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Abstract
Measuring automatic speech recognition (ASR) system quality
is critical for creating user-satisfying voice-driven applications.
Word Error Rate (WER) has been traditionally used to evaluate
ASR system quality; however, it sometimes correlates poorly
with user perception/judgement of transcription quality. This is
because WER weighs every word equally and does not consider
semantic correctness which has a higher impact on user percep-
tion. In this work, we propose evaluating ASR output hypothe-
ses quality with SemDist that can measure semantic correct-
ness by using the distance between the semantic vectors of the
reference and hypothesis extracted from a pre-trained language
model. Our experimental results of 71K and 36K user anno-
tated ASR output quality show that SemDist achieves higher
correlation with user perception than WER. We also show that
SemDist has higher correlation with downstream Natural Lan-
guage Understanding (NLU) tasks than WER.
Index Terms: ASR metric, user perception, user satisfaction

1. Introduction
As voice-driven interfaces to devices become mainstream, mea-
suring speech recognition system that can reflect user percep-
tion/judgement becomes increasingly important. Word Error
Rate (WER) has been traditionally used to measure automatic
speech recognition (ASR) system quality, However, it is some-
times not correlated to user perception of ASR transcription
quality. This is because WER weights every word equally, and
does not consider semantic correctness which has more impact
on user perception. Figure 1 shows an example where WER
does not reflect the user perception. When the reference is “set
an alarm for 7 am” and two ASR hypotheses are: “set a alarm
for 7 am” and “cancel an alarm for 7 am”, then the former hy-
pothesis would be preferred by the users or downstream tasks.
However, WER by itself cannot identify which hypothesis is
better as the error rates are identical.

Over the years, prior work has attempted to address some
of WER’s issues by taking word importance weight into ac-
count [1] or adopting information retrieval to measure the per-
formance [2–4]. All of these metrics have been based on literal-
level surface-form word correctness and are not able to measure
semantic level correctness.

Meanwhile, many prior studies on transformer [5] based
pre-trained neural language models, such as a Bidirectional
Encoder Representations from Transformers (BERT), a Ro-
bustly Optimized BERT (RoBERTa), and a cross-lingual lan-
guage models (XLM) [6–10] showed promising results in Nat-
ural Language Processing (NLP) and Natural Language Under-

Figure 1: Comparison of two metrics, WER and SemDist, for
evaluating two ASR hypotheses from different ASR systems A
and B. The reference transcription is ”set an alarm for 7 am”.
SemDist can indicate that hypothesis A is better than hypothesis
B, but WER cannot.

standing (NLU) tasks. These general-purpose language mod-
els are pre-trained on billions of words, and have shown the
ability to represent textual semantic information in the form of
low-dimensional continuous vectors (i.e., embeddings) in tex-
tual similarity, question answering, paraphrasing, and sentiment
analysis tasks [7, 8].

Recently, [11–16] have attempted to use these embedding
features generated from the pre-trained language models to
evaluate NLP/NLU systems such as machine translation and
image captioning systems, and have shown their metric corre-
lates better with human judgments and provides stronger model
selection performance than existing metrics. Thus far, the re-
search in measuring semantic correctness has been more fo-
cused on NLP/NLU systems. More recently, Semantic Dis-
tance (SemDist) [17] was proposed to measure semantic cor-
rectness for ASR systems by using semantic embeddings and
showed higher correlation with the downstream NLU task of
intent recognition and semantic parsing, compared to WER. To
the best of our knowledge, there have been no studies on user
perception/judgement of ASR quality with SemDist metric.

In this work, we first focus on studying the user percep-
tion/judgement of ASR quality using SemDist metric. We eval-
uated 71K and 36K user annotated ASR output quality and
show that SemDist achieves higher correlation with user per-
ception than WER. Secondly, we explore a variety of strate-
gies to compute SemDist as well. We show that the latest
XLM-based [9,10] token pairwise method [12] performed more
robustly than RoBERTa-based mean-pooling method that was
used in previous work [17]. Additionally, we show SemDist
results on NLU tasks and its higher correlation than WER. Fi-
nally, we build a user perception/judgement model and show
SemDist helps to estimate user perception accurately and pro-
vides insight into model selection.
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2. Semantic Distance (SemDist)
In this work, we measure ASR output hypothesis quality using
SemDist [17] approach with transformer-based [5] pre-trained
LM [8,9]. SemDist is calculated in two steps. First, we forward
the reference transcription and corresponding ASR hypothesis
to the pre-trained LM and obtain semantic embeddings of the
reference (eref) and hypothesis (ehyp). Second, we calculate
the distance between these two embeddings, (eref) and (ehyp),
by using cosine distance function. Although the raw value of
SemDist theoretically has the same range as cosine similarity
(-1 to 1), we observe that SemDist has a more limited range in
practice. Thus, once we obtain SemDist, we optionally multiply
it with a scalar (α = 1, 000) just for improving readability. De-
pending on the users’ readability preference, α can be chosen,
and it will not affect the experimental correlation results or the
model comparison results.

SemDist can be obtained in various ways depending on (1)
which pre-trained language model we use and (2) how to extract
the embeddings. In our experiments, we compare four different
SemDist: SemDist(RoBERTa-mean-pooling), SemDist(XLM-
mean-pooling), SemDist(XLM-[CLS]), and SemDist(XLM-
pairwise-token).

2.1. SemDist(RoBERTa-mean-pooling)

In this method, we obtain SemDist by using RoBERTa model
[8] as described in [17]. We first obtain the semantic embed-
dings of the reference emean

ref and hypothesis emean
hyp by performing

mean-pooling over all output token embeddings from RoBERTa
model. We then calculate the cosine distance between emean

ref and
emean

hyp to obtain SemDist.

SemDist = 1− cos sim(emean
ref , emean

hyp ) (1)

= 1−
(emean

ref )T · emean
hyp

||emean
ref || · ||emean

hyp ||
(2)

2.2. SemDist(XLM-mean-pooling)

The process of this method is same as SemDist(RoBERTa-
mean-pooling), but we use the XLM-R model [9, 10] in-
stead of RoBERTa model [8] to extract the semantic embed-
dings. We can compare SemDist(XLM-mean-pooling) and
SemDist(RoBERTa-mean-pooling) to see how the pre-trained
LMs affect the correlation results (will be shown in 3).

2.3. SemDist(XLM-[CLS])

In this method, we directly use the embedding from the CLS to-
ken, instead of mean-pooling over all output token embeddings.
The CLS token is a special token for the BERT-based models
that is prepended to the first word and trained to hold infor-
mation about the entire sentence. Once we obtain eCLS

ref , eCLS
hyp ,

we compute the cosine distance between them and obtain the
SemDist(XLM-[CLS]).

SemDist = 1− cos sim(eCLS
ref , e

CLS
hyp ) (3)

2.4. SemDist(XLM-pairwise-token)

This method inspired by [12]. Instead of using cosine distance
between eref and ehyp which represent the sentence-level seman-
tic information, we use the token-level semantic information
(etok

ref and etok
hyp). We use the concept of the “F1” measure which is

the combination of “Precision”(phyp) and “Recall”(rref) of each
token of the reference. We first compute the pairwise cosine
similarity between token embeddings that generated from the
XLM-R model [9, 10] on the reference and the hypothesis. The
“Precision” (phyp) represents the fraction of the reference token
with the highest similarity score among the hypothesis tokens
(in Equation 4) and “Recall” (rref) is the fraction of the hypoth-
esis token with the highest similarity score among the reference
tokens (in Equation 5). Finally, we use 1 - F1-score (the har-
monic mean between phyp and rref), dref and dhyp as our SemDist
(in Equation 6).

phyp =
1

|ehyp|
∑

tok∈hyp

max
tok∈ref

(cos sim(etok
ref , e

tok
hyp)) (4)

rref =
1

|eref|
∑

tok∈ref

max
tok∈hyp

(cos sim(etok
ref , e

tok
hyp)) (5)

SemDist = 1− F1 = 1− 2
rref · phyp

rref + phyp
(6)

Figure 1 illustrates the overall procedure to obtain SemDist
with simple examples of two hypotheses A (set a alarm for 7
am) and B (cancel an alarm for 7 am) given the reference (set
an alarm for 7 am) and shows how SemDist and WER differ
from each other. Naturally, the users or downstream tasks prefer
hypothesis A over B, because A has only minor syntactic error
(an→ a) which does not hurt its meaning. As seen in this ex-
ample, WER cannot separate these two hypotheses (16.7% vs.
16.7%) because it only measures literal word-level correctness
and both hypotheses A and B has one incorrect word. However,
SemDist can indicate that hypothesis A is better than B (0.7 vs.
38.0) by measuring semantic correctness.

3. User Judgement of ASR Quality
We investigated the correlation of SemDist to two User Judge-
ment tasks: HypRating and HypChoice . The detailed informa-
tion of each task will be described in Section 3.1 (HypRating)
and Section 3.2 (HypChoice).

The hypotheses used in this investigation are generated
from our strong baseline ASR system which is an end-to-end se-
quence transducer (RNN-T) [18] with approximately 83M total
parameters. The acoustic encoder is a 20-layer streamable low-
latency Emformer model [19]. The predictor consists of three
Long Short Term Memory (LSTM) layers with 512-dim hidden
size, followed by 1024-dim FC projection. The joiner network
contains one Rectified Linear Unit (ReLU) and one FC layer.

The ASR system is trained on 50K hours of manually tran-
scribed data and 1.7M hours of English Facebook video data,
using alignment restricted RNN-T loss [20] and trie-based deep
biasing [21]. Our in-house annotated evaluation set has 36k
manually transcribed utterances collected from crowd-sourced
workers or volunteer participants who have agreed to have
their voice activity reviewed and analyzed. The evaluation set
has two main domains: 21k open-domain dictation and 15k
assistant-domain voice commands.



Table 1: Correlation between user judgement and downstream NLU tasks and various ASR metric: CER, WER, and four differ-
ent SemDist: SemDist-RM(RoBERTa-mean-pooling), SemDist-XM(XLM-mean-pooling), SemDist-XC(XLM-[CLS]), and SemDist-
XT(XLM-pairwise-token). The Pearson correlation coefficients are reported.

Task # utter Word Len. CER WER SemDist-RM SemDist-XM SemDist-XC SemDist-XT

User Judgement task
UserChoice 36k 9.8 0.13 0.28 0.31 0.35 0.32 0.39
UserRating 71k 9.8 0.14 0.36 0.47 0.52 0.51 0.59

NLU task
IntentAcc 10k 2.4 0.32 0.33 0.32 0.38 0.37 0.37
SemanticParsing(EM) 10k 2.4 0.24 0.26 0.28 0.31 0.30 0.31
SemanticParsing(EMTree) 10k 2.4 0.28 0.29 0.29 0.34 0.34 0.33

Figure 2: Comparison of the distribution of SemDist and WER
for each user-rating. The box extends from the lower to upper
quartile values, with a line at the median.

3.1. Hypothesis Rating (HypRating)

HypRating consists of 73k user-ratings of ASR hypotheses.
We collected the HypRating user annotation twice on our
36k evaluation set. The annotators are asked to listen to
the audio and rate the hypotheses. There are four rating
levels: ‘exact match’, ‘useful hyp’, ‘wrong hyp’,
‘nonsense hyp’. A ‘useful hyp’ can be thought of as a
hyp which has errors, but the downstream task can still be suc-
cessful. In order to quantify hypothesis ratings, we assign the
integer 0, 1, 2, and 3, to ‘exact match’, ‘useful hyp’,
‘wrong hyp’, and ‘nonsense hyp’, respectively.

3.2. Side-by-Side Hypothesis Choice (HypChoice)

HypChoice consists of 38k user annotations for ASR hypothesis
pairs. The annotators are asked to listen to the audio and choose
which hypothesis is better between two hypotheses A and B,
and answer one of three: ‘hyp A’; A is better than B, ‘hyp B’;
B is better than A, and ‘equal’; both are equally good (or bad).
In order to quantify the user’s choice, we assign the integer -1,
1, and 0, to ‘hyp A’, ‘hyp B’, and ‘equal’, respectively.

4. Downstream NLU tasks
4.1. Intent Recognition and Semantic Parsing

We next investigated the correlation of SemDist to three NLU
tasks: intent recognition (IntentAcc), semantic parsing (EM),

and semantic parsing (EMTree) [22]. We used 10k Assistant
domain ASR hypotheses that generated from our strong base-
line ASR system then evaluated these hypotheses with our NLU
system. The detail of the ASR and NLU system is in [17]. Note
that the size of evaluation set for this NLU task (10k) is smaller
than the original assistant domain evaluation set (15k) because
we selected the utterances that their annotations (i.e. intention,
slot) are available. For the intent recognition task, we used 351
intent types. For the semantic parsing tasks, we used the decou-
pled semantic representation form [23] that allows the nested
intents and slots. The EM is the strictest metric, which is 1 only
when all the intents and the slots in the utterance are predicted
correctly. The EM Tree is similar to EM but it only allows ASR
errors in recognizing slot tokens.

5. Experiments and Results
5.1. Correlation Results

We first evaluated the correlation of SemDist to the various user
judgement tasks and downstream NLU tasks. For calculating
correlation for UserChoice, we used the subtraction of SemDist
between two hyp A and B (SemDistHypA - SemDistHypB), the
subtraction of WER (WERHypA - WERHypB), and the subtrac-
tion of CER (CERHypA - CERHypB). For NLU tasks, we used
1 - IntentAcc, 1 - EM, and 1 - EMTree to consistently gen-
erate positive correlations across all tasks. Table 1 shows the
Pearson correlation coefficients results on each tasks: User
Judgement (UserChoice, UserRating) and downstream NLU
(IntentAcc, SemanticParsing(EM), SemanticParsing(EMTree))
with various ASR metric: CER, WER, and four different
SemDist: SemDist-RM(RoBERTa-mean-pooling), SemDist-
XM(XLM-mean-pooling), SemDist-XC(XLM-[CLS]), and
SemDist-XT(XLM-pairwise-token). As seen in Table 1, we ob-
served that SemDist is significantly higher correlated to all user
judgement tasks as well as downstream NLU tasks than WER.
We also observed that XLM-based SemDist better correlates
than RoBERTa-based SemDist with all tasks, and pairwise-
token based SemDist shows the highest correlation especially
with user judgement task. These results indicate that SemDist
can be a better indicator for user judgement and downstream
tasks than WER, and using a good semantic embedding is im-
portant.

5.2. How Do We Interpret SemDist Value?

One possible drawback to SemDist metric is that the value
of SemDist is less intuitive than WER and hard to interpret.



Table 2: Examples of Ref/Hyp that has the biggest gap between WER and SemDist.

Gap WER SemDist Ref/Hyp

12011 16.67 0.00 Ref: hey portal play mister blue sky
Hyp: hey portal play mr blue sky.

8742 50.00 0.00 Ref: I smell hot dogs
Hyp: I smell hotdogs.

6390 6.67 0.01 Ref: keep away it is a nightmare thank God we are separated about four thousand kilometres
Hyp: keep away, it is a nightmare. thank god we are separated about four thousand kilometers.

3807 20.00 0.02 Ref: keep time zones in mind for the next zoom call
Hyp: keep timezones in mind for the next Zoom call.

2725 66.67 3.14 Ref: I’m eagerly waiting
Hyp: I am eagerly waiting.

(a) top-5 (RankWER - RankSemDist) gap

Gap WER SemDist Ref/Hyp

2486 6.25 302.73 Ref: of course in the first time but one by one I able to handle those complaints
Hyp: of course, in the first time, birth one by one, I able to handle those complaints.

2388 10.00 473.47 Ref: okay then it’s kind of a great weekly for him
Hyp: okay, then it’s kind of a great victory for him.

2345 10.00 426.67 Ref: do you know the most whom he used to admire
Hyp: do you know the most home he used to admire?

2314 7.69 286.03 Ref: sure but uh I think you will have to be patient because usually it’s something like once a year or a little bit more but not much
Hyp: sure but uh I think you will have to be patient because you read something like once a year or a little bit more but not much.

2300 10.00 375.39 Ref: yeah I think I’ve seen that in the news before
Hyp: yeah, I think I’ve seen that in the morning before

(b) top-5 (RankSemDist - RankWER) gap

To provide a better understanding of how the SemDist values
should be interpreted, we show SemDist distribution for each
user-rating in Figure 2. As seen this figure, the users per-
ceive approximately 12 percent of WER and 50 of SemDist as
good enough hypothesis and over 50 percent of WER and 200
SemDist as nonsense hypothesis.

5.3. How Are WER and SemDist Different?

We next investigated how WER and SemDist evaluate differ-
ently for the same hypothesis. To do so, we first defined the
gap between WER and SemDist as the change of their ranking
within the entire evaluation set (36k). We assigned the ranking
of WER (RankWER) and the ranking of SemDist (RankSemDist)
for each utterance by sorting WER, and SemDist value. Table 2
(a) shows the top-5 (RankWER - RankSemDist) gap and Table 2 (b)
shows the top-5 (RankSemDist - RankWER) gap. We observed that
SemDist more robustly measures ASR errors by not penalizing
errors that do not hurt sentence meanings (i.e. contractions and
compound words) as seen in Table 2 (a). We also found that
SemDist detects semantically nonsense word errors which oc-
cur only once within a sentence as seen in Table 2 (b).

5.4. Modeling User Judgement

One promising aspect of SemDist is the potential to create mod-
els that can predict the user satisfaction of voice-driven applica-
tions. This can be done by training a model on pairs of SemDist
and user-rating. We created three linear regression models from
71k of pairs of user-rating and (1) WER only, (2) SemDist only,
and (3) both SemDist and WER. Table 3 shows the compari-
son of R2, MAE, and MSE of three models. The results show

that SemDist only can achieve 0.35 of R2 and significantly
outperforms than WER only. Thus, using SemDist can be a
promising method for estimating user satisfaction without re-
quiring the data annotation cost.

Table 3: Comparison of user judgement models with three in-
put cases: (1) WER only, (2) SemDist only, and (3) WER +
SemDist.

WER only SemDist only WER + SemDist

R2 0.12 0.35 0.36
MAE 0.38 0.29 0.29
MSE 0.30 0.23 0.23

6. Conclusion
We evaluated 71k and 32k of user annotated ASR quality and
showed that SemDist correlates significantly higher with user
judgement than traditional metric, WER or CER. Key aspect
of SemDist is measuring semantic correctness of ASR output
by using semantic embeddings from the pre-trained language
model for general purpose. In addition, we explored various
strategies to compute SemDist and found that pairwise-token-
based SemDist performs best in user judgement of ASR quality.
We also showed SemDist correlates higher with downstream
NLU task as well. Moreover, we demonstrated the potential
of SemDist for providing insight into model selection by esti-
mating user judgement more accurately. Moving forward, we
will explore ways to use SemDist for training ASR systems.
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