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Preface

Value-added modeling (VAM) to estimate school and teacher effects
is currently of considerable interest to researchers and policymakers.
Recent reports suggest that VAM demonstrates the importance of
teachers as a source of variance in student outcomes. Policymakers see
VAM as a possible component of education reform through im-
proved teacher evaluations or as part of test-based accountability.
They are particularly intrigued by VAM because of the view that its
complex statistical techniques can provide estimates of the effects of
teachers and schools that are not distorted by the powerful effects of
such noneducational factors as family background.

Although VAM holds great promise, it also raises many funda-
mental and complex issues. Some of these issues may appear arcane,
but the reasonableness of the findings of VAM studies depends on
them. If these issues are not adequately addressed, VAM is likely to
misjudge the effectiveness of teachers and schools and could produce
incorrect generalizations about their characteristics, thus hampering
systematic efforts to improve education. Unfortunately, investigation
and discussion of the issues raised by the use of VAM in education
have been fragmented and limited. In addition, much of the discus-
sion is unpublished, and the practical import of these concerns when
VAM is applied to student achievement remains largely unclarified.

In this monograph, we clarify the primary questions raised by
the use of VAM for measuring teacher effects, review the most impor-
tant recent applications of VAM, and discuss a variety of the most
important statistical and measurement issues that might affect the
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validity of VAM inferences. Although the document focuses on
measures of teacher effectiveness, many of the points discussed here
also apply to measures of school effects. The monograph should be of
interest to policymakers who are considering the use of VAM for
teacher evaluations or accountability. It will also be of interest to re-
searchers who are looking to use VAM to understand teachers or
looking for ways to improve VAM models.

This research was done within RAND Education and was
funded by a grant from the Carnegie Corporation of New York. The
statements made and views expressed are solely the responsibility of
the authors.
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Summary

Background and Purpose

Value-added modeling (VAM), a collection of complex statistical
techniques that use multiple years of students’ test score data to esti-
mate the effects of individual schools or teachers, has recently gar-
nered a great deal of attention among both policymakers and re-
searchers. For example, a recent bill drafted by the General Assembly
of Pennsylvania proposes using student achievement results and
value-added models to evaluate and reward administrators and teach-
ers. In this bill, VAM-based estimates of teacher and school effects
would affect salaries and career ladder stages as well as contract re-
newal for teachers and administrators.

There are at least two reasons why VAM has attracted growing
interest. One reason is that VAM holds out the promise of separating
the effects of teachers and schools from the powerful effects of such
noneducational factors as family background, and this isolation of the
effects of teachers and schools is critical for accountability systems to
work as intended. The second is that early VAM studies purport to
show very large differences in effectiveness among teachers. If these
differences can be substantiated and causally linked to specific charac-
teristics of teachers, the potential for improvement of education could
be great.

The application of VAM to educational achievement holds con-
siderable promise, but it also raises many fundamental and complex
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issues. Unfortunately, investigation and discussion of the issues raised
by the use of VAM in education have been fragmented and incom-
plete. Although there have been reviews of particular approaches (e.g.,
Bock, Wolfe, and Fisher, 1996), no reviews have carefully compared
recent VAM efforts or systematically discussed the wide variety of is-
sues they raise. Moreover, while numerous methodological concerns
have been raised by VAM researchers and by critics of the approach,
much of the discussion remains unpublished, and the practical im-
port of these concerns when VAM is applied to student achievement
remains largely unclarified.

This monograph is one of the products of an effort by RAND
Corporation researchers to begin a systematic review and evaluation
of leading approaches to VAM. It had several goals: to clarify some of
the most important issues, to begin evaluating their practical impact,
to spur additional work on these issues, and to help inform the debate
among both researchers and policymakers about the potential of
VAM. In the monograph, we clarify the primary questions raised by
the use of VAM for measuring teacher effects, review the most impor-
tant recent applications of VAM, and discuss a variety of important
statistical and measurement issues that might affect the validity of
VAM inferences. Although parts of the monograph are technical in
nature, we have avoided lengthy discussions of technical issues. Sev-
eral more detailed discussions of technical issues are contained in an
appendix to the monograph and have also been published elsewhere
(Lockwood, Louis, and McCaffrey, 2002; McCaffrey et al., 2003).

What We Learned

Review of the Literature

The recent literature on VAM purports to show that teachers differ-
entially affect student learning and growth in achievement. This lit-
erature suggests that teacher effects are large, accounting for a signifi-
cant portion of the variability in growth, and that they persist for at
least three to four years. A relatively small number of papers—several
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of them not published in the peer-reviewed literature—are the source
of these claims. We critically evaluated the methods used in these pa-
pers and the validity of the resulting claims. We conclude that al-
though the papers all have shortcomings, together they provide evi-
dence that teachers have discernable, differential effects on student
achievement, and that these effects appear to persist into the future.
The shortcomings of the studies make it difficult to determine the
size of teacher effects, but we suspect that the magnitude of some of
the effects reported in this literature are overstated.

Wright, Horn, and Sanders (WHS, 1997) conclude that teach-
ers are the most important factor affecting student learning. In their
replicated study design, they model gains in student tests score as a
function of random teacher effects and a small set of student covari-
ates including achievement. They standardize the contributions of all
variables in the models using what they call a “z-score.” They infor-
mally meta-analyze the results of the 30 replicated models and find
that the z-score for teacher effects exceeds the standardized contribu-
tion of every other variable in 26 of 30 models. Via a simulation
study, we find that the authors’ standardized z-scores do not neces-
sarily preserve the ranking of variables based on contribution to total
variance in scores. In other words, while the WHS z-scores for teach-
ers might dominate in 26 of 30 models, this does not imply that
teacher effects explain more variance than all the other predictors.
Furthermore, WHS provide no evidence that the estimated teacher
effects and their corresponding variance components are unbiased by
contributions of other inputs to education that are not accounted for
in the model.

In another report, Rowan, Correnti, and Miller (RCM, 2002)
find that residual classroom-level variance accounts for a significant
proportion of the variability in growth in student achievement scores.
The results are robust across subjects (reading or math), statistical
models, and two cohorts of students from a nationwide sample of
schools. Although classrooms account for meaningful portions of the
variance in all models, the magnitude of the variance explained varies.
While the results are impressive and strongly suggest that teacher
(classroom) effects are nonzero, the authors do not provide details on
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missing data, the nature of the measure, or the distributions of stu-
dent characteristics—so a full assessment of possible biases is impossi-
ble.

Rivkin, Hanushek, and Kain (RHK, 2000) take advantage of
multiple cohorts of students, each with three years of test scores, to
aggressively remove the effects on achievement of factors other than
teachers. The authors find that teacher effects do exist and estimate
that, as a lower bound, teachers account for about 3.2 percent of vari-
ance in achievement. In other words, a one-standard-deviation in-
crease in teacher effectiveness is associated with about a 0.18-
standard-deviation increase in scores. While their methods remove
many possible confounding factors, the estimates are based on gains
and differences of scores that are not on a single developmental scale.
Changes in scores, therefore, do not necessarily correspond to growth
in achievement—making the interpretation of results difficult. Also,
the authors restricted their analyses to students who remained in the
same school and completed testing for three consecutive years. Thus,
the authors’ findings suggest that teachers can matter for some stu-
dents in some metrics, but a more generalizable interpretation of their
results is impossible.

In 1996, Sanders and Rivers (SR) released a technical report
purporting to show that teacher effects accumulate over time. They
report that for math tests, students taught by the least effective teach-
ers for three consecutive years would score 52 to 54 percentile points
below similar students taught by the most effective teachers for three
consecutive years. This dramatic finding has garnered enormous at-
tention from researchers, policy makers and other interested parties.
We evaluated the methods used by SR used via simulation and con-
cluded that, based on scenarios that best match the numbers reported
in SR and our experience with school data, the SR results would be
unlikely to occur if teachers or classrooms had no effects. However,
there is reason to expect a small positive bias in their estimates of the
size of these effects. Thus, the SR results are consistent with the exis-
tence of persistent teacher effects but might overstate the size of such
an effect.
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Given the magnitude of the SR effects, the implications of their
finding, and the controversy with their methodology, other authors
have attempted to replicate the result with slight modifications. Riv-
ers (1999) replicated the design with several important changes to
address some of the criticisms of SR and still found persistent teacher
effects. Mendro, Jordan, Gomez, Anderson, and Bembry (MJGAB,
1998) used data from students in the Dallas Independent School Dis-
trict to replicate the SR study. MJGAB again found large persistent
teacher effects across multiple cohorts and on both mathematics and
reading scores. Kain (1998) conducted an independent analysis of a
subset of the MJGAB and found similar results. The MJGAB and
Kain analyses control for many student characteristics, including
neighborhood effects. Thus, their estimated teacher effect should be
reasonably unconfounded by other sources. Even though all these
studies have limitations, and MJGAB and Kain provide limited de-
tails of their studies, the consistency of findings across samples from
different locations and different statistical models suggests to us that
these papers together provide evidence that teacher effects do persist
across years.

Modeling Longitudinal Data to Estimate Teacher Effects

Estimating the effects of teachers by modeling longitudinal data on
student achievement raises a number of important statistical and psy-
chometric issues and requires decisions about how these issues should
be addressed. Estimates may vary appreciably as a result of these deci-
sions, and the resulting uncertainty of findings should be considered
when interpreting VAM estimates. In this respect, VAM analyses of
teacher effects are no different from other statistical models, estimates
from which are often potentially sensitive to choices about the mod-
eling approach. However, the analyses used to estimate teacher effects
are complex and challenging, and the potential sensitivity of their re-
sults to modeling choices has not been well explored. In this mono-
graph, we discuss some of the decisions that must be made about
modeling achievement data to estimate teacher effects and the possi-
ble sensitivity of estimates of teacher effects to them. We break these
decisions or issues into four groups: basic issues of statistical model-
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ing, issues involving confounders or omitted variables, issues arising
from the use of achievement test scores as dependent measures, and
uncertainty about estimated effects.

Basic Issues of Statistical Modeling.. Analysts generally have used
one of three approaches to analyzing longitudinal data to estimate
teacher effects. Two of these approaches break the longitudinal analy-
sis into a sequence of models for single-year outcomes, which makes
statistically inefficient use of information for the multiple years of
data but is computationally simpler than the alternative full multi-
variate modeling of multiple years of data. Full multivariate analysis
of the data is flexible and uses correlation among multiple years of
data. This approach is likely to be preferable but is computationally
demanding.

Another choice in statistical modeling is the specification of
teacher effects as “fixed” or “random” effects. In the past, fixed effects
were used in such efforts (Murnane 1975; Hanushek, 1972); recent
applications (Sanders, Saxton, and Horn, 1997; Ballou, Sanders, and
Wright, 2003; Rowan, Correnti, and Miller, 2002) use random ef-
fects specification. The two methods will tend to yield similar conclu-
sions about the variability of teachers but will provide different esti-
mates of individual teacher effects. The differences result from differ-
ent strategies for dealing with inherent sampling error of estimated
effects. The fixed-effects method uses a teacher’s students to estimate
his or her effect. The random-effects method “shrinks” the estimate
based on the given teacher’s students toward the overall mean for all
students. On average, shrinking the estimate has optimal statistical
properties across teachers but can be sub-optimal for teachers whose
effects are far from the mean. Fixed-effects estimates can be highly
sensitive to sampling error because teachers tend to teach only small
numbers of students.

Omitted Variables, Confounders, and Missing Data. VAM uses
data collected in an observational setting (as opposed to an experi-
mental setting). The data collected from this observational setting can
be subject to a number of problems. In particular, two types of prob-
lems arising from these circumstances have the potential to distort
VAM estimates of teacher effects. The first type is confounding by
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influences other than teachers on student learning that are incorrectly
modeled or are not modeled at all—for example, a model that does
not properly distinguish the effects of teachers from other effects of
the school in which the teacher works. The second type is incomplete
data. In the case of VAM, incompleteness frequently arises in two
areas: data for individual students over time and information on the
linking of students to teachers. We believe these problems are among
the greatest challenges facing VAM.

Models that fail to account for differences in student popula-
tions across schools can yield biased estimates of teacher effects. This
is the case even for complex multivariate models that jointly model
many student outcomes. Bias can occur when students attending dif-
ferent schools differ in ways that are likely to affect both achievement
and growth in achievement, and the context of the school (e.g., the
proportion of students eligible for free and reduced price lunches)
affects these outcomes. Given that student populations tend to vary
among schools—and our limited empirical findings suggest that con-
text does affect growth in some settings—omitted variables appear to
be a likely source of bias in most VAM applications. Although recent
work on this topic (Ballou, Sanders and Wright, 2003) suggests that
in some settings including student level covariates has little effect on
estimated teacher effects, this work was unable to reach the same con-
clusion about context effects. In our own limited example, context
effects had a great impact on estimated effects. Because true teacher
effects might be correlated with the characteristics of the students
they teach, current VAM approaches cannot separate any existing
contextual effects from these true teacher effects.

Other effects that can be difficult to disentangle from the effect
of the students’ current teachers are those arising from schools, dis-
tricts, or prior teachers. If terms for these effects are omitted from
models, they are implicitly subsumed by teacher effects, which may
bias what analysts conceive as true teacher effects. Alternatively, if
such effects are included in models and teachers of differential effec-
tiveness cluster at the school or district level, part of the true teacher
effects will be attributed to schools or districts. Analysts must decide
which potential error is more acceptable.
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Real longitudinal student achievement data will inevitably con-
tain incomplete student achievement records. The accuracy of esti-
mated teacher effects in the presence of incomplete records is sensitive
to models for the nature of missing data and to the analytic approach.
Little is currently known about the effects of missing data on VAM
estimates of teacher effects. Similarly, the links between students and
teachers might be incomplete, and the effects of these incomplete
links on outcomes have received no investigation to date. If incom-
plete test score data and incomplete links between teachers and stu-
dents do in fact result in bias, it could be a large problem. The factors
that contribute to missing links and missing test scores are common:
students are mobile, with large proportions transferring among
schools every year.

Issues Arising from the Use of Achievement Tests as an Out-

come. The student achievement measures that VAM uses to define
and estimate teacher effects are limited in several ways. Testing is in-
frequent—typically only once a year—and the tests used to measure
achievement cannot measure fully all topics related to achievement.
In addition, the scale for measuring achievement is not predeter-
mined by the nature of achievement but is chosen by the test devel-
oper. Changes to the timing of tests, the weight given to alternative
topics, or the scaling of the test could change our conclusions about
the relative achievement or growth in achievement across classes of
students. These changes would change estimates of teacher effects.
While our explorations suggest that some of these effects might not
be large (for example, differential growth during the summer recess),
the effects of other changes could have large impacts on estimated
teacher effects and require further investigations.

Uncertainty About Estimated Effects. Accurate inferences about
a teacher’s effect require an estimate of the effect that is likely to be
close to the real teacher effect. As we have discussed, a number of de-
cisions related to both modeling and measurement contribute to pos-
sible errors and uncertainty of the estimate. Sampling error is another
source of error in VAM estimates. Uncertainty must be very small to
make useful inferences about some quantities of interest, such as
teacher ranking, and real estimates are unlikely to have such small
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sampling error. However, estimates might be sufficiently precise for
other inferences, such as identifying some teachers as distinct from
the mean. In one small example, we estimated that about one-third of
teachers had a very small probability of being equal to the average
teacher, which suggests that, for some applications, sampling error in
the estimates will not preclude identifying a fraction of teachers as
above or below average. Our estimates were somewhat robust to the
model for prior-year teachers, but we did not account for potentially
formidable uncertainty in other factors, such as missing data, type of
measurement, or the effects of omitted student characteristics.

What We Recommend

Using VAM to estimate individual teacher effects is a recent en-
deavor, and many of the possible sources of error have not been thor-
oughly evaluated in the literature. Our goal was to identify possible
sources of error and bias and evaluate what is known at this point.
We recommend that many of the possible errors we identified receive
additional review in the literature. Some of the areas for future re-
search include the following:

1. Develop databases that can support VAM estimation of teacher
effect across a diverse sample of school districts or other jurisdic-
tions.

2. Develop computational tools for fitting VAM that scale up to
large databases and allow for extensions to the currently available
models.

3. Link VAM teacher-effect estimates with other measures of teacher
effectiveness to determine the characteristics or practices of effec-
tive teachers as a means of validating estimate effects and possibly
identifying what produces effective teaching.

4. Empirically evaluate the potential sources of errors we identified
to determine how these factors contribute to estimated teacher ef-
fects and to determine the conditions that exacerbate or mitigate
the impact of these factors on teacher effects.
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5. Estimate the prevalence of factors that contribute to the sensitivity
of teacher-effect estimates by surveying school districts and by
replicating VAM estimation effort across multiple locations and
meta-analyzing the results.

6. Incorporate decision theory into VAM by working with policy-
makers to elicit decisions and costs associated with those decisions
and developing estimators to minimize the losses.

7. Use research and auxiliary data to inform modeling choices.

Recommendations for the Use of VAM in Policy and Practice

The research base is currently insufficient to support the use of VAM
for high-stakes decisions. We have identified numerous possible
sources of error in teacher effects and any attempt to use VAM esti-
mates for high-stakes decisions must be informed by an understand-
ing of these potential errors. However, it is not clear that VAM esti-
mates would be more harmful than the alternative methods currently
being used for test-based accountability. At present, it is most impor-
tant for policymakers, practitioners, and VAM researchers to work
together, so that research is informed by the practical needs and con-
straints facing users of VAM and implementation of the models is
informed by an understanding of what inferences and decisions the
research currently supports.
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CHAPTER ONE

Introduction

The use of standardized test scores to hold schools, teachers, and stu-
dents accountable for performance is now the cornerstone of many
education reform efforts in the United States. Accountability systems
that rely on test scores (sometimes called test-based accountability sys-
tems) have been adopted in one form or another by almost all states
over the past decade or more. The recent reauthorization of the Ele-
mentary and Secondary Education Act, the No Child Left Behind
Act of 2001 (NCLB), has made test-based accountability the crux of
national education policy as well.

Despite the apparently widespread agreement in the policy
community that test-based accountability should be the primary
mechanism of education reform, there has been considerable dis-
agreement about how this general principle should be implemented.
One approach that has gained growing popularity among state poli-
cymakers over the past dozen years or so can be called the “cohort-to-
cohort gain” approach. In this approach, the performance of students
is compared across successive cohorts, and educators are held ac-
countable for improving performance from one cohort to the next. In
this approach, individual students are not tracked over time; rather,
one cohort of students in a given grade is compared with previous
cohorts in the same grade. California’s Public Schools Accountability
Act of 1999 is an example of the cohort-to-cohort gain approach.
Another approach holds schools accountable for the percentage of
students in specific grades reaching or exceeding a specified perform-
ance level on a given assessment. With the enactment of NCLB, this
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approach has become national policy. NCLB specifies that states re-
ceiving federal Title I funds must hold schools accountable for mak-
ing “adequate yearly progress” (AYP) by meeting increasingly higher
targets for student achievement as specified by the proportion of stu-
dents classified as proficient on the state’s assessments, so that all stu-
dents are achieving above this level in 12 years.

A fundamentally different approach to test-based accountability
is to monitor the achievement growth of students as they progress
through the grades and to use statistical models to estimate the con-
tribution of teachers or schools to that growth. Because these meth-
ods attempt to estimate how much teachers or schools add to the
achievement of entering students, they are generally called “value-
added” methods, using a term from the economic production func-
tion literature. In the production function literature, value-added
methods attempt to determine the effects of incremental inputs into
education, controlling for achievement at a point in the past. Value-
added is also interpreted to mean the unique contributions of the
school or teacher to students’ progress over the course of a year rather
than the cumulative education effects or student background factors.
Here we use the acronym VAM to refer to value-added models ap-
plied to students’ educational achievement.1

Until recently, only researchers and a small number of jurisdic-
tions used VAM. The most prominent implementation of this ap-
proach is the Tennessee Value Added Assessment System, or TVAAS
(Sanders and Horn, 1998). A few additional efforts have been under-
taken across the nation (e.g., Webster, Mendro, Orsak, and Weer-
asinghe, 1998). The implementation of VAM is challenging, requir-
ing both extensive data that link student records over time and
complex and computationally demanding statistical methods. Indeed,
without substantial investments in data and statistical capabili-
                                                
1 The term value-added modeling is often associated with complex hierarchical models such
as those described in Sanders, Saxton, and Horn (1997) or Webster and Mendro (1997);
however, simpler models of growth are possible. Some are discussed in Chapter Four or
McCaffrey et al. (2003).
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ties—either in-house or from an external consultant—VAM would
be beyond the reach of most states and districts at present.

Despite the swiftly growing dominance of the cohort-to-cohort
gains and adequate-yearly-progress approaches to accountability and
the substantial demands of the VAM approach, VAM has recently
garnered a great deal of attention among both policymakers and re-
searchers. For example, a bill drafted by the General Assembly of
Pennsylvania proposes using student achievement results to evaluate
and reward administrators and teachers. Twenty-five percent of su-
perintendents’ evaluations would be based on “a running total of
three (3) years of value-added State test results aggregated to the dis-
trict level,” and 50 percent of teachers’ evaluations will be based on “a
running average of three (3) years of value-added results aggregated to
the teacher level for students taught by the teacher” (General Assem-
bly of Pennsylvania, 2002). Principals’ evaluations would also be
based in part on value-added results aggregated to the school level.
The results of these evaluations would affect salaries and career ladder
stages, as well as contract renewal for teachers and administrators.

There are at least two reasons why VAM has attracted growing
interest. One reason is that VAM holds the promise of separating the
effects of teachers and schools from the powerful effects of such
noneducational factors as family background, and this isolation of the
effects of teachers and schools is critical for accountability systems to
work as intended. The second is that early VAM studies purport to
show large differences in effectiveness among teachers. If these differ-
ences can be substantiated and can be causally linked to specific char-
acteristics of teachers, the potential for the improvement of education
could be great.

Purposes of This Monograph

The application of VAM to educational achievement holds great
promise, but it also raises many fundamental and complex issues. Al-
though some of these issues may appear arcane, the reasonableness of
the findings of VAM studies hinges on them. If these issues are not
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adequately addressed, VAM is likely to misjudge the effectiveness of
many teachers and schools and could produce incorrect generaliza-
tions about their characteristics, thus hampering systematic efforts to
improve education.

The important questions raised by VAM are diverse and include
issues of both statistical modeling and measurement. Some of these
are inherent in the methods themselves, whereas others stem from
their relatively untried application to growth in student achievement.
Three of the topics addressed later in this report illustrate the diver-
sity of the issues raised by VAM. First, if teachers or schools are to be
evaluated using VAM, an obvious question involves the amount of
sampling error in the estimates and rankings of teacher and school
effectiveness. The answer to this question depends on the statistical
models used and the variability in the data but does not hinge on the
particular characteristics of the educational systems, such as the
method used for assigning students to schools or classrooms. Second,
in VAM as in all nonexperimental causal modeling, one must con-
sider the risk of omitted variables that might bias estimates of the
effects in question. Our work shows that when VAM is applied to
educational achievement, the risk of bias from omitted student char-
acteristics depends on the characteristics of educational sys-
tems—specifically, the extent to which teachers or students with dif-
ferent characteristics are clustered in schools within and across years
of testing. Third, VAM estimates are sensitive to the way achievement
is measured, including the content of the tests and the methods used
to put the results from successive grades onto a common scale.

Unfortunately, investigation and discussion of the issues raised
by the use of VAM in education have been fragmented and incom-
plete. Although there have been reviews of one of the possible ap-
proaches (Bock, Wolfe, and Fisher, 1996), no reviews have carefully
compared recent VAM efforts, and no papers have systematically dis-
cussed the wide variety of issues they raise. While numerous meth-
odological concerns have been raised, much of the discussion remains
unpublished, and the practical import of these concerns when VAM
is applied to student achievement remains largely unclarified.
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This document is one of the products of an effort by RAND
Education researchers to begin a systematic review and evaluation of
leading approaches to VAM. This work had several goals: to identify
and explicate factors that could impact the validity of VAM refer-
ences, to begin evaluating their practical impact, to spur additional
work on these issues, and to help inform the debate among both re-
searchers and policymakers about the potential of VAM. Other prod-
ucts from this project include a study of the variability in teacher
rankings and the difficulties it creates for inferences about rankings
(Lockwood, Louis, and McCaffrey, 2002). Another report presents a
new model for VAM estimation and provides a detailed comparison
of alternative statistical models used in VAM (McCaffrey et al.,
2003).

In the following chapters, we clarify the primary questions raised
by the use of VAM for measuring teacher effects, review the most
important recent applications of VAM, and discuss a variety of the
most important statistical and measurement issues that might impact
the validity of VAM inferences. Although parts of this report are
technical in nature, we have avoided lengthy discussion of technical
issues. More-detailed discussion of technical issues is included as an
appendix to this document (see the CD-ROM on the inside back
cover) or can be found in the other products from the project.

We do not address the effects of VAM-based accountability sys-
tems on school and teacher performance in this document or in other
publications resulting from this effort. We emphasize that this omis-
sion reflects only the limited scope of the present effort. Because
VAM is being proposed as an approach for implementing account-
ability, it will be critically important to evaluate its actual effects on
students, educators, and the quality of schooling. This evaluation
should be central to ongoing research addressing the use of VAM.
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CHAPTER TWO

What Are We Trying to Measure with VAM?

VAM purports to estimate the effect of educational inputs on student
outcomes, in particular student achievement as measured by stan-
dardized tests. In this monograph, we focus on VAM applications to
estimating teacher effects rather than schools because these applica-
tions have gathered the most recent attention. However, many of the
issues we present pertain to any VAM application.

Measures of teacher effects are of interest as a means of answer-
ing at least two broad questions:

1. Do teachers have differential effects on student outcomes?
2. How effective is an individual teacher at producing growth in stu-

dent achievement, and which teachers are most or least effective?

The first question requires estimates of the variability among
teacher effects. If the data and statistical models can accurately de-
scribe the contributions of teachers to achievement, the models can
provide estimates of the variability among teacher effects and deter-
mine the proportion of variability in achievement or growth that is
attributable to teachers. The second question requires estimating in-
dividual teacher effects. As noted above, these estimates might be
used to reward or sanction individual teachers on the basis of the
teacher’s performance relative to the distribution of teachers, possibly
through ranking. The possible consequences tied to an estimated ef-
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fect will determine the acceptable levels for the precision and accuracy
of the estimate. Greater consequences require greater precision and
accuracy.

Answers to these questions could have significant impact on
both policy and practice in education. In this document, we present
statistical and measurement issues that could affect the ability of
VAM to answer one or both of these questions. We organize our dis-
cussion around the topics of general issues of statistical modeling,
omitted variables, confounders and missing data, issues arising from
the use of achievement tests as measures, and uncertainty about esti-
mated effects.

Until recently, the effect of teachers on student performance has
not been a primary focus of most attempts to improve education. Al-
though studies showing significant variation among teacher effects
date back to the mid 1970s (Hanushek, 1972; Murnane, 1975), for
the most part these studies failed to influence policy debates or ac-
tions in a significant way. This lack of attention to teachers in policy
discussions may be attributed in part to another body of literature
that attempted to determine the effects of specific teacher background
characteristics, including credentialing status (e.g., Miller, McKenna,
and McKenna, 1998; Goldhaber and Brewer, 2000) and subject-
matter coursework (e.g., Monk, 1994). These studies generally found
that measured teacher characteristics were only weakly related to stu-
dent learning, if at all.

In recent years, however, attention has increasingly focused on
new research suggesting that teachers do in fact exert strong influence
on student performance, and this research has already begun to shape
debates about teacher training, professional development, and class
assignments. In particular, several recent studies using VAM purport
to demonstrate that teachers vary greatly in their effects on student
learning. This evidence is consistent with the observations of most
parents who have enrolled their children in school and who have en-
countered wide variation in the effectiveness of their children’s teach-
ers, and it has resulted in a growing consensus that teachers matter.
These studies report that the effects of teachers may be even larger
than those of socioeconomic status and other student background
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factors (Sanders and Rivers, 1996; Wright, Horn, and Sanders,
1997). At the same time, this research continues to fail to detect in-
fluence of specific teacher background characteristics on teacher ef-
fects (Rivkin, Hanushek, and Kain, 2000). Although the current re-
search does not shed any light on the sources of variance among
teachers, it does suggest—if the findings of large teacher effects prove
accurate—that efforts to improve education for all students must ad-
dress differences in effectiveness among teachers.

A few applications of VAM have measured individual teachers’
effects and communicated these measures to the teacher and school
administrators for the purpose of improving teacher performance.
The most prominent, the Tennessee Value Added Assessment Sys-
tem, or TVAAS (Sanders and Horn, 1998) has produced effect esti-
mates for teachers in grades 4–8 for the entire state of Tennessee since
1996. State law sanctioned this ambitious project and restricts the use
of estimated effects in formal evaluations. The Dallas Independent
School District also estimates teacher effects and uses these effects as a
key component of teacher evaluations (Webster and Mendro, 1997).

The following sections provide a brief overview of some of the
key issues in VAM. First we define the teacher effect and discuss some
of the problems inherent in estimating it. Next, we discuss the impor-
tance of identifying the assumptions underlying any specific approach
to VAM. Finally, we briefly discuss the kinds of student achievement
measures that are necessary for appropriate application of VAM.

Teacher Effects

VAM teacher-effect estimates purport to measure a teacher’s contri-
bution to student achievement and learning. Teacher effects of this
sort are what analysts refer to as causal effects. In lay terms, the teacher
causes the effects. Conceptually, the teacher effect on a student is de-
fined as the difference between the student’s achievement after being
in the teacher’s class compared with his/her achievement in another
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plausible setting, such as with a teacher of average effectiveness.1 Ru-
bin (1974), Holland (1986), and West, Biesanz, and Pitts (2000)
provide details on statistical models that formalize such causal mod-
eling.

What Is a Teacher Effect?

Applications of VAM often model growth or gain scores as a means
of measuring the effects of incremental inputs on incremental out-
come—as the definition of value-added suggests (Hanushek, 1979).2

Appropriate interpretation of VAM results requires that the causal
effect be explicitly defined. Typically, there are multiple ways to de-
fine a causal effect, and some estimators can provide unbiased or con-
sistent estimates of some causal effects but not of others. For example,
Angrist, Imbens, and Rubin (1996) demonstrate that, under general
assumptions, instrumental variable estimators provide estimates of the
average causal effects of “treatment” on those who will take the
treatment when it is offered. However, they do not necessarily esti-
mate the causal effect of treatment on the entire population or on all
people who were offered treatment. Alternative assumptions are re-
quired to make inferences about those causal effects.

When developing an explicit definition of a causal teacher effect,
we must consider several particularly important issues. First, implicit
in the notion of a causal effect is the comparison of a student’s
achievement with the current teacher with achievement under a plau-
sible alternative. Unlike a new curriculum or program where there is
often a well-defined single alternative such as the current curriculum,
there is no single plausible alternative for a specific teacher’s effect.
We might consider other teachers as plausible alternatives. If so,
which teachers: those in the same school, district, state? Or teachers
who teach similar students regardless of location? And, if we choose
                                                
1 Bryk and Weisberg (1976) use a similar notion for defining a value-added estimate of in-
tervention effects in observational studies. They suggest comparing students to natural
growth outside of the invention context, which is analogous to considering growth under an
alternative teacher.

2 Sometimes gains are implicit in the model, as is the case with TVAAS (Sanders, Saxton,
and Horn, 1997; Ballou, Sanders and Wright, 2003; McCaffrey et al., 2003).
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such teachers, do we then consider a particular alternative teacher or
possibly an average of the alternatives? We might also consider no
teacher as a plausible alternative. The appropriate alternative is likely
to depend on the purpose for estimating teacher effects. In current
applications, teacher effects are often estimated with respect to school
district—so that the plausible alternative is implicitly the average
teacher in the school district. Such a choice is appropriate for com-
paring teachers within a district but is inappropriate for ranking
teachers in a state.

The definition of causal effect must also take into account which
students are being considered. Teachers might not be equally effective
with all students; some teachers may use methods that are most effec-
tive with high-achieving students, whereas others may be particularly
skilled at improving the performance of struggling students. Simi-
larly, some students might be more difficult to teach than others,
which would affect VAM estimates to the extent that these students
are distributed differentially across classrooms. For example, students
reading well below grade level often have established habits and
shortcuts that are barriers to learning to read and may require more
work on the part of the teacher to achieve a certain amount of test-
score gain. Thus, the effort expended by a teacher might not be pro-
portional or linearly related to the resulting achievement gains, and
this lack of a linear relationship could cause a teacher’s effectiveness to
vary with the student’s level of achievement.

If teacher effects are not constant across students, then we need
to be explicit about which effects we are considering. Again, an aver-
age effect might be appropriate. But which students should be aver-
aged? All students in the population? Students likely to be taught by
this teacher in the recent past and near future? Students in the
teacher’s class this year? The causal effect, as well as the validity of the
estimate of the effect, will depend on this choice.

A teacher’s effect might also depend on the context of the school
or school district. For example, a teacher in a school with supportive
colleagues or a cooperative principal might be more effective than in
an alternative setting. Similarly, policies of a school district or school
principal might influence a teacher’s effect. For example, a school’s
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choice of curriculum might change teacher effectiveness and improve
student achievement and learning. In this case it is the action of the
school combined with the teacher, rather than of the teacher alone,
that has led to a change in the teacher’s effectiveness. For some pur-
poses, such as the evaluation of individual teachers, users of VAM
results might want to make inferences about teachers that distinguish
the teacher from her/his setting and school policies. For those appli-
cations, teacher effects that are partly a function of the school consti-
tute a school effect. However, if users of VAM are interested in meas-
uring the variability of teacher effects at a given time point and under
the current context, the teacher effect of interest by definition in-
cludes, in part, the indirect effects of schools that affect students
through teachers. Such indeterminacies led Meyer (1997) to conclude
that estimating value-added teacher effects is impossible. Even if one
does not agree with this pessimistic conclusion, these indeterminacies
suggest that a precise definition should be explicit before any esti-
mates are made.

A final issue in defining the teacher effect is the possibility that
teacher effects vary over time. There is empirical evidence (Shkolnik
et al., 2002; Rivkin, Hanushek, and Kain, 2000) that teacher effec-
tiveness improves with experience during the early years of a teacher’s
career. Similarly, effectiveness may change as a result of modifications
to class assignments or in response to factors outside of school. Kane
and Staiger (2001) found considerable year-to-year variability in
school test results. Again, if there is no single teacher effect, an ex-
plicit statement of the causal effect of interest is required. Choices
might be the effect for the current year, the average effect during re-
cent years, or the trend in the effect.

The appropriate definition of teacher effect depends on the
question of interest, and no one definition will be appropriate for all
purposes. For example, when considering the variability of teacher
effectiveness in a given year, we might be interested in teachers’ ef-
fects on the students they teach, and we may want to include indirect
school effect as part of the teacher effect. But if teacher effects are to
be used to sanction teachers, then we most likely would need effects
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that hold constant students and indirect effects from other sources
such as the school or district.

Isolating the Teacher Effect

Even if the definition of the desired teacher effect is clear, it is impor-
tant to recognize that VAM may not necessarily produce a pure
measure of this effect. The current-year teacher is not the only source
of variability in gain scores. Other educational factors, such as princi-
pal leadership, district-level policies, or prior teachers, might contrib-
ute to gains. Characteristics of the students, their environments,
neighborhoods, families, and peers also contribute to gains, along
with sources we might consider residual and measurement errors.
Thus, although modeling gain scores avoids some problems associ-
ated with using single-year score averages to estimate teacher effects
(see, e.g., Meyer, 1997) and might be preferable to modeling cohort-
to-cohort test-score gains, models of gain scores do not necessarily
measure the effects attributable to teachers. Growth might be the cor-
rect metric for measuring the importance of teacher effects, provided
these effects are accurately and precisely estimated, but growth mod-
eling is not sufficient to ensure that estimates are not confounded by
other factors.

Some applications of VAM have used prior-year test scores as
covariates in a regression model for current-year test scores rather
than modeling gains. While covariate adjustments are often used to
account for factors that might confound estimates of program effects
in evaluations, simply controlling for prior-year scores and other
available covariates does not guarantee that estimated teacher effects
are causal effects.

In the evaluation literature, VAM and other studies that attempt
to estimate causal effects in natural and uncontrolled settings are re-
ferred to as observational studies (West, Biesanz, and Pitts, 2000;
Rosenbaum, 2002). Numerous methods exist for estimating causal
effects from observational data. These include gain score and covari-
ate adjustment methods (West, Biesanz, and Pitts, 2000), as well as
other alternatives such as propensity score methods (Rosenbaum and
Rubin, 1983) and selection models (Greene, 1997). However, all
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methods assume that models include or account for all variables that
affect student achievement and differ across teachers. Any variables
omitted from the model will continue to confound estimated teacher
effects. Given the myriad of factors that are known or hypothesized to
contribute to student achievement and learning and the fact that
these factors often cluster by districts, schools, and classrooms, one of
the greatest challenges for VAM is developing methods for separating
the causal teacher effect from these other sources. As we discuss be-
low, complex statistical models alone are not sufficient to guarantee
that other factors do not confound estimated teacher effects, and sen-
sitivity analysis and empirical investigations should accompany any
estimated effects to demonstrate the robustness of estimates to other
factors.

Comparing Teacher Effects to Alternative Notions of Teacher

Effectiveness

We suggest defining a teacher’s effect as the average causal effect on
student achievement across all students of interest. This outcomes-based
definition describes teachers only in terms of student achievement. It
is not necessarily a meaningful characterization of other attributes of
teacher effectiveness. As a somewhat extreme example but one that
makes the point, suppose a teacher was very good at teaching test-
taking skills to all students. This teacher would have a large positive
effect because he was effective at teaching test-taking skills but he
might not conform to other notions of effectiveness. If we are to
make inferences about teachers, the outcomes-based definition of ef-
fects might be insufficient without additional investigations showing
that positive effects correspond to other notions of effective teaching.

Along the same line of reasoning, the causal effect of a teacher
alone does not give any indication of what makes a teacher effective.
It provides no description of the practices, traits, or characteristics of
teachers with large effects. Policies for improving teacher effectiveness
require knowledge of the attributes that distinguish effective teachers
from others. Knowledge that they can produce larger gains in student
achievement than other teachers is not sufficient. Also, if empirical
estimates of teacher effects do not correlate with other generally ac-
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cepted traits of effective teachers, we might be concerned that our
statistical estimation of teacher effects is too error-prone (due to sam-
pling or systematic errors) to be useful.

Identifying Assumptions Required for Appropriate Application

of VAM

Regardless of the definition of the causal teacher effect, most statisti-
cal models will produce unbiased or consistent estimates of a particu-
lar effect only when certain untestable assumptions hold. For exam-
ple, the simple difference between the mean gain scores for a teacher’s
students and the mean for the entire school district provides an unbi-
ased estimate of a teacher’s effect—assuming that the teacher effect of
interest is the average effect on all students, that students are essen-
tially randomly assigned to the class, and that there are no school ef-
fects. Under other assumptions, this difference will estimate other
causal effects or possibly provide a biased estimate that confounds
true teacher effects with school effects or student characteristics. Un-
biased estimation of the causal effect might require more-complex
models than simple mean differences. Given a desired causal effect,
the particular assumptions necessary for a statistical model for esti-
mating that effect should be identified and evaluated for plausibility
and formally tested, where possible. The impact of violations of as-
sumptions will depend on the desired effect and the particular model.
The sensitivity of estimates to assumptions is an area for extensive
future empirical study.

Measures of Student Achievement

The causal effect of a teacher will depend on the measure of achieve-
ment. Effects on one measure of achievement will not necessarily
equal effects on other measures. Users should choose a measure of
achievement that suits the desired inferences. The most commonly
used measures of student achievement are scale scores from standard-
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ized tests. However, these are not the only available measures. For
example, criterion-referenced test scores that are not on a single de-
velopmental scale might also be used.

Summary

VAM refers to a class of models that are typically used to estimate the
effects of teachers or schools on student achievement growth. The
kinds of inferences that a particular application of VAM is intended
to support must be taken into consideration when designing a mod-
eling strategy. Although most discussions of VAM have focused on
the magnitude of a “teacher effect,” little attention has been paid to
the various ways that such an effect may be defined. As we have dis-
cussed in this section, the definition of teacher effect involves the
specification of a plausible alternative (e.g., the average teacher in the
school, district, or state), as well as an indication of which students
are being considered (e.g., all students in the population or students
like those the teacher typically teaches) and what outcome is used to
quantify achievement. The modeler must also determine whether the
model is intended to distinguish school effects from teacher effects,
and whether the current year or multiple years of teacher performance
are of interest.

In addition to a definition of teacher effect, the use of VAM re-
quires acknowledgment of the other factors influencing student
achievement growth, including the characteristics of students, their
environments, and their schools. Although VAM is intended to ac-
count for these factors, there is no guarantee that it does this ade-
quately, and some models may address this more completely than
others. Tests of sensitivity and robustness are important when inter-
preting the results of any VAM analysis.
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CHAPTER THREE

Literature Review

The recent literature on VAM purports to show that teachers differ-
entially affect student learning and growth in achievement. The re-
ported effects are large, accounting for a significant portion of the
variability in growth and persist for at least three to four years into
the future. A relatively small number of papers—several not pub-
lished in the peer-reviewed literature—are the source of these claims.
In this chapter, we summarize and discuss the papers that make these
claims. Our literature review is intended to be deep but not necessar-
ily broad. Indeed, any education achievement model that uses gain
scores or regresses current scores on prior scores could be considered a
VAM, and we do not attempt to provide a comprehensive assessment
of such research. Rather, we critically evaluate a modest number of
research articles that were chosen because of their particular promi-
nence and relevance to the scope of our project: VAM for estimating
teacher effects. We organize our literature review by the primary
findings of the studies: Teachers matter, teachers’ effects are cumula-
tive and enduring, and teacher effectiveness varies as a function of
student achievement (see Table 3.1).1

                                                
1 The methods used by the studies we reviewed correspond to different implied definitions
of teacher effects as presented in Chapter Two. To ease presentation, we use the term teacher
effect to refer to any variability in student scores that is attributable to teachers including
indirect school effects, context effects, or variability of teacher effectiveness across students
and time.
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Table 3.1
Summary of Literature Reviewed

Teachers Matter

Using diverse methods, these studies all purport
to demonstrate the existence of teacher effects.
The magnitude of effects and the relative
importance of teachers compared with other
factors influencing learning are difficult to
assess, but our review suggests that these
papers can be interpreted as demonstrating the
existence of a teacher effect.

Papers reviewed:

Wright, Horn, and Sanders (1997)

Rowan, Correnti, and Miller (2002)

Rivkin, Hanushek, and Kain (2000)

Teacher Effects Are Cumulative and Long-Lasting

These studies purport to demonstrate the
persistence of the effects of past teachers on
future achievement. The consistency of the
findings across studies, along with our analyti-
cal and simulation work, suggests that these
papers can be interpreted as demonstrating the
persistence of teacher effects. The magnitude
of these effects, however, is possibly overstated.

Papers reviewed:

Sanders and Rivers (1996)

Rivers (1999)

Mendro et al. (1998)

Kain (1998)

Teacher Effects Differ by Level of Student Achievement

This study purports to demonstrate that the
lowest achieving students are the first to bene-
fit from more-effective teachers. These findings
are likely to result primarily from artifacts of
the employed methods.

Paper reviewed:

Sanders and Rivers (1996)

Within each of these three topics, we review the relevant papers
separately. For each paper, we first provide a brief summary of the
authors’ conclusions and our critique of the paper. A detailed discus-
sion of the study’s research questions, methods, and results follows
the summary. We then provide our critical evaluation of the methods
and our assessment of the paper’s results. At the end of each section,
we summarize our conclusions for the topic addressed in that section.
Although some of the reviews are lengthy—giving details on both the
authors’ methods and our critiques of those methods—the summary
paragraphs will allow readers to follow the key points without reading
the detailed discussion.
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Teachers Matter

As we discussed previously, there is a long-standing debate over the
effects of teachers on students, and VAM research has significantly
shaped this debate in the past few years. Attention has recently been
focused on a handful of studies that show residual variation at the
classroom level and that interpret this variation as evidence of teacher
effects. Three papers are particularly important in this area. First,
Wright, Horn, and Sanders (WHS), in their 1997 paper “Teacher
and Classroom Context Effects on Student Achievement: Implica-
tions for Teacher Evaluation,” model student test score gains for two
samples of schools from Tennessee. They consider multiple subjects
and grades and measure the effects of teachers and a limited set of
classroom contextual effects. They find that their teacher effect meas-
ure exceeds all other effect measures in 20 of 30 models they fit. Sec-
ond, in “What Large-Scale Survey Research Tells Us About Teacher
Effects on Student Achievement: Insights from the Prospects Study of
Elementary Schools,” Rowan, Correnti, and Miller (RCM, 2002) use
the data from Prospects, a U.S. Department of Education–funded
study of Title 1, to estimate teacher effects for three cohorts of stu-
dents from a nationally representative sample of schools. They find
moderate-to-large teacher effects depending on the model they fit.
Finally, Rivkin, Hanushek, and Kain (RHK, 2000) use data from
Texas schools to find a lower bound on teacher effects in their paper
“Teachers, Schools, and Academic Achievement.” They use a com-
plex differences-of-differences approach as an attempt to estimate ef-
fects that do not confound student characteristics and teacher effects
and find that teacher effects are nonzero.

One of the great challenges of estimating teacher effects is sepa-
rating teacher effects from other sources of variability in student
achievement, such as student background, peers, and neighborhoods,
as well as school and school district or system inputs. The authors of
these papers use a variety of models to attempt to uniquely identify
the teacher effects.
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Wright, Horn, and Sanders

Summary: WHS purport to show that teachers are the most impor-

tant factor affecting student learning. In their replicated study de-

sign, they model gains in student test scores as a function of a small

set of student covariates that include achievement and random

teacher effects. They standardize the contributions of all variables in

the models using what they call a “z-score.” They informally meta-

analyze the results of the 30 replicated models and find that the z-

score for teacher effects exceeds the standardized contribution of

every other variable in 26 of 30 models. Via a simulation study (see

appendix for details) we find that standardized z-scores like those

used by WHS do not necessarily preserve the ranking of variables

based on their contribution to total variance in scores. In other

words, while the WHS z-scores for teachers might dominate in 26 of

30 models, this does not imply that teacher effects explain more

variance than all the other predictors. Furthermore, WHS provide no

evidence that the estimated teacher effects and their corresponding

variance components are unbiased by contributions of other inputs

to education that are not accounted for in the model.

WHS replicate their analyses on data from two samples of Tennessee
school systems. One sample contains schools from 30 school systems
in East Tennessee and includes about 9,900 to 11,000 third graders,
about 9,300 to 10,500 fourth graders, and about 6,500 to 8,900 fifth
graders, depending on the outcomes. The other sample contains
schools from 24 systems in Middle Tennessee and includes about
13,500 to 14,100, 12,300 to 13,500, and 8,600 to 10,100 third,
fourth, and fifth graders, respectively, depending on the outcome.2

For both samples, cohorts are identified by the students’ grade in
1995—third, fourth, or fifth. For each sample, WHS model one-year
gains in scale scores separately for each cohort (i.e., they model grade
3 less grade 2 scores, grade 4 less grade 3 scores, and grade 5 less
grade 4 scores for each sample). They model the Tennessee Compre-
                                                
2 WHS do not report on the number of schools, classes, or teachers included in the samples.
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hensive Assessment Program (TCAP) math, reading, language, social
studies, and science scores, fitting a total of 30 models: five subjects
for each of three cohorts in each of two samples.

Although the authors led the development of the complex “lay-
ered model” used by TVAAS to simultaneously model test scores
from multiple subjects and multiple years of testing on each student
(Sanders, Saxton, and Horn, 1997), they do not use this model in the
study at hand. Instead, they use a simpler and more traditional model
of gains as a function of fixed effects for student and classroom char-
acteristics and random effects for teachers. The model includes an
overall effect for each teacher and additional terms to allow the
teacher’s effect to vary for students at different achievement levels
(i.e., the model includes random teacher by student achievement-level
interactions).3 They include the following fixed-effect covariates: a
student-level measure of average achievement equaling the average of
the student’s 1994 and 1995 scale scores (scores for second and third
grade, third and fourth grade, or fourth and fifth grade, depending on
the cohort) transformed into a four-level categorical variable with lev-
els corresponding roughly to quartiles of the distribution of the con-
tinuous value; a classroom-level measure of heterogeneity equaling
the standard deviation in achievement level (prior to categorization)
grouped in the lowest quartile, the two middle quartiles, and the
highest quartile and fit as a three-level categorical predictor; class size
measured as either small (10 to 19 students) or large (20 to 32 stu-
dents);4 and indicators for school system.

The authors create a measure they call a “z-score” for each co-
variate in the model and teacher effects. In WHS (and our discussion
of their paper), the term z-scores does not refer to common usages
such as variables standardized to mean zero and variance one or test
statistics. Rather, WHS use z-score to refer to a standardized regres-
                                                
3 Teacher-by-achievement interactions are coded as deviations from the mean, so the teacher
effect is the average teacher effect, and the individual interactions are teacher deviations from
the average for each achievement group.

4 Classes of less than 10 or more than 32 students were deleted from the study. See WHS for
details.
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sion parameter meant to measure the size of variable’s effect on
scores. For the random teacher effects and random teacher by
achievement interactions, the z-score equals the estimated variance
component for the effect divided by its estimated standard error. For
the fixed-effects covariates, z-scores derive from a two-step calcula-
tion: First, p-values for the F statistics for testing the fixed effects are
derived. Second, the z-score equals the quantile of a standard normal
distribution corresponding to one less one half of the p-values (1– p-
value/2). That is, the p-values from the F-test are treated as if they are
p-values from a two-tailed test against the normal distribution. For
example a p-value of 0.10 converts to 1.64 because Pr{Z ≤  1.64} =
0.05 = 1 – 0.10/2.

The authors replicated their analysis 30 times and informally
meta-analyzed the results by summarizing patterns in the results
across models. The authors found that in their models for gains in
achievement, the variance components for teacher effects were statis-
tically significantly different from zero in all 30 models and students’
average achievement was statistically significant in 26 of the 30 mod-
els (i.e., in 26 of 30 models they rejected the null hypothesis that ex-
pected gains scores were equal across the four achievement catego-
ries). Moreover, teacher effects had the largest z-score in 20 of the 30
models and achievement had the largest z-score in the remaining 10
models. The authors conclude that “the results of this study well
document that the most important factor affecting student learning is
the teacher” (WHS, p. 63).

While the authors clearly demonstrate that residual classroom
variance is nonzero and by their metric has a large contribution rela-
tive to the other variables they consider, we believe that the conclu-
sion that teachers are the most important factor should be made with
caution. First, the authors provide no evidence that teacher effects
and their associated variance measure the contributions of teachers
and not other inputs to the education system. The authors include
only a limited number of factors in the model and do not include fac-
tors such as school resources, the community, or student contextual
effects. Some of the omitted factors might be significant and might
contribute to the residual variance attributed to teachers. WHS give
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no details on the demographic distributions of students across schools
and classrooms; as discussed in Chapter Four, the distributions of
students determine the effect of omitted variables. Furthermore, be-
cause teachers are not randomly assigned to students, estimates may
confound the teacher selection process with student effects. This
could exaggerate empirical estimates of teacher effects. The authors
do not measure contributions of schools or prior educational inputs.
They also provide no information on the measurement properties of
the TCAP and how the test corresponds to the curriculum of the
various schools and school systems in the study. Nor do they discuss
any variability in the importance of this test across teachers from dif-
ferent schools and school systems. As discussed in Chapter Four, all
these factors might bias estimates of the variability among teacher ef-
fects. Without additional data, we cannot interpret residual class-
room-level variance as a true measure of teacher effects.

Furthermore, as discussed in the appendix, unlike more-
traditional measures of effect size, the authors’ z-scores depend on the
precision of estimates as well as true parameter values. Many factors
can contribute to the precision of estimates and these can influence
the z-scores. As a result, z-scores will not necessarily preserve the order
in the relative magnitude of effects where effects are measured by a
stable and interpretable alternative such as the share of the variance in
gains scores explained by the factor. We used a simulation study to
determine whether or not z-scores would tend to order variables ac-
cording to the share of total variance they explain. We generated data
using a model that included both teacher effects and covariates. In the
model, the covariates and the teacher effects explained equal shares of
the variance, so that across multiple models the z-scores for neither
factor should dominate the other. The simulation study results found
that under certain realistic settings, the z-scores for random teacher
effects are likely to exceed the z-scores for fixed effects. Thus, the pre-
dominance of teacher z-scores does not guarantee the dominance of
true teacher effects.

The conditions under which teacher-effect z-scores dominated
other effects depended on the correlation between the variables and
the true effect sizes. Greater correlation among variables results in a
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more likely dominance of teacher effects. WHS provide no discussion
of the correlations among variables in the model. They also fail to
provide the coefficients for the variables and the actual variability of
the covariates among students. Therefore, we cannot compare the
setting of the WHS study to the setting of the simulation study in
which teacher z-scores artificially dominate the z-scores of other
measure. We can only conclude that, without additional details, the
dominance of z-scores provides no compelling evidence of the domi-
nance of teacher effects. However, in our simulation studies, we
found that z-scores for teacher effects of the magnitude reported in
WHS are unlikely to result when residual classroom variance has no
effect on scores. Thus, we believe that WHS provide evidence of re-
sidual classroom variance predicting gains, although we cannot evalu-
ate the absolute or relative size of the effect given the information
contained in the WHS paper.

Rowan, Correnti, and Miller

Summary: RCM find that residual classroom level variance accounts

for a significant proportion of the variability in growth in student

achievement scores. The results are robust across subject (reading or

math), statistical model, and two cohorts of students from a nation-

wide sample of schools. Although all models result in classrooms ac-

counting for meaningful portions of the variance, the magnitude

varies. While the results are impressive, the authors do not provide

details on missing data, the nature of the measure, and the distribu-

tions of student characteristics, so a full assessment of possible biases

is impossible. Furthermore, we believe the authors’ methods of cali-

brating the size of the effect of teachers might overstate teacher im-

pact for one of their models.

RCM use data from two cohorts of students in the nationally repre-
sentative sample of schools of the Prospects study. The students in the
first cohort were tested twice in grade 1 and again in grades 2 and 3.
Students in the second cohort were tested annually in grades 3, 4, 5,
and 6. Analyses were conducted separately by cohort and in some
cases by grade within cohort. The authors report that all analysis
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samples included at least 4,000 students from at least 300 classrooms,
nested in more than 120 schools. The authors do not discuss the use
of sampling or analysis weights or other methods used to account for
the Prospects complex sample design.

For each subject, cohort, and grade, RCM fit four different
models to the data to explore sources of variance in test scores. The
first model is a three-level nested analysis of variance (ANOVA) with
students within classes or teachers, classes within schools, and schools
as the three sources of variance. The second model is a covariate ad-
justment model with a student’s current year score equal to an addi-
tive linear function of prior-year score, teacher effect, school effect,
student covariates, and residual error.

yijt = α + βyijt−1 + ′ γ xijt   +ηit +θt(ij ) + eijt                       (3.1)

where yijt  is a math or reading score for the jth student in school i
for test administration t; ηit is the school effect at this test administra-
tion; 

    θt( ij)  
is the teacher effect for the student’s teacher;     xijt  denotes

a vector of student characteristics, some of which might vary over
time; and eijt  is residual error term. School and teacher effects are
included as random effects.

The third model is a gain score model with a student’s one-year
gain in scores equal to a linear function of prior-year score, teacher
effect, school effect, student covariates, and residual error. School and
teacher effects are included as random effects. As noted in McCaffrey
et al. (2003) and discussed in Chapter Four, because the gain-score
model includes prior-year scores as an additive covariate in the model,
this model is algebraically equivalent to RCM’s second (covariate)
model, and therefore we do not discuss this model in our review.

The final model fit by RCM is a cross-classified model
(Raudenbush and Bryk, 2002). In this model, the score for the jth
student in school i at time t,   yijt , is given by

        yijt = α + βt + δ t2 +α i + βi t +αij + βijt +

                  ′ γ xijt     + θ1(ij) + ...+θt( ij) + eijt  
                 (3.2)
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where   αi and  βi are the random intercept and slope for the school;
αij and   βij  are the random intercept and slope for the student;

    xijt denotes a vector of student characteristics, some of which might
vary over time; θ1(ij) to θt( ij)  

are the effects for the student’s teachers
at testing times 1 to t; and eijt  is a residual error term. Thus, scores
are models by a common quadratic function of time   (α + βt +δt 2)

plus school-specific and student-specific random linear time trends.
The model assumes no variability in the nonlinear component of the
model. Implicitly, any variation in δ is captured in the residual error
term.

A teacher effect, 
    θt( ij) ,,

is added for each year and these effects
remain in the model undiminished at the future test administrations,
which is why the model for the score at time t includes terms for all
previous teachers. Although for convenience we refer to the term
θt( ij)  

as teacher effects, RCM acknowledge that they are residual
classroom effects. As shown in McCaffrey et al. (2003), the cross-
classified model given above implies that

    yijt − yijt −1 = β − δ + 2δt + βi + βij +

                   ′ γ 
   (x ijt − x ijt −1) + θt (ij) + eijt − eijt −1          

 (3.3)

so the only teacher effect on gain scores is from the current teacher;
other teachers do not contribute.

With the simple ANOVA model, RCM find that classrooms
(including teachers) account for between 12 and 23 percent of the
total variance in reading achievement and between 18 and 28 percent
of the total variance in math achievement. In the covariate adjust-
ment model, teachers (classes) account for 4 to 16 percent of adjusted
variance in reading scores and 8 to 18 percent of adjusted variance in
math scores, depending on cohort and grade. Adjusted variance is the
residual variance after adjusting for student characteristics and prior
scores.

For the cross-classified model, RCM find that variability in
teacher effects accounts for 60 to 61 percent of “reliable variance” in
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growth in reading and 52 to 72 percent of the reliable variance in
growth in math. RCM define reliable variance in growth as the vari-
ance of random school slopes, plus the variance in the random indi-
vidual slopes, plus the variance in teacher effects. Variability in devia-
tions around the linear trends is excluded from reliable variance.

RCM provide an important comparison of models using data
from a national probability sample of schools. Replication of the
analyses across cohorts and subjects (math and reading) consistently
finds that teachers account for a nontrivial fraction of residual vari-
ance in all models for all cohorts and both subjects. However, we be-
lieve that the authors’ use of reliable variance for defining the size of
teacher effects from the cross-classified model might overstate the im-
portance of teachers as a source of variability in gains in achievement.
The analyses also have some limitations: Prospects data have a large
proportion of incomplete student records, the inclusion of student
characteristics and random school effects might bias the estimated
effects toward zero, and measurement error is ignored in the covariate
models. Also, because RCM is primarily a methodological paper that
uses the Prospects study as a running example, the details they provide
of their analyses are naturally limited and their interpretation of the
results is constrained. For example, the authors provide no discussion
on the measurement properties of the tests used in their study.

As noted above, RCM estimate the size of teacher effects from
the cross-classified model as the ratio of the variance due to teachers
to what they call the reliable variance. While we agree that calculation
of size of the teacher effect should use reliable variance, we think al-
ternative definitions of reliable variance might be preferable. Moreo-
ver, the authors’ choice of measure of reliable variance provides the
minimum value among alternatives. Thus, the authors’ estimate of
the size of the teacher effect is the largest it might be among alterna-
tive choices and might give an overly optimistic picture of teacher
impact.5

                                                
5The issue in defining reliable variance is whether deviations around the linear trend consti-
tute reliable variance or just idiosyncratic errors. RCM assume that all deviations from the
linear trend are idiosyncratic errors that are not reliable measures of student growth. How-
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The definition of reliable variance has a great impact on the size
of the teacher effect. When all residual variance is included in the re-
liable variance, RCM find that teacher effects account for 13 to 14
percent of total adjusted variance in reading scores and 10 to 20 per-
cent of total adjusted variance of math scores. These values are sub-
stantially less than the effect sizes they obtain based on their restric-
tive definition of reliable variance.

Including all the residual variance in the denominator is proba-
bly too extreme in that measurement error is included in the reliable
variance, and it is not reliable by any standard. One alternative to the
RCM definition is to reduce the residual variance in gains by a factor
that accounts for measurement in the test and to add this adjusted
residual variance term to RCM’s reliable variance.6 This alternative
measure of reliable variance excludes variability resulting from the
measurement process but includes the variability from all other non-
linearities. Ideally, we would go even further and fit random nonlin-
ear growth curves that are smooth and then use the variability in
these smooth curves for our measure of reliable variance. However,
we cannot achieve this ideal with only a few data points per student.
Thus, the best approach might be to estimate the RCM effect size
based on both their measure of reliable variance (knowing it is an up-
per bound on the ideal) and our alternative (knowing it is a lower
                                                                                                     
ever, we believe that growth is naturally a nonlinear process, and—in accordance with other
authors (Rogosa, Brandt, and Zimowski, 1982)—we view the linear growth model as an
approximation to the true growth process. RCM appear to agree in that they include a quad-
ratic term in their model (2.2). Just because terms are not linear does not mean they are not
true features of student growth. Some portions of the deviations from linear growth are reli-
able in that they are not artifacts of the measurement process. If we tested students with two
different test forms or near the same times, we would find that the deviations from linear
trends that result from these alternative measures would be highly correlated. Also, just as
linear growth is variable among students, the nonlinearities in growth are also likely to vary.
Growth spurts will occur at different times and with different intensity for different students.
We suspect that RCM exclude random quadratic terms from their model because they can-
not be estimated reliably with data from just four test administrations—not because they
believe there is no variability in the nonlinearities of growth. Thus, some of the variability in
the residual terms is true variability in growth and should be included in the reliable vari-
ability of growth.

6 The factor will depend on the standard error of measurement in tests, which must be ob-
tained from external sources such as the test publisher.
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bound on the ideal) and to present both. Without more information,
we cannot determine a lower bound for the RCM estimates.

The Prospects data include many students with incomplete re-
cords of test scores (for some cohorts as many as 73 percent of records
are incomplete—that is, 73 percent of students are missing a score for
one or more tests) and RCM provide no details on how these records
were used in the various analyses. We can assume that ANOVA and
covariate models used only complete cases for each year because in-
complete records cannot be used without imputation, and the
authors did not mention imputation. Algorithms for estimating the
parameters of the cross-classified model can use incomplete records
without imputation; we assume that RCM used all available data
when fitting these models. Modeling with incomplete records makes
more-efficient use of the observed data and can provide unbiased es-
timates under weaker assumptions than can modeling with only
complete cases (see the section “The Effects of Incomplete Records”
in Chapter Four for details).7 With the cross-classified model and for
students who complete most of the tests, the model for the missing
data probably deviates only minimally from the true distribution of
the unobserved values. However, with such a large proportion of stu-
dents missing scores and with students missing two or more tests, the
effects of violation of the assumptions about missing data might be
large. Without greater details about the distribution of students with
missing data across classes and schools, we cannot speculate on the
likely direction of that bias on estimates of the teacher variance com-
ponent.

By including school effects and student covariates in their
model, RCM might bias toward zero estimates of the teacher variance
component. Random school effects should account for much of the
school-level variance in scores, including any variance due to cluster-
ing of teacher effectiveness by school (see Chapter Four for additional
discussion on this bias). Similarly, because the model includes fixed
effects for student covariates but random effects for teachers, the
                                                
7 The models treat the missing data as missing at random, MAR, rather than missing com-
pletely at random, MCAR, which is a more restrictive assumption (Little and Rubin, 2002).
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model will overadjust for the student characteristics if true teacher
effects are correlated with the average characteristics of their students.
Assuming that teacher effects are positively correlated with the char-
acteristics of their classes that are positively related to scores (i.e.,
more effective teachers teach the students who are likely to have larger
growth in achievement), the overadjustment will result in biasing to-
ward zero the teacher variance component.

On the other hand, the covariate adjustment model does not ac-
count for measurement error in prior-year scores, and the models al-
most certainly omit some variables that contribute to student scores.
Both these limitations should tend to inflate the teacher variance
component. But the models might mitigate such biases. The cross-
classified model uses correlation among student scores to help offset
the effects of omitted covariates (McCaffrey et al., 2003) and the in-
clusion of random school effects in the model should limit the con-
founding of teacher effects by school inputs and by the heterogeneity
among the populations served by different schools.

On the whole, given the possible positive and negative bias in
the estimates, we conclude that RCM provide convincing evidence of
likely teacher effects, although the exact magnitude is less well estab-
lished. Their results should be interpreted cautiously because effect
sizes are relative to only part of the variability in scores (or growth)
rather than to total variability.

Rivkin, Hanushek, and Kain

Summary: RHK take advantage of multiple cohorts of students, each

with three years of test scores, to aggressively remove the effects of

factors other than teachers that affect achievement. The authors find

that teacher effects do exist and estimate that, as a lower bound,

teachers account for about 3.2 percent of variance in achievement. In

other words, a one-standard-deviation-unit increase in teacher effec-

tiveness is associated with about a 0.18-standard-deviation-unit in-

crease in scores. While the paper does remove many alternative fac-

tors, the estimates are based on differences of scores that are not on

a single developmental scale. Therefore, changes in scores do not

necessarily correspond to growth in achievement, which makes the
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interpretation of results difficult. Also, we conclude that the authors

restricted their analyses to students who remain in the same school

and complete testing for three consecutive years. Thus, the authors’

finding suggests teachers can matter for some students in some met-

rics, but general interpretation of the results is impossible.

One of the primary limitations of WHS—and to a lesser extent
RCM—is the possibility that residual effects of students or schools
are not properly accounted for by the model covariates and therefore
confound the estimates of teacher effects. RHK directly address this
problem and attempt to estimate the true causal effect of teachers dis-
tinct from any other source of variability. RHK use data from over
500,000 Texas students from three consecutive cohorts attending
2,156 elementary schools. For each student they have linked math
test scores for three years corresponding to grades 4, 5, and 6 for two
cohorts and grades 3, 4, and 5 for the third. Students are linked to
school by grade but not by classroom. The test scores are from the
criterion-referenced Texas Assessment of Academic Skills (TAAS)
test; therefore, across grades, scores are not measured on a single de-
velopmental scale. Rather, the authors standardize scores so that for
each cohort at each grade, the average of the standardized scores
equals zero and the standard deviation of the standardized scores
equals one.

RHK use a complex method to separate teacher effects from
other sources of variance in student scores. Consider a single school
and let   yijg denote the standardized grade g score for the jth student
in cohort i. RHK first find gain scores

    dijg = yijg − yijg −1

The authors note that by differencing scores, gains are uncorre-
lated with the effects of students, neighborhoods, peers, and schools
on level of achievement. However, gains do not remove effects of
these factors on growth. To remove the stable effect of these factors
on growth, the authors difference gain scores from successive grades
to obtain
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    aij = dijg +1 − dijg

RHK then average the  aij for the cohort to obtain   Ai . The
authors note that these averages depend on teacher effects for two
grades:

    Ai = Tig +1 −Tig + residual

where   Tig  is the average teacher effect for the teachers of the co-
hort at grade g  and residual includes the effects of grades within
school and terms unique to the student. An example of a grade-
within-school effect is that the fourth grade curriculum might be bet-
ter at promoting growth than the fifth grade curriculum, regardless of
the teachers.

To remove these remaining confounding effects, the authors
start by differencing Ai ’s from back-to-back cohorts and squaring this
difference to obtain

D = ( Ai+1 – Ai )2

Assuming that grade-within-school effects are constant across cohort,
then D  depends on 

    T
2 = {(Ti+1g +1 − Ti+1g ) − (Tig +1 −Tig )}2

 
and

residual error terms. The authors note that if teacher effects exist, the
square of this difference will tend to be small when teachers overlap
between the cohorts and large when they do not. That is, across
schools, T 2  and therefore D will vary with the teacher turnover rates
for these cohorts.

To estimate the effects of teachers, the authors fit a linear regres-
sion model with D as the dependent variable and the turnover rate as
an independent variable. They also include other school-level vari-
ables, such as change in district administration, and school fixed ef-
fects as the independent variables in some specifications of their re-
gression model. The authors provide a mathematical derivation to
recover the variance component for teacher effects from the coeffi-



Literature Review    33

cient for the turnover rate in this linear regression model.8 The deri-
vation assumes large samples of teachers per grade per school.

The authors find a statistically significant relationship between
D and turnover rates in all of their models, regardless of additional
covariates used to adjust for possible biases. Thus, the model indicates
that cohort variability in differences of gains varies with teacher turn-
over. Under the assumptions of the authors’ model, this implies that
teachers affect gains in achievement as measured by standardized
TAAS scores. The authors estimate that, as a lower bound, teachers
account for about 3.2 percent of variance in achievement or that a
one standard-deviation-unit increase in teacher effectiveness is associ-
ated with about a 0.18-standard-deviation-unit increase in scores.

This novel method cleverly uses the unique structure of multiple
grades of scores for multiple cohorts to remove many sources of vari-
ability that might confound estimated effects. However, the method
also has limitations. Most important, the estimate provides only a
lower bound for the true variance component. In part, RHK provide
a lower bound because the regression coefficient can be used to esti-
mate the teacher variance component only up to a proportionality
constant that is less than 1. However, the method also removes vari-
ance between schools and between school districts, which would serve
to bias their estimates downward.

Another shortcoming of the method is that the relationship be-
tween D and the variance component of interest becomes exact only
in the limit of large samples of teachers in each school. Most schools,
however, have only a handful of teachers in any grade. With small
samples, D will vary with teacher effects as well as with turnover rates.
In particular, if average teacher effectiveness is related to turnover
rates at schools, the estimate will be biased upward. Such a relation-
                                                
8 The authors argue that the covariance between 

      
(Ti+ 1g +1 −Ti +1 g )

 
and 

      
(Tig+1 − Tig )  is a

function of the proportion, p, of teachers who teach both cohorts and the teacher effect vari-
ance component,  τ

2 . Under ideal settings that include large samples of teacher per grade per
school, the D will grow linearly with p at a rate of  −4τ 2 . Under less than ideal settings, the
authors argue that D will grow linearly with p at a rate of     −4cτ2

 for an unknown propor-
tionality constant, c < 1.
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ship might occur if some schools can attract only the least-effective
teachers and these teachers tend to quit after only a few years of
teaching, while other schools are attractive to teachers and can hire
and retain the most-effective teachers. School leadership, resources,
and policies might contribute to such a scenario, and on its face the
scenario is plausible. The authors add terms to their regression model
to account for such bias but cannot guarantee it is removed.

The authors also assume that for any given grade, cohort-to-
cohort variation in mean scores will not co-vary with omitted vari-
ables that might affect changes in both scores and turnover. For ex-
ample, turmoil in schools or districts might lead to falling scores and
high teacher turnover. Again, while the authors cannot test this as-
sumption, the additional terms in their regression model including
changes in principals and superintendents should offset some of the
possible bias.

The authors do not discuss students with only partially complete
test score data and scores from students who switch schools during
the study. Given that the authors require three years of scores from a
student to calculate aij  and that their estimation procedure requires
that   aij  not mix the effects of multiple schools, we suspect that the
authors delete all student records with incomplete test score data and
all records for students that change schools. Without details on miss-
ing data, we cannot assess the effect such a restriction might have on
the estimated results. As discussed in Chapter Four, student mobility
rates are high, so restricting the sample to complete records greatly
limits the interpretability of the authors’ findings.

The data used also limit RHK estimates. The lack of student-to-
teacher links limits the utility of the data for directly estimating
teacher effects, although the authors found a useful method to use the
data to bound the teacher variance component. The lack of a devel-
opmental scale also makes interpretation more difficult. Gain scores
are the key to the authors’ analysis. However, the gains are not
changes in achievement on a well-defined scale but rather changes in
students’ relative positions in the distribution of test scores. Given
that the tests are not designed to measure a single scale, it is not clear
that changes in the distribution reflect changes in achievement. Tests
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from different years might not measure the same skills, and changes
in the relative position in the distribution might reflect differences in
the skills measured by the tests rather than changes in achievement.
Two students with equal gains on achievement might have different
gains on the authors’ measures. Of particular concern is the possibil-
ity that gains in achievement are correlated with levels of achievement
during the first year of the study. If gains are positively correlated
with initial levels of achievement, changes in relative position in the
distribution could greatly overestimate gains for high- and low-
achieving students. If gains and levels are negatively correlated the
opposite might occur. This could distort variability among schools
and bias the authors’ results, but we cannot assess the possible magni-
tude or direction of such bias. Thus, we can conclude that the
authors provide evidence of at least small teacher effects for gains
measured by the standardized scores of students who remain in the
same school for three consecutive grades, but we cannot assume these
gains correspond to gains on a developmental scale.

Summary

Each of the studies reviewed in this section has limitations. WHS use
a metric for comparing effects that is not guaranteed to preserve the
ordering of effects and include only limited covariates in their mod-
els. RCM find generally consistent results across several models and
cohorts in their study. However, most of their models include only a
modest set of covariates, their data have large portions of incomplete
records, and their procedure for standardizing effect sizes may over-
state the importance of teacher effects in the cross-classified model.
RHK difference standardized scores rather than scores from a devel-
opmental scale; their method relies on large sample results that do not
directly apply to small samples of teachers in each school.

Despite these limitations, all three studies find that teacher ef-
fects matter. Our experience suggests that the limitations of the RCM
study, in particular, should not result in sufficiently large bias to ex-
plain the observed teacher effects. The magnitude of effects and the
relative importance of teachers compared with other factors influ-
encing learning are difficult to assess, but our review suggests that
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these papers can be interpreted as demonstrating the existence of a
teacher effect.

Teacher Effects Are Cumulative and Long Lasting

The studies discussed in the previous section sought to establish the
importance of teachers to achievement of students in their classes.
The papers discussed in this section attempt to establish the persis-
tence of those teacher effects on students’ future achievement. Sand-
ers and Rivers (1996) use data from two school systems in Tennessee
to study the cumulative effects of third, fourth, and fifth grade teach-
ers on fifth grade math achievement. Rivers (1999) replicates this
study using slightly different methods to measure the cumulative ef-
fects of fifth, sixth, seventh, and eighth grade teachers on ninth grade
achievement. Mendro and colleagues (1998) replicate the Sanders
and Rivers study using data from Dallas public schools, and Kain
(1998) provides a separate independent reanalysis of the Dallas data.

Sanders and Rivers

Summary: In 1996, Sanders and Rivers released a technical report that

purported to show that teacher effects accumulate over time. They

report that for math tests, students taught by the least effective

teachers for three consecutive years would score 52 to 54 percentile

points below similar students taught by the most effective teachers

for three consecutive years. This dramatic finding has garnered

enormous attention from researchers, policymakers, and other inter-

ested parties. A web search found numerous references to this paper,

and it has been cited several times in the peer-reviewed literature,

though the paper itself has never been peer-reviewed. SR use ad hoc

methods, which are difficult to assess and on their face appear likely

to bias estimates of the persistent effects of teachers upward. We

tested their method via an extensive simulation study and found that

it is not guaranteed to result in positive bias in estimates of cumula-

tive teacher (classroom) effects. Bias depends on many factors, in-

cluding the true persistence of teacher (classroom) effects. Moreover,
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the method is unlikely to estimate persistent teacher effects when no

teacher (classroom) effects exist. Simulations based on scenarios that

best match numbers reported in SR and our experience with school

data tend to show small positive bias in estimates of the size of the

persistent effects of teachers (classrooms).

In the paper, Sanders and Rivers use a two-stage approach. First, they
estimate teacher effectiveness using a form of the covariate adjustment
model described in Chapter Four. The model assumes that current-
year scores equal an additive linear function of prior-year score, the
teacher effect, and residual error:

      yit = αt + βt yit −1 +θt (i ) + eit                                             
(3.4)

where yit  is the ith student’s math score at grade t = 3, 4, and 5,

    θt (i )  
is the teacher effect for the student’s teacher at grade t, and   eit is

residual error. Teacher effects are assumed to be random. Separate
models are fit to math scores for third, fourth, and fifth grade stu-
dents so that the coefficients of the model are allowed to change with
grade. Also, any possible correlation among the residual errors from
the same student is ignored. Teacher-effect estimates for each grade
are grouped into quintiles to provide scoring of each teacher’s effec-
tiveness on a scale of one to five, with one assigned to teachers in the
lowest quintile (least effective) and five assigned to teachers in the
highest quintile (most effective). In the second stage, student scores
from grade 5 are modeled as an additive linear function of teacher
effectiveness (where the quintile assignments are treated as categorical
variables) for grades 3 through 5, the second grade score, and residual
error:

                

yi5 = µ5 + β5,2 yi2 + γ gk
k =1

5
∑

g =3

5
∑ Tigk + εit

where, for k = 1 to 5,  Tigk  equals one if student i’s teacher in grade g
has an effectiveness score of k and zero otherwise. The  γ gk ’s denote
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the effects of teachers with a given effectiveness score. If some of the

    γ 2k ’s and     γ3k ’s are nonzero, then teacher effects persist in subse-
quent years testing. The same students are used in the first and sec-
ond stages.

The authors’ ad hoc method has been criticized for using the
same students in both stages of the analysis (Kupermintz, 2002). On
the face of it, the method appears to be circular—classes with low-
scoring students are given low teacher-effectiveness scores and low
teacher-effectiveness scores are found to be associated with low-
scoring classes. However, the story is not so simple. Another way to
view the two-step procedure is as a complicated way to estimate the
size of a teacher effect; in that sense, the estimates are not reusing data
but rather using the data to make the empirical estimate of interest.

We have shown through extensive analytic and simulation study
that both perspectives have some merit. If the SR method is applied
to just two years of data, then analytically we have shown that the
estimates of differences between the students in the highest and low-
est quintile are necessarily upwardly biased (see the appendix for de-
tails). However, when the method is applied to three or more years of
data, the properties of the method cannot be assessed analytically. In
these cases, we used a simulation study to determine the properties of
the SR method for selected values of the parameters used to simulate
student scores.

In the simulation study, we chose a model to simulate student
scores and then applied the SR method to the simulated data. We
compared the SR estimates of the effect of being assigned three of the
most-effective teachers (Tg5  

= 1 for g = 3, 4, and 5) rather than three
of the least-effective teachers (   Tg1  = 1 for g = 3, 4, and 5), to the true
effect as determined by the data-generating model. The data-
generating model had parameters for determining (a) the effects of
teachers on students, (b) the persistence of teacher effects on future
scores, and (c) the heterogeneity of classroom means of student effects
and covariates, i.e., variables other than teacher effects that predicted
scores. Thus, we had simulation scenarios in which, irrespective of
teacher effect, classrooms would have different average scores or aver-
age gain scores. The study included cases with and without such het-
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erogeneity in classroom means for student effects and covariates. Fur-
thermore, some cases in the simulation allowed teacher effects to be
correlated with student characteristics that differed across classes. The
simulation also included cases in which student effects and covariates
clustered by school but teacher effects were identically zero—i.e.,
there were no teacher effects. The details of the simulation study de-
sign are provided in the appendix.

The simulation study found no evidence that the SR method
would necessarily be biased upward when more than two years of
scores are modeled. With three or more years of data, bias depended
very much on the true size of teacher effects and the persistence of
those effects over time. If variance in teacher effects was extremely
large relative to total variance (beyond what seems reasonable), bias in
the method was always downward. That is, the method actually un-
derestimated the deleterious effects of three ineffective teachers in
consecutive years of school. When the variance of teacher effects was
very small relative to total variance, the bias tended to be upward but
often not large. When relative variance of teacher effects was moder-
ate and in the range of estimates reported by SR and others, the bias
tended to be small and slightly positive or negative depending on
such issues as mixing of students among classes across grades and the
true persistence of teacher effects. When teacher effects were at most
weakly persistent into the future, the bias tended to be positive and
inversely proportionate to the relative size of the variance of the
teacher effects—the smaller the relative variance of teacher effect, the
larger the positive bias.

Generally, the results of the simulation were similar for cases
with and without heterogeneous classroom means for student effects
and covariates—the method was not necessarily biased in either direc-
tion when multiple years of data were used. However, correlation be-
tween teacher effects and student covariates resulted in greater and
more-consistent positive bias. In particular, when the variance in
teacher effects was small relative to total variance, the SR method al-
ways produced positive bias.

For many plausible settings of the simulation parameters, the
simulation study found positive bias for the SR method. In cases that
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our experience suggest are most plausible (in part because they pro-
vide estimates that are similar in magnitude to those reported in SR),
the bias in the SR method appears to be about 20 percent when com-
paring student outcomes after three years with the most-effective
teachers to outcomes after three years with the least-effective teachers.
In these cases, the teacher effects are small to moderate (0.033 to
0.13), weakly persistent, and correlated with student characteristics
that affect achievement and cluster within schools. The bias is highly
sensitive to the persistence of such effects. If the teacher effects do not
persist, the bias could be considerably larger. On the other hand, if
the teacher effects are strongly persistent, the bias is likely to be about
zero.

Our simulation results indicate that the SR results are unlikely
to occur if teacher effects are truly zero. Only under seemingly im-
plausible values of design parameters could we produce results as large
as those reported by SR when teacher effects were truly zero. When
classroom means of covariates or student effects were heterogeneous,
the SR method consistently estimated positive cumulative effects of
teachers even though teacher effects were identically zero by design.
However, the estimated effects were smaller than the effects reported
in SR except when student covariates had exceptionally large effects
on scores or gains—effects that were inconsistent with values reported
in empirical studies of the effects of student characteristics on test
scores.

The teacher effects in our simulation could represent in real data
either true teacher effects or classroom effects resulting from factors
other than individual student effects or characteristics. Such class-
room effects might arise, for example, from interactions among stu-
dents. Thus, our simulation study investigates possible bias in the SR
method in estimating the persistence of teacher and classroom effects.
Our simulation cannot address the SR method’s ability to distinguish
teacher effects from classroom effects.  Because SR provides no dis-
cussion on distinguishing teacher effects from classroom effects, we
can conclude only that the method is likely to result in small bias in
estimates of the cumulative effects of teacher or classrooms.
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 SR provide no discussion of the measurement properties of tests
used in their study, nor do they provide any discussion of missing
data. The test score data are from the TVAAS database and are there-
fore scaled scores. However, only students who complete all four
grades of testing can have the complete data required to fit the model.
Bias from excluding incomplete records is difficult to assess without
any data on the number and distribution of students with missing
scores across schools and teachers. Thus, given our simulation and
analytic results and the lack of information on missing data, we cau-
tiously conclude that for students who are likely to complete testing,
SR provide evidence of the existence and persistence of teacher or
classroom effects, but the size of the effects is likely to be somewhat
overstated.

Rivers

Summary: Given the magnitude of SR’s effects, the implications of

this finding, and the controversy with the methodology, other

authors have attempted to replicate the result with slight modifica-

tion. Rivers (1999) replicates the design with several important

changes to address some of the criticisms of SR and still found persis-

tent teacher effects. Because of possible spurious correlation be-

tween classrooms and student outcomes and because of measure-

ment error in the covariate grade four test scores used as a covariate

adjustment, Rivers’ results might have positive bias that we suspect

would be small to at most moderate.

Rather than use SR’s simple covariate adjustment model (Eq. 3.4) to
estimate teacher effectiveness, Rivers uses the teacher-effect estimates
from the TVAAS model. As discussed in Chapter Four, the TVAAS
is a complex model of the joint distribution of longitudinal student
test score data. It simultaneously models scores for up to five subjects
(math, reading, language, science, and social studies) for up to six
years of testing. The model implicitly uses gain scores for estimating
teacher effects. Although it includes no student, classroom, or school-
level characteristics, the model allows for correlation among scores
from the same student, and this at least partially adjusts for the omit-
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ted student characteristics. The TVAAS model includes a separate
parameter for the mean of every school system or district; so esti-
mated teacher effects are relative to the other teachers in the district.
(See Chapter Four and McCaffrey et al. (2003) for details on the
TVAAS model and in particular the effects of omitting covariates
from such models.)

The second difference between Rivers and SR is that Rivers used
two cohorts of students rather than one to estimate the persistence of
teacher effects. The first cohort provided estimates of teacher effec-
tiveness from the TVAAS model. The second distinct cohort of stu-
dents provided estimates of the impact of teacher effectiveness. Rivers
conducted the stage 2 analysis of SR on the second cohort. She mod-
els ninth grade test scores as a function of fourth grade test scores and
the students’ fourth to eighth grade teachers’ stage 1 effectiveness
ratings based on the prior cohort. Thus, estimates of teacher effec-
tiveness and the impact of varying effectiveness were estimated from
two distinct cohorts of students.

The final major difference between Rivers and SR is that Rivers
models outcomes on a different test than the test used for estimating
effectiveness, and the outcome is measured at the end of ninth grade
while teacher effects are measured for sixth, seventh, and eighth
grades.

Rivers models scores on the TCAP math competency test ad-
ministered in the fall of ninth grade for all 2,612 students in two
Tennessee school districts who completed both the ninth grade
TCAP math competency test and the fourth grade TCAP math
achievement test. The model assumes that ninth grade scores are a
linear function of (a) district means, (b) fourth grade math scale
score, (c) within-district quartile of the fourth grade scale score coded
as three indicator variables, (d) an interaction between fourth grade
scale score and district, (e) TVAAS estimated effects for the students’
fifth, sixth, seventh, and eighth grade teachers, and (f) interactions
between the students’ fourth grade math scale score and their fifth
and sixth grade teachers’ effects, and residual error.

Rivers finds that teacher effects from all four grades are statisti-
cally significantly related to scores in the fall of ninth grade. The ef-
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fect of fifth and sixth grade teachers decreases with the students’
fourth grade scores. That is, fifth and sixth grade teachers were esti-
mated to matter more for students with lower baseline scores. The
impact of fifth grade teachers on ninth grade tests is about two times
greater for students at the mean of the lowest quartile of fourth grade
scores than the impact for students at the mean of the highest quar-
tile. The impact of sixth grade teachers is about 2.5 times greater for
students in the lowest quartile compared with the highest quartile on
the fourth grade test.

Rivers found that for students scoring low at fourth grade, fifth
and sixth grade teachers had the strongest relationship with ninth
grade scores, while for other students, eighth grade teacher effects had
the strongest relationship with ninth grade scores. Rivers gives values
for the effect sizes of ineffective and highly effective teachers in each
grade. The difference between the expected grade 9 scores for stu-
dents taught by a highly effective teacher compared with those taught
by an ineffective teacher in a particular grade ranged from about 15
percent of a standard deviation unit to about 43 percent of a standard
deviation unit depending on the grade and the students’ fourth grade
scores. The difference for eighth grade teachers was 24 percent of a
standard deviation unit.

As discussed in Chapter Four, measurement error in the fourth
grade scores can bias estimates of all the coefficients in the model.
Without additional details, we cannot hypothesize on the likely direc-
tion of that bias. However, given that the fourth grade test is a form
of the Comprehensive Test of Basic Skills (CTBS) standardized test,
the reliability is likely to be high and the bias unlikely to be large
enough to completely explain the observed coefficients for teacher
effects.

As discussed in McCaffrey et al. (2003), teacher-effect estimates
can be confounded by student characteristics that vary across schools
when few students transfer across schools. These confounding effects
are likely to remain constant across time, creating a possible spurious
correlation between teacher effects estimated with a previous cohort
and scores with the current cohort. The inclusion of fourth grade
scores as covariates in Rivers’ model should mitigate, but not neces-
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sarily remove, such spurious correlation between measures of teacher
effectiveness and student scores. Without greater details on the distri-
bution of student characteristics across schools, we cannot assess the
likelihood of such possible spurious correlation. Although we did not
conduct a simulation study of Rivers’ methods, our simulation study
of the SR method (described in the subsection above on Sanders and
Rivers and in the appendix) describes the effects of spurious correla-
tion on estimates on the effect and persistence of effective teachers.
The results of that simulation study suggest that the spurious correla-
tion between effectiveness measures and student outcome is likely to
lead to the positive bias in Rivers’ estimates when teacher effects are
small to moderate, persist weakly over time, and correlate with stu-
dent characteristics. Note, however, that because only the teacher and
not the classroom remains constant across cohorts, unlike SR, Rivers’
estimated teacher effects should be distinct from classroom effects.

Rivers’ results apply only to students who remained in the
school district for over five years and who completed testing at grades
4 and 9. The study excludes transfers and students retained in grade.
How results for these students might differ compared with results for
all students is unknown. In addition, TVAAS teacher effects and Riv-
ers’ models are relative to the district mean. If teacher effectiveness
differs across districts, Rivers’ results could underestimate the impact
of teachers on later grades.

Thus, on balance, Rivers’ study provides evidence that, for stu-
dents who remain in the same school systems for six years, teachers
affect achievement on standardized tests taken several years in the fu-
ture. Because of possible spurious correlation and measurement error
in the baseline score, Rivers’ results might have positive bias that we
suspect would be small to at most moderate. Also, because teacher
effectiveness might tend to cluster by district, Rivers’ results might
also be biased toward zero for inferring the effects of teachers across
large units of aggregation. such as counties, metro areas, or states.

Mendro, Jordan, Gomez, Anderson, and Bembry

Summary: Mendro, Jordan, Gomez, Anderson, and Bembry, (MJGAB,

1998) use data from students in the Dallas Independent School Dis-
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trict to replicate the SR study. Although the Dallas model for esti-

mating teacher effects controls for many covariates, MJGAB—unlike

the models of SR and Rivers—consistently find large persistent

teacher effects across multiple cohorts and on both reading and

math scores. The authors provide insufficient details on their model

results, the extent of incomplete student records, and the psycho-

metric properties of their test for us to completely evaluate the accu-

racy of their estimated values, but their study is valuable because

they corroborate the results of SR and Rivers, even with a very differ-

ent approach.

MJGAB analyze data from five cohorts defined by grade in 1997:
fourth graders (with data from grades 1–4); fifth graders (with data
from grades 1–5); sixth graders (with data from grades 2–6); seventh
graders (with data from grades 3–7); and eighth graders (with data
from grades 4–8). They conduct four separate analyses on these co-
horts. The first analyzes math scores from all students with four com-
plete years of math scores. The second analyzes reading scores from
all students with four complete years of reading scores. The third and
fourth analyses replicate these analyses, restricting the sample to all
students with five complete years of test scores in reading or math.
Fourth graders are excluded from the last two analyses. All analyses
use the Iowa Test of Basic Skills (ITBS) survey form as the measure
of achievement.

The authors use teacher-effect estimates from the Dallas Value
Added Accountability System (DVAAS). DVAAS uses a three-stage
approach to estimating teacher effects. In stage 1, it removes the ef-
fects of so called “fairness variables” from current-year and past-year
scores and attendance rates. The fairness variables are ethnicity-
language proficiency (limited-English proficient—LEP, black [not
LEP], Hispanic [not LEP], and other), gender, free-lunch status (two
levels), and first- and second-order interactions of these three vari-
ables. The fairness variables also include census-block level measures
of income, poverty, and college attendance (defined at census-block
level for the student). For current-year and prior-year reading and
math scores, DVAAS fits linear models to predict the scores from the
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fairness variables. It retains residuals from these models for the next
stage of estimation. The residuals are standardized within strata de-
fined by the regression model’s predicted values for the outcome.
Webster and Mendro (1997) provide details of the standardization.

Stage 2 of the DVAAS estimation procedure models the first-
stage residual for the current-year score as a function of first-stage re-
siduals for prior-year scores, prior-year attendance, and school-level
variables. The model also includes interactions between the school-
level variables and the residuals for the prior-year outcomes. School-
level variables included in the model are school-level mobility, crowd-
edness, percentage minority, percentage black, percentage Hispanic,
percentage free lunch program, and the averages of the census-block
level fairness variables. The model also includes random school effects
and random slopes on predictor that vary by school (stage 1 residuals
for prior-year outcomes and attendance). The residuals for individual
student scores from the stage 2 models are called stage 2 residuals and
are saved for the final stage of estimation.

Stage 3 estimates teacher effects as the classroom averages of the
stage 2 residuals. The procedure produces separate estimates for
teacher effects on the ITBS math and reading scores. Details on the
Dallas teacher effects are presented in Webster and Mendro (1997).

MJGAB use the final stage 3 estimates as their measures of
teacher effectiveness. For the analyses with four years of data, teachers
are given ratings of one to five corresponding to the quintile of their
stage 3 estimated effect, with one denoting the smallest effects and
five denoting the largest. For the analysis with five years of data,
teachers were sorted by the size of their estimated effects and grouped
into three roughly equal size groups numbered one, two, and three
from smallest to largest effects. A teacher’s rating equaled the group
number.

MJGAB begin by fitting models analogous to those of SR. The
models include pretest scores as a covariate, and they include teacher
ratings for each of three or four years depending on the analysis.
Teacher ratings are included in the model as a series of four or two
indicator variables depending on whether there are five or three rating
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values. MJGAB do not report the models but state that teacher effects
were highly significant.

The authors also note that students taught by an ineffective
teacher in one year do not make up for this loss even after additional
years of schooling. They demonstrate this effect by showing outcomes
(means for normal curve equivalents or percentile) for pairs of groups
of students. The pairs have similar average percentiles on the pretest,
but one group in each pair had ineffective teachers in the first year
(after the baseline), while the other group had effective teachers. The
authors present 18 such pairs; regardless of the effectiveness of the
teachers in the ensuing years, the group with an ineffective teacher in
the first year always scored lower on the final test. The authors pre-
sent results for both reading and math and for students with both
four and five years of data. The consistency of these results is impres-
sive, but the authors do not present sample sizes and they had many
groups from which to choose. They do not discuss how many com-
parisons, if any, contradicted these findings.

Kain (1998) reanalyzed a subsample of the data used by
MJGAB. He used data through 1996 for students with four complete
years of data to that point. He fit linear models using 1993 scores and
the teacher-effect ratings for 1994, 1995, and 1996 as covariates in
his models. His models were linear in the teacher ratings. He repeated
the analysis using scale scores and the natural log of the scale scores.
He found that teacher effects for every year were statistically signifi-
cant predictors of final-year scores. The results were similar across
grades and subjects and were not sensitive to transformations of the
outcome.

Neither Kain (1998) nor MJGAB made any corrections for
measurement error in the pretest scores and this could result in bias
in the estimates for the other coefficients. Also, the results do not ap-
ply to students who transfer or miss testing for other reasons. Fur-
thermore, they do not provide sufficient details on their results for a
careful evaluation of the estimated effects. The value of these papers is
in corroborating of the results of SR and Rivers. Kain and MJGAB
use a very different stage 1 approach than SR and Rivers do. Their
stage 1 model aggressively removes covariates—possibly overcorrect-
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ing estimated teacher effects if true teacher effectiveness is correlated
with the characteristics of the students they teach. However, the
authors find that teacher effects persist. This result was determined
independently by Kain and MJGAB and was robust to nonlinear
transformations of the outcome measure. Moreover, because the
MJGAB and Kain analyses control for many student characteristics,
including neighborhood effects, the estimated teacher effect should be
relatively unconfounded by other classroom effects.

Summary

Overall, the consistency of results across SR, Rivers, MJGAB, and
Kain, combined with our simulation study of the SR methodology,
suggest that teacher effects from prior years are correlated with future
test scores—even several years later. The size of the effects is possibly
overstated in SR, but our simulation study suggests that SR’s results
are unlikely when true effects are zero. Rivers removes the con-
founding of teacher and classroom effects and also finds persistent
effects. The findings of MJGAB and Kain, which control for many
student variables, further support interpreting these results as due, at
least in part, to teachers.

Teacher Effects Differ by Level of Student Achievement

Summary: SR explore not only the cumulative effects of teachers but

also how teacher effectiveness varies with the level of student

achievement. They purport to show that students from the lowest

level of achievement are the first to benefit from more-effective

teachers. However, we determined that the authors’ findings are ar-

tifacts of the analysis and cannot be interpreted as measuring inter-

actions between teacher effectiveness and student achievement.

To study the issue of the differences among students in the impact of
teacher effectiveness, the authors classify grade 5 students by grade 5
teacher quintiles (as defined above) crossed with the student’s level of
achievement. Level of achievement equals the average of the fourth
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and fifth grade scale scores grouped into four categories defined by
50-point intervals from 650 to 849. Within each cell of the cross-
classified table, SR report the mean gain score. They repeat the table
for each of the two districts used in their study.

The authors find that within each level of student achievement,
average student gains increase with teacher effectiveness. The table
also shows that within each quintile of teacher effectiveness, gains are
negatively related to achievement—students with the lowest level of
achievement make the greatest gains. The authors interpret this
finding as indicating that students with the lowest levels of achieve-
ment are the first to benefit from more-effective teachers.

The table cells and cell means depend on three variables for each
student:       r = y5 − by4,        d = y5 − y4 ,  and    m = ( y4 + y5)/ 2,  where
y4  and y5  denote the fourth and fifth grade scale score respectively
and b equals the estimated regression coefficient from the model pre-
dicting fifth grade scores from fourth grade scores. Teacher effects
depend on the class mean of r.9 Achievement is defined by m and cell
means equal the mean of d.

The three variables r, d, and m are linear combinations of just
two scores,     y4  and   y5 . Therefore, ignoring the sampling error in b,
conditional on any one variable the other two variables have correla-
tion 1 or –1. It is straightforward to show that, conditional on m, the
correlation between r and d is positive when b > 0—that is, when
fourth and fifth grade scores are positively correlated, which almost
surely holds for the SR study. Conditional on r, d and m are nega-
tively correlated when b is less than 1. The coefficient b is less than 1
when scores “regress toward the mean,” so that students who score at
the extremes in fourth grade tend to be less extreme in fifth grade.
Regression to the mean is nearly universal in test scores, so we feel
confident that b is less than 1 in the SR data for both districts.
                                                
9Because SR use the best linear unbiased predictors (BLUPs) to estimate teacher effects, the
teacher effect equals the classroom mean pulled back or shrunken toward zero to reduce
variance in the estimated effect. The amount of shrinkage toward zero depends on the num-
ber of students in the class. The fewer the number of students, the greater the shrinkage
(Searle, Casella, and McCulloch, 1992).
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Thus, the positive correlation between quintile and gains condi-
tional on achievement is likely an artifact of the perfect positive cor-
relation between r and d conditional on m. Likewise, the negative
correlation between gains and achievement level conditional on
teacher quintile is likely to be an artifact of the perfect negative cor-
relation between d and m conditional on r. The findings are difficult
to interpret because of structural relationships between these vari-
ables. Alternative analysis strategies are necessary if one wishes to ex-
plore the important questions about how teacher effects vary with
student achievement.
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CHAPTER FOUR

Modeling Longitudinal Data to Estimate
Teacher Effects

Estimating the effects of teachers by modeling longitudinal data on
student achievement raises a number of important statistical and psy-
chometric issues, some of which require analyst decisions. These are
partially overlapping, but for clarity, we break them into four groups:
basic issues of statistical modeling; issues involving confounders,
omitted variables, and missing data; issues arising from the use of
achievement test scores as dependent measures; and uncertainty about
estimated effects.

Our considerations of these issues are made with respect to crite-
ria about how useful estimates of teacher effects should behave. As
discussed in Chapter Two, we assume that analysts have defined true
teacher effects in a way that is reasonable for their intended uses.
Questions about estimator performance then center around a few key
principles. First, statistical estimates of teacher effects should be close
to the true effects, however they are conceived. Second, estimates
should be relatively invariant to different plausible estimation proce-
dures or modeling choices; if estimates vary appreciably across mod-
els, the resulting uncertainty of findings should be considered
(Lindley, 2000). Finally, to the extent that estimated effects deviate
from true effects, these estimation errors should not be related to
characteristics of students or teachers or other identifiable factors.
Correlation between estimation errors and student characteristics, for
example, would undermine the motivating purpose of VAM, which is
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to isolate teacher effects from other factors affecting student achieve-
ment.

In the following sections, we discuss in detail a number of cir-
cumstances and analyst decisions that may affect the ability of statisti-
cal estimates of teacher effects to achieve these ideals. Some of the is-
sues require somewhat esoteric discussions of technical details. Table
4.1 organizes the issues presented in this chapter. In addition, we
summarize the key points in a paragraph at the beginning of each sec-
tion to allow readers to ascertain the key points without reading all
the technical discussion.

General Issues of Statistical Modeling

In this section, we discuss the choice of a basic model for analyzing
scores and the specification of teacher effects as either fixed or ran-
dom. The following sections describe some models commonly used
in VAM to estimate teacher effects and variance components. This
discussion is predicated on the assumption that the analyst has data to
support VAM and models must be sensitive to the available data. The
unique feature of VAM is the use of longitudinal data on students to
estimate teacher effects. Thus, the data system must include test
scores from multiple grades for individual students. The test should
have well-established psychometric properties and measure the attrib-
utes of interest. For example, a test of basic skills might be inappro-
priate if the analyst is interested in estimating a teacher’s effectiveness
at teaching advanced skills. The database must also contain links be-
tween students and their teachers, schools, and school districts in-
cluding data on team teaching. Inclusive data tracking systems that
follow students across schools and districts will limit the number of
students who are missing some test scores. In addition to scores and
linking information, the ideal data would include a large number of
variables describing student background demographic, socio-
economic, family, and neighborhood characteristics. In reality, these
data often are limited to a small number of variables such as race-
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Table 4.1
Factors That Can Influence VAM Estimates

General Issues of Statistical Modeling

Analysts must choose among the alterna-
tive modeling approaches that are avail-
able for VAM estimation. We discuss the
alternatives and present relative
strengths and weaknesses.

Specific topics covered:

Basic models for analyzing achievement
    gains
Specification of teacher effects as fixed
    or random

Omitted Variables, Confounders, and Missing Data

Many factors other than the current year
teacher influence student achievement.
Also, longitudinal data often are incom-
plete. We discuss the implications of
omitting or incorrectly specifying factors
in models for teacher effects and the
impact of missing data.

Specific topics covered:

Importance of the inclusion of student
    background variables as covariates
Disentangling school and district effects
    from teacher effects
Disentangling the effects of earlier
    teachers and schools from estimated
    teacher effects
The effects of incomplete records
Linking students to teachers

Issues Arising from the Use of Achievement Tests as an Outcome

Student achievement is measured imper-
fectly by tests, and alternative test con-
structions can change inferences about
achievement. We discuss choices in timing
of measurement and test construction
that might influence inferences about
teachers.

Specific topics covered:

The effects of timing of tests
Issues posed by the construction and
     scaling of tests
Inflation of test scores
Using achievement measures as a proxy
    for measures of teacher effectiveness
Modeling in the presence of
    measurement error

Uncertainty in Estimated Effects

Errors in estimated effect arise from
variability in the students’ score as well as
uncertainty about the appropriate statis-
tical model. We discuss the implication of
both sources of errors.

Specific topics covered:

Sampling error
Other sources of uncertainty
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ethnicity, native language, and participation or eligibility for free or
reduced price lunches. Finally, additional information about teachers
and schools, such as professional preparation and educational re-
sources, could also be beneficial.

Basic Models for Analyzing Achievement Gains

Summary: Analysts generally have used one of three approaches to

analyzing longitudinal data to estimate teacher effects:  “covariate

adjustment models” that regress current scores on prior scores; “gain

scores models” that treat successive-year gains as outcomes; and

“multivariate models” that directly model the full joint distribution

of all student outcomes. Because of differing assumptions, the three

approaches have different strengths and weaknesses, and none is

superior under all circumstances. In general, however, as a statistical

model for estimating teacher effects, the multivariate model will of-

ten be preferable because of its flexibility and efficient use of the

available data.

VAM seeks to determine the effects of incremental inputs—in the
case we consider, the incremental effects of teachers—on educational
achievement, accounting for prior achievement. This endeavor is
challenging because students exhibit growing achievement during ex-
posure to changing environments (e.g., different teachers’ class-
rooms.) Analysts have generally used one of two broad approaches for
analyzing longitudinal data from students to estimate teacher effects.
The first approach, which itself subsumes two distinct classes of mod-
els, separates the analysis of the longitudinal data into a sequence of
univariate problems where the outcome measures and students are
nested within classes each year. The other approach is to model si-
multaneously the joint distribution of all measurements, as well as the
changing environments in which those measurements are made. Al-
though all these modeling approaches are in some sense multivariate,
when discussing the approaches below, we use the term “univariate”
for the former approach (sequentially modeling single outcomes) be-
cause the outcome is univariate, and we use the term “multivariate”
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for the latter approach (jointly modeling multiple years of scores) be-
cause the outcome is multivariate.

The two classes of models comprising the univariate approach
are what we term “covariate adjustment models” and “gain score
models.” Covariate adjustment models specify the current score as a
function of the prior score and possibly other covariates, using sepa-
rate models for each year and explicitly linking students’ scores to the
effects of their current teachers only. These models could take any
number of forms, but the common ones specify current scores as lin-
ear functions of the covariates. We use the term to refer only to mod-
els that assume linearity, except where specifically noted otherwise.
Rowan, Correnti, and Miller (2002), Sanders and Rivers (1996), and
DVAAS (Webster and Mendro, 1997) are recent examples of the co-
variate adjustment approach. This approach has a long history for
modeling education production functions, including estimating
teacher effects (see Hanushek, 1972; Murnane, 1975).

The covariate adjustment model assumes that

yt = mt + byt −1 +Tt + et (4.1)

where yt  denotes the student’s score at time t = 1, 2, …, p, mt  is a
student-specific mean that might depend on student characteristics
and other variables,   Tt  are teacher effects, and  et  are residual errors
that are assumed to be Gaussian (normally) distributed and inde-
pendent of   yt −1and the teacher effects. The models are fit separately
for each year of data so that the only use of information from multi-
ple years is through the prior-year covariate.

Alternatively, gain score models specify a one-year gain score
(current score less prior score) separately for each year and link stu-
dent gains to their current-year teacher’s effects. In recent VAM
models (e.g., RCM), these gains have been measured from spring of
one grade to spring of the next, although one might also measure
gains from the start of a grade until its end. Specifically the gain score
model assumes:

    yt − yt −1 = mt + Tt + et (4.2)
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where the terms are analogous to those for the covariate model.
Again, the residual errors are assumed independent of the teacher ef-
fects and Gaussian (normally distributed). Because each year is mod-
eled separately, estimated effects cannot use information from multi-
ple years.

Both the covariate adjustment and gain scores models might
treat the teacher effects as fixed or random (see next section) and may
include covariates as part of the specification of mt . To keep the no-
tation simple, we often use the same notation for analogous terms
(e.g., the mean or the teacher effect) from the various models pre-
sented in this section. This reuse does not imply that the terms are
equal across models.

There has been a substantial and long-standing debate over the
use of gain scores or covariate adjustment models (see for example,
Thum, 2003; Rowan, Correnti, and Miller, 2002; Rogosa, 1995; Al-
lison, 1990; Bryk and Weisberg, 1977). Lord (1969) showed that
even in simple situations, the two methods may give different results.
The two approaches describe the dynamic system of student learning
differently, and thus neither is necessarily correct for any application
or consistently “better” than the other. As noted by Bryk and Weis-
berg (1977), “. . . the choice of an appropriate analysis method is
highly sensitive to assumptions about the nature of individual
growth.” Because both approaches can perform poorly for some mod-
els of growth, Bryk and Weisberg (1976 and 1977) and others (see
Rogosa and Willett, 1982) suggest modeling growth rather than us-
ing these two more common approaches. We do not advocate one
method over the other as a means of estimating teacher effects, but
rather list the relative advantages and disadvantages of each method
later in this section.

The second major analytical approach for estimating teacher ef-
fects, which we term “multivariate modeling,” is distinctly different
from either of the univariate approaches. Multivariate models directly
specify a joint distribution for the entire multivariate vector of scores
for the student. The models express the score means as a function of
time, specify the variances and correlations between pairs of scores for



Modeling Longitudinal Data to Estimate Teacher Effects    57

different years, and link students’ scores to teacher effects from mul-
tiple years. Recent examples of this approach include the TVAAS lay-
ered model, the cross-classified models of Rowan, Correnti, and
Miller (2002) and Raudenbush and Bryk (2002), and the persistence
model we introduced in McCaffrey et al. (2003).1

We provide some specific examples of multivariate longitudinal
models. In this section, we give simple versions of the model; more
details can be found in McCaffrey et al. (2003) and the references
cited below. Across the models, for time t, we let yit  denote the stu-
dent’s score,  mt  denote the mean score for the relevant population,

  Tt  the student’s teacher, and   eit  the residual error term. To be con-
crete, we present models for three years of data and for a single sub-
ject (e.g., math or reading) and a single cohort of students.

The cross-classified model assumes that student achievement is
growing linearly over time and the parameters of this growth trend
are student dependent. In other words, a student’s growth is given by
mi + bi t . Teacher effects are permanent deflections from this trend
line (Raudenbush and Bryk, 2002). For three years of testing, the
model is given by

    

yi1 = mi +bi + T1 + ei1

yi2 = mi + 2bi +T1 + T2 + ei2

yi3 = mi +3bi + T1 +T2 + T3 + ei3  . 

(4.3)

The student-specific intercepts and slopes,   mi  and  bi , are as-
sumed to be Gaussian (normally distributed) random variables that
are independent across students, with means m and b, variances vm
and   vb , and covariance   vmb , all of which are unknown and estimated
from the data using maximum likelihood methods. The random in-
tercepts and slopes are also assumed to be independent of the Gaus-
sian residual error terms, the  eit ’s, which are assumed independent of
each other. That is, the random slopes and intercepts are assumed to
                                                
1 Some readers might refer to joint modeling as growth modeling. However, because some
of the common examples do not provide explicit functional models for growth, we use the
term multivariate modeling.
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fully capture all the student-related influences on scores. Teacher ef-
fects are assumed to be mean-zero Gaussian random variables that are
independent of all the other variables in the model. Because teacher
effects are assumed to have mean zero, they are relative to those of the
average teacher for the population.

Because teacher effects are permanent deflections, the effects
persist and accumulate in the model for testing at later grades. The
model can be extended to include student covariates and nonlinear
terms. For example, RCM included a fixed quadratic term in time in
the cross-classified model they used to estimate teacher effects (see
Chapter Three for details). The cross-classified model is the only
model that explicitly models individual growth curves. The other
longitudinal models make no explicit assumptions about growth. In-
stead, they allow the means to vary across test administrations, which
implicitly accommodates certain growth models.

TVAAS uses what is called a layered model because models for
later years of teacher effects build upon the layers from the earlier
years. For clarity of presentation, we present a simple version of a lay-
ered model, given by

    

yi1 = m1 +T1 + ei1

yi2 = m2 +T2 + T1 + ei2

yi3 = m3 +T3 +T2 +T1 + ei3 . 

(4.4)

The key feature of the layered model following the basic TVAAS
specification is that the means depend only on time and the school
district—the model does not include covariates or school effects.
Teacher effects are relative to average teachers in the school district.
Teachers affect student achievement when students are in their
classes, and this effect persists undiminished at all future years of
testing. Teacher effects are independent Gaussian random variables
and independent of the residual errors. The residual error terms have
mean zero; variances that can differ across time points and pairwise
covariances are unrestricted—the covariance for each pair of time
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points has a separate parameter.2 All the variance and covariance pa-
rameters are estimated from the data using maximum likelihood
methods. The complex correlation among the residual errors of the
repeated measures of students is meant to provide a means of ac-
counting for student-specific effects on scores and is used in place of
covariates for students. The TVAAS specification used by Tennessee
to produce teacher effects jointly models scores for five subjects and
multiple cohorts. Sanders, Saxton, and Horn (1997) and Ballou,
Sanders, and Wright (2003) provide details on the TVAAS layered
model.

In McCaffrey et al. (2003), we suggest an alternative to the lay-
ered model that allows for the estimation of the strength of the persis-
tence of teacher effects in later years. The model is given by

yi1 = m2 +T1 + ei1

yi2 = m2 +T2 + a21T1 + ei2

yi3 = m3 +T3 + a32T2 + a31T1 + ei3  . 

(4.5)

The parameters, a21 , a32 , and a31  determine the persistence of
prior year teacher effects on current year scores. We call this the per-
sistence model because it models the persistence of teacher effects. (In-
terpretation of the a’s is discussed later in the section on modeling
prior-year teacher effects.) As with the layered model, the variance of
the residual errors is allowed to change across years and the correla-
tions between errors terms are unspecified and estimated from the
data. Model parameters are estimated using maximum likelihood
methods. We suggest extending the model to include covariates and
to model school effects.

Because of disparate assumptions made by the three approaches
(covariate adjustment, gain score, and multivariate models), the ap-
proaches have different strengths and weaknesses. We briefly discuss
these features below, and conclude with some general recommenda-
tions.
                                                
2 Variance and covariance parameters are constrained so the covariance matrix is positive
definite.



60    Evaluating Value-Added Models for Teacher Accountability

Covariate Adjustment Models. Because it subdivides the mod-
eling of the vector of scores into parts where students are fully nested
in classrooms, the covariate adjustment model is simple to specify and
fit using any standard statistical software package for linear mixed
models. It has an additional intuitive appeal because it can be inter-
preted as all students starting at the same initial level of achievement.
However, the estimates will be sensitive to the year chosen as the
starting value (see Bryk and Weisberg [1977] and Rogosa and Willett
[1982]). In addition, the regression function 

      E( yt yt −1)
 
can be

thought of as predicting the student’s achievement with the average
teacher (see Chapter Two), as opposed to his or her actual teacher,
even if test scores from successive years are not on a single develop-
mental scale. One of the greatest strengths of the covariate adjust-
ment approach is its ability to be extended naturally, via higher-order
polynomial terms, to models where scores from successive years are
nonlinearly related (although, as noted in Rogosa and Willett [1982],
the form of the nonlinear models will be sensitive to the year of test-
ing).

The primary disadvantage of the covariate adjustment model is
that fitting the models separately for each year of data ignores impor-
tant information. It ignores information about student performance
in other years that can account for individual student factors and re-
duce the sampling error and possibly the bias in the estimate of the
current-year teacher effect. It also ignores the fact that scores from the
future hold information about teachers in the past. Ignoring this
information results in what statisticians call inefficient estimates,
implying that an alternative technique (e.g., jointly modeling the
multiple years of data) could yield estimates with less sampling error.
Inefficient estimates will result in larger errors in estimated teacher
effects and make inferences about teachers more difficult than effi-
cient estimates will.

If the residual error terms in model 4.1 were independent across
years, then the estimates would be efficient. But this holds only under
restrictive (and thus unrealistic) conditions for the persistence of
teacher effects across years, the functional form for growth in
achievement, and the covariance among a student’s scores.
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Measurement error in test scores can also be problematic for es-
timating teacher effects with the covariate model. Although test scores
are fallible measures of achievement, analysts applying a covariate-
adjustment model to estimate teacher effects implicitly or explicitly
assume error-free measurement of prior achievement. When meas-
urement error in the prior-year scores is ignored, estimates of the
model coefficients are biased. Analytic results suggest that if students
are randomly assigned to classes and the distributions of the error-free
values of students’ prior-year achievement are similar across classes,
measurement error will not result in any systematic errors in teacher
effects. However, analysts usually assume that students are not ran-
domly assigned and that the distribution of prior achievement does
vary across classes. In this case, when distributions of the error-free
values of prior achievement differ across classes, measurement error
can result in systematic errors in teacher effects. Measurement error
can be thought of as creating an omitted covariate; our discussion on
the effects of omitting covariates from the model describes a situation
in which measurement error is likely to result in bias in teacher ef-
fects.3

A third disadvantage to covariate models is that students missing
either the prior-year or current-year test scores are excluded. Dis-
carding partial data is again inefficient. Furthermore, if students who
are missing scores differ systematically from other students, the esti-
mates can be biased (see our discussion on missing data for details).
Specialized methods, such as imputation or weighting, are required to
avoid bias and use all the available data.
                                                
3 As noted by many authors, estimates of treatment effects from observational studies are
very sensitive to the assumption that the coefficient on yt-1 is constant across all students and
treatment and control groups. We suspect that similar sensitivity would occur for estimating
teacher effects for observational data with VAM. We are unaware of any direct studies of the
sensitivity of teacher effects to the assumption of a constant effect for prior achievement, but
we expect that bias would result. However, all the alternative models also assume constant
teacher effects across students, so it is not clear whether any of the alternatives would provide
better estimates of the teachers’ average effects if effects are not constant and students differ
across classes.
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Gain Score Models. Like the covariate adjustment model, the
gain score model is easily specified and fit using standard software.
Furthermore, gain score modeling completely accounts for factors
that affect only students’ levels of achievement. Covariate adjustment
models do not necessarily completely remove such factors. On the
other hand, as with covariate models, the gain score model, by treat-
ing pairs of gains on the same student as independent, is discarding
potentially valuable information about individual students that could
improve efficiency. In addition, the gain-score approach models
growth, and growth is confounded with changes in the test when the
scale of the test changes across years. Thus, it is difficult to interpret
gain score models for measurements that are not on a single devel-
opmental scale. Finally, the gain score model shares two of the poten-
tial limitations of the covariate adjustment model: Special methods
are required to accommodate partial records, and the model is consis-
tent with only a single assumption about the persistence of teacher
effects (namely, that teacher effects on student-level scores persist in-
definitely and undiminished).

Multivariate Models. By dealing with the joint distribution of
the student outcomes, multivariate models afford a number of advan-
tages. Within the class of linear models, the models are exceedingly
flexible, allowing the specification and estimation of a large class of
submodels. Indeed, under certain assumptions (see McCaffrey et al.
2003), the covariate adjustment and gain scores models can be viewed
as special cases of the multivariate model specified in 4.4. The models
allow analysts to explore a variety of assumptions about the persis-
tence of teacher effects as well as the residual covariance of student
outcomes. By explicitly modeling the latter, the models efficiently use
the available data, and exploiting the residual covariance also makes
the models robust to omitted variables in some circumstances
(McCaffrey et al. 2003). The models easily accommodate partial stu-
dent records, and under certain assumptions (see the section “The
Effects of Incomplete Records”) this provides a further avenue for
increased efficiency and less bias in estimates. Finally, while multi-
variate models such as the layered model and the cross-classified
model are interpretable only when scores are on a single developmen-
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tal scale, the more general specification of the multivariate model
provided by McCaffrey et al. (2003) removes that restriction for lin-
early related scales.

The primary disadvantage of the multivariate models is extreme
computational burden. Only certain special cases can be specified
easily using standard publicly available linear mixed model packages,
and even when models can be specified, in most cases they can be fit
only to modestly-sized data sets. While progress is being made to
overcome these computational challenges (Rasbash and Goldstein,
1994; DebRoy and Bates, 2003), widely available and flexible solu-
tions are still lacking.

Specification of Teacher Effects as Fixed or Random

Summary: Statistical models can specify teacher effects as “fixed ef-

fects,” which assume that the observed teachers are the only teach-

ers of interest, or “random effects,” which assume that the observed

teachers are a sample from a larger population of teachers of inter-

est. The two methods will tend to yield similar conclusions about the

variability of teachers but will provide different estimates of individ-

ual teacher effects. The differences result from different strategies of

the methods for dealing with inherent sampling error of estimated

effects.

Statistical models for repeated measures on a single unit, such as mul-
tiple students in a classroom or multiple teachers in a district, can
treat those units as either fixed or random (Searle, Casella, and
McCulloch, 1992).4 If the units are treated as fixed, then the ob-
served units are assumed to be the only units of interest. Random ef-
fects assume that the units are drawn from a larger population of
                                                
4 We use the term fixed teacher effects to denote the model where the population of teachers
is assumed to be fixed, all teachers in the population are in the sample, and a constant effect
is associated with each teacher. The models are often characterized by including indicator or
dummy variables for each teacher in the regression model for estimating effects. The term is
also used in other ways—in ANOVA, to refer to all models in which one does not generalize
past the levels of factors included in the model and in multi-level modeling, to refer to mod-
els in which coefficients are fixed. We do not use fixed effects in those senses.
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similar but unobserved units and that variability among the observed
units describes variability in the population. In VAM applications for
estimating teacher effects, the primary design choice is whether to
model teacher effects as fixed or random. The choice might depend
on the particular VAM application. For example, random effects are
the natural approach when variance components are of primary inter-
est. Alternatively, in a model fit to data for the specific intention of
making inferences about a particular set of teachers (e.g., as might be
the case in an accountability setting), fixed effects might be prefer-
able. Early VAM applications (for instance, Murnane, 1975, and Ha-
nushek, 1972) primarily used fixed effects, while more recent applica-
tions (including the TVAAS layered model) have used random effects
almost exclusively.

For some inferences, the choice between fixed or random effects
models will not be of much consequence. For example, although
models with fixed teacher effects do not provide the direct estimates
of the variance among teachers in effectiveness that random effects
models supply, the traditional R2 from such models can be used to
make an analogous inference (i.e., the percentage of the total vari-
ability in the outcomes explained by the teachers). Similarly, both
approaches provide tests of the null hypothesis that all teacher effects
are equal.

However, for other inferences, the choice between fixed and
random effects may have important statistical ramifications. Assum-
ing fixed effects results in estimated teacher effects that depend only
on the teacher’s students, possibly adjusted for the students’ charac-
teristics and correlation between scores (or gains) from other years
depending on the exact model used. In contrast, when effects are
treated as random, the effects are estimated by what are known as best
linear unbiased predictors (BLUPs, or, more precisely, estimated best
linear predictors, EBLUPs, because estimated variance components
are used in calculating the BLUPs) or empirical Bayes estimators
(Raudenbush and Bryk, 2002).5 The key feature of these estimators is
                                                
5 Fully Bayesian analyses are possible but have not been used to this point, so we focus on
non-Bayesian methods.
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that they use data from all teachers to estimate each teacher’s effect.
This is accomplished by what is known as “shrinking.” For very sim-
ple models, the estimated teacher effect is given by

ˆ θ i = λi ( y i − y )

where y i  denotes the average outcome for the teacher’s own students
and   y denotes the average outcome for all students. The weight λi  is
less than 1 so the deviation between the classroom mean and total
sample means is “shrunk” back toward zero. The BLUP downweights
the deviation from the average classroom. The fixed-effect estimate
equals the deviation not shrunken toward zero.6 The amount of
shrinking depends on the precision of the teacher’s classroom mean
and the overall variability among teachers. Greater precision in class-
room means and greater variation among teachers both result in less
shrinking (Robinson, 1991). In more-complex models, the deviations
account for covariates in the model and other sources of correlation.
But the basic structure remains: Random-effects models involve
shrinking deviations toward zero.

Estimating teacher effects with a random-effects model has both
advantages and disadvantages. One advantage is that shrinking re-
duces the variance of an estimate of an individual teacher effect rela-
tive to the fixed-effect estimate. In addition, random effects facilitate
modeling prior-year teacher effects by allowing those effects to persist
at some level into the future. (See for example, the descriptions of the
general model, the layered model, and the cross-classified models in
McCaffrey et al. [2003].) Fixed effects could also be modeled across
time, but such a model is less straightforward.

The downside of random-effects models is that by shrinking es-
timates toward the overall mean, random effects force estimated
teacher effects to deviate from the true unobserved effects; i.e., they
introduce bias. In particular, if the teacher’s class is small or the preci-
                                                
6 When classes have differing numbers of students, the random effects estimator uses a
weighted mean of classroom means rather than the overall average,  y . In such cases, fixed
effects analyses still use   y . However, the heuristic notion remains: Random effects shrink
deviations back toward zero and fixed effects do not.
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sion of the average measure for the class is small (where the measure
might be a residual after adjusting for covariates in the model), the
shrunken estimate can be far below the teacher’s true effect for highly
effective teachers and far above the teacher’s true effect for extremely
ineffective teachers. Although shrunken estimates minimize the aver-
age across teachers of the squared error between estimated and true
effects (Carlin and Louis, 2000; Raudenbush and Bryk, 2002), they
do not provide optimal estimates for individual teachers. In particu-
lar, for a teacher whose effect is far from the mean, less shrinkage
might provide an estimate with smaller expected squared errors,
where expectation is over the possible classes of students the teacher
might have taught (Carlin and Louis, 2000). The large deviations be-
tween estimated and true effects for the individual teacher might be
unacceptable for some inferences. For example, if accountability deci-
sions are made on the basis of a teacher’s effect being extreme in the
distribution, teachers with small classes will tend to be excluded from
accountability actions.

Random-effects modeling also requires specification of the dis-
tribution of random effects. All VAM applications we examined as-
sumed Gaussian (normally) distributed random effects. The amount
of shrinking will depend on this distributional assumption. There is
little theory for selecting the distribution, and the empirical evalua-
tion of the distribution is difficult. Nonparametric techniques and
Bayesian techniques relax the assumption for specifying the distribu-
tion (see Carlin and Louis, 2000); however, they have not been con-
sidered in VAM applications and should be explored in future re-
search. Specification of the distribution of teacher effects is further
complicated when data from multiple cohorts or subjects are modeled
jointly because such modeling requires specifying the joint distribu-
tion of the multiple effects for any individual teacher. One might also
model the correlations among effects for teachers in the same school.

Because fixed effects do not shrink estimates toward the mean,
the deviations between the estimated effects and true effects will not
necessarily be systematically related to the teacher’s true effect. Fixed-
effect estimates will not necessarily move teachers toward the middle
of the distribution in the same manner as BLUPs do, and deviations
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for individual teachers can be large due to variability in student
scores. Moreover, estimated effects for teachers with small classes will
tend to be more variable than estimates for teachers with larger
classes. Thus, fixed-effect estimates for teachers with small classes will
be more likely to be in the extremes of the distribution. Decisions
based on teachers being in the extreme of the distribution may be ap-
plied more often to teachers with small classes and in a possibly er-
ratic fashion because extreme values will be driven in part by random
fluctuations in scores.

Thus, neither a fixed-effects model nor a random-effects model
is unambiguously better. The statistical implications of the choice
may influence the decision, but it is also partly substantive: The best
decision may depend on the particular inferences that are considered
most important. If the interest is in estimating the variability of
teachers or determining which teacher characteristics correlate with
scores, then random effects are likely to be preferable. If the interest is
in estimating individual teacher effects, then the choice is less clear.
Random-effects models are preferred when estimates that shrink
teachers toward the mean—possibly underestimating the most and
least effective teachers—are less detrimental to the inference of inter-
est than estimates with large but unsystematic errors. Fixed-effects
models are preferred otherwise. When considering the expected
squared error in the estimated effect for a randomly chosen teacher or
an average across teachers, random-effects estimates find an optimal
balance between systematic and random errors. For individual teach-
ers, especially those who deviate substantially from the mean, the
random-effects estimate could be undesirable with large squared er-
ror. Unfortunately, analysts do not know true teacher effects and
therefore do not know which teacher effects should receive less
shrinking. Alternative methods such as those proposed by Stern and
Cressie (1999), which provide better estimates for teachers with ex-
treme effects, warrant future research. Alternatively, sensitivity analy-
ses that explore the possible errors from using random or fixed effects
should be conducted on each individual teacher’s estimated effect be-
fore decisions are based on that effect. In addition, when making the
choice between the two models, one should consider trade-offs be-
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tween the benefits of shrinkage or fixed-effects estimates in the con-
text of the models’ robustness for modeling student covariates be-
cause, as discussed below, omitted covariates differentially affect the
estimates from the two models.

Omitted Variables, Confounders, and Missing Data

VAM uses data collected in an observational setting (as opposed to an
experimental setting). Different schools serve different student popu-
lations, teachers make choices about which districts and/or schools in
which to teach, and districts and/or schools make choices about
which teachers they want to hire. Within schools, principals and
teachers may make judgments about which teachers are best suited to
teach which students. These factors make the assignment of teachers
to students nonrandom and create challenges for estimating teacher
effects. Furthermore, the data collected from this observational set-
ting are subject to a number of problems.

In particular, two types of problems arising from these circum-
stances can distort VAM estimates of teacher effects. First, influences
on student learning that are incorrectly modeled or are not modeled
at all can be confounded or confused with teacher effects. An example
would be a model that does not properly distinguish the effects of
teachers from other effects of the school in which the teacher works.
The second type of problem is incomplete data. In the case of VAM,
two types of incompleteness arise frequently: incomplete data for in-
dividual students over time, and incomplete information on the
linking of students to teachers. In the following sections, we discuss
these problems in detail, beginning with influences that are incor-
rectly modeled and ending with missing data.

Is the Inclusion of Student Background Variables as Covariates

Important?

Summary: The importance of modeling the effects of student back-

ground variables depends in a relatively complicated fashion on the

interaction of several factors. These factors are the distribution across
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classes and schools of students with different characteristics, the rela-

tionship between the characteristics and outcomes, the relationship

between the characteristics and true teacher effects, and the type of

model used. When students are separated into distinct subpopula-

tions (e.g. schools) based on background characteristics that are re-

lated to outcomes, the potential for bias in estimated teacher effects

exists. Under some circumstances, this bias can be mitigated, but in

other cases current methods are not capable of removing bias.

Educators, researchers, and policymakers all generally agree that
schooling is only one of many factors that affect student achievement
and learning (Wang, Haertel, and Walberg, 1993). For example, the
ability and aptitude of individual students contribute to their
achievement. It has long been recognized that numerous family back-
ground characteristics, such as income, parental education, and
ethnicity, are strong predictors of student performance. Peer and
neighborhood effects often are cited as an influence on student
achievement. While there is substantial disagreement about the
mechanisms underlying these relationships—for example, whether
being raised in a single-parent family influences achievement directly
or indirectly through its effect on family income (e.g., McLanahan,
1997)—it is clear that the associations are large. While the relation-
ships between background characteristics and achievement levels are
well accepted, less is known about correlates of gains or growth that
are the measures used explicitly or implicitly by VAM models. How-
ever, there are some data showing that background characteristics
predict gains for some populations (Shkolnick et al., 2002).

These various influences on gains or growth could be con-
founded with and therefore bias estimates of teacher effects, and the
question of whether it is necessary to include these variables in the
model has been an important point of debate in the VAM literature.
Incomplete modeling of additional influences on outcome measures
has long been recognized as one of the fundamental threats to causal
inferences from non-experimental models. We have encountered a
common misperception among analysts and users of VAM results
that because TVAAS does not include covariates, student characteris-
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tics do not need to be modeled for any VAM applications using lon-
gitudinal models. However, this assertion is not necessarily true.
Rather, the importance of modeling background variables depends in
a relatively complicated fashion on the interaction of several factors.
These factors are the distribution across classes and schools of stu-
dents with different characteristics, the relationship between the char-
acteristics and outcomes, the relationship between the characteristics
and true teacher effects, and the type of model used. Therefore, the
importance of modeling student background characteristics when
using VAM to estimate teacher effects remains an empirical question
that must be addressed by each analyst in the context of these specific
factors. In this section, we first describe in detail each of the factors
influencing the potential for bias. We then discuss which combina-
tions of these factors are most likely to introduce bias into estimated
teacher effects.

We begin with the distribution of students with different char-
acteristics because this factor determines whether the other factors can
create bias. If classes are balanced on omitted background variables
(i.e., the distribution of the background variables is the same for all
classes), then the omitted variables have only the effect of increasing
residual (unexplained) variance. They do not result in any bias.
Therefore, we do not consider this case further, and turn our atten-
tion to the more realistic case in which the distribution of the omitted
variables varies across classes or schools. We refer to this as “cluster-
ing” of the omitted variable. For example, average family income,
which is excluded from many VAM models, tends to vary considera-
bly among schools, and greater income is strongly related to achieve-
ment. This clustering is not limited to classes but can occur at the
school level as well—even in longitudinal studies—because students
with differing characteristics might never attend the same schools. For
example, low-income students and high-income students might at-
tend completely different groups of schools (maybe in different dis-
tricts) with no transfer among these schools. Thus, the population of
students is stratified into distinct subpopulations that differ on the
average values of variables that are not included in the model. This
stratification of students into subpopulations that do not mix on the
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basis of variables not included in the model will bias estimated
teacher effects, even with complex models such as the layered or
cross-classified models. (See McCaffrey et al. [2003] for details.)
Whether it is possible to remove this bias by the inclusion of the vari-
ables depends on the other factors that we discuss below.

The first of these factors is the relationship between student
characteristics and outcomes. The critical distinction is between that
of an individual effect and a “contextual” or “compositional” effect
(Raudenbush and Bryk, 2002). An individual effect refers to a charac-
teristic of an individual student that is related to outcomes; for exam-
ple, one might observe that students participating in free and reduced
price lunch programs tend to make smaller gains. Alternatively, a
contextual effect refers to aggregate characteristics of schools or classes
that are related to outcomes. For example, one might observe that
students in schools with a high percentage of students participating in
free and reduced price lunch programs tend to make smaller gains,
and this may be true even for students who do not participate. A
more formal distinction between the two kinds of effects in the con-
text of linear regression models is as follows: Suppose that student j in
school i has characteristic xij, and let xi equal the school-level mean of
these student characteristics. A contextual effect exists when the
relationship between the characteristics and outcomes is of the
form 

      Bxij = B(x ij − x i )+ Bxi  with B ≠ C . Models that include the
only term   Bxij  

implicitly assume that no contextual effects exist be-
cause 

      Bxij = B(x ij − x i )+ Bxi . Below, we discuss issues with control-
ling for student characteristics when contextual effects exist. The dis-
cussion applies to other school- or classroom-level predictors such as
district policies or school governance.

The second factor is the relationship between student character-
istics and true teacher effectiveness. Because teachers are not ran-
domly assigned to schools, there is the possibility that true teacher
effects can be correlated with aggregate student characteristics.
Teachers of different levels of effectiveness may select or be selected
by schools serving different student populations. For example, schools
serving at-risk students are often found to have a greater proportion
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of novice teachers and teachers lacking full teaching credentials
(Shkolnick et al., 2002).

The final factor determining the impact of omitted background
variables on estimated teacher effects in the presence of stratification
is whether teacher effects are estimated with either fixed- or random-
effects models. We first discuss the impact of omitted student-level
covariates ignoring classroom- or school-level variables and contextual
effects. We then turn to adjusting for classroom- or school-level vari-
ables and contextual effects. As we discuss below, methods exist for
accounting for student-level variables when contextual effects are not
present, but no good methods currently exist to adjust for aggregate-
level variables like contextual effects.

Student-Level Variables. In the case of fixed-effects models, con-
founding can in principle be addressed by including the appropriate
background variables, in the appropriate manner, as covariates in the
model.7 Fixed-effects models can remove confounding without intro-
ducing bias regardless of whether or not student-level background
variables are correlated with teacher effects.8 Of course, including the
appropriate variables in the appropriate manner is often difficult, and
the adequacy of these covariate adjustments is often a point of debate.
Variables that are omitted because they are not available (e.g., paren-
tal education) continue to confound estimated teacher effects.
Moreover, if confounding is to be fully removed, the functional form
of the variables must be correct, and the variables should be measured
with little error. Despite these caveats, direct inclusion of available
                                                
7 Recall that we are using fixed effects to indicate that the population of teachers is fixed and
all teachers are represented, in effect, by a dummy variable.

8 Correlation between teachers and student characteristics could occur because teachers are
generally less effective with certain types of students—for example, teachers might be less
effective at teaching students who do not speak English. If this is true, covariate adjustment
for the characteristics associated with less-effective teaching will remove difference in scores
due to less-effective teaching. This might be justified because as a group students with such
characteristics score lower. Therefore analysts might consider low scores to be function of the
students, not of the individual teachers. However, such an analysis might mask the difficulty
of teaching such students and provide an inaccurate estimate of teacher effects. In this case,
the problem is one of defining a teacher effect: If all teachers are less effective with certain
groups, is this a teacher effect or a group effect? The definition will depend on the inference,
and the modeling approach will need to be consistent with the chosen definition.
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variables as covariates in the model would be a natural choice to re-
duce confounding for fixed-effects models.

The situation for random-effects models is more complex. The
statistical models assume that the random teacher effects are inde-
pendent of covariates. Because of this assumption, the estimation
procedure for random-effects models attributes to the covariate the
true effect of the covariate and the portion of the teacher effect that
co-varies with the student characteristics. The teacher-effect estimates
receive only the residual portion of the true effect that is uncorrelated
with the covariate. The estimation procedure exaggerates the esti-
mated effects of the characteristics and understates the effects of
teachers. The model “overcorrects” for the covariate at the expense of
the teacher effect, resulting in bias in parameter values (including
variance components) and the estimated teacher effects. For example,
if teachers with large positive true effects are teaching proportionately
more students from high-income families and we adjust for income,
the model will underestimate the teachers’ effectiveness. The amount
of bias depends on several factors, including the strength of correla-
tion between true effects and covariates and between covariates and
scores.

Thus, analysts cannot add covariates to the model and assume
that the resulting teacher effects are unbiased. If true teacher effects
were uncorrelated with the covariates, then adding covariate would
produce unbiased effects (assuming the specification of the covariates
is correct). However, if true teacher effects were correlated with the
covariates, then adding covariate would produce biased effects. But
excluding covariates will also create bias in estimated effects.9 For
                                                
9 Analysts can use a Hausman specification test to test for correlation between the covariates
and the unobserved random effects (Greene, 1997). This tests the null hypothesis of no cor-
relation between covariates and unobserved random teacher effects. If the test rejects the null
hypothesis, then analysts cannot just include covariates in the model without incurring bias
in estimated teacher effects. If the test fails to reject the null, then analysts might consider
adding covariates to the model. However, failure to reject the null is not evidence that it is
true. Failure to reject the null hypothesis might also occur if the analysis lacks statistical
power to detect the correlation. Specification tests typically have limited power to detect
effects, so adding covariates after failing to reject the null is typically unadvisable and specifi-
cation tests have limited value.
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student-level covariates without contextual effects, this conundrum
can be overcome using methods suggested by Ballou, Sanders, and
Wright (2003). They suggest regressing scores (gains in scores, to be
precise) on covariates while treating teachers as fixed. For reasons dis-
cussed earlier, the estimated coefficients are unbiased. Next, scores are
adjusted by predictions based on the unbiased coefficient estimates.10

Finally, the random effects model is fit using the adjusted scores.
Again, provided the covariate specification is correct, the estimated
teacher effect would be unbiased by student level covariates.

Classroom-Level Variables and Contextual Effects. By treating
teachers as fixed effects and including covariates or by using the Bal-
lou, Sanders, and Wright (2003) method with random-effects mod-
els, analysts can control for student-level variables. However, we
know of no current method to disentangle true teacher effects from
student background characteristics in the presence of classroom-level
variables and contextual effects and correlation between true teacher
effects and student characteristics.

Fixed-effects models attribute all classroom-level effects to
teachers. Because the fixed effects account for all the variability
among classrooms, the model cannot include any classroom-level
variables other than teachers and the mean. Thus, with fixed-effects
models, no direct method exists to adjust for classroom-level variables
or contextual effects.11 For random effects, the methods of Ballou,
Sanders, and Wright (2003) have limited value for classroom-level
variables and contextual effects because their method uses within-
classroom variability to estimate the coefficients. Aggregate-level vari-
ables have no within-classroom variability. Although extensions exist,
they require additional assumptions and data on teachers who change
schools, which are often unavailable. Furthermore, these extensions
did not perform well even with the very large TVAAS application
                                                
10 If the covariates are denoted by the vector x and the estimated coefficients are denoted by
the vector b then the prediction is     u = ′ x b  and the adjusted score is r = y – u.

11 For sensitivity analysis with fixed effects models, the analyst might first regress scores or
gain scores on classroom-level variables; aggregate student-level variable effects and obtain
the residuals; then use these residuals to estimate fixed-effects models. This procedure
overadjusts for the covariates but might be useful for sensitivity analyses.
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considered by Ballou, Sanders, and Wright (2003). Sensitivity analy-
ses that repeat the estimation with and without classroom-level vari-
ables and aggregated student-level variables appear to be the best op-
tion at present.

When faced with the challenge of controlling for covariates,
TVAAS chose to exclude student covariates rather than possibly un-
derestimate teacher effects. The Dallas accountability system made
the opposite choice when deciding on a model for estimating teacher
effects. As discussed in Chapter Three, that system uses a complex
covariate-adjustment model that includes many student background
variables, such as race and language proficiency, at the individual level
and aggregated to the school level. Details are found in Webster and
Mendro (1997). Thus, one team chose to err on the side of possibly
confounding effects and the other chose to err on the side of possibly
overcorrecting.

The problems we have discussed suggest the bias that will occur
when specific conditions hold—for instance, when omitted variables
that predict gains cluster across distinct subpopulations of students
attending different schools. Whether such conditions hold is an em-
pirical question. For example, an examination by Ballou, Sanders,
and Wright (2003) of data from Tennessee and the TVAAS layered
model finds that omitting student-level free and reduced lunch status
does not appear to greatly influence estimated teacher effects when
comparing the traditional TVAAS estimates to those that use their
proposed alternative method. However, they do find evidence that
controlling for contextual effects might have greater effects on their
estimating, suggesting the contextual effect could be resulting in sys-
tematic error when they are omitted from the model. In McCaffrey et
al. (2003), we find similar empirical results in a limited example (see
the section entitled “Sampling Error” for details on this example).

Disentangling School and District Effects from the Effects of

Teachers

Summary: In estimating teacher effects with VAM, the possibility of

school or district effects on student achievement must be considered.

If such effects are omitted from models, they are implicitly subsumed
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by teacher effects, which may bias what analysts conceive to be true

teacher effects. Alternatively, if they are included in models and

teachers of differential effectiveness cluster at the school or district

level, part of true teacher effects will be attributed to schools or dis-

tricts. Analysts must decide which potential error is more acceptable.

Teachers may or may not be the most important input to student
achievement within the formal educational system, but they clearly
are not the only one. Other inputs at the school and district level may
exert appreciable influence as well. For example, a school or district
may influence achievement by providing extracurricular activities, by
establishing policies for evaluating student work, and by less direct
means of influencing the peer group’s attitudes toward achievement.
It is not clear how large the independent contributions of schools and
districts are, and these contributions undoubtedly vary markedly in
size from place to place. Nonetheless, analyses that attempt to esti-
mate the effects of teachers need to be able to distinguish teacher ef-
fects from the effects of the schools and districts within which they
are nested. Here we discuss only school effects, but the same logic
would apply to other levels of nesting.

Simply omitting school effects from the model (as is often done
in recent VAM studies, as well as in the TVAAS layered model) re-
sults in mistakenly attributing these effects to teachers. These school
effects include context and direct and indirect school effects. It is not
entirely clear what share of context and indirect school effects are
properly considered teacher effects. As discussed in Chapter Two, to
the extent that teacher effects depend on the school context or indi-
rect school effects, some inferences require the context effect and
indirect school effects as part of the teacher effect. Other infer-
ences—for example, evaluating the teacher’s effectiveness for the pur-
pose of staffing schools—require separating these sources. Thus, the
impact of excluding school effects from models when context or indi-
rect effects exist will depend on the desired inference and whether or
not these effects should be distinguished from teacher effects. But be-
cause context and indirect effect are completely confounded with
teacher effects, the two can be separated only by untested assump-
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tions, such as an assumption that teacher effects are constant over
time.

Regardless of whether context and indirect effects are part of the
teacher effect, it is clear that direct school effects—the effects that the
school has on students regardless of the teachers in the build-
ing—should not be considered part of the teacher effect. Thus, ex-
cluding schools from the model when these direct effects exist will
result in biased estimates of teacher effects, whereas including school
fixed effects in the model will remove this bias. An additional advan-
tage of including school fixed effects is that student characteristics
that cluster at the school level will not be confounded with teacher
effects, because the effects of the clustered student characteristics will
be attributed to the school.

Unfortunately, modeling school effects, like modeling covari-
ates, is not as simple as adding school fixed effects to remove all the
bias. Empirically distinguishing teacher effects from school effects is
difficult even if context and indirect effects do not exist. If teachers of
varying effectiveness cluster by school, then teacher effects will be
confounded with school effects because typically we cannot track
teachers across schools. Any model that attempts to estimate school
effects will most likely attribute some of the teacher effects to schools.
For example, a model with fixed effects for schools will completely
attribute to the school the difference between the average effect of
teachers in the school and the system-wide average teacher effect. All
teacher effects will be determined relative to other teachers in the
same school. This is because the estimation process essentially first
removes the school effects and then estimates all teacher effects rela-
tive to the schools. For models with random school and random
teacher effects the estimation process does not remove school effects
and estimates teacher effect relative to schools. However, the estima-
tion process will tend to assign variability at the school level to the
school effects, regardless of the sources of the variability. So even with
random school and teacher-effects models, context, direct, and indi-
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rect school effects and heterogeneity of true teacher effects across
schools will all be associated with schools rather than teachers.12

To date, there has been little empirical exploration of the size of
school effects and the sensitivity of teacher effects to modeling of
school effects. However, in McCaffrey et al. (2003) we found—with
a very small heterogeneous sample of schools—that including school
fixed effects greatly changed the inferences about teacher effective-
ness. (Additional details on the example are in the section below enti-
tled “Sampling Error.”) It is unclear whether this difference was the
result of removing school effects or effects of the heterogeneous
grouping among schools of students with different backgrounds. Re-
sults from this small study should not be taken as evidence of the im-
portance of schools, but they do suggest that including school fixed
effects can change inferences about teachers in some settings and
analyses should check for the sensitivity of results to the inclusion of
school effects.

Disentangling the Effects of Earlier Teachers and Schools from

Estimated Teacher Effects

Summary: Because VAM follows students over time, typically linked

to multiple teachers, analysts must develop models for the effects of

prior teachers on current scores. The different modeling approaches

(covariate adjustment, gain score, longitudinal) make different as-

sumptions about how teacher effects accumulate. Gain score models

assume that prior teachers have no effects on current year growth.

All currently used multivariate models (layered and cross-classified)

assume that teacher effects persist undiminished into the future. It is

possible to generalize the multivariate models to allow teacher ef-

fects to affect future outcomes differently from current outcomes.

Underlying VAM is the notion that student learning is cumulative,
and that educational entities—specifically teachers, schools, and
                                                
12 The exact allocation of school-level variance in the random effects model is complex, but
school-level variance—regardless of the source—will generally be attributed to random
school effects and not to teacher effects.
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school systems—make incremental and lasting inputs to student
knowledge. For example, Pederson, Faucher, and Eaton (1978) re-
port on a case study of a teacher who affected student outcomes into
adulthood. More generally, the effects of teachers, schools, and school
systems from previous years are likely to contribute to students’ out-
comes in the current year. To avoid confounding, effective model
structures for scores or gains in the current year must acknowledge
this possibility by accounting for these prior effects. In this section,
we focus for concreteness primarily on the effects of prior teachers
because the considerations and model accommodations appropriate
for prior-teacher effects carry over without change to the effects of
prior schools and school systems. We briefly revisit the latter issue at
the end of the section.

Studies using either the covariate adjustment or gain score mod-
els include only the current-year teacher’s effect in the models for the
current-year outcome (Rowan, Correnti, and Miller, 2002; Webster
and Mendro, 1997; Wright, Horn, and Sanders, 1997). As a result of
this assumption and conditioning on prior scores, the covariate ad-
justment assumes that prior-year teacher effects persist at the same
level as student-level characteristics. Gain score models include only
the current-year teacher effects, implicitly assuming that prior-year
teacher effects do not persist on future gains.

Multivariate models such as the layered model and cross-
classified model include the effects of past teachers in addition to that
of the current teacher in the model for scores at each year. However,
both models assume that teacher effects on level scores (i.e., score for
a single year, not a gain score) persist indefinitely into the future
without diminishing. As shown in McCaffrey et al. (2003), Sanders,
Saxton, and Horn (1997), and Ballou, Sanders, and Wright (2003),
and noted previously in this monograph, this assumption results in
single-year gain scores that depend only on the current-year teacher.
Thus, while these models assume that a teacher has a permanent ef-
fect on a student’s level of performance, they do so by forcing teach-
ers to have no effects on future growth.

As described previously, the persistence model (4.5) allows
teacher effects on level scores to change over time, with the parame-
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ters describing the changes to effects being estimated from the data.
Furthermore, unlike the layered or cross-classified models, the persis-
tence model results in gains that depend on the prior-year teacher ef-
fects. To understand this, consider the model for a student’s grade 2
and grade 3 scores. From Equation 4.5 they are given by:

    y2 = m2 + T2 + a21T1 + e2  (4.6)

    y3 = m3 + T3 + a32T2 + a31T1 + e3 . (4.7)

By subtracting Eq. 4.6 from Eq. 4.7, we obtain the following
equation for the gain score:

      y3 − y2 = (m3 − m2 )+T3 + (a32 −1)T2 + (a31 − a21)T1 + e3 − e2 .

Thus, gains from grade 2 to grade 3 depend on the second grade
teacher through the term (a32 −1)T2  and the first grade teacher
through the term    (a31 − a21)T1 . With the persistence model of
McCaffrey et al. (2003), teacher effects from grades 1 and 2 affect
both level scores at grade 3 and gains from grade 2 to grade 3. In par-
ticular, when   a32 <1, if     T2  is positive then the second grade teacher
has a negative contribution on gains—and vice versa if T2  is negative.
This is a form of regression to the mean because the effects of the
teacher “wear off” over time and the student test scores drift back to-
ward performance that is no longer affected by the second grade
teacher. Conversely, when   a32 >1, if     T2  is positive then the second
grade teacher has a positive effect on growth during third grade—and
vice versa if T2  is negative. When a32  is greater than one, effective
prior teachers accelerate growth and ineffective teachers decelerate
growth.13 Similar results apply to the other a parameters.
                                                
13 Simple algebra shows that the covariate adjustment model also implicitly assumes that
gain scores will depend on prior teacher effects. Because in most practical settings the coeffi-
cient for the prior score in the covariate adjustment model is less than one, a teacher’s effect
on growth will be the opposite of the effect on levels.
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When we applied our persistence model to three years of math
score data from students attending a small sample of schools (see
McCaffrey et al. [2003]), we estimated that teacher effects dampen
very quickly, i.e., the a’s were substantially smaller than one. Fur-
thermore, we found that the model that allowed for dampening bet-
ter fit the data than the layered model, which assumed that effects
persisted undiminished. We found, however, that estimated teacher
effects are moderately correlated (0.69) between our model and the
layered model. Because these results are from one modestly sized ex-
ample, they should be interpreted not as general trends but rather as
an impetus for further exploration of models that make more flexible
assumptions about the persistence of teacher effects.

Finally, as noted previously, the assumptions about the nature of
the school and school system effects from prior years are the same as
those that can be made about prior-year teacher effects. Any ap-
proaches used for teachers could be used with other schooling effects.
To date, however, longitudinal models have ignored prior-year school
effects in models for the current-year scores, implicitly assuming that
the effects decay to zero in one year. Covariate adjustment models
assume that they persist only as they contribute to prior-year test
scores—i.e., their effects decay at the same rate as the effects of all
other attributes to prior achievement. There are no empirical explora-
tions of the robustness of estimates to assumptions about prior-year
schooling effects. Because the treatment of school effects is likely to
have great influence on estimated teacher effects in some populations
(see McCaffrey et al., 2003), we expect that estimates will be sensitive
to modeling of prior-year schooling effects in some situations as well.

The Effects of Incomplete Records

Summary: Real longitudinal student achievement data will inevitably

contain incomplete student achievement records. The accuracy of

estimated teacher effects in the presence of incomplete records is

sensitive to models for the nature of missing data and to the analytic

approach. Excluding incomplete records, as might be common in co-

variate adjustment or gain scores models, might be particularly sus-

ceptible to bias. Longitudinal models can more readily accommodate
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incomplete records but still make assumptions about the nature of

the missing data.

Longitudinal data provide unique and powerful opportunities. How-
ever, longitudinal data are difficult to collect and many students will
be missing scores for at least one test administration. Students can be
missing scores because they transfer into or out of schools or districts
included in the scope of tracking for the data system. They can be
missing scores because of absence from school or because they
skipped a section of testing. Students can also be missing scores be-
cause of administrative rules that exclude them from testing. For ex-
ample, students who lack proficiency in English are often excluded.

The accuracy of estimated teacher effects in the presence of in-
complete records is sensitive to models for the nature of missing data
and to the analytic approach. Statisticians model the nature of miss-
ing data in longitudinal studies using the following classification (Lit-
tle and Rubin, 2002): missing completely at random, missing at ran-
dom, and missing not at random.14

Data are missing completely at random (MCAR) if for each
grade the distribution of the likely values of missing scores equals the
distribution of the observed scores after conditioning on any back-
ground covariates included in the model. Data are missing at random
(MAR) if for each grade the distribution of likely values of missing
scores equals the distribution of observed scores conditional on the
observed scores at other grades (and background variables). To be
specific, consider an example where the data contain scores from two
grades and all students have data from the first year of testing but
some students are missing scores for the second year of testing. For
simplicity, assume that there are no other relevant background char-
acteristics. MCAR implies that the distribution of the unobserved
scores at year 2 equals the distribution of the observed scores regard-
less of the year 1 score. MAR implies that the distribution of the un-
                                                
14 Statisticians also use more technical classification of ignorable and nonignorable missing
data. Data missing not at random are nonignorable; typically, the data missing completely at
random or missing at random are ignorable, See Little and Rubin (2002) for details.
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observed scores at year 2 equals the distribution of observed scores
conditional on the year 1 score. That is, students with the same year 1
score have the same likely values of scores for year 2, regardless of
whether or not the score is observed.

The final classification of missing data is missing not at random
(MNAR). Data are MNAR if conditional on the observed scores at
other years, the distribution of unobserved scores in a given year dif-
fers from the distribution of observed scores in that year. In the pre-
vious example, the data are MNAR if a student with missing year 2
scores tends to score lower (or higher) than his/her counterpart with
equal year 1 scores and observed year 2 scores. Alternatively, data are
MNAR if students with low (or high) scores are more likely to be
missing scores.

There are two basic approaches to the analysis of longitudinal
data with incomplete records. The first uses only students with com-
plete records, ignoring the partially complete records. The second ap-
proach uses all the records, including incomplete records, to estimate
teacher effects and model parameters.

Covariate adjustment models that include prior-year scores as
covariates typically use only records with both current and prior-year
scores observed, although more-sophisticated analyses may use some
form of imputation (Schafer, 1998) of missing scores. Models for a
single year of gains also generally use only records with the gain score
observed. Alternatively, longitudinal models, and specifically the
TVAAS layered model, typically use more than two years of scores
and include both complete and incomplete records.

Analyses such as covariate models and single-year gain models
that include only complete observations will tend to provide valid
estimates of teacher effects only when the missing data are MCAR.
Models that include both complete and incomplete records typically
provide valid estimates of teacher effects when the data are MAR (or
by implication MCAR) but not when the data are MNAR.

To date, there has been no systematic study of the nature of
missing data in longitudinal test score data for VAM, but we do
know that students who miss tests often score lower than students
with complete data. This does not necessarily imply the data are
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MNAR, because observed scores in incomplete records might account
for the differences between students who complete and those who
miss a test. Also, the robustness of estimated teacher effects to viola-
tions of the implied MAR and MCAR assumptions in most VAM
models has not been studied. In some situations, estimates are sur-
prisingly robust to the violation of MAR (Rubin, Stern, and Vehovar,
1995), but these situations are very different from the estimation of
teacher effects.

Several approaches are possible for expanding models to better
account for missing data. Weighting records can allow models fit
with only complete cases to provide accurate estimates when the data
are MAR (Robins, Rotnitzky, and Zhao, 1995). There are also several
approaches to modeling data with values that are potentially MNAR.
Little (1995) suggests jointly modeling the outcomes and indicators
for response allowing for common random student effects to be in
the model for both outcomes and response. Little (1993) and He-
deker and Gibbons (1997) suggest pattern mixture models in which
the data are stratified by response pattern and separate models are fit
for each pattern. Parametric models for response have also been pro-
posed (Diggle and Kenward, 1994). Alternatively, sensitivity analyses
can be conducted whereby multiple models representing a range of
explicit assumptions about differences between the distributions of
observed and unobserved scores are fit to the data to yield multiple
estimates of teacher effects. Sensitivity to missing data is monitored
by the variability in the multiple estimates of each teacher’s effects.

Linking Students to Teachers

Summary: For a variety of reasons such as team teaching and trans-

fer, the one-to-one correspondence between student test scores and

teachers may be imperfect. Such incomplete linkages should be ad-

dressed to avoid confounding the effects of a given teacher with

those of other teachers. There are a number of possible modifica-

tions that can be made to VAM models to handle these data circum-

stances.
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Teacher effects are estimated by observing the outcomes of their stu-
dents. Estimation requires that students be linked to their teachers. If
all students attended just one school and were taught by only one
teacher in each year, then linking students to teachers would be sim-
ple provided administrative records (class rosters) were accurately
maintained. However, the real world is not so simple. Students
change schools in midyear. Teachers also change in midyear. Some
teachers team-teach or share responsibility for teaching a subject.
Some subjects are not the specific responsibility of any teacher. For
example, in middle schools reading is not necessarily taught as an in-
dependent subject but as part of most other classes. Each of these sce-
narios creates imperfect correspondences between students and teach-
ers and must be handled properly to avoid confounding the effects of
a particular teacher with those of other teachers.

Many possible modeling assumptions exist for dealing with the
complex problem of linking students to teachers. For team teaching,
one possible assumption is that both teachers provide equal education
to the students or that time in class equals educational inputs. Ad-
ministrative records can be maintained to identify each teacher’s share
of inputs to the students, and both teachers can be included in the
model for the student’s achievement or growth weighted by their
contribution to inputs. Similarly, if analysts are willing to assume that
every day of schooling represents equal educational inputs, then mid-
year transfers of teachers or students could be modeled by including
multiple weighted teacher effects in the model for each student’s out-
come with weights equal to the proportion of days in the class.15 An-
other assumption is that students who transfer or have team teachers
have outcomes that are similar in distribution to other students, so
these students can be excluded from the data. Yet another possible
                                                
15 Assuming that all days of schooling provide equal educational inputs might be incorrect.
For example, Smith (1998) found in a sample of classes from the Chicago public schools that
a steep drop in academic work occurred during the last six weeks of the school year and
schooling was “reliably and continuously focused on teaching the grade-level curriculum
outlined by the district and state” in only 13 weeks of the school year (p. 23). Teachers used
the remainder of the weeks for review or other topics not contained in the curriculum.
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assumption is that students with complex links have the average
teacher and so can be modeled without a link to any teacher.

Several applications of VAM either provide no explicit mention
of the methods for modeling students who transfer or otherwise have
no links to teachers (Rowan, Correnti, and Miller, 2002; Webster
and Mendro, 1997) or exclude students with incomplete data
(Rivken, Hanushek, and Kain, 2000; Wright, Horn, and Sanders,
1997; Sanders and Rivers, 1996). In addition, these studies make no
comments about team teachers. TVAAS explicitly models team
teachers, weighting each teacher’s effect by the share of instructional
time (Sanders, Saxton, and Horn, 1997). As a simple example, the
fifth grade math score for a student who had two teachers in grade 4
for math, each providing half of the instruction, and one teacher in
each of grades 3 and 5, is given by:

y5 = m5 + T3 +
1

2
T4, A +

1

2
T4, B + T5 + e5 .

TVAAS also includes students who transfer in midyear but links
them to a teacher only if they are in one classroom for more than 150
days (Ballou, Sanders, and Wright, 2003). Student who do not link
to teachers because of transfer or because no teacher has responsibility
for teaching them are included in the model estimation with no ex-
plicit teacher link; i.e., such students are assumed to have the average
teacher.

The likely size of the bias introduced through incorrect linking
or unlinked students will depend in part on the number of students
who transfer, are team taught, have no teacher, or have some other
complex links with teachers. Currently, no empirical investigations of
such issues exist in the context of VAM. However, in conversations
with educators about VAM, we have found that mobility is always a
concern especially for those from urban districts that report high rates
of mobility. More generally, research shows that student mobility is
widespread. According to data collected through the National As-
sessment of Educational Progress (NAEP) 1998 Math Assessment, 34
percent of fourth graders, 21 percent of eighth graders, and 10 per-
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cent of twelfth graders changed schools at least once in the previous
two years (U.S. Department of Education, 2002). One survey of
more than 50 local education agencies throughout the United States
reveals that in many districts the proportion of students enrolled in a
school for less than the entire academic year often exceeds 30–40 per-
cent (Ligon and Paredes, 1992). Also, Title 1 funding has historically
supported special classes for low-income students, so that low-income
students might be more likely to have multiple teachers.

Issues Arising from the Use of Achievement Tests as an
Outcome

Student achievement is measured imperfectly by tests. The timing of
tests does not generally conform to the school year, and tests contain
measurement error. These errors can differentially affect student
scores and estimated teacher effects based on those scores. Alternative
scalings and constructions of tests are possible, and there is no objec-
tive criterion for choosing among the alternatives. However, infer-
ences about teacher effects are likely to be sensitive to these choices.
We examine these issues in the following sections, along with discus-
sions on score inflation and the relationship between the scale of
teacher effectiveness and the scale of student achievement.

The Effects of Timing of Tests

Summary: Testing is infrequent (typically only once a year), and the

testing interval usually includes portions of two grades and summer

recess. Studies have shown that changes in achievement over sum-

mer recess are related to student characteristics such as socioeco-

nomic status and ethnicity. However, a small simulation study sug-

gests these differences may be sufficiently small to have little impact

on VAM estimates of teacher effects. Changing the timing of tests to

fall-spring testing would in theory provide more isolated estimates of

teacher effects, but research suggest that fall-spring testing intro-

duces other, perhaps larger, biases than the more common spring-to-

spring testing.
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Most school testing programs test once during the second half of the
school year, and the testing typically occurs at least several weeks be-
fore the end of the year. Thus, the test cannot measure the effect of a
full year in a teacher’s class. In addition, the measured growth be-
tween test administrations will involve change during a time interval
that includes part of the previous year of schooling as well as summer
recess. Inclusion of change during this time period might also distort
estimates of a teacher’s effect on the student. Of particular concern is
the empirical evidence showing that change during the summer recess
varies across identifiable groups of students. Both socio-economic
status (SES) and ethnicity have been shown in some studies to corre-
late with changes in achievement during summer break, with minor-
ity and low-SES students having the smallest gains (see, e.g., Alexan-
der, Entwisle, and Olson, 2001).

In theory, testing twice a year—very near the beginning and end
of the school year—would provide more isolated estimates of teacher
effects, but historical evidence suggests that this form of testing may
produce other, perhaps even larger, biases. Linn (2000) noted that
large-scale evaluations of the Title I program in the 1970s and early
1980s suggested that annual testing provided more accurate estimates
of student growth than fall-spring testing, with the latter showing a
substantial positive bias in overall estimates of growth. He noted:

Linn [Dunbar, Harnisch, and Hastings] (1982) reviewed a
number of factors that together tended to inflate the estimates of
gain in the fall-to-spring testing cycle results. These included
such considerations as student selection, scale conversion errors,
administration conditions, administration dates compared to
norming dates, practice effects, and [score inflation from]
teaching to the test (Linn, 2000, p. 5).

Even if annual testing provides more accurate estimates of mean
growth, it does potentially bias comparisons among teachers for the
reasons noted. Models can account for differential summer gains by
controlling for student level covariates likely to be correlated with
those gains (i.e., SES and minority status). Models might also explic-
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itly account for the mixing of teacher effects across years. The model
of McCaffrey et al. (2003) is one approach to addressing this problem
because it allows gains to depend on prior-year teacher effects and
estimates how much to downweight those effects. However, the
amount of bias due to differential summer trends may be so small
that these steps are unnecessary. In a small simulation study, we ex-
plored the likely effects of differential summer gains on estimated
teacher effects and estimates of the variability among teachers. We
found that in longitudinal models, differential summer gains of realis-
tic magnitudes are likely to have only minimal effects on estimates.
However, these findings are based on a limited simulation and lim-
ited (mostly old) data on trends in scores, so additional investigation
may be warranted.

Issues Posed by the Construction and Scaling of Tests

Summary: The scale for measuring achievement is not predetermined

by the nature of achievement but is chosen by the test developer.

Alternative scalings and constructions of tests are possible, and there

is no objective criterion for choosing among these alternatives.

Scores from test forms for different grades must be vertically linked

to a single scale so that achievement at one grade can be compared

to achievement at other grades. Various methods for such linking

exist. Changes to the scaling of tests, the weight given to alternative

topics, or the methods for vertical linking could change our conclu-

sions about the relative achievement or growth in achievement

across classes of students. These changes would influence inferences

about teacher effects. While our explorations suggest that estimated

variance components might be insensitive to some alternatives, we

expect that estimated teacher effects could be very sensitive to

changes in scaling or other alterations to test construction and verti-

cal linking of different test forms. There is currently no empirical evi-

dence about the sensitivity of gain scores or teacher effects to such

alternatives.

Many of the inferences based on VAM require an interval scale of
teacher effectiveness. An interval scale (Stevens, 1946, 1968) is one on
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which any given arithmetic difference has the same substantive
meaning at any point on the scale. If a scale is interval, any linear
transformation of the scale will also be interval, but any nonlinear
transformation will necessarily be non-interval. In practice, no VAM
models use direct measures of teacher effectiveness. Rather, they use
measures of student achievement and in effect assume (1) that these
are on interval scales and (2) that these interval scales of student
achievement have a linear mapping onto the latent scale of teacher
effectiveness. Initially, we will accept the use of student achievement
measures as a proxy for teacher effectiveness and will discuss issues
that arise in VAM because of the construction and scaling of these
measures. Following this discussion, we address the assumption that
student achievement maps linearly onto the latent scale of teacher
effectiveness.

One inference that clearly depends on an interval scale is com-
parisons of the estimated effectiveness of those teachers teaching stu-
dents who begin the time period in question at substantially different
levels of achievement. A nonlinear transformation of the score scale
will alter the relative rates of change shown by these two groups of
students. Even when students begin at the same point on the scale,
however, the interval nature of the scale is important. For example,
consider two teachers whose students begin at the same level of per-
formance but show different rates of growth during the year. The ap-
parent size of that difference would be sensitive to nonlinear trans-
formations of scale. Thus, inferences about the relative effectiveness
of teachers assume that the scale on which performance is reported is
robust and is approximately interval—that is, that departures from a
true interval scale are small relative to the differences between teach-
ers.

The issues of scaling raised by VAM are of two types: the general
indeterminacy of cross-sectional scales and issues that arise in con-
structing a vertical or developmental scale—that is, a scale that places
performance on the tests administered to successive grades onto a sin-
gle scale so that growth can be measured across grades or ages. The
creation of a vertical scale layers additional issues on top of those that
arise in constructing a cross-sectional scale. Therefore, we begin by
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discussing the indeterminacy of cross-sectional scales before moving
to issues of vertical scaling.

Indeterminacy of Cross-Sectional Scales. The general indeter-
minacy of achievement scales has long been noted in the psychomet-
ric literature. Cross-sectional inferences are not sensitive to linear
transformations of scale, but nonlinear transformations are problem-
atic. Spencer (1983) and others have noted that many of the scales
that can be seen as reasonable representations of performance on
achievement tests are nonlinear transformations of each other and
therefore can provide substantially different conclusions about differ-
ences and trends. Spencer noted that even some of the most basic
conclusions about student performance, such as the ranking of group
means, are not necessarily invariant under nonlinear transformations
of score scales. Specifically, rankings of means are necessarily invari-
ant under monotonic, nonlinear transformations of scale only if the
distribution functions of the two scales are stochastically or-
dered—that is, only if for all numbers x, F(x) ≤ G(x) , where F and
G are the scaling functions (Spencer, 1983). In other words, rankings
of means are necessarily invariant only if the cumulative distribution
functions of the two scales do not cross. More important for present
purposes is the fact that even when the distribution functions are sto-
chastically ordered and the ordering of means is therefore preserved
by a scale transformation, other patterns upon which important infer-
ences are based—including some of the important inferences based
on VAM—may not be robust under nonlinear transformations of
scale.

This problem could be circumvented if there were a clear reason
to choose one scale from those available, but when measuring student
achievement, we usually lack an unambiguous basis for selecting
among them. In this respect, psychometrics is unlike measurement in
many other areas. In physics, for example, the acceptance of certain
laws pertaining to the behavior of gases allows one to deduce that cer-
tain measures, such as the common scales of temperature, constitute
interval scales. In contrast, there are no such laws specifying the rela-
tionships between achievement and other variables. In addition, there
is often no generally accepted basis for assuming any given distribu-
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tion of the latent trait, which eliminates another potential basis for
choosing among scales.

For our purposes, however, we are interested not in the theoreti-
cal indeterminacy of achievement scales but rather in their practical
effects on the robustness of inferences based on the scales used. For
many uses, the indeterminacy of scale may not have a major impact.
While the range of possible scales is theoretically unlimited, only a
few are widely used in modern measurement of achievement, and the
cross-sectional relationships among these few are typically very strong.
Thus, Hoover (1984a) noted that the purportedly interval develop-
mental standard scores of some test publishers have nearly perfect
cross-sectional correlation with the grade equivalent scale, which is
expected not to be interval.16 The high correlation between alterna-
tive scales is illustrated in Figure 4.1, which compares two common
types of scaled scores from an algebra test administered to secondary
school students by the College Board as part of its Equity 2000 pro-
ject. The y-axis is a simple number-right score, while the x-axis is pro-
ficiency (theta) estimates from a 2-parameter logistic (2-PL) Item Re-
sponse Theory (IRT) model. Frequency distributions for each scale
are shown in the form of kernel plots (smoothed histograms) on the
right and top borders of the plot. The relationship between the two
scales is clearly nonlinear, but the correlation between them is none-
theless .97 in this sample. This high correlation arises despite the
nonlinearity of the relationship because most students are in the cen-
tral region (as shown by the kernel plots), in which the relationship
between the two is quite linear.

However, while the typically high correlation between many
scales protects the robustness of many cross-sectional inferences, some
inferences, including some important to VAM, may not be robust
across scales. For example, consider a hypothetical school district in
which some classes include large numbers of students from the ex-
tremes of the actual score distribution shown in Figure 4.1, while
other classrooms include primarily students from the middle of the
                                                
16 Hoover also argued that the developmental scales could be shown not to be interval.
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Figure 4.1
Algebra Test Scaled with Simple Number Right Scores and Proficiency
Estimates (theta) from a 2-PL IRT Model (kernel density plots on axes)

distribution. Now assume that value added is estimated with both of
the two scales. Students at the extremes would show less variance on
the number right scale than on the theta scale. If the classes at the ex-
tremes showed gains similar to those of the mid-scoring classes on the
number-right scale, they would show larger gains than middling
classes on the IRT scale. More generally, a lack of robustness in com-
parisons among teachers will arise if a sufficient number of students
score in regions in which the relationships among the scales in ques-
tion are substantially nonlinear and if students are not randomly dis-
tributed among classrooms in terms of prior performance. This may
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occur when high- and low-scoring groups are compared in a VAM
model.

While much of the psychometric literature on the indeterminacy
of achievement scales has focused on scaling as such—that is, on the
process of placing raw performance onto a reporting scale—some of
the indeterminacy of the final scale reflects other aspects of test con-
struction, in particular those pertaining to the mix of dimensions rep-
resented in the test. Although most common scaling models treat the
construct of interest as unidimensional, this is a simplification. In
most cases, a test of any broad domain of achievement, such as
mathematics, will assess a variety of different dimensions of perform-
ance. The process of constructing the test requires decisions about the
relative emphasis given to various aspects of performance. Moreover,
the actual emphases inherent in a test may differ independently of the
intent of designers because of a variety of factors, including inadver-
tent overweighting of content (Koretz, McCaffrey, and Hamilton,
2001). The ordering of means, such as district or state means in U.S.
comparisons or country means in international comparisons, is some-
times sensitive to these differences in test construction, such as the
weighting of content areas within a subject area (e.g., Koretz, 1986;
Wolfe, 1997). It is generally assumed that a primary reason for this
sensitivity is variations in curricular alignment. That is, even if two
tests have largely similar specifications, the specific decisions made to
implement them will often make tests differ in their alignment with
the curricula of specific jurisdictions.

Treating the resulting scores as representing a single dimension
is a useful and defensible simplification for many inferences but may
not be for others, including some based on VAM. For example, con-
sider a hypothetical district in which the most able mathematics stu-
dents in middle school are placed in classes that focus almost entirely
on topics newly introduced in middle school, while less proficient
students continue focusing substantially on basic arithmetic opera-
tions and their application. Now, for the sake of discussion, assume
that the test used for VAM purposes focuses substantially on basic
skills (as many broad achievement tests in the middle-school grades
do). Much of the effectiveness of the teachers of the more able stu-
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dents will escape detection in the VAM analysis because their stu-
dents are not spending much time studying the elements of perform-
ance that have the highest weights on the test. Substituting another
test that places more emphasis on higher-level material could substan-
tially change the ranking of teachers.

The severity of this problem will depend not only on the charac-
teristics of tests, but also on the inferences they are used to support.
The ideal case for VAM (which is unattainable) would be one in
which the test would fully operationalize what all teachers are ex-
pected to teach, and test-based inferences about performance would
be limited to the domain thus delineated. In this case, differences in
alignment would not threaten inferences about the rankings of teach-
ers. Of course, tests generally operationalize the intended domain
only incompletely, so one would expect some unwanted variation in
rankings as a function of differential alignment between the test and
teachers’ implemented curricula. The potential threat to estimates of
teacher effectiveness, however, goes beyond random differences in
alignment and is likely to be systematic. For example, in some in-
stances (such as tracked classes), teachers are expected to teach differ-
ent things, and the inferences about the performance of one group of
students are different from those about other students in the same
grade. In such cases, variations in alignment between the single test
used in VAM and teachers’ curricula may pose a serious threat to the
validity of estimates of teacher effectiveness. Thus, the greater the de-
gree of intentional curricular differentiation, the greater the threat to
validity. Substantial curricular differentiation is often both inten-
tional and substantial, and it will generally become more severe as
students progress through the grades.

Complexities of Vertical Scales. The process of creating a vertical
scale, such as those used in nearly all of the VAM models discussed
earlier, compounds issues of both dimensionality and scaling. In the
case of dimensionality, the issues are similar but more pronounced. In
the case of scaling, the construction of a vertical scale creates addi-
tional issues.

The process of creating a vertical scale is necessarily ambiguous
to the extent that curricula vary across grades. If the domain were
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truly unidimensional, test items would differ only in terms of their
difficulty, their discriminating power, and the lower asymptote of the
response function, and they would be substitutable. That is, apart
from considerations of reliability and floor and ceiling effects, one
could substitute some items designed, say, for fourth grade for others
designed for third grade and obtain the same estimates of profi-
ciency,17 assuming the scaling model fits. However, to the extent that
curricula vary across grades, this exchangeability is eroded. This has
long been recognized in the field of achievement testing. Thus, users
have long been warned that with most test and scaling designs, a stu-
dent who scores two years above her grade level on the test designed
for her grade would not necessarily score at the average on a form de-
signed for two grades higher because of curriculum-related differences
in test content (see, for example, Peterson, Kolen, and Hoover,
1989).

As an example of between-grade variations in curricula that
could affect inferences about value added, consider middle-school
mathematics. In the middle-school grades, students study a wide ar-
ray of mathematics, commonly ranging from topics in arithmetic in-
troduced in the elementary grades, extensions of those topics (e.g.,
arithmetic operations with negative numbers), and topics not previ-
ously introduced, such as basic algebra. To construct a test battery,
one must decide how much weight to give this wide array of topics in
the forms administered to each grade. For purposes of illustration, say
that one of the choices is how much weight to give several new topic
areas, such as algebra, in the eighth-grade form. Suppose that one
vendor opts for 20 percent of the items, while another opts for 10
percent of the items. Now suppose that eighth-grade teachers A and
B are equally effective but allocate different amounts of their instruc-
tional time to the content of these particular items. The two forms
will rank the two teachers differently.

The threats to VAM-based inferences from these variations in
dimensional mix are likely to vary greatly but may be severe in some
                                                
17 That is, the same up to a linear transformation.
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instances. It seems apparent that the wider the grade span, the more
serious the threat. It also seems likely that the threat becomes larger in
the higher grades because of decreasing uniformity of the curriculum.
In addition, the severity of the threat is likely to vary with location as
a function of curriculum and the heterogeneity of the student popula-
tion. However, despite the research on the robustness of vertical scales
and the smaller literature on the robustness of cohort-to-cohort gains
across tests cited below, we are not aware of any studies that specifi-
cally examine the robustness of growth estimates or estimated teacher
effects to choices in test construction. This should be a priority in fur-
ther research on VAM.

The general indeterminacy of scale becomes a more complex is-
sue when vertical scales are employed, as in the VAM models dis-
cussed above. First, scales that are highly correlated in cross-section
may not be as highly correlated across grades. Second, inferences
about growth can be sensitive even to linear transformations of scale.
For the purposes of VAM, an important indeterminacy that may be
merely linear is that vertical scales often show fundamentally different
trends in variances across grade levels. A particularly extreme and fre-
quently discussed example was provided by Yen (1986). Figure 4.2
uses numbers taken from Yen (1986), and shows the standard devia-
tions in scaled score points (on the publisher’s developmental stan-
dard scales) on the mathematics computation subtests of two widely
used achievement tests published by the same publisher. The Califor-
nia Achievement Test—Form C (CAT/C), which was scaled using a
traditional method known as Thurstone absolute scaling, shows a
gradual and monotonic increase in variance across the grades. That is,
the distribution of scores “fans out” with age, as faster learners pull
progressively farther away from their more slowly learning peers. In
contrast, the Comprehensive Test of Basic Skills—Form U
(CTBS/U), which was scaled with a more modern 3-parameter logis-
tic IRT model, shows a dramatic narrowing of the distribution
throughout the elementary grades.
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Figure 4.2
Standard Deviations in Scaled Score Units, CAT/C (Thurstone scaled) and
CTBS/U (3-PL IRT scaled), Mathematics Computation
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Clearly, these two scales do not suggest the same inferences
about performance. This striking difference in variance trends
sparked a sharp debate in the psychometrics field (see, e.g., Burket,
1984; Hoover, 1984a, 1984b; Yen, 1986) over what scale more accu-
rately represented the domain about which inferences are intended
and what type of variance trends was most plausible for the inferences
that achievement tests are designed to support (Hoover, 1988, and
Yen, 1988).

For our purposes, however, the most important issue is simply
that the variance trends differ across scales. Clearly, some inferences
based on VAM—specifically, those that compare estimated effective-
ness of teachers of high- and low-scoring students—will be sensitive
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to the choice of scale when scales show different variance trends or are
not linearly related.

There is at present no consensus in the measurement field that
would allow a resolution of this ambiguity. A number of other studies
have shown disparities in variance ratios, although the divergence is
often much less striking than in Yen’s example. However, research
does not clearly explain the disparity. The initial debate about the
declining variances in the CTBS scale focused on scaling per
se—specifically, on the use of 3-parameter logistic (3-PL) IRT mod-
els. It has since become less clear, however, what role scaling itself, as
opposed to other aspects of vertical linking and test content, plays in
determining the pattern of variance changes across grades. For exam-
ple, Becker and Forsyth (1992) applied both Thurstone and IRT
methods to data from a single form, the Iowa Tests of Educational
Development administered to students in grades 9–12. This design
eliminated two factors that could have contributed to the differences
noted in earlier studies: The two types of scaling were performed on
data from the same students, and the test was the same across grades
and therefore entailed no vertical linking of different forms. Becker
and Forsyth (1992) found expanding variances using both scaling
methods. Yen and Burket (1997) used simulated data to compare
IRT and Thurstone scaling and also found expanding variances with
both methods. Williams, Pommerich, and Thissen (1998) scaled the
North Carolina End-of-Grade Mathematics Tests using both
Thurstone and IRT methods. They found no consistent pattern in
the variances yielded by the IRT methods, while the variances ob-
tained with three Thurstone scaling methods generally decreased. The
current form of the Terra Nova, the successor form to the CTBS,
which is also scaled with a 3-PL model, does not generally show
shrinking variances across the grades and indeed shows increasing
variances in some instances (CTB/McGraw-Hill, 2001, e.g., Figure
37). There is no commonly accepted understanding of how content,
scaling, and linking interact to create these varying patterns.

The primary implication of these findings for our purposes is
that some conclusions of VAM studies may be sensitive to choice of
scale. A simple simulation confirmed the logical deduction that con-
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clusions about the size of the teacher effect (relative to the total vari-
ance of student performance) are not sensitive to variance trends, but
inferences that entail comparisons across levels of performance may
be quite sensitive. The lack of a clear expectation for variance
trends—indeed, the lack of a clear understanding of the factors that
contribute to differences in these trends—makes it infeasible at pre-
sent to reduce this uncertainty. However, it is worth noting that some
of the models employed assume an increase in variance across grades.

Inflation of Test Scores

Score inflation refers to increases in scores that do not reflect a com-
mensurate increase in mastery of the domain. It can be caused by a
wide variety of teacher behaviors, including simple cheating, inap-
propriately narrow focus on the content of the test at the expense of
other material important for the inference about achievement, teach-
ing test-taking tricks (e.g., process of elimination), and inappropriate
focus on substantively unimportant aspects of a particular test.

There have been few large-scale studies of score inflation, but
the information currently available suggests that it could pose a seri-
ous threat to VAM when scores on high-stakes tests are used as out-
comes. Several studies have shown that scores can become seriously
inflated under high-stakes conditions (e.g., Jacob, 2002; Klein et al.,
2000; Koretz and Barron, 1998; Koretz, Linn, Dunbar, and Shepard,
1991). These studies indicate that score inflation can be several times
as large as meaningful gains in test scores. Therefore, any appreciable
variability in the extent of inflation could substantially bias the infer-
ences based on VAM. Even a random distribution of inflation would
upwardly bias the estimated variance of the teacher effect, and the
rankings of many individual teachers would be rendered meaningless.
To the extent that the distribution of score inflation is systematically
related to important characteristics of teachers or their contexts, infer-
ences about the characteristics of teachers are likely to be severely dis-
torted.
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Using Achievement Measures as a Proxy for Measures of Teacher

Effectiveness

Summary: Teacher effectiveness might be nonlinearly related to stu-

dent achievement: A teacher’s effectiveness might affect growth dif-

ferentially for students of different levels of achievement. Thus, a

teacher’s effects across students might not be constant on the scale

of achievement. Moreover, the nonlinear relationship between

teacher effects and achievement in one year might not match the

relationship in subsequent years, so models for prior-year teachers

need to be more general than those currently proposed.

For most current uses of VAM, the actor about whom inferences are
drawn is the teacher, not the student. That is, in most cases, the ques-
tion asked is not whether two increments in scores represent equiva-
lent increases in student performance, but rather whether two incre-
ments in scores indicate equivalent amounts of teacher effectiveness.
Moreover, these increments are often compared across different levels
of the scale. Thus, the inferences rest not only on the assumption that
the scale of student performance is interval but also that this maps
linearly to the latent scale of effectiveness, so that the scale of teacher
effectiveness is also interval.

This assumption about mapping is almost certainly substantially
wrong in some instances. For example, assume that a VAM model is
used to evaluate the effectiveness of teachers in teaching reading. As-
sume also that the scale of the reading test used is truly interval. This
assumption is unwarranted, but it simplifies the example. Now con-
sider the hypothetical example of two sixth-grade classes. One com-
prises mostly students at or above grade level, and it makes an average
amount of gain over the year. The second includes a large number of
students who are far below grade level, many reading at the second-
grade level, and it makes well under the average amount of gain over
the year. Is it reasonable to conclude that the second teacher is less
effective?

Many teachers who have taught remedial reading (including one
of the present authors) maintain that this is an extremely difficult
type of teaching and that improving the performance of a sixth-grader
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reading at the second-grade level is much harder than improving the
performance of a sixth-grader at the sixth-grade level by a like
amount. There are several reasons for this. One is that students who
have failed to keep pace in reading have done so for a reason, and
some of those reasons (e.g., dyslexia, visual disabilities, or attentional
deficits) persist over time. A second reason is that students who have
failed in reading often develop counterproductive habits that are dif-
ficult to break. A third is that many students who have not been able
to learn to read proficiently develop an intense aversion to reading
instruction because it becomes strongly associated with failure, em-
barrassment, and intense frustration. Therefore, even though the two
teachers may have been identically effective if they had taught stu-
dents with similar distributions of initial proficiency, they may obtain
much different gains from these two classes.

This illustrates the more general point that the relationship be-
tween teacher effectiveness and student score gains may be nonlinear.
These nonlinearities may take numerous forms. There may be simple
nonlinearities—that is, a unit of effectiveness may produce amounts
of gain at different points on the achievement scale. There may be
interactions between effectiveness and various attributes of students.
That is, some types of students may be harder to teach in the aggre-
gate. There may also be variations that are idiosyncratic to specific
teachers. Some teachers, for example, may be most effective with a
docile class, while others thrive with a class that is prone to inter-
rupting with challenging questions. Some may be more effective
when districts require them to use didactic curricula, whereas others
may be more effective with more student-centered, constructivist cur-
ricula.

In the presence of this nonlinearity, the score scale would not
provide an interval scale of effectiveness even if it were to provide an
interval scale of student achievement. That is, the result of such non-
linearities is that teacher effects will not be constant on the scale of
student achievement even if they are constant on the scale of teacher
effectiveness. This also has implications for the persistence of teacher
effects. The relationship between achievement and effectiveness might
differ across grades because the distribution of achievement is cen-
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tered at a different point on the scale at each grade. If the relationship
between teacher effects and the current year scores were (nearly) lin-
ear, the relationship between teacher effects and subsequent test
scores would need to be nonlinear. However, the current models al-
low at most linear shifts between a teacher’s effect in the current and
subsequent years.

Although the assumption of a simple, uniform linear relation-
ship between teacher effectiveness and student score gains appears
untenable, the degree to which it is a serviceable approximation re-
mains an empirical question. That question should be a focus of fu-
ture research on VAM models of achievement.

Modeling in the Presence of Measurement Error

Summary: Achievement tests are error-prone measures of achieve-

ment. Measurement errors in scaled scores are heteroskedastic—that

is, they have greatest variance for students at the high and low ex-

tremes of the distribution of true achievement. Models that incor-

rectly treat the data as homoskedastic can yield unbiased but ineffi-

cient estimates of fixed effects. Whether or not these models provide

unbiased estimates of random teacher effects is unclear; however,

because measurement errors account for a sizable fraction of the

variability in scores any systemic errors that result from measurement

error are likely to have large effects on inferences about teachers.

As discussed above, test scores are widely accepted as reasonably valid
but imprecise measures of true achievement. Many sources contribute
to the variability of scores. In this section, we distinguish measure-
ment error from other sources of variance using the following defini-
tion: We assume that a test is designed to measure a well-defined
construct (e.g., math computation) and that every student has an er-
ror-free score for this construct on the scale of measure of the test.
For ease of presentation, we call this score the true level of achieve-
ment. The score can change over time. We consider fluctuations on
the scale of a few days or a few weeks transient rather than systematic
and thus include them in our definition of measurement error. In
addition, we include in our definition variations that result from the
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construction of a particular test instrument designed to measure the
construct of interest (e.g. the number and particular sample of items
chosen from a hypothetical domain of all items measuring the con-
struct). It may also be appropriate for some purposes to include in
measurement error variations among highly similar tests that measure
slightly different constructs. However, in this section, we focus on a
single construct and thus do not consider this sort of variation to be a
source of measurement error.

The primary challenge posed by measurement error as opposed
to other possible sources of error is that the variability of the errors
around the true level of achievement is known to depend on that level
of achievement. For scaled scores, the measurement error is greatest
for extreme values and smallest for values near the mean of the distri-
bution. That is because the expected performance on the test changes
slowly as a function of the true achievement level for extreme
achievement levels. Thus, it is more difficult to reliably estimate ex-
treme values of true achievement based on the test scores. Alterna-
tively, the expected performance on the test changes more rapidly for
students with true achievement near the middle of the distribution,
allowing for more-precise distinctions in true level of achievement
based on the test scores. Thus, test scores are heteroskedastic with the
variance depending on the true level of achievement.

Given that test publishers estimate the standard error of meas-
urement, statistical models could be extended to account for meas-
urement errors and the resulting heteroskedasticity of scores. Such
models will be complex because the variability depends on the unob-
served true level of achievement. Models that allow the residual vari-
ance to be a function of the observed score could serve as a computa-
tionally simpler approximation that might provide at least partial
benefits.

To date, no VAM applications have explicitly accounted for
measurement error or, in particular, the resulting heteroskedasticity
in test scores. Multivariate models that ignore heteroskedastic meas-
urement error will yield inefficient but unbiased estimates of fixed
parameters. However, it is less clear how accounting for heteroskedas-
ticity might change teacher-effect estimates from multivariate models.
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Provided measurement error is mean zero, we expect that, for ran-
dom-effects models, shrinkage will be greater for teachers with class
means in the extremes of the distribution under models that account
for heteroskedasticity than under those that do not. For a class with a
high average score, students above the classroom mean score will be
down-weighted relative to other students in the class and vice versa
for a class with a low average score. But it is unclear whether or not
models that ignore measurement error and heteroskedasticity will
produce estimated teacher effects that differ systematically from the
true effects with errors that depend on the true effects. Because meas-
urement errors account for a sizable fraction of the variability in
scores, as much as 15 percent for many of the widely used standard-
ized tests, any systemic errors that result from measurement error are
likely to have large effects on inferences about teachers.

As discussed above, covariate models that ignore measurement
error yield biased estimates of fixed parameters. If students were ran-
domly assigned to classes, measurement would have little systematic
effect on estimated teacher effects even though it results in biased es-
timated of the fixed parameters in the model. However, if student
characteristics cluster by class, measurement error will result in bias in
which the errors in the teacher effects are positively correlated with
student characteristics. Accounting for measurement error in the
models could reduce the bias and errors.

Uncertainty About Estimated Effects

In the previous sections, we discussed possible sources of errors in in-
ferences about the variability of teacher effectiveness and about the
effectiveness of individual teachers. Much of our discussion focused
on issues that would create systematic errors that result from limita-
tions in the statistical models or measures of student performance.
We gave little attention to sampling errors that result from the vari-
ability from the samples of students and scores used to estimate ef-
fects. In this final section of the chapter we discuss uncertainty in-
cluding sampling error. For VAM models, we believe it is important
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to consider multiple sources of uncertainty rather than to focus on
only sampling error.

Sampling Error

Summary: Sampling error is one of several sources of error in esti-

mated variance components and teacher effects. Sampling errors

must be very small for meaningful inferences about some quantities

of interest such as teacher rankings. Sampling errors in estimated

effects are unlikely to be sufficiently small to support ranking but

may be small enough to allow for identifying some teacher effects as

distinct from the mean.

Residual variance in student test scores due to measurement error and
sources of variability in performance other than teachers, schools, and
other factors in the model result in sampling error in estimated model
parameters (including variance components) and estimated individual
teacher effects. Model parameters depend on variability from the en-
tire sample of students. The sampling error in the estimate of an indi-
vidual teacher’s effect depends on the sampling error of model pa-
rameters and the residual variability of the scores for the students in
the teacher’s class.

The variability in an individual teacher effect due to sampling
error will decrease with class size. Estimated effects for teachers with
the largest classes will have the smallest variability while estimates for
teachers with smaller classes will tend to be more variable. The qual-
ity of inferences about teachers will depend on the ratio of the vari-
ability due to sampling errors to the variability of the true teacher ef-
fects. Given that teacher variability is likely to account for only a
modest portion of the total variability in student scores (or gains),
residual variability is likely to be much larger than the variability due
to teachers. In addition, many teachers teach only moderately small
numbers of students. Thus, the variability in sampling error in esti-
mated effects is likely to be large relative to the true variance of
teacher effects. For instance, in the example discussed below, vari-
ability due to sampling error was between 20 to 40 percent of the es-
timated variability in teacher effects.
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Lockwood, Louis, and McCaffrey (2002) found that, unless the
ratio of variance of sampling error in the classroom mean to the vari-
ance of teacher effects is less than about 0.1, estimated rankings will
be sufficiently imprecise to preclude distinguishing among all but the
most extreme teachers. This is a difficult target to achieve. For exam-
ple, if teachers account for 13 percent of the variability in scores, then
classes would need more than 60 students to provide moderately pre-
cise rankings (e.g., rankings that are sufficiently precise that the con-
fidence interval for a rank of r would roughly equal about r ±  n/5,
where n is the number of teachers in the sample). With only 20 stu-
dents in a class, teachers would need to account for 31 percent of the
total variance to provide rankings with this precision.

Although sampling errors might be too great to support infer-
ences about rankings, other useful inferences might be possible. For
example, in McCaffrey et al. (2003), we report on a small study
which estimated teacher effects for the fourth and fifth grade teachers
of 678 students from five schools chosen from a large suburban dis-
trict. We modeled third, fourth, and fifth grade math scores using the
layered model and the persistence model of teacher effects (Eq. 4.5).
We used maximum likelihood estimators of the model parameters
and EBLUPS to estimate teacher effects. We included in the analysis
all records for students with one or more scores, even the 50 percent
of records with incomplete data.18 We assumed missing data were
MAR.

We used Bayesian methods to make inferences about the esti-
mated teacher effects so that error estimates account for uncertainty
in model parameters. We found that the sampling errors in the esti-
mated teacher effect equaled about 20 to 40 percent of the variance of
teacher effects, depending on grade and model. Thus, the sampling
error in the estimates would need to be about two to four times
smaller to support inference on ranking. However, we found that
with both models we identified between one-third and one-fourth of
                                                
18 Over 70 percent of tested students have two or more scores. However 113 (15 percent) of
the 739 students attending these schools have no tests at all and the study’s results apply only
to students likely to be tested.
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teachers as distinct from the mean—that is, the probability that the
teachers’ effect was greater than zero was either very high (greater
than 0.9), indicating that the teacher was likely to be less effective
than average, or very low (less than 0.1), indicating that the teacher
was likely to be more effective than average. The two models identi-
fied almost all the same teachers as distinct from the mean.

Although this example is limited, it provides an empirical de-
scription of the impact of sampling errors on estimated effects—no
other studies provide such information. This example is limited by
the small size and the purposive nature of the sample. Schools were
chosen to have nearly equal proportions of students eligible for free or
reduced price lunches. Also, the models do not include any covari-
ates. As discussed, the omitted variables could distort estimated ef-
fects, although that is somewhat unlikely to be problematic with this
sample given the similarity of student populations across schools. Re-
gardless of these limitations, the example demonstrates that sampling
errors can be sufficiently small to support some inferences even if they
are too large to support others such as ranking.

While accounting for variability due to sampling error is essen-
tial for evaluating errors in estimated teacher effects, estimating vari-
ability can be challenging. For fixed- effects models, estimates of the
variability due to sampling error (i.e., standard errors) for individual
teacher effects are generally produced by statistical software. Condi-
tional on the model, the estimates are probably reasonably accurate
estimates of the sampling error. In general, the standard error for a
teacher’s effect goes down as more student scores are linked to that
teacher. For random-effects models, accurate standard errors (assum-
ing the variance components are known) are readily obtained by a
standard formula (Searle, Casella, and McCulloch, 1992); more real-
istic standard errors, which account for the additional uncertainty
necessitated by estimating the variance components, require greater
consideration. Many authors now suggest using a Bayesian frame-
work for inferences concerning random effects because it accounts for
the sampling errors in the parameter estimates and the teacher’s sam-
ple of students.
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Other Sources of Uncertainty

Summary: Sampling errors are only one source of uncertainty in es-

timated effects. As discussed in much of this chapter, estimated ef-

fects are sensitive to model assumptions. Moreover, we have little

information for choosing among the alternative models that might

impact estimates. Inferences on teacher effects should account for

this uncertainty, which is likely to be large until additional research

provides more information for supporting modeling decisions.

Much of this chapter has focused on sensitivity of estimated teacher
effects and variance components to sources other than sampling er-
rors. Estimates of variability due to sampling error typically are condi-
tioned on the model and the measure and ignore sensitivity to these
factors. Given the current uncertainty about the performance of
VAM with respect to the persistence of teacher effects, omitted co-
variates, missing data, and the scale of measure, ignoring uncertainty
or error from sources other than sampling error could greatly over-
state our confidence in estimated variance components and estimated
teacher effects.

At least two approaches to accounting for uncertainty exist. The
first is to relax model assumptions by building more-complex models.
The persistence model of McCaffrey et al. (2003) is an example of
this approach. The model relaxes the assumption of the layered and
cross-classified models that teacher effects persist undiminished into
the future. Similarly, models theoretically could be expanded to relax
such assumptions as modeling the probability that a student com-
pletes a test or allowing for heteroskedastic error terms. This ap-
proach has limits either because estimating the parameters might be
infeasible given the available data and computational tools or because
the estimates might be extremely imprecise.

A second approach is to conduct sensitivity analyses to quantify
the likely changes to estimates that result from changing model as-
sumptions. Sensitivity analyses are particularly appealing when relax-
ing model assumptions results in a highly complex model. Also, given
the available data, unique estimation of some parameters might be
infeasible without strong assumptions. (In statistical jargon, the
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model requires assumptions to identify some parameters.) For exam-
ple, most databases contain no information for uniquely estimating
the correlation between true teacher effects and aggregate student
characteristics, and analysts must make assumptions about this value
when estimating teacher effects. Sensitivity analysis might also be
preferable when estimates of the parameters of complex models are
highly variable as a result of sampling error. In these cases, setting the
parameters to reasonable values rather than estimating them might
greatly reduce sampling error in estimates of teacher effects. Even
though constraining the parameter might introduce or increase bias
or systematic errors, this approach might reduce overall error if the
increase in bias is offset by a greater reduction in sampling error.
Overall error is typically calculated as the expected value of the
squared difference between the estimate and the true value, and it
equals variance plus squared bias.

Additional research is necessary to develop methods for incorpo-
rating the uncertainty of estimates identified via sensitivity analysis
into our inferences about teacher effects and variance components.
Recent work in the field of epidemiology (Lash, 2003; Greenland,
2003) might be applicable. Bayesian methods look promising because
model assumptions can be specified via prior distributions on model
parameters, and relaxation of models assumption can be conducted
on a continuum by making prior distributions more or less informa-
tive (Lindley, 2000). Also in the Bayesian framework (relative) poste-
rior probabilities of models can be calculated, and the resulting
model-specific inferences can be combined to make aggregate infer-
ences that reflect model uncertainty (Hoeting et al., 1999). Addi-
tional empirical research into the sensitivity of estimates to the factors
identified in this chapter will be useful for designing sensitivity analy-
ses and determining plausible values for setting model parameters, or
in Bayesian analyses for providing well informed prior distributions
for model parameters.
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CHAPTER FIVE

Discussion

What Have We Learned?

VAM is currently of great interest to researchers and policymakers
both because it is believed to provide a means of separating the effects
of schools and teachers from those of such noneducational factors as
student background and because it appears to demonstrate the impor-
tance of teachers to student achievement. Policymakers and research-
ers have expressed hope that the use of VAM in teacher evaluation
and accountability systems will contribute to improved decision-
making and that it will lead to increased knowledge regarding the fac-
tors that contribute to effective teaching. Despite this growing enthu-
siasm, however, the existing research base on VAM suggests that
more work is needed before the techniques can be used to support
important decisions about teachers or schools. There is currently no
single, agreed-upon approach for using VAM to estimate teacher or
school effects. Rather, as we have demonstrated, VAM refers to a di-
verse class of models with many possible paths from data to estimates.
As a result, researchers face several important decision points in
translating a given research or policy question into a specific model,
and they must address several issues that can affect the validity of
VAM estimates.

Our review of VAM revealed that accurate and precise estima-
tion of teacher effects is very challenging. Many interrelated factors
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contribute in complex ways to teacher-effect estimates, and little is
currently known about the actual sensitivity of VAM estimates to
many of these factors. In this document, we have described a number
of these factors and the potential challenges they present to research-
ers and other potential users of VAM as they decide whether and how
to use VAM in their work. The key conclusions of our research re-
garding these issues may be summarized as follows.

First, users of VAM need to provide explicit definitions of the
causal teacher effects that are the target of inference. A causal effect is
the comparison of a student’s achievement with the current teacher to
achievement under a plausible alternative. There is no single plausible
alternative for a specific teacher’s effect, and users of VAM must care-
fully state the alternative that is of interest. For example, is it other
teachers in the school, school district, or state? Also, a teacher’s effect
might not be constant across students, so users must identify which
students are being considered. Without such explicit definitions, it is
impossible to evaluate estimated effect or make meaningful inferences
about teachers.

Second, we have identified a number of possible threats to the
robustness of conclusions based on current VAM models. These in-
clude threats stemming from differences in test construction and
scaling, as well as those resulting from certain modeling decisions,
such as the decision to assume that teacher effects do not diminish in
the layered and cross-classified models. The impact of these decisions
is unknown but could be large enough to undermine the utility of
some VAM-based inferences, particularly those that contrast teachers
of students having very different levels of achievement. A particular
concern is missing data, which are pervasive in most student
achievement databases. Students are sometimes not tested, and they
often transfer in and out of schools. Many state and district data sys-
tems are not capable of tracking students who change schools, which
can result in a substantial amount of missing data. Because missing
data are so common, errors in model assumptions about the nature of
missing data could have a large impact on VAM estimates.

Third, in contrast to what the term value-added implies and
contradictory to the primary source of enthusiasm for these methods,
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VAM models do not resolve completely the issue of bias from omit-
ted variables. This problem is exacerbated by the stratified nature of
the U.S. education system—that is, the fact that students are clus-
tered within schools by race/ethnicity, income, and other background
factors associated with achievement. We have found in limited set-
tings that individual background characteristics, as well as contextual
effects (e.g., the average socioeconomic status within a school or class-
room), predict level and gain scores. Because true teacher effects
might be correlated with the characteristics of the students they teach,
current VAM approaches cannot separate any existing contextual ef-
fects from these true teacher effects. Existing research is not sufficient
for determining the generalizability of this finding or the severity of
the actual problems associated with omitted background variables.

Finally, our analysis and simulations demonstrate that VAM-
based rankings of teachers are highly unstable, and that only large dif-
ferences in estimated impact are likely to be detectable given the
effects of sampling error and other sources of uncertainty. Interpreta-
tions of differences among teachers based on VAM estimates should
be made with extreme caution.

What Do We Know About Teacher Effects?

Given these concerns, what do the current literature and studies of
teacher effects tell us about teachers? Even though the current re-
search does not address or overcome all the challenges presented
herein, we cautiously conclude from our review of the literature that
teachers differentially affect student achievement. Across diverse
studies using different age cohorts, different models and statistical
approaches, and different types of achievement measures, the studies
all find nonzero teacher effects. Furthermore, the extensive simulation
studies we conducted imply that some of the findings from the litera-
ture would be unlikely to result solely from omitted variables, bias, or
confounding, suggesting that these findings are truly the results of
teacher effects and not other factors. However, because of various
limitations to each study, the literature provides little convincing evi-
dence on the magnitude of the typical teacher effect or relative impor-
tance of teachers as a source of variability in student achievement.
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Generally, given the current state of knowledge about VAM, we
expect that some efforts to estimate teacher effects could provide use-
ful information on teachers, whereas other efforts would most likely
provide estimates with large errors and which are highly sensitive to
model assumptions and changes in measurement. VAM estimation is
likely to provide estimates that are least sensitive to the factors de-
scribed above when the distribution of students and teachers across
classrooms closely approximates the distribution that would result
from random assignment of students and teachers. School districts
with homogeneous populations of students, curriculums that are con-
sistent across classes in the same grade, and a stable population that
does not transfer into or out of the district are likely to be closest to
this ideal. School systems serving diverse population that are stratified
by schools—such as large urban populations that include both poor
inner-city schools and affluent suburban schools—will be most sensi-
tive to omitted covariates, changes in scaling, and changes in topic
mix (because curriculum difference will exist). Such school systems
also typically serve highly mobile populations that miss testing. On
the other hand, very stable and homogeneous school systems might
attract teachers of similar effectiveness and thus might provide poor
measures of the true variability of teachers.

Recommendations for Future Research

Clearly, much remains unknown about VAM. But a systematic ap-
proach to future research on VAM could fill the gaps in our knowl-
edge and might increase the utility of VAM for evaluating teachers.
We suggest the following areas for future research.

1.  Develop Databases That Can Support VAM Estimation of Teacher

Effects

The key to a greater understanding of VAM is more empirical stud-
ies. Because studies begin with data, the first step toward future re-
search should be the development of databases to support VAM. The
data must be longitudinal with at least annual test scores on students
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from measures of achievement that have well-understood psychomet-
ric properties. The databases must also include details on the links
between students, teachers, and schools and include a broad collec-
tion of measures of student characteristics.

2.  Develop Computational Tools for Fitting VAM

Readily available commercial software can fit the multivariate layered
and cross-classified models only to relatively small datasets. No read-
ily available software can fit the persistence model of McCaffrey et al.
(2003). Such software is necessary if VAM is to be tested by more
jurisdictions. In addition, tools are necessary to extend the models to
allow for features such as heteroskedasticity of residual errors within a
grade and missing data that are MNAR.

3.  Link VAM Teacher-Effect Estimates to Alternative Measures of

Teacher Effectiveness

We have noted that there is little research linking teacher-effect esti-
mates to specific characteristics or practices of teachers, and the re-
search that has been conducted has not shed much light on the major
sources of variability in teacher effects. The fact that we can estimate
effects but cannot specify what attributes those effects are capturing
limits the utility of these estimates for policy and practice. In addi-
tion, it calls into question both the meaning of outcomes-based defi-
nitions of teacher effects and the accuracy of the current estimates.
Before VAM can be used to help teachers improve their practices or
to contribute to more effective teacher preparation or professional
development, users need to understand what factors contribute to
teacher effectiveness. Research linking VAM estimates to characteris-
tics of teachers such as years of experience or credentialing status
(similar to that described by Rivkin, Hanushek, and Kain, 2000) is a
starting point, but existing research suggests that these easily meas-
ured characteristics are unlikely to be the major source of variation in
teacher effectiveness. Additional work is needed to identify likely at-
tributes, develop valid measures of them, and link them to VAM es-
timates. Much of this work is likely to be conducted outside the arena
of VAM research. For example, Cohen, Raudenbush, and Ball (2003)
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summarize some of the factors that appear to contribute to effective
instruction and discuss the need to develop measures and incorporate
them into research that links resources to student achievement. Addi-
tional research that addresses these factors in the context of VAM will
be critical if VAM is to contribute to improved teacher training or
staffing decisions.

4.  Empirically Evaluate the Potential Sources of Errors We Have

Identified

Empirical evaluations do not exist for many of the potential sources
of error we have identified. Studies need to be conducted to deter-
mine how these factors contribute to estimated teacher effects and to
determine the conditions that exacerbate or mitigate the impact these
factors have on teacher effects. Some of the key factors to evaluate
include the following.

Impact of Different Methods of Constructing and Scaling Tests.

A number of topics related to test construction and scaling might af-
fect VAM estimates and deserve additional study. Although research
has addressed the robustness of vertical scales and, to a lesser degree,
of cohort-to-cohort gains across tests, there is a need for VAM re-
search to understand the degree to which choices in scaling and test
construction influence estimated teacher effects as well as estimates of
achievement growth. Studies comparing estimates made under alter-
native scaling and with alternative measures would be one component
to such research. Understanding how the nature of the achievement
measures affects inferences from VAM is particularly important in
light of the current emphasis on criterion-referenced reporting of
scores on state accountability tests, since this form of reporting creates
additional challenges that have not been well explored.

In addition, we have discussed ways in which the assumption of
a uniform linear relationship between teacher effectiveness and stu-
dent score gains may not be appropriate in most modeling situations.
However, there is little empirical research that sheds light on the de-
gree to which this assumption may provide a reasonable approxima-
tion for common VAM applications, or on the conditions necessary
to make the assumption tenable. Models that allow teacher effects to
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vary across students, such as models with interactions between teacher
and student attributes, are a possible method to explore this complex
issue. Other important areas of future research on testing are the ef-
fects of differential test-curriculum match and the effects of timing of
test administration.

Inclusion of Student Covariates. As we have shown, the effects
of including student covariates in models depend on a number of fac-
tors. In some cases, their exclusion is unlikely to affect the estimates;
in others, omitted covariates may be problematic. In addition, even
when student-level covariates appear to be unimportant, contextual
effects represented by averages of these covariates across teachers or
schools may be correlated with teacher-effect estimates (see also
McCaffrey et al., 2003). There is no straightforward way to control
for group-level covariates. Research into the existence, magnitude,
and variability of contextual effects on scores and gain scores for dif-
ferent populations needs to be conducted. Research should also iden-
tify data sources and methods that can address the problem of contex-
tual effects in the presence of correlations between true teacher effects
and student covariates. For example, the sensitivity of estimates to
unobserved student covariates could be studied by extending the
methods by Rosenbaum (2002, Chapter 4) for estimating causal ef-
fects of treatment using unmatched treatment and comparison
groups.

Impact of Missing Data. Although we expect missing data are
likely to be pervasive, there is little systematic discussion of the extent
or nature of missing data in test score databases. Studies that model
the probability of missing test scores and allow that probability to de-
pend on the values of the unobserved scores, possibly via methods
suggested by Little (1995) or Diggle and Kenward (1994), could
prove valuable for determining the impact of missing data and the
validity of the assumptions behind all the currently used models.

Contributions of Prior-Year Teachers to Current-Year Scores. A
model for estimating the persistence of teacher effects into future-year
scores exists and should be used to explore the contributions of prior-
year teachers to current-year scores. Estimates from such models will
support efforts to determine the bias from assuming that effects re-
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main undiminished, as is done by the layered and cross-classified
models. Also, the persistence of effects is of interest for guiding policy
on staffing and class assignment.

5.  Estimate the Prevalence of Factors That Contribute to the

Sensitivity of Teacher-Effect Estimates

The research just described will identify factors demonstrated to af-
fect estimated teacher effects. However, the prevalence of such factors
will be largely unknown. A broad survey across diverse school districts
to assess the existence of conditions that mitigate or exacerbate the
effect of each factor identified in the studies suggested above would
be a valuable contribution toward assessing the likely impact of these
factors on teacher-effect estimates.

Another method for determining the prevalence of factors con-
tributing to teacher effects is replication of studies estimating teacher
effects and conducting sensitivity analyses. To the extent possible,
studies should follow guidelines to support post hoc meta-analyses to
determine the likely size and variability in sensitivity of estimates to
the various factors identified through other research. Meta-regression
approaches (Morton et al., 2003) could be used to determine which
characteristics of school systems and the populations they serve are
associated with variability in the sensitivity of estimated effects.

6.  Incorporate Decision Theory into VAM

Policymakers desire VAM estimates to evaluate teachers and make
decisions about teachers’ performance through formal or informal
means. Studies that incorporate VAM into a decision-theoretic
framework could lead to decisions with lower costs for all parties in-
volved. Researchers should work with policymakers to elicit the deci-
sion of interest in a formal framework. Then they should work with
policymakers to determine the costs of making errors in these deci-
sions. For example, the possible costs to the teacher, school, or stu-
dents from determining that a teacher is highly effective when in re-
ality he is not would be significant. Although complete specification
of costs is likely to prove impossible, better understanding of the rela-
tive cost of various errors could lead to greatly improved decisions.
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From these descriptions of costs, researchers could then develop
loss-functions—quantitative descriptions of the loss a decisionmaker
incurs for taking a particular action for a given state of events. Esti-
mators of teacher effects that minimize expected loss could be devel-
oped. For example, if the policymaker is interested in rewarding
highly effective teachers, the loss from incorrect identification of
teachers as highly effective could be determined and estimators that
provide more-precise estimates for teachers who are truly highly effec-
tive could be developed, possibly along the lines of the methods of
Stern and Cressie (1999).

7. Use Research and Auxiliary Data to Inform Modeling Choices

The information gathered by the research we outline above could be
used to inform modeling choices for making teacher-effect estimates.
For example, if studies repeatedly show that teacher effects do in fact
persist nearly undiminished, then the layered model might be used
rather than the persistence model. In a Bayesian context, the informa-
tion from prior research could be used to specify prior distributions
on model parameters and models to reduce uncertainty in resulting
estimates. Similarly, alternative measures of teacher effectiveness—for
instance, qualitative evaluation conducted by the principals—could
provide prior probability distributions for individual teacher effects.

Recommendations for the Use of VAM in Policy and
Practice

The research base is currently insufficient for us to recommend the
use of VAM for high-stakes decisions. In particular, the likely biases
from the factors we discussed in Chapter Four are unknown, and
there are no existing methods to account for either the bias or the un-
certainty that the possibility of bias presents for estimates. Further-
more, the variability due to sampling error of individual teacher-effect
estimates depends on a number of factors—including class sizes and
the number of years of test-score data available for each teacher—and
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is likely to be relatively large. Similarly, rankings of teachers should be
avoided because of lack of stability of estimated rankings.

At the current time, VAM may show promise for lower-stakes,
diagnostic purposes. Examples include identifying teachers who
might be low or high performing so that follow-ups can be done to
verify the VAM findings. Inferences would need to be circumspect
because of possible bias or sensitivity to the measure, but they could
be a starting point for administrators (such as principals or superin-
tendents) to target teachers for more thorough review.

However, other methods for using test scores to evaluate schools
or teachers are currently being incorporated into accountability sys-
tems that carry high stakes, most recently as a result of No Child Left
Behind. These other methods are affected by many of the problems
we have discussed with respect to VAM, as well as by additional
problems (such as cohort-to-cohort differences in student characteris-
tics) that are not inherent in VAM. It is not clear whether using
VAM in those situations would create any additional risk of harm
beyond what is already inherent in most test-based accountability sys-
tems—VAM might actually provide less-biased and more-precise as-
sessments of teacher effects. We know very little about how alternate
methods compare with one another, and there is a particular need for
comparisons of VAM approaches to constructing accountability indi-
ces with the more commonly used approach of cohort-to-cohort
gains.

If test-based accountability remains an instrument of education
policy, we recommend that, as policymakers evaluate alternative
models for school or teacher accountability, VAM should be given
serious consideration even in light of its limitations. Policymakers
should carefully weigh its strengths and weaknesses against those of
the alternatives and choose a method that is likely to provide the best
information with the least possibility for incorrect inference given the
current state of knowledge. Any resulting implementation of VAM or
any other method, however, should be accompanied by sensitivity
analyses and studies of the effects of the system on students, teachers,
and schools. It is particularly critical that the techniques adopted by
districts or states be subjected to outside scrutiny. Therefore, users of
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VAM should make their data and methods accessible to other users
and researchers. And, as discussed above, a major focus of any re-
analyses of such data should be a comparison of alternate models in
an effort to understand the effects of various assumptions on the
modeling results.

Perhaps the most important recommendation for ensuring ap-
propriate use of VAM now and in the future is for policymakers,
practitioners, and VAM researchers to work together so that research
is informed by the practical needs and constraints facing users of
VAM, and so that implementation of the models is informed by an
understanding of what kinds of inferences and decisions the research
currently supports. Researchers’ efforts could benefit immensely from
conversations with policymakers and practitioners to clarify how the
models will be used. Not only should researchers make their results
accessible to nontechnical users, but they should also provide guid-
ance to potential users on such issues as the types of data that districts
and states should collect and the ways in which VAM does or does
not support particular inferences. Collaboration between those who
study VAM and those who use it in practice is critical for advancing
the state of knowledge and improving the utility of this approach.

Summary

We have provided a systematic review of the issues that are likely to
affect VAM estimates. Analysts creating estimates should conduct
sensitivity analyses and provide the necessary information for others
to evaluate the uncertainty of estimates arising from the factors we
have discussed. Analysts should also provide descriptions of the
populations and details on the targets of inference and modeling
choices so that the impact of these factors can be fully evaluated. In
the end, however, it is the job of policymakers and educators to de-
fine their inferential goals and to decide what kinds of uncertainty are
acceptable and what kinds are not. Analysts can then develop the best
models to meet those requirements.
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Technical Evaluations of the Methods of
Sanders and Rivers (1996) and
Wright, Horn, and Sanders (1997)

The following pages (numbered 1–35) make up the appendix to the
monograph.





Technical Evaluations of the Methods of
Sanders and Rivers (1996) and Wright, Horn, and

Sanders (1997)

Two of the most widely cited papers that use VAM methods to estimate teacher effects
are Sanders and Rivers (1996) and Wright, Horn, and Sanders (1997). As described in the
main text of the monograph, these papers conclude that strong and persistent teacher effects
exist. However, the methods used by these papers to reach these conclusions are complex, and
understanding their operating characteristics requires careful consideration. This appendix
provides both analytic and simulation-based evaluations of the properties of the methods and
models used in the papers. We provide analytical evaluations of the methods in tractable,
instructive cases and use simulation to explore properties of the methods in more-complex
cases that more closely resemble the empirical structures examined by the authors.

Our primary conclusion is that, for both studies, the factors determining the properties
of their estimators are sufficiently complex to prohibit definitive assessments of the authors’
conclusions. The Sanders and Rivers (1996) method demonstrably produces positively biased
results with two years of data, and may produce positive, negative, or essentially unbiased
in results with additional years of data. Factors significantly contributing to the size and
direction of bias include the size and persistence of teacher effects, the mixing of students
among classes over years, and whether true teacher effects are correlated with omitted student
characteristics that affect outcomes. These factors are not discussed in the paper, but, for
simulation design points that we suspect are most representative of reality, the bias tends
to be small-to-moderately positive. Only under seemingly implausible design parameter
values could we produce results as large as those reported by Sanders and Rivers that were
a function of bias alone.

The Wright, Horn and Sanders (1997) effect-size metric confounds true effect sizes with
estimation precision. Our simulation results show that it is possible to replicate the direction
of conclusions reached by the authors even if we assume no differential effects. However, we
could not completely reproduce the magnitude of their reported differences. It is impossible
to ascertain what part of their findings might be due to inherent bias in the methods given
only the information reported in their study.

The remainder of this appendix is organized as follows. For each of the two studies, we
briefly summarize the methods that are used to reach the conclusions about teacher effects
and present the analytical considerations that form the basis of our evaluations. We then
describe the simulations that we used to investigate the properties of the methods in cases
where analytic results were intractable. Finally, we summarize our findings in a manner that
we hope can be used to calibrate the substantive conclusions reached in the papers.

1



1 Sanders and Rivers 1996

1.1 Methods

Sanders and Rivers (1996; hereafter abbreviated “SR”) study the cumulative effects of
teachers in grades 3 to 5 and the differential effects of teachers on students of different races
and on students at different levels of achievement. In this appendix we consider only the
methods used for estimating cumulative effects. Mendro and colleagues (1998) at Dallas
public schools use methods very similar to SR to estimate cumulative teacher effects in their
district, and Rivers (1999) extends the methods to two cohorts of students: the first used
for estimating teacher effectiveness and the second for estimating cumulative effects.

SR studies the performance of a single student cohort from grades 2 to 5, with students
linked to teachers throughout. Their analysis has two phases. Phase 1 estimates teacher
effects and teacher effectiveness for grade 3, 4 and 5 teachers. Phase 2 estimates the effects
on student outcomes of sequences of teachers with differential effectiveness as measured in
phase 1. Their specific procedure is as follows.

Phase 1: Estimating teacher effects. Let Yijt denote the exam score of student i taught
by teacher j in year t. The phase 1 analysis fits the following simple mixed-effects model for
each of t = 3, 4, 5:

Yijt = µt + βtYi,t−1 + θj + ǫijt (1)

That is, the current-year score is assumed to be a linear function of the prior-year score,
plus a normally distributed, random effect θj representing the contribution of the teacher j
(which is common to all students taught by that teacher), and a normally distributed error
term ǫijt.

The mixed models provide shrinkage estimates of the θj for all teachers in grades t =
3, 4, 5. These estimates are then used to rank the teachers in each grade and assign teachers
to quintiles of the sample within each grade. At the end of this phase of the analysis, each
teacher in each grade has an effectiveness rating of 1 to 5 equaling the estimated quintile of
his or her estimated effect compared with other teachers in the same grade.

Phase 2: Estimating impact of teacher sequences. Based on the phase 1 analysis
and the linkage from students to teachers, it is possible to identify for each student the
estimated quintile of his or her grade 3, 4 and 5 teachers. The purpose of phase 2 of the
analysis is to estimate the effects on grade 5 outcomes of having a sequence of teachers of
given effectiveness (as measured by the quintile assignments). The model used to make these
inferences is the ANCOVA model

Yi5 = µ5 + q3(i) + q4(i) + q5(i) + βYi2 + ǫi5, (2)

where qt(i) is a five-level factor representing the quintile of the grade t teacher who taught
student i. SR justify the additive model on the basis that preliminary models found inter-
actions between qt(i)’s to be small. SR use the results of Eq. (2) to compare the estimated
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difference in expected grade 5 performance of students with different profiles of teacher ef-
fectiveness. Most notably, they compare students whose teachers were all assigned to the
top quintile with those whose teachers were all assigned to the lowest quintile.

1.2 Analytical Evaluations

Our primary concern is that by using the same students to estimate the teacher quin-
tiles and the effects of quintile assignments on student performance, SR might unnaturally
exaggerate any error in the quintile estimation and yield biased results in phase 2. Analytic
results on the properties of the SR estimators are tractable when the analysis is restricted
to two years of data. The analytic evaluations show that with two years of data, the SR
procedure will yield positive bias in the estimates of the effects of having teachers of different
quality. Our results assume the following simple model for student scores:

Yij2 = µ2 + θj + γi + ǫij2, (3)

where i indexes students and j identifies students’ teachers. Thus, student performance is
centered at a common year-specific mean µ2, with student-specific deviations γi, teacher-
specific deviations θj, and error term ǫij2.

1 We also consider a prior-year score for students:

Yi1 = µ1 + γi + ǫi1. (4)

Note that we absorb the year-one teacher effects into the error term and so we remove that
subscript for year one. We assume the following independent distributions for the random
effects:

θj ∼ iid N(0, σ2

θ)

γi ∼ iid N(0, σ2

γ)

ǫij2 ∼ iid N(0, σ2

ǫ2)

ǫi1 ∼ iid N(0, σ2

ǫ1).

Also, without loss of generality, we assume µ1 = µ2 = 0.

We derive the true average effects of having teachers in a particular quintile (based on
the distribution of θi) as follows. For simplicity, suppose we are in the balanced case with n
students per teacher. Let

δ1 =

∫ q20

−∞

u
φ(u)

Φ(q20)
du, (5)

where q20 is the 20th percentile of the standard normal distribution, φ is the standard
normal density, and Φ is the standard normal cumulative distribution function (CDF). δ1

equals the conditional mean of a truncated standard normal random variable restricted to

1The teacher effects in our analytic and simulation models could represent in real data either true teacher
effects or classroom effects resulting from factors other than individual student effects or characteristics. Such
classroom effects might arise for example from interactions among students. For simplicity of presentation
we use the term “teacher effects” to refer to either of these sources of variability.
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the lowest quintile of the standard normal distribution. We now make similar definitions for
quintiles 2–5 and denote them δ2, . . . , δ5. By numerical integration, the values of δ1, . . . , δ5

are approximately (−1.40,−0.53, 0, 0.53, 1.40), respectively. The average score for students
having teachers in quintile Q, Q = 1, . . . , 5, is thus

E(Yij2|θj ∈ Q) = E(θj + γi + ǫij2|θj ∈ Q)

= E(θj|θj ∈ Q)

= σθδQ (6)

and the expected difference in scores for students with a teacher in the highest quintile versus
students with a teacher in the lowest quintile is

σθ [δ5 − δ1] ≈ 2.8σθ, (7)

with similar results for comparisons between means for other pairs of quintiles.

The maximum likelihood (ML) or restricted maximum likelihood (REML) estimate σ̂2
θ

of the variance component of σ2
θ could be used to estimate the difference between students

with a high-quintile teacher and those with a low-quintile teacher as

2δ5σ̂θ ≈ 2.8σ̂θ. (8)

This estimate approximately equals the true difference assuming the model is correct; that
is, that the teacher effects and scores are approximately normally distributed.

SR does not use a model based estimate to determine the impact of teacher sequences.
Instead they use the phase 2 regression of scores on estimated quintiles to estimate teacher
effects. Because we assume the same number of students in each classroom, estimated
teacher effects from the phase 1 regression model will rank teachers precisely in accordance
with the teacher-specific classroom mean residuals from the regression model. We assume
that sampling error in the estimated regression coefficient for model (1) can be ignored. The
residuals are then given by Rij2 = Yij2 − E(Yij2|Zij2) = θj + ζij2, where β = σ2

γ/(σ
2
γ + σ2

ǫ1)
and ζij2 = γij2(1 − β) + ǫij2 − βǫi1. We let σζ denote the variance of the ζij2’s. Note that
Rij2 is independent of Yi1. The mean classroom residual for teacher j can be written as

Rj =
1

n

n∑

i=1

Rij2

=
1

n

n∑

j=1

[θj + ζij2]

= θj + ζ̄j. (9)

The variance of these mean residuals is σ2
θ + σ2

ζ/n, which is overdispersed relative to the
teacher effects, θj. The phase 2 model, which regresses student scores on the estimated
quintile assignments (and the prior achievement of the student), is equivalent to estimating
the expected value of a score given the quintile of the average residual. As we show, this
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procedure is essentially equivalent assuming that the true variance of the teacher effects is
the inflated variance of the observed mean residuals. More specifically,

E(Yij2|Rj ∈ Q, Yi1) =

∫

Q

E(Yij2|Rj, Yi1)p(Rj)dRj

= E(Yij2|Yi1) +

∫

Q

Rjp(Rj)dRj. (10)

Only the integral contributes to estimated teacher effects because E(Yij2|Yi1) depends only
on Yi1 and the teacher.

By the same logic applied previously, the value of the integral on the righthand-side for
a particular Q is

(σ2

θ + σ2

ζ/n)1/2δQ (11)

and thus the estimated expected difference for a student having a high-quintile teacher versus
one having a low-quintile teacher would be approximately

2.8(σ2

θ + σ2

ζ/n)1/2 (12)

The relative bias in this estimate is

2.8(σ2
θ + σ2

ζ/n)1/2 − 2.8σθ

2.8σθ

= (1 +
σ2

ζ

nσ2
θ

)1/2 − 1 (13)

Figure A.1 plots the relative bias as a function of ρ =
σ2

θ

σ2

θ
+σ2

ǫ2

and three sample sizes n =

10, 20, and 25. Relative bias can be very large when ρ is small, but even when ρ is as large
as 0.13 (the value reported by Rowan and colleagues [2002] from a very different model) the
relative bias remains at 15 percent.

Analytic derivations become cumbersome for multiple years because the calculations
involve inverting at least a 4 by 4 covariance matrix and numerical integration of multivariate
normal densities. Thus we use simulation to explore the properties of the procedure applied
to multiple grades of data in the presence of teacher effects of different magnitudes.

1.3 Simulation Design

In this simulation, we generate data for student scores using a simple but representative
model and then estimate teacher effects using the SR two-phase method. We focus on the
difference in expected scores for a student after three years of top-quintile teachers (HHH)
compared with his or her score after three years of bottom-quintile teachers (LLL). We
calculate the SR-based estimate and the true value based on the model. We find that unlike
the case of only two years of student test scores—where the SR method is always positively
biased—the bias can be positive, negative, or nil depending on a number of factors when
more than two years are modeled.
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1.3.1 Basic Model for Generating Scores

All student scores were generated using the following model developed in McCaffrey et
al. (2003):

yi2 = µ2 + γi + θ2i + ǫi2 (14)

yi3 = µ3 + γi +
∑

j

φi3jθ3j + ǫi3 (15)

yi4 = µ4 + γi +
∑

j

α4,3φi3jθ3j +
∑

j

φi4jθ4j + ǫi4 (16)

yi5 = µ5 + γi +
∑

j

α5,3φi3jθ3j +
∑

j

α5,4φi4jθ4j +
∑

j

φi5jθ5j + ǫi5. (17)

In all cases, φitj equaled either 0 or 1 for all students. The values of α4,3, α5,3 and α5,4

determine the persistence of teacher effects over time, and we varied them over simulation
runs. When α4,3, α5,3 and α5,4 all equal 1, the data-generating model is equivalent to the
TVAAS layered model (Sanders, Saxton, and Horn 1997; McCaffrey, Lockwood, Koretz,
Louis, and Hamilton 2003). Alternatively, we also considered models where α4,3, α5,3 and α5,4

were less than 1, implying dampening of teacher effects over time (see Tables A.1 through A.4
for specific values).

For our data-generating model, the γi ∼ N(0, σ2
γ), ǫit ∼ N(0, σ2

ǫ ) and θtj ∼ N(0, σ2
θ). To

explore the properties of the SR method, we considered multiple values for σ2
γ , σ2

ǫ , σ2
θ and

α4,3, α5,3, and α5,4. We let v = σ2
γ +σ2

ǫ +σ2
θ = 2500 (the approximate marginal variance from

the Tennessee accountability exam) and considered values for σ2
γ and σ2

ǫ such that intra-class
correlation, ICC, for scores from the same student satisfies ICC = σ2

γ/(σ
2
γ + σ2

ǫ ) = 0.7 or
0.3. We chose values of ρ = σ2

θ/v = 0.01, 0.033, 0.13 or 0.50, reflecting both small and large
teacher effects, as well as the value of 0.13 reported by Rowan et al. (2002).

To generate longitudinal student data, we also needed to determine how students are
distributed across classrooms over time. We decided that for all models there would be 200
teachers per grade and 20 students per classroom. Students did not transfer among schools.
We considered cases with 200 schools (i.e., classroom configurations did not change across
time), 50 schools (four teachers per school) and one school (no limitations to the cross-year
configurations of classes).

1.3.2 Models with Heterogeneous Classroom Means

We considered some extensions to the data-generating model in Eq. 14 in which we
introduced systematic heterogeneity into the classroom means through the students. We did
this by creating two groups of students—higher and lower achieving—and varying our design
along four factors: how the two groups of students were allocated to schools and classrooms;
the manner and extent to which high- and low-achieving students differed; whether there
were zero or non-zero teacher effects; and, when there were non-zero teacher effects, the

6



correlation between the proportion of high-achieving students and mean teacher effects in a
school.

For the first factor, all clustering of students was done at the school level, with no system-
atic lack of mixing at the classroom level. Our design considered two different allocations. In
the first, half of the schools had 25 percent low-achieving students and half had 75 percent
low-achieving students. In the second, the proportion of low achieving students was modeled
using data on student eligibility for free and reduced price lunches (FRL) in Columbus, OH,
obtained from the NCES Common Core of Data (CCD) (http://nces.ed.gov/). In Columbus,
about 68 percent of students are FRL, with heterogeneity at the school level. We used the
CCD data to estimate a simple model from which to generate school percentages of low-
achieving students during our simulations with a distribution similar to that in Columbus.
The model suggests that a school at the lowest quartile would expect roughly 55 percent
FRL students, while a school at the highest quartile would expect roughly 85 percent FRL
students.

The second factor was in what way the two groups of students differed in terms of
achievement. We started by assuming that grouping affected only outcomes levels (via the
γi in Eq. 14) by shifting the student effects for all low-achieving students down by 0.2 σγ , a
value that seemed reasonable based on our experience in empirical settings. This difference
remained constant over time so that annual gains did not depend on student group. We
denote this case as “LEVELS” in the results tables. We also considered a configuration
in which gains did depend on grouping by forcing the groups to be 0.2, 0.3, 0.41 and 0.53
standard deviation units apart in grades 2 through 5, respectively. We denote this case as
“GAINS” in the results tables.

The third factor was whether or not both differential student effects and non-zero teacher
effects existed or just differential student effects existed. The case of no (zero) teacher
effects was motivated by our belief that the clustering at the school level of students of
different achievement would create spurious teacher effects. If classroom mean outcomes
are homogeneous, then phase 1 of the SR method will likely estimate the teacher variance
component to be zero, and phase 2 will be undefined, in which case there is no bias. However,
outcomes clustered at the classroom level when teacher effects are zero will likely result in a
non-zero estimate of the teacher variance component, in which case phase 2 will proceed as
usual and will result in positive differences between HHH and LLL. Because the true teacher
effects are zero, the resulting estimate of a positive effect is positively biased.

The fourth factor was whether non-zero teacher effects were correlated with the school
percentage of high-achieving students. To achieve correlation, we generated school-level
means for teacher effects that covaried with the proportion of high-achieving students. In-
dividual teacher effects varied around the school mean, and the fraction of teacher variance
within and between schools was held constant at 0.5. We conducted exploratory analyses
with a range of correlations from about 0.2 to 0.8. We explored this wide range of values
because there is little empirical information about the correlation between teacher effects
and student characteristics. Although the operating characteristics of the SR estimator de-
pended on the size of the correlation, we found that the most important features were robust
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to the actual value. For the results presented in this appendix, the correlation was about 0.3,
which we felt was neither too large to be implausible nor too small to be inconsequential.

1.3.3 Autoregressive Alternative Model

In addition to the data-generating models described above, we also explored data- gen-
erating models like those used in phase 1 of SR:

yit = µt + βyit−1 + θ + ǫ. (18)

We considered this model to study the sensitivity of our simulation study results to the
mismatch between the models used in SR and the data-generating model. We do not provide
detailed results of this alternative because the model is more restrictive and less realistic
model for data generation than the model given by Eqs. (23) to (26).

1.3.4 Assessing Bias

For all models and configurations of parameters, we defined the operating characteristic
of interest to be the difference in the expected student score after HHH compared to LLL.
For our simulations, we estimated this quantity using the SR method. We compared this
estimate to the true expected difference under the data generating model:

(2δ5)(1 + α5,3 + α5,4)σθ ≈ 2.8(1 + α5,3 + α5,4)σθ, (19)

which follows from arguments identical to the ones provided in Section 1.2.

Simulations use SAS Version 8.02 to generate data, PROC MIXED and PROC REG to
fit models, and R to generate data, with the lme() and lm() functions used to fit mixed and
linear models.

1.4 Simulation Results

1.4.1 Data Generated with Homogeneous Classroom Means

Tables A.1, A.2, A.3, and A.4, and Figures A.2, A.3, and A.4 provide our simulation
results (for the basic case where classroom means are homogeneous except for sampling
error). As is clearly shown in the figures, the bias in the SR method can be positive,
negative, or essentially zero when the analysis includes more than two years of data. For
example, the bias tends to be negative when the teacher effects are moderate (ρ = 0.13) and
when teacher effects persist at moderate levels (α’s > 0.5). When the teacher effects are
small, on the other hand, the bias tends to be positive regardless of how persistent effects
are. Similarly, when teacher effects persist only weakly or not at all (α’s < 0.5) then the
bias is again almost always positive regardless of the size of teacher effects. As shown in
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Table A.4, when teacher effects are very large (ρ = 0.5) the bias in SR can be very large and
negative, but this extreme case is unrealistic and is not shown in our figures.2 The results
for multiple-year analyses are in contrast to applications of the SR approach to two years of
data, which—as shown by the analytic results above—always produces positive bias.

In many of the scenarios presented in the tables, the true difference in expected scores
following HHH compared with LLL are extreme, often exceeding two standard deviation units
(one standard deviation unit = 50 points in our simulations). For example, when teachers
account for about 13 percent of variance in early grades and these effects are fully persistent,
the cumulative effects of HHH compared with LLL are over three standard deviation units.
Such an effect is huge compared with almost any educational program or differences due
to background characteristics. These extremely large values also are inconsistent with the
results in SR. SR find HHH versus LLL resulting in a difference of about 52 to 54 percentile
points. Based on the the reported percentiles for students in LLL, we determined that the
SR differences of about 52 to 54 percentile points correspond to about 1.3 to 1.7 standard
deviation units, or difference of between 65 and 85 points in our simulation. In our simulation,
expected estimated differences were between 65 and 85 points only when ρ = 0.033 or 0.13.
In fact, we chose ρ = 0.033 because, under the layered model, the true difference equaled 76,
essentially the mid-point between 65 and 85.

When the mean of the estimated differences ranges from 65 to 85, the bias in the SR
method tends to be small and both positive and negative depending on the particular design
points. The exception is when ρ = 0.13 and teacher effects do not persist, i.e., the α’s equal
0. In this case, there is moderate-to-large positive bias of about 15 to 25 points.

We found that under the alternative autoregressive data-generating model (Eq. 18), the
bias in the SR procedure tended to be small and positive or essentially zero, but never
negative. Thus, our findings of positive bias in the SR method are not simply an artifact of
the data generation model.

1.4.2 Data Generated with Heterogeneous Classroom Means

All the previous results were based on generating the data with homogeneous classroom
mean of student achievement. Tables A.5 to A.12 present the results for cases where the
classroom means were heterogeneous and teacher effects were nonzero with ρ = 0.033 or
0.033. As shown in the tables, the results are similar for the LEVELS and GAINS conditions,
i.e., regardless of whether classroom mean level scores or gain scores vary the results are
similar, with bias being between two or three points larger for GAINS than for LEVELS. Bias
was again dependent on the strength of the teacher effect and the persistence of effects and
could be positive, negative, or essentially zero depending on teacher effects. When teacher
effects were large and strongly persistent, the bias tended to be negative or essentially zero.

2We consider this case extreme because, in the literature, classrooms typically account for substantially
less than 50 percent of total variance in achievement and teachers must explain less variance than classrooms.
In addition, the results in Table A.4 are extreme, ranging from two to nearly six standard deviation units
between HHH and LLL students.
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On the other hand, as with cases having homogenous classroom means, the bias was almost
always positive when teacher effects persisted weakly or not at all and was more likely to be
positive when teacher effects were small. When teacher effects are small and at most weakly
persistent, the bias can be considerable—typically over 25 percent.

When teacher effects are uncorrelated with student characteristics, the results are very
similar to the results when classroom means are homogeneous. When teacher effects are
correlated with student characteristics, the bias is more likely to be positive. In fact, when
teacher effects were small (ρ = 0.033) and correlated with student characteristics, the bias
was always positive ranging from about 5 to 100 percent.

When true teacher effects are zero but students cluster according to achievement level,
the SR approach produces positively biased results. When student achievement differs by
0.2 standard deviation units between high and low achieving classes, we found that the SR
approach yielded noticeable differences between expected scores for student following HHH
versus LLL, even though there were no teacher effects. The differences were from about 30
to nearly 40 points (or .6 to .8 standard deviation units). Differences of 30 to 40 points are
small relative to cases with large teacher effects and half as big as those reported in SR,
which correspond to 65 or 85 points in our simulation study. In fact, if teacher effects were
truly zero, the heterogeneous grouping of students could produce effects on the order of SR’s
only when our group effects took exceptionally large values that far exceeded any estimated
effects we had ever observed in test score data.

1.5 Discussion

The SR approach is an ad hoc method to estimate the cumulative effects of teachers. If
only two years of data are used, the approach yields positively biased results. When multiple
years of data are used, bias in the method depends on the strength of the teacher effects
and the persistence of these effects over time. The bias tended to be greater and more often
positive when the population varied between classrooms and teacher effects were correlated
with student characteristics.

Our simulation results indicate that the SR results are unlikely to occur if teacher effects
are truly zero. Only under seemingly implausible design parameters values could we produce
results as large as those reported by Sanders and Rivers that were a function of bias alone.
However, for many plausible settings, the simulation study found positive bias for the SR
method. In cases that our experience suggest are most plausible (in part because they
provide estimates that are similar in magnitude to those reported in SR), the bias in the
SR method appears to be about 20 percent when comparing student outcomes after three
years of the most-effective teachers to outcomes after three years with the least-effective
teachers. In these cases, the teacher effects are small to moderate (0.033 to 0.13), weakly
persistent, and correlated with student characteristics that affect achievement and cluster
within schools. The bias is highly sensitive to the persistence of such effects. If the teacher
effects do not persist, the bias could be considerably larger; if the teacher effects are strongly
persistent, the bias is likely to be about zero. We conclude that SR provide evidence of
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teacher effects and persistence of such effect; however, the size of the effects is likely to be
somewhat overstated.

More important, on the basis of a model with estimated persistence factors, one could test
for the strength of teacher effects over time and try to model possible compensatory effects
where teachers offset the effects of prior low- or high-performing teachers. In addition, such
a model could then be used to directly evaluate the cumulative effects of teachers because
these effects would be explicit in the model.

SR note that there was no evidence of compensatory effects in their study. However, the
model fit in phase 1 of SR does not allow for compensatory effects, and so it is not clear that
their conclusion is justified. If we take the models for grades 3, 4, and 5 and do some simple
algebra we find that the model for grade 5 scores is

y5 = µ5 + θ5 + β5θ4 + β5β4θ3 + β5β4β3y2 + ξ, (20)

where the βt’s are the coefficient for yt−1 in the SR model for yt. The model assumes
purely additive teacher effects. It is unclear how fitting this model on phase 1 affects the
likelihood of detecting existing compensatory effects at phase 2. Thus, we feel a more direct
approach that models teacher effects in a single model needs to be developed before drawing
conclusions on the nature of compensatory teacher effects.

2 Wright, Horn and Sanders 1997

2.1 Methods

The paper by Wright, Horn and Sanders (1997; hereafter abbreviated “WHS”) reports as
a major conclusion that “teachers make a difference.” In particular, using the TVAAS data,
WHS report that “teacher effects are the dominant factors affecting student academic gain.”
They used mixed effects models to model student change scores as a function of student,
teacher, and classroom-level covariates. Some of these are random effects and some are fixed
effects. Their results are predicated on the following, taken from their paper:

As an aid for assessing both statistical significance and the effect sizes of the
various effects in the model, z-scores are reported for each effect. For random
effects, z-scores were obtained by dividing the estimated variance component by
its estimated standard error. . . . For fixed effects, first p-values were obtained
from F -statistics [corresponding to the multivariate F -test for categorical covari-
ates], then corresponding z-scores were calculated from the p-values by treating
the p-values as if they were two-tailed and from a standard normal distribution.
(Wright, Horn, and Sanders 1997)

Thus, all z-values are positive. Their conclusions about teacher effects being the dominant
factors are based on their z-values being largest among the factors considered in their models.

11



2.2 Analytical Considerations

Implicit in the WHS conclusion is the assumption that, if the z-score for the teacher
variance component tends to be greater than the z-score for the fixed-effect covariate, the
effect of teachers is greater than the effect for the covariate. In other words, WHS assume
that the z-scores preserve (in probability) the true order of the effects. We explore the
validity of this assumption through analytic consideration of the distribution of the z-scores.

Unlike most measures of an effect size for a latent (e.g., teacher effect) or an observed
covariate, which are estimates of population parameters that are invariant to the precision
of parameter estimates, the WHS z-scores do not estimate model parameters because they
combine the size of effects and the precision of estimates. “Effect size” as it is commonly
used is a function of parameters only, typically referring to a mean shift related to changing
a covariate expressed in terms of the total standard deviation in the response. For example,
having an effective teacher rather than a poor one might raise a student’s score by 0.1
population standard deviations. Alternatively one can think of an effect size as a fraction
of the total variance attributable to a particular covariate, as in “Prior student achievement
accounts for X percent of the total variability in the test scores.” Regardless of how it is
defined, the effect size is a characteristic of unknown parameters only. An estimate of the
effect size will be a random variable that is distributed around a true population parameter.
Thus, roughly speaking, some measure of the center of distributions for effect size estimates
will tend to preserve the order of the true effect sizes.

This is not true for the WHS z-scores. These random variables will be distributed around
constants that depend on the parametric effect size and the precision of the estimates. In
particular, they will be centered around constants that depend on the sample size because
the precision depends on sample size. There is no a priori evidence that the combination
of precision and effect size should order the center of the z-score distributions in the same
order as the distribution of true effects. We do know that for large samples, the mean of the
z-score distribution for the random effect grows roughly as the square root of the number of
teachers (Cox and Hinkley 1974), and the mean of the z-score for fixed effects will grow at
no more than the rate of the square root of the number of teachers when covariates are at
then classroom level.3 However, even though the means will both be rough multiples of the
square root of the number of schools, we again have no evidence that the multipliers will be
the same. These multipliers will depend on many factors, such as the number of levels of
the fixed-effect covariates and collinearity among covariates.

The fixed-effect z-scores are a transformation of F -test statistics, which roughly follow a
noncentral F distribution where the noncentrality parameter depends on the true parameter-
based effect size and the precision of the estimated coefficients (Searle 1971). To create the

3Let Φ−1 denote the inverse of the standard normal cumulative distribution function (CDF). Let Fν1,ν2

denote the CDF of a central F distribution with ν1 numerator and ν2 denominator degrees of freedom. Let
Gν1

denote the CDF of χ2 with ν1 degrees of freedom. Let f be the F -test statistics. The WHS z-score is
given by

z = h(f) = Φ−1

(

1 + Fν1,ν2
(f)

2

)

.
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WHS z-score, this F -test statistic is compared with a central F distribution to produce a “p-
value” probability, and this p-value divided by two is further transformed by the quantiles of
a standard normal distribution. Under the null hypothesis of zero effect, the F -test statistic
has a central F distributed and the first transformation yields p-values that are uniformly
distributed. In this case, the WHS z-score is distributed like the absolute value of a standard
normal random variable.

Alternatively, when the variable has an effect and the F -test statistic has a noncentral
F distribution, the p-values are not uniformly distributed and the z-score distribution will
depend on the noncentrality parameter, which depends on the true effect size and the sample
size. Thus, the distribution of the z-scores depends on the true effect size and the sample
size. For a given sample size, the mean, the variance, and the shape of the distribution can
vary with the true effect size. How the distribution changes with effect size depends on the
sample size.

Another factor determining the distribution of the z-scores is collinearity of the fixed-
effect covariates. Collinearity among the covariates of multiple regression models inflates
the standard errors of individual regression coefficients because the data cannot resolve
attribution to individual variables. Because of collinearity’s effects on standard errors, it
also affects the F -test statistic for fixed effects. However, such correlations are not likely
to greatly impact the standard errors of variance component estimates for random effects.
Roughly speaking, this is because collinearity does not affect the precision of fitted values
based on only fixed effects, and random effects are estimated using the residuals based on
these fitted values. Thus, collinearity will mostly affect the distribution of the z-scores for
fixed effects and will therefore alter the relationship between the means of the fixed and
random z-scores relative to the relationship between the true effect sizes. For example, we
might expect collinearity to make the means diverge when the true effects were equal.

The distribution of the random-effect z-score will depend on the true value of the variance
component and the sample size. As the sample size gets large, the random-effect z-score
behaves like a normally distributed variable (with finite variance) centered around a mean
that is a multiple of the square root of the sample size (Cox and Hinkley 1974).

Thus, the distributions of the fixed- and random-effect z-scores are likely to have both
different means and different variances, with the difference depending on sample size and

Because of the stochastic ordering of F and χ2 distributions, we know that

z = Φ−1

(

1 + Fν1,ν2
(f)

2

)

≤ Φ−1

(

1 + Gν1
(ν1f)

2

)

≤ Φ−1

(

1 + G1(ν1f)

2

)

=
√

ν1cf.

Because h is concave, we know that E(z) ≤
√

E(f), which grows as the square root of the number of teachers
for large samples.
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effect sizes. The probability that random-effect z-scores exceed fixed-effect z-scores will
depend on these two divergent distributions, which are determined by many factors. On
the face of it, there is no obvious reason that the oredering of the true effect be preserved.
However, we cannot analytically determine the probability that one value would exceed
another, and so we use simulation to make this determination under a small set of conditions.

2.3 Simulation Design

The WHS conclusions assume that if the z-score for the random effect exceeds that of the
fixed effect, true effects follow the same order. Our analytic investigations suggest that many
factors other than the rank order of effects can contribute to the probability that the random-
effect z-score exceeds the fixed-effect z-score. Our simulation demonstrates the fallacy of the
WHS conclusion by showing that, even when the true effects are equal, the probability that
the random-effect z-score exceeds the fixed-effect z-score can be large. Moreover, we show
that this probability can also be small and is highly sensitive to other factors such as the size
of the effect and collinearity. Thus, the probability that the random-effect z-scores exceed
the fixed-effect z-scores cannot in general be used as guide for assessing the relative size of
the true effects.

We investigate the behavior of the WHS metric via simulation under the following simple
but representative model:

Yij = µ + θi + β1X1,i + β2X2,i + ǫij (22)

where i = 1, . . . , C indexes clusters and j = 1, . . . , n indexes observations within clusters,
for a total of Cn observations in a balanced design. θi is a Gaussian cluster-specific random
intercept with variance σ2

θ , and ǫij is a Gaussian orthogonal error term with variance σ2
ǫ . X1,i

and X2,i are continuous cluster-level fixed-effect predictors that we assume for convenience
have Gaussian population means of zero and variances of 1, so that the additive terms have
sampling variances of β2

1 and β2
2 , respectively. We further assume that

COV (X1,i, X2,i) = COR(X1,i, X2,i) = r12 (23)

across clusters. In the context of WHS we think of {Yij} as student test scores, with i
indexing classrooms, j indexing students within classrooms, θi being a teacher effect, and
X1 and X2 representing some characteristics of the classrooms that vary continuously (such
as classroom-level average standardized prior year scores on two exams). For simplicity we
assume that µ = 0 because the results are invariant to this parameter. We also assume that
σ2

ǫ = 1, and we vary the effect sizes of the other variables (the teacher variance component
and the two predictors) in lockstep, keeping the residual variance fixed. This allows us to
contemplate cases of varying signal-to-noise ratio without being overly complicated about
the comparison. Finally, we assume that n = 25, which is consistent with number of students
in classrooms in general, and in particular with the classrooms analyzed by WHS.

We used the functions of the R nlme package to perform mixed-models analysis of sim-
ulated data to explore the relative sizes of the WHS metrics using various combinations of
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parameters. When fitting the model, we convert the continuous covariates into categorical
covariates to be consistent with the model of WHS. The z-scores for such variables are based
on the partial F -test from the ANOVA table using Type III sums of squares. To generate
categorical covariates, we empirically categorize each variable into classes that contain an
approximately equal number of observations. Also note that despite the fact that the covari-
ates are categorical, we generate the dependent variables according to the linear model in
Eq. (22). This is consistent with the categorization of the covariates reflecting an aggregation
of an underlying continuous variable. This is roughly in line with the structure considered
by WHS. To get the z-scores for the random effect variance component, we divided the es-
timated variance component by its standard error, available from appropriate manipulation
of the information returned by the function lme() for linear mixed-effects models.4

Our simulation design consisted of varying three key parameters, each along four different
values, for a total of 64 design points.

• The number of clusters (classrooms) (C = 10, 25, 100, 400)

• The correlation between the predictors (r12= 0.0, 0.2, 0.5, 0.8)

• The “true” effect sizes of the covariates relative to the noise standard deviation (σθ,
β1, β2 = 0.1, 0.5, 1.0, 1.5). The parameters σθ, β1, β2 always took on a common
value, so that both the fixed and random effects were of approximately the same size
relative to the residual variance. By at least one common definition of the effect size
(e.g., fraction of total variance attributable to a particular term), the effect sizes are
identical. Thus any systematic differences in estimated effect sizes that we observe
argue that the WHS z-statistic is difficult to interpret as an effect size.

For each design point, we simulated 100 data sets and performed the mixed model analysis
to obtain the simulated z-scores for each simulated data set.

To calculate the z-scores, we needed the p-values from the appropriate reference F -
distributions. In cases where the number of clusters and the effect sizes are large, the
corresponding F -statistics are so far in the tail of the distribution that p-values were numer-
ically zero using the standard F -distribution function in R. When we consider z-scores as
a function of the F -statistic (e.g., z = h(F )) this function is concave. Thus, we can bound
the z-scores in cases where p-values are zero by linear extrapolation. To do so, we calculated
z = h(F ) for a sequence of F values near the boundary where the p-values numerically
equal zero. We fit a linear regression model for predicting z from the sequence and used
this model to predict z-scores for all large values of F . Because the function is concave, this
extrapolation will be an upper bound to the real z-score values.

4z-scores of zero were assigned when the estimation procedure estimated the variance component to be
small. The lme() function does not estimate variance components of zero because the maximization of the
likelihood is performed on an unconstrained parameterization. However, if the estimated variance component
is small enough, the estimated asymptotic covariance matrix of the estimates is not positive definite. The
z-score for the variance components was set to zero in these cases.
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2.4 Simulation Results

The main results are reported in Table A.13 and Figure A.5. The table is best read as
a 4 × 4 table of 4 × 3 tables. The outer rows and columns delineate different numbers of
clusters and correlations between the predictors, respectively. Within each cell, the rows
correspond to different effect sizes, and the columns to the random effects and fixed effects.
The values in each cell are the mean z-scores over the 100 simulations. Repeated analysis
indicated that the Monte Carlo variance in these means is negligible.

In Figure A.5, for each design point in the simulation we plot the proportion of the 100
samples in which the z-score for the variance component exceeds the z-score for the X1 fixed
effects. The factors of the simulation design vary within each panel and across the rows and
columns of panels. Effect size varies with panel; number of classes varies across rows and
the correlation between X1 and X2 varies across columns.

The figure shows that the z-scores for random-effect variance components generally tend
to exceed those for the fixed effects except when the number of cells is very large or the
effects are small. However, the proportion of times that random-effect z-scores are larger
than the fixed-effect z-scores varies considerably from nearly 0 to almost 1, and except when
the number of classes is very small it consistently differs from 0.5, which is the probability
that would be intuitively reasonable if the z-score were to reflect the true equality of the
effects. These results provide some support that the WHS method might result in spurious
overemphasis of the random effect for small samples—but possibly less often for large samples
like those used in WHS unless the covariates are highly correlated.

The table corroborates the findings in the figure. Cells in the figure with large prob-
abilities that z-scores for random effects exceed those for fixed effects correspond to rows
and columns of the table where the mean z-score for the random effect exceeds the mean
z-score for the fixed effect. However, the differences in the means do not generally match
the magnitude found in WHS.

2.5 Conclusions

The WHS z-scores are not useful indicators of effect sizes because their interpretation
is sensitive to many facets of the design and analysis. They are not useful as absolute
indicators because they grow with sample size. When the true effect sizes for fixed and
random effects are equal by a common definition, the z-scores may or may not reflect this
relative equality, depending in a complicated way on such factors as cluster size, number of
observations, correlations among predictors, and the effect sizes themselves. Our simulations
hinted at realistic cases where we would expect to see the z-score for the random effect being
larger than those for the fixed effects, but the magnitude of this difference was less than
what WHS report. Thus, we find drawing any conclusions about the WHS results difficult
without greater details on the estimated coefficients or effect sizes and information about
the collinearity of the covariates included in the models.
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Figure A.1: (SR) Relative bias from ranking on raw means or estimated θ’s. The solid line
is for n = 25, the broken line is for n= 20, and the dashed line is for n = 10.
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Figure A.2: Bias in SR method for multiple years of data with ρ = 0.01. Within each panel
the dots are the bias in estimated cumulative teacher effects at various sets of α values. The
dotted line is at bias = 0. Rows of panels correspond to the number of schools (1, 50, 200
from bottom to top) and columns of panels correspond to the ICC (0.3, 0.7 from left to
right).
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Figure A.3: Bias in SR method for multiple years of data with ρ = 0.033. Within each panel
the dots are the bias in estimated cumulative teacher effects at various sets of α values. The
dotted line is at bias = 0. Rows of panels correspond to the number of schools (1, 50, 200
from bottom to top) and columns of panels correspond to the ICC (0.3, 0.7 from left to
right).
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Figure A.4: Bias in SR method for multiple years of data with ρ = 0.13. Within each panel
the dots are the bias in estimated cumulative teacher effects at various sets of α values. The
dotted line is at bias = 0. Rows of panels correspond to the number of schools (1, 50, 200
from bottom to top) and columns of panels correspond to the ICC (0.3, 0.7 from left to
right).
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Figure A.5: Comparison of WHS z-scores for random and fixed effects for categorical covari-
ates. Each panel plots proportion of simulated samples where the z-score for the random
effect exceeds the z-score for X1 against the effect size. There are 100 sample per each point
and effect sizes are 0.1, 0.5, 1.0, 1.5. Rows of panels correspond to numbers of classes (10,
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ICC Schools α4,3 α5,4 α5,3 Estimate True
.3 200 1 1 1 45.9 42.0
.3 200 .9 .9 .9 44.0 39.2
.3 200 .8 .8 .64 41.7 34.2
.3 200 .5 .5 .25 38.2 24.5
.3 200 0 0 0 37.7 14.0
.3 50 1 1 1 48.6 42.0
.3 50 .9 .9 .9 47.5 39.2
.3 50 .8 .8 .64 44.7 34.2
.3 50 .5 .5 .25 41.6 24.5
.3 50 0 0 0 37.8 14.0
.3 1 1 1 1 49.3 42.0
.3 1 .9 .9 .9 48.2 39.2
.3 1 .8 .8 .64 46.1 34.2
.3 1 .5 .5 .25 42.4 24.5
.3 1 0 0 0 39.1 14.0
.7 200 1 1 1 52.2 42.0
.7 200 .9 .9 .9 50.9 39.2
.7 200 .8 .8 .64 49.1 34.2
.7 200 .5 .5 .25 46.7 24.5
.7 200 0 0 0 45.8 14.0
.7 50 1 1 1 47.7 42.0
.7 50 .9 .9 .9 46.1 39.2
.7 50 .8 .8 .64 43.6 34.2
.7 50 .5 .5 .25 38.8 24.5
.7 50 0 0 0 33.9 14.0
.7 1 1 1 1 45.6 42.0
.7 1 .9 .9 .9 44.0 39.2
.7 1 .8 .8 .64 41.4 34.2
.7 1 .5 .5 .25 36.4 24.5
.7 1 0 0 0 30.9 14.0

Table A.1: (SR) Models with Homogeneous Classroom Means, Simulation Results, ρ = 0.01
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ICC Schools α4,3 α5,4 α5,3 Estimate True
.3 200 1 1 1 64.1 76.3
.3 200 .9 .9 .9 61.7 71.2
.3 200 .8 .8 .64 58.1 62.1
.3 200 .5 .5 .25 52.4 44.5
.3 200 0 0 0 50.1 25.4
.3 50 1 1 1 73.6 76.3
.3 50 .9 .9 .9 70.8 71.2
.3 50 .8 .8 .64 65.8 62.1
.3 50 .5 .5 .25 56.5 44.5
.3 50 0 0 0 46.9 25.4
.3 1 1 1 1 77.4 76.6
.3 1 .9 .9 .9 74.3 71.2
.3 1 .8 .8 .64 68.5 62.1
.3 1 .5 .5 .25 57.4 44.5
.3 1 0 0 0 45.6 25.4
.7 200 1 1 1 74.3 76.3
.7 200 .9 .9 .9 71.9 71.2
.7 200 .8 .8 .64 68.8 62.1
.7 200 .5 .5 .25 64.2 44.5
.7 200 0 0 0 62.6 25.4
.7 50 1 1 1 75.2 76.3
.7 50 .9 .9 .9 71.9 71.2
.7 50 .8 .8 .64 65.9 62.1
.7 50 .5 .5 .25 54.2 44.5
.7 50 0 0 0 41.3 25.4
.7 1 1 1 1 75.0 76.3
.7 1 .9 .9 .9 71.3 71.2
.7 1 .8 .8 .64 64.5 62.1
.7 1 .5 .5 .25 51.6 44.5
.7 1 0 0 0 37.5 25.4

Table A.2: (SR) Models with Homogeneous Classroom Means, Simulation Results, ρ = 0.033
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ICC Schools α4,3 α5,4 α5,3 Estimate True
.3 200 1 1 1 108.1 151.4
.3 200 .9 .9 .9 102.6 141.3
.3 200 .8 .8 .64 93.7 123.2
.3 200 .5 .5 .25 82.3 88.3
.3 200 0 0 0 76.3 50.5
.3 50 1 1 1 132.6 151.4
.3 50 .9 .9 .9 126.8 141.3
.3 50 .8 .8 .64 114.8 123.2
.3 50 .5 .5 .25 91.3 88.3
.3 50 0 0 0 64.1 50.5
.3 1 1 1 1 147.7 151.4
.3 1 .9 .9 .9 138.1 141.3
.3 1 .8 .8 .64 122.4 123.2
.3 1 .5 .5 .25 95.0 88.3
.3 1 0 0 0 62.9 50.5
.7 200 1 1 1 129.5 151.4
.7 200 .9 .9 .9 127.3 141.3
.7 200 .8 .8 .64 118.8 123.2
.7 200 .5 .5 .25 113.1 88.3
.7 200 0 0 0 109.7 50.5
.7 50 1 1 1 142.8 151.4
.7 50 .9 .9 .9 136.7 141.3
.7 50 .8 .8 .64 122.5 123.2
.7 50 .5 .5 .25 97.8 88.3
.7 50 0 0 0 64.7 50.5
.7 1 1 1 1 148.8 151.4
.7 1 .9 .9 .9 140.5 141.3
.7 1 .8 .8 .64 124.7 123.2
.7 1 .5 .5 .25 93.4 88.3
.7 1 0 0 0 58.8 50.5

Table A.3: (SR) Models with Homogeneous Classroom Means, Simulation Results, ρ = 0.13
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ICC Schools α4,3 α5,4 α5,3 Estimate True
.3 200 1 1 1 199.0 297.0
.3 200 .9 .9 .9 191.3 277.2
.3 200 .8 .8 .64 172.6 241.5
.3 200 .5 .5 .25 148.9 173.2
.3 200 0 0 0 135.6 99.0
.3 50 1 1 1 272.1 297.0
.3 50 .9 .9 .9 255.7 277.2
.3 50 .8 .8 .64 224.9 241.5
.3 50 .5 .5 .25 170.6 173.2
.3 50 0 0 0 105.3 99.0
.3 1 1 1 1 289.6 297.0
.3 1 .9 .9 .9 271.4 277.2
.3 1 .8 .8 .64 238.2 241.5
.3 1 .5 .5 .25 174.4 173.2
.3 1 0 0 0 103.9 99.0
.7 200 1 1 1 239.7 297.0
.7 200 .9 .9 .9 234.2 277.2
.7 200 .8 .8 .64 224.5 241.5
.7 200 .5 .5 .25 211.6 173.2
.7 200 0 0 0 205.7 99.0
.7 50 1 1 1 287.5 297.0
.7 50 .9 .9 .9 270.6 277.2
.7 50 .8 .8 .64 238.3 241.5
.7 50 .5 .5 .25 180.0 173.2
.7 50 0 0 0 111.8 99.0
.7 1 1 1 1 293.3 297.0
.7 1 .9 .9 .9 276.2 277.2
.7 1 .8 .8 .64 241.2 241.5
.7 1 .5 .5 .25 175.1 173.2
.7 1 0 0 0 105.0 99.0

Table A.4: (SR) Models with Homogeneous Classroom Means, Simulation Results, ρ = 0.50
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 64.3 76.3
.3 200 0.9 0.9 0.90 62.5 71.2
.3 200 0.8 0.8 0.64 57.8 62.1
.3 200 0.5 0.5 0.25 53.9 44.5
.3 200 0.0 0.0 0.00 5.7 25.4
.3 50 1.0 1.0 1.00 73.7 76.3
.3 50 0.9 0.9 0.90 70.0 71.2
.3 50 0.8 0.8 0.64 65.9 62.1
.3 50 0.5 0.5 0.25 57.1 44.5
.3 50 0.0 0.0 0.00 48.6 25.4
.7 200 1.0 1.0 1.00 74.9 76.3
.7 200 0.9 0.9 0.90 71.8 71.2
.7 200 0.8 0.8 0.64 69.8 62.1
.7 200 0.5 0.5 0.25 65.5 44.5
.7 200 0.0 0.0 0.00 63.9 25.4
.7 50 1.0 1.0 1.00 76.3 76.3
.7 50 0.9 0.9 0.90 72.5 71.2
.7 50 0.8 0.8 0.64 66.7 62.1
.7 50 0.5 0.5 0.25 54.6 44.5
.7 50 0.0 0.0 0.00 42.1 25.4

Table A.5: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.033, LEVELS, Uncorrelated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 65.1 76.3
.3 200 0.9 0.9 0.90 62.5 71.2
.3 200 0.8 0.8 0.64 59.8 62.1
.3 200 0.5 0.5 0.25 53.7 44.5
.3 200 0.0 0.0 0.00 51.6 25.4
.3 50 1.0 1.0 1.00 74.2 76.3
.3 50 0.9 0.9 0.90 71.5 71.2
.3 50 0.8 0.8 0.64 67.1 62.1
.3 50 0.5 0.5 0.25 58.1 44.5
.3 50 0.0 0.0 0.00 48.2 25.4
.7 200 1.0 1.0 1.00 75.9 76.3
.7 200 0.9 0.9 0.90 73.9 71.2
.7 200 0.8 0.8 0.64 71.7 62.1
.7 200 0.5 0.5 0.25 66.5 44.5
.7 200 0.0 0.0 0.00 65.6 25.4
.7 50 1.0 1.0 1.00 76.3 76.3
.7 50 0.9 0.9 0.90 72.6 71.2
.7 50 0.8 0.8 0.64 67.7 62.1
.7 50 0.5 0.5 0.25 57.0 44.5
.7 50 0.0 0.0 0.00 44.5 25.4

Table A.6: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.033, GAINS, Uncorrelated

28



ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 80.8 76.3
.3 200 0.9 0.9 0.90 77.1 71.2
.3 200 0.8 0.8 0.64 70.4 62.1
.3 200 0.5 0.5 0.25 59.4 44.5
.3 200 0.0 0.0 0.00 5.3 25.4
.3 50 1.0 1.0 1.00 83.3 76.3
.3 50 0.9 0.9 0.90 79.3 71.2
.3 50 0.8 0.8 0.64 72.8 62.1
.3 50 0.5 0.5 0.25 60.6 44.5
.3 50 0.0 0.0 0.00 47.7 25.4
.7 200 1.0 1.0 1.00 86.5 76.3
.7 200 0.9 0.9 0.90 82.8 71.2
.7 200 0.8 0.8 0.64 77.3 62.1
.7 200 0.5 0.5 0.25 67.7 44.5
.7 200 0.0 0.0 0.00 59.2 25.4
.7 50 1.0 1.0 1.00 84.7 76.3
.7 50 0.9 0.9 0.90 80.8 71.2
.7 50 0.8 0.8 0.64 74.1 62.1
.7 50 0.5 0.5 0.25 60.9 44.5
.7 50 0.0 0.0 0.00 46.1 25.4

Table A.7: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.033, LEVELS, Correlated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 83.5 76.3
.3 200 0.9 0.9 0.90 78.7 71.2
.3 200 0.8 0.8 0.64 72.3 62.1
.3 200 0.5 0.5 0.25 61.8 44.5
.3 200 0.0 0.0 0.00 51.2 25.4
.3 50 1.0 1.0 1.00 84.2 76.3
.3 50 0.9 0.9 0.90 80.5 71.2
.3 50 0.8 0.8 0.64 74.6 62.1
.3 50 0.5 0.5 0.25 61.7 44.5
.3 50 0.0 0.0 0.00 50.5 25.4
.7 200 1.0 1.0 1.00 89.3 76.3
.7 200 0.9 0.9 0.90 85.3 71.2
.7 200 0.8 0.8 0.64 80.0 62.1
.7 200 0.5 0.5 0.25 70.8 44.5
.7 200 0.0 0.0 0.00 63.3 25.4
.7 50 1.0 1.0 1.00 87.7 76.3
.7 50 0.9 0.9 0.90 83.9 71.2
.7 50 0.8 0.8 0.64 77.0 62.1
.7 50 0.5 0.5 0.25 62.5 44.5
.7 50 0.0 0.0 0.00 48.2 25.4

Table A.8: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.033, GAINS, Correlated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 108.4 151.4
.3 200 0.9 0.9 0.90 103.2 141.3
.3 200 0.8 0.8 0.64 94.9 123.2
.3 200 0.5 0.5 0.25 83.1 88.3
.3 200 0.0 0.0 0.00 76.6 50.5
.3 50 1.0 1.0 1.00 133.5 151.4
.3 50 0.9 0.9 0.90 126.8 141.3
.3 50 0.8 0.8 0.64 114.5 123.2
.3 50 0.5 0.5 0.25 91.8 88.3
.3 50 0.0 0.0 0.00 65.8 50.5
.7 200 1.0 1.0 1.00 129.3 151.4
.7 200 0.9 0.9 0.90 124.7 141.3
.7 200 0.8 0.8 0.64 12.7 123.2
.7 200 0.5 0.5 0.25 112.2 88.3
.7 200 0.0 0.0 0.00 110.0 50.5
.7 50 1.0 1.0 1.00 143.3 151.4
.7 50 0.9 0.9 0.90 135.5 141.3
.7 50 0.8 0.8 0.64 123.3 123.2
.7 50 0.5 0.5 0.25 96.8 88.3
.7 50 0.0 0.0 0.00 65.4 50.5

Table A.9: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ = 0.13,
LEVELS, Uncorrelated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 108.5 151.4
.3 200 0.9 0.9 0.90 101.9 141.3
.3 200 0.8 0.8 0.64 94.4 123.2
.3 200 0.5 0.5 0.25 83.3 88.3
.3 200 0.0 0.0 0.00 77.6 50.5
.3 50 1.0 1.0 1.00 133.2 151.4
.3 50 0.9 0.9 0.90 127.7 141.3
.3 50 0.8 0.8 0.64 114.6 123.2
.3 50 0.5 0.5 0.25 91.1 88.3
.3 50 0.0 0.0 0.00 65.4 50.5
.7 200 1.0 1.0 1.00 129.2 151.4
.7 200 0.9 0.9 0.90 126.6 141.3
.7 200 0.8 0.8 0.64 120.8 123.2
.7 200 0.5 0.5 0.25 114.6 88.3
.7 200 0.0 0.0 0.00 111.7 50.5
.7 50 1.0 1.0 1.00 144.8 151.4
.7 50 0.9 0.9 0.90 136.8 141.3
.7 50 0.8 0.8 0.64 123.8 123.2
.7 50 0.5 0.5 0.25 97.2 88.3
.7 50 0.0 0.0 0.00 67.6 50.5

Table A.10: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.13, GAINS, Uncorrelated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 143.2 151.4
.3 200 0.9 0.9 0.90 134.9 141.3
.3 200 0.8 0.8 0.64 120.8 123.2
.3 200 0.5 0.5 0.25 95.7 88.3
.3 200 0.0 0.0 0.00 74.9 50.5
.3 50 1.0 1.0 1.00 148.5 151.4
.3 50 0.9 0.9 0.90 140.4 141.3
.3 50 0.8 0.8 0.64 124.0 123.2
.3 50 0.5 0.5 0.25 97.0 88.3
.3 50 0.0 0.0 0.00 69.2 50.5
.7 200 1.0 1.0 1.00 151.7 151.4
.7 200 0.9 0.9 0.90 145.6 141.3
.7 200 0.8 0.8 0.64 133.6 123.2
.7 200 0.5 0.5 0.25 115.1 88.3
.7 200 0.0 0.0 0.00 101.2 50.5
.7 50 1.0 1.0 1.00 155.8 151.4
.7 50 0.9 0.9 0.90 146.0 141.3
.7 50 0.8 0.8 0.64 132.5 123.2
.7 50 0.5 0.5 0.25 106.2 88.3
.7 50 0.0 0.0 0.00 74.5 50.5

Table A.11: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.13, LEVELS, Correlated
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ICC Schools a43 a54 a53 Estimate True
.3 200 1.0 1.0 1.00 143.2 151.4
.3 200 0.9 0.9 0.90 134.9 141.3
.3 200 0.8 0.8 0.64 120.5 123.2
.3 200 0.5 0.5 0.25 97.3 88.3
.3 200 0.0 0.0 0.00 77.0 50.5
.3 50 1.0 1.0 1.00 15.3 151.4
.3 50 0.9 0.9 0.90 143.0 141.3
.3 50 0.8 0.8 0.64 126.2 123.2
.3 50 0.5 0.5 0.25 97.7 88.3
.3 50 0.0 0.0 0.00 71.5 50.5
.7 200 1.0 1.0 1.00 154.0 151.4
.7 200 0.9 0.9 0.90 147.3 141.3
.7 200 0.8 0.8 0.64 136.6 123.2
.7 200 0.5 0.5 0.25 117.2 88.3
.7 200 0.0 0.0 0.00 104.5 50.5
.7 50 1.0 1.0 1.00 158.3 151.4
.7 50 0.9 0.9 0.90 148.6 141.3
.7 50 0.8 0.8 0.64 133.4 123.2
.7 50 0.5 0.5 0.25 107.7 88.3
.7 50 0.0 0.0 0.00 77.9 50.5

Table A.12: (SR) Models with Heterogeneous Classroom Means Simulation Results, ρ =
0.13, GAINS, Correlated
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r12 = 0 r12 = 0.2 r12 = 0.5 r12 = 0.8
C EffSize σ2

θ X1 X2 σ2
θ X1 X2 σ2

θ X1 X2 σ2
θ X1 X2

10 0.1 0.4 0.8 0.9 0.4 0.9 0.9 0.4 0.8 0.8 0.4 0.9 0.9
0.5 1.4 1.4 1.2 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.3

1 1.5 1.4 1.3 1.5 1.5 1.4 1.5 1.3 1.4 1.5 1.2 1.2
1.5 1.6 1.3 1.3 1.6 1.4 1.5 1.6 1.5 1.4 1.6 1.3 1.2

25 0.1 0.7 1.5 1.5 0.6 1.5 1.6 0.8 1.3 1.4 0.8 1.4 1.1
0.5 2.8 2.5 2.5 2.8 2.6 2.5 2.8 2.6 2.4 2.9 2 1.9

1 3.1 2.5 2.5 3.1 2.6 2.7 3.1 2.6 2.6 3.1 2 2.1
1.5 3.1 2.7 2.6 3.1 2.9 2.7 3.1 2.5 2.6 3.1 2.1 2.1

100 0.1 1.7 3.3 3.3 1.7 3.3 3.5 1.7 3.1 3.5 1.7 2.5 2.5
0.5 6.2 6.1 6.2 6.2 6 6.2 6.2 5.8 5.7 6.2 4.5 4.6

1 6.7 6.3 6.2 6.7 6.1 6.2 6.7 6.1 6 6.7 4.5 4.8
1.5 6.8 6.2 6.2 6.8 6.3 6.4 6.8 5.9 5.9 6.8 4.6 4.8

400 0.1 3.6 7 7.2 3.6 7.4 7.1 3.6 6.9 6.8 3.8 5.4 5.6
0.5 12.6 14.7 14.9 12.6 15 15 12.7 13.7 14.1 12.7 10.1 9.7

1 13.7 15.5 15.7 13.7 16.5 16.5 13.7 14.7 14.8 13.7 10.3 10.6
1.5 13.9 15.9 15.6 13.9 16.1 16.7 13.9 14.7 14.7 13.9 10.6 10.5

Table A.13: (WHS) Summary of Categorical Predictors Simulations.
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