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Abstract: Evaluation of the mechanical properties of biological tissues has always been an important
issue in the field of biomedicine. The traditional method for mechanical properties measurement
is to perform in vitro tissue deformation experiments. With the fast development of optical and
image processing techniques, more and more non-invasive and non-contact optical methods have
been applied to the analysis of tissue mechanical features. In this study, we use Mueller matrix
polarimetry to quantitatively obtain the mechanical properties of bovine tendon tissues. Firstly, to
study the structural information and the changes in the optical characteristics of the tendon tissue
under different stretching states, 3 × 3 Mueller matrix images of bovine tendon tissue samples are
acquired by backscattering measurement setups based on a polarized camera. Then, we extract the
frequency distribution histograms (FDHs) of the Mueller matrix elements to reveal the structural
changes of the tendon tissue more clearly during the stretching process. Last, we calculate the Mueller
matrix transformation (MMT) parameters, the total anisotropy t1 and the anisotropy direction α1 of
the tendon tissue samples under different stretching processes to quantitatively characterize their
structural changes under different mechanical states. The central moments of the MMT parameters
can be used to distinguish the different stretching states of the tendon tissue. For better discrimination
based on the MMT parameters, we design a multilayer neural network that takes the first-order
moments of the MMT parameters as the input features. After training, a high-precision classification
model of the stretching states of tendon tissue samples is finally obtained, and the total classification
accuracy achieves 98%. The experimental results show that the Mueller matrix polarimetry can be a
potential non-contact tool for tissue mechanical properties evaluation.

Keywords: mechanical property; polarimetry; Mueller matrix; tissue; neural network

1. Introduction

Evaluating the mechanical properties of biological tissues has always been an im-
portant issue in the field of biomedicine. Biological tissues vary widely in morphology,
structure, and function and have characteristics such as heterogeneity, anisotropy, and
viscoelasticity [1,2]. In addition, the morphology, structure, production and development,
lesions, and even death of organisms are related to mechanical properties [3]. For tis-
sues, their mechanical properties mainly include elastic modulus, yield strength, ultimate
strength and so on [4]. The most direct way to detect these properties is to measure the
deformation of tissue when it is disturbed. The traditional detection method is mainly to
carry out in vitro or invasive tissue deformation experiments [5]. Currently, the available
methods include digital image correlation (DIC), the basic idea of which is to obtain a
continuous speckled image of the object before and after deformation, and then use image
recognition processing technology to obtain changes in the digital gray field to measure
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mechanical parameters such as displacement and strain [6], which is a method of obtaining
object performance parameters based on the natural or artificial spotting field of the surface
before and after deformation. Optical coherence elastography (OCE) can measure tissue
deformation due to excitation and accurately obtain tissue elastic information [7]. Ultra-
sound elastography and MRI [8] can obtain tissue strain and strain rate, but with limited
resolution. With the fast development of optical and image processing techniques, more
and more non-invasive and non-contact optical methods have been applied to the analysis
of tissue mechanical features.

In the past decade, Mueller matrix polarimetry is gaining more and more attention in
biomedical studies and applications [9]. Compared with non-polarized optical methods,
Mueller matrix polarimetry is sensitive to microstructures and can additionally provide in-
formation on the optical anisotropy of tissues, including birefringence and linear dichroism
(LD), noninvasively [9,10]. At present, the commonly used Mueller matrix measurement
method is based on the dual-rotating retarders method proposed by Azzam [11], which
can eliminate the image deformation induced by the rotation of the polarizers. Moreover,
there are also Mueller matrix measurement methods based on polarization cameras to
improve the measurement efficiency for dynamic biomedical samples [12]. In this work,
we use Mueller matrix polarimetry to quantitatively detect and evaluate the mechanical
properties of tendon tissues stretched by different external forces. Firstly, we measure the
3 × 3 Mueller matrix images of bovine tendon tissue samples with different stretching
states using the backscattering measurement setups based on a polarization camera. Then,
we extract the frequency distribution histograms (FDHs) of the Mueller matrix elements
to reveal the structural changes of the tendon tissue during the stretching process. Last,
for the quantitative characterization of their structural changes, we calculate the Mueller
matrix transformation (MMT) parameters of the tendon tissue samples under different
stretching states. We also design a multilayer neural network for better discrimination
based on the MMT parameters. A high-precision classification model with an accuracy of
98% for the stretching states of tendon tissue samples is finally obtained. It is demonstrated
that Mueller matrix polarimetry can be a potential non-contact tool for the evaluation of
tissue mechanical properties.

2. Materials and Methods
2.1. Experimental Setup and Tendon Tissue Samples

In this work, a polarized camera-based (Dofp PHX050S-P, Lucid Vision Labs,
Richmond, BC, Canada) backscattering measurement device was used to obtain the
3 × 3 Mueller matrix images of the samples. Each pixel of the polarization camera is
covered with four miniature polarizers along 0, 45, 90 and 135 deg to detect four SOPs at
the same time. Thus, the raw image acquired by the polarization camera can be divided
into four images, recording the light intensity data of 0, 45, 90 and 135 deg of linearly
polarized light, respectively. Then the first three components of the Stokes vector S1, S2
and S3 can be calculated accordingly [13]. To obtain the complete 3 × 3 Mueller matrix,
incident light with three states of polarization (SOP) of 0 deg, 45 deg and 90 deg were used.

As shown in Figure 1a, the incident light emitted from an LED (3 W, 633 nm, Daheng
Optic, Beijing, China) passes through the lens L1(LBTEK Optic, Changsha, China), and the
rotatable polarizer (P1, extinction ratio >1000:1, LBTEK Optic, Changsha, China) becomes
linearly polarized light with different SOPs. The photons scattered from the sample are
detected by the polarization camera (Dofp PHX050S-P, Lucid Vision Labs, Vancouver,
Canada) after passing through the lens L2 (LBTEK Optic, Changsha, China). To avoid the
influence of sample surface reflection, there is an oblique incident angle (θ) of 7 deg between
the incident light arm and the detection arm. Before the measurements, the Mueller matrix
imaging system was calibrated using several standard samples, including air, polarizers,
fibrous scatterers and retarders in both transmission and backscattering modes. The results
showed that the maximum error of the individual Mueller matrix elements is about 0.8%.
More details of the calibration process can be found in Ref. [14].
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(TDO), longitudinal stretching (MDO) and 45 deg stretching (ODO). Bovine tendon tissue 
with no external force is called the origin state sample, whose length and width are both 
4.5 cm and the thickness is 0.5 cm. We stretched the tendon tissue 1 cm perpendicular to 
the alignment direction of the original collagen fibers, and this tissue is called the trans-
verse stretching (TDO) state sample. Then, the restored tendon tissue was stretched 1 cm 
along the alignment direction of the original collagen fibers, and this tissue is called the 
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1 cm along the 45 deg direction with the alignment of the original collagen fibers, and this 
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3 × 3 Mueller matrix images in different states are recorded for further analysis. 
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Figure 1. (a) Schematic of the experimental setup for the backscattering Mueller matrix measurement.
P1: polarizer; L1, L2: lens. The oblique incident angle θ is about 7 deg to avoid the surface reflection
from the sample. The diameter of the illumination area is about 2.3 cm. (b) Schematic diagram of
four stretching states of tendon tissue samples: origin means unstretched, TDO means transverse
stretched, MDO means longitudinal stretched and ODO means 45 deg stretched. The light orange
lines represent the fibers.

Tendon tissues are highly anisotropic, resulting from both optical birefringence and
scattering of fibrous structures [15]. There are abundant collagen fibers in tendon tissues,
and most of them are arranged in the same direction [16]. Previously, it has been demon-
strated that information on fibrous structures in tendon tissues, such as their density and
orientation, can be obtained from the Mueller matrix [17]. However, applying an external
force on tendon tissues will lead to changes in their mechanical features and anisotropic
properties [18]. Here, to study the ability of Mueller matrix derived parameters to evaluate
the mechanical properties of tendon tissues when stretched by external forces at different
orientations, we measure fresh bovine tendon tissue samples sequentially at different
physiological states as Figure 1b shows: without stretching (origin), transverse stretching
(TDO), longitudinal stretching (MDO) and 45 deg stretching (ODO). Bovine tendon tissue
with no external force is called the origin state sample, whose length and width are both
4.5 cm and the thickness is 0.5 cm. We stretched the tendon tissue 1 cm perpendicular to
the alignment direction of the original collagen fibers, and this tissue is called the trans-
verse stretching (TDO) state sample. Then, the restored tendon tissue was stretched 1 cm
along the alignment direction of the original collagen fibers, and this tissue is called the
longitudinal stretching (MDO) state sample. Last, we stretched the restored tendon tissue
1 cm along the 45 deg direction with the alignment of the original collagen fibers, and this
tissue is called the 45 deg stretching (ODO) state sample. For each sample, a total of four
3 × 3 Mueller matrix images in different states are recorded for further analysis.

2.2. Frequency Distribution Histograms and Mueller Matrix Transformation Parameters

Among the available polarization imaging methods, Mueller matrix polarimetry has
some unique advantages for tissue measurement. As a label-free and non-contact technique,
Mueller matrix polarimetry is sensitive to the changes in subwavelength micro-structures
and contains rich optical information of the samples, which have shown great application
prospects in biomedical studies recently [19]. For bulk tendon tissues whose light scattering
property is prominent, the 3 × 3 Mueller matrix can be used to conveniently obtain most
of the structural information [20]. The 3 × 3 Mueller matrix is calculated by analyzing
the relationship between the SOPs of scattered light and the incident light as shown in
Equation (1):

Sout = Msample×Sin=

 M11 M12 M13
M21 M22
M31 M32

M23
M33

× Sin (1)
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where Sin represents the Stokes vector of the incident light, Sout represents the Stokes vector
of scattered light, and Msample represents the Mueller matrix of the sample.

The backscattered 3 × 3 Mueller matrix images of the bovine tendon tissue samples in
different states are shown in Figure 2, from which we can clearly notice that the change in
applied external force affects each matrix element differently, benefiting us in the qualita-
tive collection and evaluation of the microstructural information related to the mechanical
properties of the tissue. For instance, in the M12, M21, M13 and M31 elements, the linear
dichroism induced by the tissue fibers is recorded; the values of diagonal elements M22
and M33 reflect the linear depolarization ability of the tissue; and the differences between
the M22, M33, M23 and M32 elements reveal the total anisotropy of the tissue [9,21,22].
However, though the 2D Mueller matrix images contain abundant tissue microstructure
information, it is difficult to find a direct and quantitative connection between a certain mi-
crostructure and the Mueller matrix elements [12,23]. To solve this problem, here we adopt
the frequency distribution histogram (FDH) processing on the individual Mueller matrix
elements to calculate their central moments [24]. Furthermore, we combine the Mueller ma-
trix transformation (MMT) parameters and neural network (NN) to quantitatively evaluate
the tendon tissues with different mechanical properties.
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Figure 2. Two-dimensional (2D) backscattering 3 × 3 Mueller matrix images of bovine tendon tissue
samples: (a) without stretching (origin), (b) transverse stretching (TDO), (c) longitudinal stretching
(MDO), and (d) 45 deg stretching (ODO). All the Mueller matrix elements are normalized by the M11.
The color bar is from −1 to 1 for the M11, −0.2 to 0.2 for the M22 and M33 and from −0.1 to 0.1 for
other elements. It should be noted that the self-normalized M11 is polarization irrelevant.

Equations (2) and (3) define two MMT parameters used in this study: t1 is a rotation
invariant to characterize the total anisotropy induced by both dichroism and birefringence
of the sample, while α1 represents the orientation of the general anisotropy [21,25]. For
bulk tissue samples with prominent fibrous structures, it was found that the statistical
information of the MMT parameters α1 and t1 have the potential to detect external forces
applied to the sample at different angles.

t1 =
1
2

√
(M22−M33)2 + (M23 + M32)2 (2)

α1 =
1
4

atan2(M23 + M32, M22−M33) i f t1 6= 0 (3)

2.3. Central Moments

For further quantitative analysis, we calculate the central moments of the FDHs for
the MMT parameters to see their statistical differences [24]. Suppose we have a random
variable X whose central moments, expected value (I1), variance (I2), skewness (I3), and
kurtosis (I4), are given as Equations (4)–(7), where σ represents the standard deviation of X
and µ represents the mean of X:

I1 = E(X) (4)



Appl. Sci. 2022, 12, 9774 5 of 15

I2 = Var(X) (5)

I3 =
E(X− µ)3

σ3 (6)

I4 =
E(X− µ)4

σ4 (7)

By observing the central moments values, we can quantitatively characterize a dis-
tribution curve. Here, I1 is the mean value of the distribution curve, representing the
mathematical expectation of the distribution; I2 is the variance of the distribution, rep-
resenting the degree of dispersion; I3 represents the skewness of the distribution curve,
which is a measure of the direction and degree of the skewed distribution of the statistical
data, as well as a mathematical feature of the degree of asymmetry; I4 represents the
kurtosis of the distribution curve, which is the number of features characterizing the peak
of the probability density distribution curve. Intuitively, the kurtosis reflects the thickness
of the tail of the distribution curve. The detailed physical interpretations of the central
moments can be found in Refs. [26,27]. In this study, we first record the 2D backscattering
Mueller matrix images of the tendon tissue samples, then transfer the pixels of Mueller
matrix elements and MMT parameters to FDHs by statistical analysis. Finally, the central
moments of the FDHs are obtained according to Equations (4)–(7).

2.4. Neural Networks

An artificial neural network (ANN), or neural network (NN) for short, is a mathemat-
ical or computational model that mimics the structure and function of biological neural
networks [28]. NNs are made up of many human–neural connections that adaptively
change internal node parameters based on input characteristics. Modern NNs are nonlinear
statistical data modeling tools that are often used to model complex relationships between
inputs and outputs or to explore patterns in data [29].

Dense neural networks (DNNs) consist of connected layers of artificial neurons. All
the nodes in each layer are connected to all the nodes in the neighboring layers (fully
connected network, also referred to in the literature as a feed-forward NN or multilayer-
perceptron-based networks [30]. Usually, DNNs are utilized for data of small dimensions.
One could also successfully use DNNs in recognition tasks for small images [31].

Figure 3 depicts a four-layered fully connected neural network consisting of
18 computational units, which is also the classification model finally adopted in this study.
Layer 1 is the input layer with two input nodes; Layers 2 and 3 are hidden layers, with
six operation nodes per layer; Layer 4 is the output layer with four output nodes. Four
classifications of input features can be implemented. The training process of NN is divided
into two stages: One is to initialize the weights and bias terms of each node, and then input
the feature data to obtain the output results. The second process is to dynamically adjust
the parameters of each node according to the error between the output and the expected
results so that the loss function value is reduced to a minimum. This dynamic adjustment is
called optimization in NNs, and the optimizer used here is called Adam (Adaptive Moment
Estimation) [32], which automatically adjusts the learning rate to achieve fast convergence
of the loss function. Common loss functions are mean squared and mean absolute error
functions for regression problems, and cross-entropy loss functions for classification prob-
lems [33]. The testing process of the NN uses the network model with the smallest loss
function value of the output result and the expected result during the training process to
test the sample data and count the accuracy rate.
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3. Results and Discussions
3.1. FDHs of Mueller Matrix Elements for Tendon Tissues in Different States

Through the transformation process of 2D Mueller matrix elements images into MMT
parameters, some detailed information can be lost that may account for the sample structure
features [34]. To this end, we converted 2D Mueller matrix elements images of bovine
tendon tissues firstly into FDHs, then calculated their corresponding central moments.
Additional information related to the mechanical property may be obtained by analyzing
the position, width, and shape of the FDHs of the Mueller matrix elements. Figure 4
shows the FDHs of 3 × 3 Mueller matrix elements for tendon tissues in four states: origin,
TDO, MDO, and ODO. Here, the FDH curves of tissues in each of the four states are
plotted into the same subgraph, where the blue solid lines represent MDO, the orange solid
lines represent TDO, the yellow dashed lines represent ODO and the purple dashed lines
represent the origin state.

It can be seen from Figure 4 that: (1) the FDHs of elements M22 and M33 are different
for all the stretching states. Taking the sample without stretching (Origin) as an example,
the mean values of the M22 and M33 curves are 0.16 and 0.06, respectively, meaning that
the tendon tissue is highly anisotropic. In addition, the FDH curves of M33 in all four
states are steeper than those of M22. However, the differences between M22 and M33
change as the stretching states change, showing that the applied external force can result
in different degrees of anisotropy to the tendon tissue samples. A closer observation of
Figure 4 also reveals that the FDH curves of the off-diagonal elements M12, M21, M13 and
M31, which mainly present the linear dichroism property induced by fibrous scatterers,
have none-zero mean values, especially for the M12 and M21 elements [35]. The none-zero
values of origin sample demonstrate the existence of fibers, and the characteristic value
changes with different stretchings applied show that the external force information can be
extracted from the Mueller matrix elements [18,36].
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Figure 4. Frequency distribution histograms (FDHs) of 3 × 3 Mueller matrix elements for bovine
tendon tissues in four states: origin, TDO, MDO and ODO. The horizontal axis is divided into
400 intervals, and the vertical axis coordinates represent the probability that the data points will fall
into one of the intervals of the horizontal axis. Here, the coordinate ranges are determined according
to Ref. [24].

The above conclusion illustrates that the FDHs of the Mueller matrix elements for
the bovine tendon tissue samples can be significantly different when stretched by external
forces. For more quantitative analysis of the relationship between the structural changes
and the stretching by different external forces, we derived the MMT parameters in the
next section.

3.2. MMT Parameters for Tendon Tissues in Different States

We first plot the FDH curves of the MMT parameters α1 and t1 for the tendon tissues in
four different states in the same subplots. The α1 and t1 parameters of these four different
states have been normalized by dividing the current value by the corresponding parameter
value at the maximum absolute value of the four states. As shown in Figure 5, the blue
solid lines represent the MDO state, the orange solid lines with circle markers indicate the
TDO state, the yellow solid lines with triangle markers indicate the ODO state and the
purple dashed lines represent the origin state.

From the FDHs of parameter α1 shown in Figure 5a, we can see that: (1) among the
four states, the FDH curve of the MDO sample has the steepest shape, which is similar to
the FDH curve of origin sample; (2) the FDH curve of the ODO sample is far away from
those of the other three states; and (3) the FDH curve of the TDO sample is lower than those
of the other three states and has the flattest shape. From the FDHs of parameter t1 shown
in Figure 5b, it can be seen that the mean value of the FDH curves of the four states increase
sequentially as TDO, ODO, origin, MDO. To statistically verify the above conclusions, we
performed tensile experiments on three randomly selected bovine tendon tissue samples
and calculated the central moments (I1 to I4 moments) of their MMT parameters α1 and t1.
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As shown in Table 1, for parameter α1 in the four states of origin, TDO, MDO and
ODO, the average values of the first-order moment of the three samples are 0.023, −0.003,
−0.030 and −0.443, respectively. It can be seen that the first-order moment of the ODO
sample is very different from those of the other three states. Because the oblique stretching
makes the fiber structure very chaotic, the longitudinal or transverse stretch of its fiber
structure changes are ordered, so that the general anisotropy of ODO is very different
from MDO and TDO. Moreover, the average values of the second-order moment of the
three samples in the origin, TDO, MDO and ODO states are 0.016, 0.173, 0.026 and 0.103,
respectively. We can notice that the second-order moments of the origin and MDO samples
are much smaller compared with the other two states, and the second-order moment of the
TDO sample is the largest among all four states. This is because the lateral stretching makes
the arrangement of the fiber structure become loose, and the closer to the center, the greater
the degree of looseness, so that the range of its total anisotropy values becomes wider and
the variance in the lateral stretch state becomes larger. It is also found that the mean value
of the third-order moments of the ODO state is 2.123, which is larger than the mean values
of third-order moments of the origin, TDO and MDO states, and the mean value of the
fourth-order moments of the TDO state is 3.680, which is smaller than the mean values of
fourth-order moments of the origin, ODO and MDO states.

Table 1. Central moments I1 to I4 of MMT parameters α1 for bovine tendon tissue samples.

α1
Origin TDO MDO ODO

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

I1 0.04 0.00 0.03 0.03 0.03 −0.07 −0.08 −0.01 0.00 −0.39 −0.52 −0.42
I2 0.02 0.01 0.02 0.33 0.16 0.03 0.05 0.02 0.01 0.24 0.05 0.02
I3 −0.35 −0.16 −0.49 −0.19 −0.02 −0.07 0.49 0.20 −0.11 1.50 3.11 1.76
I4 7.82 5.35 16.71 1.80 2.84 6.40 5.97 5.59 18.46 4.37 18.51 19.96

As shown in Table 2, for the MMT parameter t1 of the three tendon tissue samples in
four states of origin, TDO, MDO and ODO, the average values of the first-order moment
are 0.156, 0.080, 0.176 and 0.136, respectively. It shows that the first-order moment, or the
expected value of the MMT parameter t1, can be used to distinguish the stretching states of
the samples. We can see from Figure 5 and Table 2 that, among the four states, the tendon
tissues in the TDO state have the smallest mean t1 values, while the ones in the MDO states
have the largest mean t1 values. The reason for this is that stretching the tendon tissue
along the direction of the fibers leads to them being arranged more orderly and tightly,
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thus strengthening the anisotropy. Meanwhile, stretching the tendon tissue perpendicular
to the direction of the fibers results in them spreading apart and weakening the anisotropy.

Table 2. Central moments I1 to I4 of MMT parameters t1 for bovine tendon tissue samples.

t1
Origin TDO MDO ODO

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

I1 0.10 0.20 0.17 0.03 0.09 0.12 0.08 0.24 0.21 0.05 0.21 0.15
I2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00
I3 0.13 −0.23 −0.31 1.43 0.84 0.33 0.19 −0.17 0.42 0.70 −0.15 0.03
I4 2.93 3.23 3.28 7.95 4.41 3.20 3.31 2.78 3.54 3.82 3.07 3.08

Moreover, it can be noticed from Table 2 that the second-order moment I2 values of all
the samples are very close to 0, which results from the very small I1 values. The third and
fourth-order moments I3 and I4 of the parameter t1 are largest in TDO, and the difference
in the remaining three states is not obvious because the values of anisotropy in the TDO
state are generally the smallest.

In summary, the analysis in this section confirms that for the MMT parameter α1, its
central moments can be used to distinguish among different stretching states of tendon
tissues. For the MMT parameter t1, its first-order moment can be used to distinguish
between TDO and MDO states, and its third and fourth-order moments can be used to
distinguish between TDO and other states.

3.3. Separation of Tendon Tissues in Different States Using NN Classifiers

The above section shows that, there are several indicators of the MMT parameters α1
and t1 that could distinguish among the four stretching states of tendon tissues. However,
to reduce the complexity of the NN and improve the classification speed of the model, here
we selected two of them for input into the model. The reason for this is that the first-order
moment of the parameter t1 can discriminate the samples in the TDO and MDO states,
and the first-order moment of the parameter α1 can discriminate the samples in the ODO
state. Thus, in this section, the NN has two input nodes, one is I1 of parameter t1 indicated
as x1 in Equation (8), and the second input node is I1 of parameter α1 indicated as x2 in
Equation (8). For testing, the parameters x1 and x2 have been normalized by subtracting
the minimum value from the current value and dividing by the difference between the
maximum and minimum values. The NN also has four output nodes corresponding to
four stretching states. Training tests showed that when there are two hidden layers with six
nodes in each layer, as illustrated in Figure 3, a good classification can be achieved by the
NN model. We use vectors to describe the entire network. The two nodes of the input layer
are represented as Equation (8):

X = [x1 x2]
T (8)

The weights R on the connection line between the input layer and the first hidden
layer are shown in Equation (9), where r11 represents the weights on the line from the first
neuron of the input layer to the first neuron of the first hidden layer, and so on for the rest
of the parameters:

R =

[
r11 r12 r13 r14 r15 r16
r21 r22 r23 r24 r25 r26

]T

(9)

Then, the data received by each node of the first hidden layer are R×X, and on this
basis, the bias term B1 of each node is added as Equation (10):

B1 = [b11 b12 b13 b14 b15 b16 ]T (10)

After the activation of function Leaky_Relu, the output F1 of the first hidden layer is
obtained as Equation (11):
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F1 = leaky_relu(R× X + B1) = leaky_relu





r11 × x1 + r21 × x2 + b11
r12 × x1 + r22 × x2 + b12
r13 × x1 + r23 × x2 + b13
r14 × x1 + r24 × x2 + b14
r15 × x1 + r25 × x2 + b15
r16 × x1 + r26 × x2 + b16



 (11)

Similarly, if the weight on the connection line between the first hidden layer and the
second hidden layer is H (six rows and six columns), the data received by the nodes of
the second hidden layer are H×F1, and the bias term B2 (six rows and one column) of
each node will be added on this basis. Then, the output F2 of the second hidden layer (six
rows and one column) will be obtained through the activation function Leaky_Relu, shown
in Equation (12):

F2 = leaky_relu(H × F1 + B2) (12)

The weight on the connection line between the second hidden layer and the output
layer is W (four rows and six columns). Then, the data received by each node of the output
layer are W×F2. On this basis, the bias term B3 (four rows and one column) of each node is
added, and then the final output Y (four rows and one column) is obtained by the activation
function Leaky_Relu, shown in Equation (13):

Y = leaky_relu(W × F2 + B3) (13)

Therefore, the entire network can be represented by vectors as Equation (14):

Y = leaky_relu(W × leaky_relu(H × leaky_relu(R× X + B1) + B2) + B3) (14)

The whole network delivers y1, y2, y3 and y4 in four output nodes after passing
through the model. Labels 0, 1, 2 and 3 indicate the four stretching states of MDO, ODO,
origin and TDO, respectively [37]. The output result is compared with the label by the
cross-entropy loss function. To reduce the loss, we use the Adam optimizer to iteratively
update the weights and biases of the NN. When the loss converges to a minimum, the
model training ends [38]. The purpose of NN training is to solve for the weights R, H and
W and bias B1, B2 and B3 of each node.

As shown in Figure 6, for the classification model testing, we adopted data enhance-
ment methods such as random cropping and random rotation to the parameters α1 and
t1 images of each tendon tissue sample. The 24 parameter images were enhanced to
2848 images (1424 blocks for each parameter) to improve the generalization ability of the
model [39]. The first-order moment I1 values of the small blocks were calculated to obtain
x1 and x2. Finally, we acquired 1424 sets of input features x1 and x2, of which the training
set had 1140 groups and the test set had 284 groups. The number of groups of input features
in the four states is equal in both the training set and the test set. We plot all the data in
the four states in a graph, and it is obvious that there are significant differences in the data
distribution of these four states, such as the data of ODO are mainly distributed in the
lower left corner of the graph, the data of TDO are mainly distributed in the lower right
corner and the data of MDO are mainly distributed in the upper right corner, which is the
primary condition for using neural networks to distinguish the four states.
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Figure 6. Scatter plot of training and test set data.

We randomly scrambled the training set data. Among them, every 100 sets of data are
regarded as a batch to be inputted to the network model. Here, a training cycle epoch has a
total of 11 batches. The learning rate is set to 0.01; when trained for 300 cycles, the model’s
loss converges to a minimum of 0.02. At this time, the weights R, H and W and bias B1, B2
and B3 of each node are shown in Tables 3 and 4.

Table 3. Weights and biases of each node of the classification model. R (6 rows and 2 columns),
H (6 rows and 6 columns), W (4 rows and 6 columns).

R H

W−0.858 2.267 1.933 −2.096 2.455 1.813 1.863 0.724
1.829 −3.686 1.103 2.323 −2.277 0.248 −1.640 −1.023

1.270 2.833 −0.436 0.946 3.476 1.090 1.991 0.494 2.348 −0.838 1.459 −0.292 −6.215 −1.836
0.217 1.851 0.165 1.112 0.052 −0.331 −0.670 0.034 −0.630 1.462 −1.537 −0.884 2.807 −0.937
1.922 0.926 −1.955 −0.449 −1.472 −4.153 0.440 −2.365 0.835 −3.253 1.144 −2.456 1.596 1.355
−0.143 0.083 −2.326 1.494 1.210 −2.034 0.850 0.132 −3.301 1.408 1.408 1.732 −0.834 0.808

Table 4. Weights and biases of each node of the classification model. B1 (6 rows and 1 column),
B2 (6 rows and 1 column), B3 (4 rows and 1 column).

B1 B2

B3−0.454 0.186
0.678 1.547

−0.901 −0.648 −0.462
−1.058 −0.381 1.405
−0.636 2.597 −0.066
−0.815 −0.229 0.065

After the network model parameters are trained, to show the classification effect of
the NN model, it is necessary to quantitatively evaluate its classification accuracy. When
the accuracy of a classification method is evaluated, the main indicators include:

(1) Classification accuracy, which is the ratio of the correct classification quantity to
the total quantity;
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(2) Confusion matrix, which is mainly used to compare the difference between the clas-
sification result and the real situation. In the confusion matrix, the number of misclassified
samples is distributed on the non-diagonal line, while the number of correctly classified
samples is distributed on the diagonal line, so it is convenient to view the confusion of
multiple categories with the help of the confusion matrix [40];

(3) kappa Coefficient, which is an indicator for testing consistency. The so-called
consistency refers to whether the model prediction results and the actual classification
results are consistent, and its calculation method is shown in Equation (15) [41], where N
represents the sum of all the elements of the confusion matrix, ∑n

i=1 xii represents the sum
of the diagonal elements of the confusion matrix and ∑n

i=1 xi∗x∗i represents the product of
the sum of row elements and column elements of the confusion matrix.

kappa =
N∗∑n

i=1 xii −∑n
i=1 xi∗x∗i

N2 −∑n
i=1 xi∗x∗i

(15)

Here, we divided the 284 groups of test data sets into four sub-sets according to the
four labels of 0, 1, 2 and 3. Thus, each test set has 71 groups of data. The four test sets were
inputted into the model separately, and the model classification results were compared
with the labels to obtain the confusion matrix as shown in Table 5.

Table 5. Confusion matrix.

Real Predict 0 (MDO) 1 (ODO) 2 (Origin) 3 (TDO)

0(MDO) 70 1 0 0
1(ODO) 0 71 0 0
2(origin) 1 0 69 1
3(TDO) 0 3 0 68

From the confusion matrix, the classification accuracy of MDO, ODO, origin and TDO
can be calculated to be 99%, 100%, 97% and 96%, respectively, and the total classification
accuracy is 98%. The coefficient is 0.972, indicating that the classification results of the NN
model are in good agreement with the actual classification [42].

The above results show that the combination of the NN model and polarization
parameters can be applied to the classification prediction of the stretching states of tendon
tissues, thus demonstrating the great application potential of polarization parameters in
the field of biomechanics.

The Mueller matrix is rich in microstructural information, and we find that the different
force states have different effects on each matrix element. Among them, M12, M13, M31
and M21 matrix elements are mainly sensitive to changes in linear dichroism, and M22 and
M33 mainly reflect the linear depolarization of the samples. The MMT parameters t1 (total
anisotropy) and α1 (orientation of the general anisotropy), consisting of M22, M33, M23
and M32 elements, were found to be sensitive to the differentiation of different force states.
Stretching the tendon tissue along the direction of the fibers resulted in a more ordered
and tighter arrangement, thus enhancing its anisotropy. Meanwhile, stretching the tendon
tissues perpendicular to the direction of the fibers causes them to disperse and weakens
their anisotropy. Oblique stretching exists in both cases. Among the four states, the TDO
state has the smallest tendon tissue t1, the MDO state has the largest tendon tissue t1 and
the ODO and origin have a close t1. For α1, which represents the direction of anisotropy,
ODO and the other three states have a clear distinction. It should be noticed that different
types of bovine tendon tissues can generate different quantitative Mueller matrix parameter
values. However, according to the analysis above, the relationship between the stretching
states and the Mueller matrix parameters would not be changed. The four states can still
be differentiated with different tendon tissue samples.
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4. Conclusions

In this work, to quantitatively evaluate the mechanical properties of tendon tissues,
we measured the 3× 3 backscattering Mueller matrix of bovine tendon tissue with different
stretching of external forces by using a device based on a polarization camera. Then we per-
formed FDH processing on the Mueller matrix elements and an MMT parameters analysis.
The studies revealed that the MMT parameters α1 and t1 can be used to distinguish tendon
tissues in different stretching states. The central moments of the MMT parameter α1 can
be used to distinguish the different stretching states of the tendon tissue. For the MMT
parameter t1, its first-order moments can be used to distinguish between TDO and MDO
states, and its third and fourth-order moments can be used to distinguish between TDO and
other states. In order to make better use of the MMT parameters to quickly and accurately
distinguish the tendon tissue samples with different external forces, we designed a four-
layered classification neural network model. After multiple pieces of training, the value
of the cross-entropy loss function was reduced to the minimum, and the trained network
was then used as the final classification model to achieve a classification accuracy of 98%.
The results shown in this study demonstrated that the polarization-camera-based Mueller
matrix polarimeter can be used for rapid measurement of tissue samples. Combined with
quantitative analysis parameters and a NN, this method is beneficial to future practical
applications such as biomechanics monitoring.
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1. Tekieli, M.; De Santis, S.; de Felice, G.; Kwiecień, A.; Roscini, F. Application of Digital Image Correlation to Composite

Reinforcements Testing. Compos. Struct. 2017, 160, 670–688. [CrossRef]
2. Liu, C.; Dai, Y.T.; Dai, M.L.; Liu, X.; Zhu, C.; Shao, X.; He, X. Deformation measurement by two-dimensional multi-camera

full-field digital image correlation. Acta Opt. Sin. 2016, 36, 97–112.
3. Shunqing, Z.; Chenjia, G.A.O.; Long, Z. The Development and Latest Applications of Digital Image Correlation in Stress and

Strain Measurement. Imaging Sci. Photochem. 2017, 35, 193.
4. Innocenti, B. Chapter 2—Mechanical Properties of Biological Tissues. In Human Orthopaedic Biomechanics; Academic Press:

Cambridge, MA, USA, 2022; pp. 9–24.
5. Pan, B.; Wang, B. Research Progress in Digital Volume Correlation Method. Chin. Sci. Bull. 2017, 62, 1671–1681. [CrossRef]
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