81:
Proceedings of the eighth ACM symposium on
Operating systems principles (1981), pp. 22–29.

[4] Bergman, K., Borkar, S., Campbell, D.,

Carlson, W., Dally, W., Denneau, M., Franzon,

P., Harrod, W., Hill, K., Hiller, J., Karp, S.,

Keckler, S., Klein, D., Kogge, P., Lucas, R.,

Richards, M., Scarpelli, A., Scott, S., Snavely,

A., Sterling, T., Williams, R. S., and Yelick, K.

Exascale computing study: Technology challenges in
achieving exascale systems.
http://www.science.energy.gov/ascr/Research/

CS/DARPAexascale-hardware(2008).pdf, Sept. 2008.

[5] Brightwell, R., Ferreira, K. B., and Riesen, R.

Transparent redundant computing with mpi. In
EuroMPI (2010), R. Keller, E. Gabriel, M. M. Resch,
and J. Dongarra, Eds., vol. 6305 of Lecture Notes in
Computer Science, Springer, pp. 208–218.

[6] Cappello, F. Fault tolerance in petascale/ exascale
systems: Current knowledge, challenges and research
opportunities. IJHPCA 23, 3 (2009), 212–226.

[7] Castro, M., and Liskov, B. Practical byzantine
fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS) 20, 4
(Nov. 2002), 398–461.

[8] Chakravorty, S., and Kalé, L. V. A fault tolerant
protocol for massively parallel systems. In Proceedings
of the International Parallel and Distributed
Processing Symposium (Santa Fe, NM USA, April
2004), IEEE Computer Society Press.

[9] Chapin, J., Rosenblum, M., Devine, S., Lahiri,

T., Teodosiu, D., and Gupta, A. Hive: fault
containment for shared-memory multiprocessors. In
SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles (New
York, NY, USA, 1995), ACM, pp. 12–25.

[10] Daly, J. T. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gener.
Comput. Syst. 22, 3 (2006), 303–312.

[11] E. S. Hertel, J., Bell, R. L., Elrick, M. G.,

Farnsworth, A. V., Kerley, G. I., McGlaun,

J. M., PetneY, S. V., Silling, S. A., Taylor,

P. A., and Yarrington, L. CTH: A software family
for multi-dimensional shock physics analysis. In
Proceedings of the 19th International Symposium on
Shock Waves (July 1993), pp. 377–382.

[12] Elnozahy, E., and Plank, J. Checkpointing for
peta-scale systems: a look into the future of practical
rollback-recovery. Dependable and Secure Computing,
IEEE Transactions on 1, 2 (Apr. 2004), 97–108.

[13] Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M.,

and Johnson, D. B. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput.
Surv. 34, 3 (2002), 375–408.

[14] Engelmann, C., Ong, H. H., and Scott, S. L. The
case for modular redundancy in large-scale high
performance computing systems. In Proceedings of the
8th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN) 2009
(Innsbruck, Austria, Feb. 16-18, 2009), ACTA Press,
Calgary, AB, Canada, pp. 189–194.

[15] Ferreira, K., Riesen, R., Oldfield, R.,

Stearley, J., III, J. H. L., Pedretti, K., and

Brightwell, R. rMPI: Increasing fault resiliency in a
message-passing environment. Technical Report
SAND2011-2488, Sandia National Laboratories, 2011.

[16] Gärtner, F. C. Fundamentals of fault-tolerant
distributed computing in asynchronous environments.
ACM Computing Surveys 31, 1 (March 1999), 1–26.

[17] Guermouche, A., Ropars, T., Brunet, E., Snir,

M., and Cappello, F. Uncoordinated checkpointing
without domino effect for send-deterministic message
passing applications. In Proceedings of the 2011 IEEE
International Parallel and Distributed Processing
Symposium (May 2011).

[18] Hacker, T. J., Romero, F., and Carothers,

C. D. An analysis of clustered failures on large
supercomputing systems. J. Parallel Distrib. Comput.
69 (July 2009), 652–665.

[19] Holst, L. The general birthday problem. In Random
Graphs 93: Proceedings of the sixth international
seminar on Random graphs and probabilistic methods
in combinatorics and computer science (New York,
NY, USA, 1995), John Wiley & Sons, Inc.,
pp. 201–208.

[20] Jiang, Q., and Manivannan, D. An optimistic
checkpointing and selective approach for consistent
global checkpoint collection in distributed systems. In
Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium (Mar. 2007).

[21] Johnson, D. B., and Zwaenepoel, W. Recovery in
distributed systems using asynchronous and
checkpointing. In Proceedings of the seventh annual
ACM Symposium on Principles of distributed
computing (1988), pp. 171–181.

[22] Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini,

F., Wasserman, H. J., and Gittings, M. Predictive
performance and scalability modeling of a large-scale
application. In Proceedings of the ACM/IEEE
conference on Supercomputing (2001), pp. 37–48.

[23] Lamport, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (1978),
558–565.

[24] Mathis, F. H. A generalized birthday problem. SIAM
Review 33, 2 (1991), 265–270.

[25] Mattson, T. G., and Henry, G. An overview of the
Intel TFLOPS supercomputer. Intel Technology
Journal, Q1 (1998), 12.

[26] McEvoy, D. The architecture of tandem’s nonstop
system. In ACM ’81: Proceedings of the ACM ’81
conference (New York, NY, USA, 1981), ACM, p. 245.

[27] Moody, A., Bronevetsky, G., Mohror, K., and

Supinski, B. R. d. Design, modeling, and evaluation
of a scalable multi-level checkpointing system. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (Washington, DC,
USA, 2010), SC ’10, IEEE Computer Society,
pp. 1–11.

[28] Oldfield, R. A., Arunagiri, S., Teller, P. J.,

Seelam, S., Varela, M. R., Riesen, R., and Roth,

P. C. Modeling the impact of checkpoints on
next-generation systems. In 24th IEEE Conference on
Mass Storage Systems and Technologies (Sept. 2007),
pp. 30–46.

[29] Oliner, A. J., Sahoo, R. K., Moreira, J. E., and

Gupta, M. Performance implications of periodic
checkpointing on large-scale cluster systems. In
Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) -
Workshop 18 (2005), p. 299.2.

[30] Packard, H. HP NonStop computing.
http://h20338.www2.hp.com/NonStopComputing/

cache/76385-0-0-0-121.html.

[31] Pedretti, K. T., Vaughan, C., Hemmert, K. S.,

and Barrett, B. Application sensitivity to link and
injection bandwidth on a Cray XT4 system. In
Proceedings of the 2005 Cray User Group Annual
Technical Conference (Helsinki, Finland, May 2008).

[32] Plank, J. S., Kim, Y. B., and Dongarra, J. J.

Algorithm-based diskless checkpointing for fault

tolerant matrix operations. In Twenty-Fifth
International Symposium on Fault-Tolerant
Computing. Digest of Papers (Pasadena, CA, USA,
June 1995), Los Alamitos, CA, USA : IEEE Comput.
Soc. Press, 1995, pp. 351–360.

[33] Plimpton, S. J. Fast parallel algorithms for
short-range molecular dynamics. J Comp Phys 117, 1
(1995), 1–19.

[34] Sandia National Laboratory. LAMMPS
molecular dynamics simulator.
http://lammps.sandia.gov, Apr. 10 2010.

[35] Sandia National Laboratory. Mantevo project
home page. https://software.sandia.gov/mantevo,
Apr. 10 2010.

[36] Schneider, F. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys 22, 4 (1990), 299–319.

[37] Schroeder, B., and Gibson, G. A. A large-scale
study of failures in high-performance computing
systems. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN2006) (June 2006).

[38] Schroeder, B., and Gibson, G. A. Understanding
failures in petascale computers. Journal of Physics:
Conference Series 78, 1 (2007), 012022.

[39] Silva, L. M., and Silva, J. G. An experimental
study about diskless checkpointing. In 24th
EUROMICRO Conference (Vasteras, Sweden, August
1998), IEEE Computer Society Press, pp. 395 – 402.

[40] Uhlemann, K., Engelmann, C., and Scott, S.

Joshua: Symmetric active/active replication for highly
available hpc job and resource management. In
Proceedings of the 2006 IEEE International
Conference on Cluster Computing (Los Alamitos, CA,
USA, 2006), IEEE Computer Society.

[41] Zheng, Z., and Lan, Z. Reliability-aware scalability
models for high performance computing,. In
Cluster’09: Proceedings of the IEEE conference on
Cluster Computing (2009).

