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Abstract—Weighted round robin load balancing is a common
routing policy offered in cloud load balancers. However, there is
a lack of effective mechanisms to decide the weights assigned
to each server to achieve an overall optimal revenue of the
system. In this paper, we first experimentally explore the relation
between probabilistic routing and weighted round robin load
balancing policies. From the experiment a similar behavior is
found between these two policies, which makes it possible to assign
the weights according to the routing probability estimated from
queueing theoretic heuristic and optimization algorithms studied
in the literature. We focus in particular on algorithms based
on closed queueing networks for multi-class workloads, which
can be used to describe application with service level agreements
differentiated across users. We also compare the efficiency of
queueing theoretic methods with simple heuristics that do not
require to specify a stochastic model of the application. Results
indicate that queueing theoretical algorithms yield significantly
better results than than routings proportional to the VM capacity
with respect to throughput maximization.

I. INTRODUCTION

Load balancing services are increasingly offered by many
cloud providers [1] [2]. Requests are dispatched by the load
balancer to end servers following certain load balancing poli-
cies. These policies normally aim at minimizing the imbalance
between different servers to improve system throughput or to
reduce response time. Among commonly available load bal-
ancing polices, round robin is the most common one supported
by major cloud providers [3]. Considering the heterogeneous
resources available in the cloud, the weighted round robin
policy, also offered by many cloud offerings, places more load
to the servers with higher weight using a policy similar to
round robin. This is much more suitable than round robin for
cloud deployments to assign requests according to the capacity
of the end servers. However, a challenging problem is how to
decide the weights assigned to the servers. A simple intuitive
way is to set the weights according to the computing power of
the servers, but this ignores the fact that there could be different
kinds of requests with different processing needs. These simple
intuitive approaches do not guarantee an optimal performance
for the system.

One alternative is to determine the weights from a prob-
abilistic routing policy, which dispatches requests according
to fixed probabilities. Queueing network models have been
proposed by several research works as a way to determine
the optimal probabilistic load balancing [4][5][6][7]. The work
in [7], in particular, recently proposed an approximate solution
with a guaranteed optimality ratio. However, this is determined
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under heavy-load assumptions for the optimization algorithm
proposed therein and these assumptions may not be always
applicable to real systems. Therefore, in this work we try to es-
tablish to what extent this heuristic is applicable in practice and
the tradeoff incurred when using a more complex optimization-
based solution at runtime, which is more difficult to implement,
but does not require similar heavy-load assumptions.

In addition, the routing algorithm in [7] also supports
multi-class workloads and presents the routing probability to
each workload class. Traditional load balancing algorithms
ignore the class of requests entering the system. However,
this becomes a problem if different requests require different
computing resources. This is also useful in real applications
when the users have different privileges, e.g. golden, silver
and bronze, which stand for different levels of services. Such
levels of service can be formalised by means of service level
agreements (SLAS).

In this paper, we start with the algorithms in [7] and ex-
perimentally explore the relation between probabilistic routing
and weighted round robin load balancing for a web service
deployed on Amazon EC2. From the experimental results a
similar behaviour is found between the two kind of policies,
which makes it possible to assign the weights of the weighted
round robin policy according to the probability estimated
from the heuristic algorithm and the optimization program
introduced in [7] for probabilistic routing. Furthermore, an
initial study has been done to compare these algorithms with an
intuitive, empirical, weight assignment that weights each server
according to its computational power. In this comparison, we
define as revenue the total throughput of the system and we
aim at finding a set of routing probabilities that can maximize
it. We also explain how these algorithms can be used in prac-
tice, since some of the theoretical assumptions require slight
modifications for application to the real systems. The results of
our experiments suggest that the heuristic algorithm is able to
provide a better revenue than niive assignments of weights.
Yet, we show that further improvements can be achieved
through runtime optimization using the algorithm in [7], at
the expense of higher computational costs and implementation
complexity, leading to the observation that heavy-load routing
decisions are effective but not always optimal in lighter loads.

The rest of this paper is organized as follows. Section II
gives background of load balancing in the cloud. Section III ex-
plains the load balancing algorithms for probabilistic routing.
In Section IV, we evaluate different load balancing algorithms,
and compare probabilistic routing and weighted round robin



TABLE I: Cloud load balancing policies

Cloud Type | R | RR | WRR | LC | WLC | S
EC2 (ELB&Route53) laaS * * *
GoGrid TaaS * * * * *
Rackspace laaS * * * * *
App Engine PaaS *
Azure PaaS *
CloudFoundry PaaS * * *
Heroku PaaS *

policies. Finally, Section V gives final remarks and future
works.

II. RELATED WORK

Although research has fostered many works for a better
understanding of the load balancing problem, simple policies
are often offered to cloud users. We list here several popular
load balancing policies: the Random (R) policy sends each
request to a randomly selected server; the Round robin (RR)
policy dispatches requests to each server in equal portions and
in circular order; the Weighted round robin (WRR) policy
assigns a fixed weight to each server; the Least connection
(LC) policy connects the server with least active connections
with clients; the Weighted least connection (WLC) policy
assigns a weight to each end server while calculating the
connections and the Source based (S) policy splits load based
on source IP hashing. In [8], RR is shown to achieve good
result for high load while returns poor performance under low
to medium loads. LC, on the other hand, performs well for
medium to high workloads, but it exhibits high waiting times
for low load. All the weighted policies are more suitable for
heterogeneous servers, but they face the problem of deciding
the weights. Source based load balancing has been studied
in [9] and shows good performance, however this approach has
either high computational time or require additional monitoring
effort.

Table I summarises the availability of these load balancing
policies across some popular cloud offerings. In this table,
we categorize the cloud providers by their service offering.
The infrastructure as a service (IaaS) providers offer physical
servers and virtual machines. The platform as a service (PaaS)
providers deliver a computing platform for users to run their
applications. It can be noticed that round robin and weighted
round robin are the most popular policies in the current cloud
offering.

In the next subsections we describe relevant research works
that apply load balancing from the cloud provider or cloud user
perspectives.

A. Provider-Level Load Balancing

The work in [1] proposes an offline optimization algorithm
for SLA-aware geographical load balancing in data centers
with an online approach to account for the uncertainty of
the electricity prices. Experiment against a heuristic greedy
method shows significant cost savings for the proposed ap-
proach. In [2] the authors present a geographical load balancer
among geographically distributed data centers. An offline
deterministic optimization method for design time usage and
an online VM placement, migration and geographical load
balancing algorithm for runtime are demonstrated based on

the predictions on workload, energy prices, and renewable
energy generation capacities. Experiment against simulation
data shows that the online algorithm has worse performance
than the offline one due to incomplete information. On the
other hand, the online algorithm has a strong impact on the
quality of the solutions. [10] proposes an online load balancing
algorithm considering VM resource heterogeneity. The load
balancer uses the number of outstanding requests and the
inter-departure times in each VM to dispatch requests to the
VM with the shortest expected response time. Experiment
against a common policy in the Apache web server shows
that the proposed algorithm is able to improve variance and
achieve higher percentile of response time. In [11], the authors
propose a self-organizing approach to provide robust and scal-
able solutions for service deployment, resource provisioning,
and load balancing in a cloud infrastructure. The algorithm
proposed has the additional benefit to leverage cloud elasticity
to allocate and deallocate resources to help services to agree
with the contractual SLAs. [12] shows a cost minimization
mechanism for data intensive service provision. The proposed
mechanism uses a multi-objective genetic algorithm to manage
data application services and to produce optimal composition
and load balancing solutions.

B. User-Level Load Balancing

We now consider the case where load balancing is imple-
mented by the cloud user. [13] proposes a dynamic program-
ming approach to find an optimal distribution of the query
workload for hybrid clouds. The authors implement the solu-
tion over an Hadoop/Hive cloud based infrastructure and the
experiments demonstrate a major performance improvement
in full compliance with cloud usage constraints. The work in
[14] focuses on multiple IaaS service centers. A non-linear
model for capacity allocation and load redirection of multiple
request classes is proposed and solved by decomposition. A
comparison against a set of heuristics from the literature shows
that the proposed algorithm overcomes heuristic approaches
without penalizing SLAs and it is able to produce results that
are close to the global optimum. The authors in [15] formulate
an optimization problem faced by a cloud procurement end-
point (a module responsible for provisioning resources from
public cloud providers), where heavy workloads are tackled
by relying on the public clouds. They develop a linear integer
program to minimize the resource cost and evaluate how the
solution scales with different problem parameters such as task
deadline. In [16] a structured peer-to-peer network, based on
distributed hash tables, is proposed to support service discov-
ery, self-managing, and load-balancing of cloud applications.
The effectiveness of the peer-to-peer approach is demonstrated
through a set of experiments on Amazon EC2. Finally, [17]
proposes an adaptive approach for component replication of
cloud applications, aiming at cost-effective placement and load
balancing. The distributed method is based on an economic
multi-agent model and is able to achieve high application
availability guaranteeing at the same time service availability
under failures.

III. TECHNIQUES

The load balancing system assumed in this paper contains
a load balancer and several target servers. The users send re-
quests to the load balancer, which then dispatches the requests



to the target servers following a static policy. The target servers
are assumed to be arranged in a parallel topology, which means
that once the server finishes processing the requests, it will
return the result directly to the user. Another assumption is
that there is a fixed number of jobs running in the system,
which represents typical admission control (i.e., concurrency
limits) in servers.

The system resembles a closed queueing network. The jobs
in this closed network are requests from the users to the target
servers and think time represents the waiting time between
successive jobs. The performance of the load balancing system
is here evaluated by a revenue, which can be defined in many
ways, e.g. the mean throughput or the mean response time of
the requests. Here we use the throughput of the system since
we are assuming a closed topology and therefore throughput
maximization and response time minimization are equivalent.
We define M to be the number of servers and R to be the
number of users classes. The notion of class may be defined
in different ways, we here interpret it as a set of requests that
requires a specific performance. This is the case, for instance,
of systems with differentiated SLAs, where users can be of
different classes (e.g., gold, silver, bronze) and each class
experiences different quality of service from the server. The
revenue I' for each server is defined as the weighted sum of
the throughputs of each class of users, which could be defined
as:

R
= ZwTXT (1)
r=1

where w, is the revenue weight for users of class r and X, is
the corresponding mean throughput. We similarly define X,
to be the throughput of the users of class r at VM . Our
model assumes that VM operate in parallel, therefore X, =

Zij\il Xir.

The work in [7] sets out to maximize the revenue (1) and
and it does so by setting up a closed multi-class queueing
model to describe the dependence between X, the capacity of
the servers, and the number of concurrently executing requests.
In the queueing model, the servers are treated as queueing
stations with a delay node representing the load balancer to
send different classes of requests to the servers. The routing
probability p;, indicates the probability of the request of class
r to be be dispatched to the ith server from the delay node.

In [7], an optimization program (OPT) is proposed to
maximize the revenue (1). We define H, to be the set of
servers that requests of class r are allowed to visit, N, to
be the number of users for jobs of class 7, u;, to be the mean
service rate for jobs of class r at server 7. X is the matrix
of X;, values and L is the vector of L, values. X and L
are assumed to be real numbers. OPT sets out to solve the
following optimization problem:

OPT : max Wy Xir
XeRME LeRY ZT: Z;{:
Xir
s.t.: Z L; = N,,Vr )
i€H, ‘

X,
>

=1,Vr

Algorithm 1 Heuristic algorithm

Require: u;., w,, H., m
r* (Z) = argmaXy.jcH, Wrlmr

pir = 0,Vi £ r*(i),i=m,...,M
Distribute p;,- equally on all the server ¢, i = 1,...

so that Y,y pir =1
return p

It can be noticed that the objective function in (2) aims
at maximizing the revenue, which is defined in (1), observed
at the output of all the parallel servers of the network. The
optimal throughput X and queue length L}, obtained from
the optimization problem are defined by a set of routing
probabilities p},. Considering the load balancing system has a
parallel topology, the visit ratio v, = p;,. Therefore according

the forced flow law [24], we have p}, = ﬁ for all
VMs 7 and user classes 7. e

In [7] the authors have shown that as the system becomes
larger, it becomes increasingly difficult for OPT to find a
local optimum. Moreover, it is computational expensive and
requires the number of requests N,. To cope with issue,
another algorithm introduced in [7] is a revenue maximization
algorithm for heavy workload, which is a heuristic solution
to OPT introduced above. The heuristic algorithm finds the
optimal routing probability p;,. from the load balancer to the
servers given the service rate ;. for each class of the request
at each server, where ¢« = 1,....M, r = 1,...,R. The
pseudocode can be found in Algorithm 1. In the pseudocode,
it is assumed that the servers are indexed in a way that

max Wrlir < MaX Wrlo, < -+ < mMax Welbps
r:1€H, riir r2€H, i rMeH, riMr

The advantage of the heuristic algorithm is that it is
independent of the number of requests IV, for each class and it
has been proved to achieve an optimality ratio of 1+1/(M —1)
under heavy load, thus it gets closer to optimality with in-
creasing number of VMs. It is also computational efficient.
However, this method is developed under the assumption of
heavy traffic. Although in the original paper the authors have
shown that the algorithm also obtains good result for normal
load, it still needs to be validated in real applications. The
service rate ;- can be obtained from the service demand D,
which we approximate with the CI algorithm introduced in

[18]. Then u;,- can be obtained by setting ;. = g” -

Therefore we can see that the heuristic algorithm and OPT
program are complementary to each other since the former
performs well for small systems and the latter is developed
under heavy load assumptions and better suited for large
systems. Considering that OPT does not scale to larger systems
as show in [7], whereas the heuristic algorithm does scale, in
this paper we limit the comparison to a small sized deployment
where OPT and the heuristic can be compared.

The two approaches proposed in [7] are for probabilistic
routing. However, as we have already shown in Section II that
many cloud providers support weighted round robin. Therefore



it will be meaningful to define the weights based on the
probabilities. Since the weights of the servers have to be
integers normally, we can obtain weights by W = [p * 100].

IV. EXPERIMENTAL EVALUATION

In this section, we discuss the experiments for the compar-
ison between probabilistic routing and weighted round robin
policy and the performance of different weights assigning
algorithms. For ease of analysis of the experimental results,
we set the weight of the revenue w,,r = 1,..., R to be 1
for all the requests. In the following, the testbed description
is first described. Then we discuss some issues that arise in
the implementation of the above policies. Finally, the results
of the experiment are illustrated and discussed.

A. Testbed Description

To assess the performance of different load balancing
algorithms, we setup an environment with Apache Open for
Business (OFBiz) application [19]. The application is deployed
on Amazon EC2. OFBiz is an open source enterprise resource
planning system. The web server used is the embedded Tomcat
inside OFBiz and for the database we use the default Derby
database. Therefore the database is deployed with each in-
stance. The user requests are generated from OFBench [20], a
load generator for OFBiz. We have customised OFBench to run
only two types of sessions in order to simplify the analysis.
Each session represents a different type of users and some
requests may belong to either session. We define custom user
sessions in OFBench to have different classes of users. The
load balancer used is Haproxy v1.5 [21], which is a popular
TCP/HTTP load balancer that supports weighted round robin.
The pseudocode for weighted round robin implemented in
the Linux Virtual Server [22] is shown in Algorithm 2. In
the algorithm, W = (W, ..., Wy,_1) is the weight vector,
where 7 is the server selected during last iteration, W; is the
weight for server ¢ + 1 with ¢ = 0,..., M — 1 and cw is the
current weight. ged is the greatest common divisor. The actual
implementation in Haproxy is similar but more complicated
considering also the current number of running threads inside
the backend servers. But they both allocate jobs proportional
to the weights for each server. To monitor the performance
behaviour of each VM and OFBiz, we use the MODAClouds
Monitoring Platform [23]. A Data Collector is deployed on
each VM and it is able to monitor the CPU utilization of
each VM and continuously parse the OFBiz logs to get the
response time and arrival time of the requests at the server.
Then the Data Collector will send the monitoring data to the
Deterministic Data Analyzer. The Deterministic Data Analzyer
processes at high-speed the monitoring data coming from the
Data Collectors with operations like computing average or
maximum values during a time window. Finally, the Determin-
istic Data Analyzer will send the processed monitoring data to
an Observer that archives this data. We use this archived data
to evaluate the outcome of the load balancing experiments.
The interaction between each component is shown in Figure 1.
The default Derby database is co-located with the application
server. This is more appropriate for an initial evaluation of the
load balancing policies in [7] since otherwise the system will
not be a parallel topology.

Algorithm 2 Weighted round robin

Require: W
1=—1
cw =0
while TRUE do
t=(i+1) mod n
if 7 == 0 then
cw = cw — ged(W)
if cw < 0 then

cw = max(W)
if cw == 0 then
return null
end if
end if
end if
if W; > cw then
return ¢
end if
end while
Workload Q MODACIouds Monitoring Platform

Generator (|

/7 load /
\balancer
Info
Observer

Fig. 1: Load balancing system
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We have deployed each component of the system on
Amazon EC2. The configuration of different instances we use
is shown in Table II. Each experiment lasts for one hour. The
number of clients, the think time as well as the workload differ
for each experiment. All the instances are in the Ireland EU-
WEST-1A region.

B. OFBiz Configuration and Workload Definition

During our evaluation of the algorithms, we notice some
experimental issues that needed to be addressed to run the
experimental comparison. The most challenging problem is
how to adapt the algorithms to multi-core instances.

1) Multi-core Adaptation: Both the heuristic and opti-
mization algorithms are defined using queueing models with
single-server queues. This modeling abstraction corresponds to
assuming that servers have a single core. However, nowadays
servers and VMs normally have multiple cores. In order to
adapt the algorithms for multi-core instances, we propose two
methods. One is to divide the demand by the number of cores
while applying the algorithms. In particular, we use the demand

D;_ = Di7-/Ci (3)

where c; is the number of cores for server ¢. Another approach
is to assume the multi-core machine is represented by several
single core machines while computing the routing probability.
Then we sum the probabilities of the one core machines to get



TABLE II: Instance types

VM Type ECU | vCPU | Memory
ml.medium 2 1 3.7 GB
cl.medium 5 2 1.7 GB
c3.large 7 2 3.7 GB
c3.xlarge 14 4 7.5 GB

TABLE III: Request setup for 2 classes of users

Request Session 1 | Session 2
checkLogin 2 2
login 1 1
logout 1 1
main 2 3
quickadd 1

the original routing probability. We set demands to be

D? :Dira 821,...,Ci. (4)

18T

This is assuming the demand for each core is the same. After
obtaining the new routing probability p;,,. from the algorithms,
we get the original p;,. by

Pir = Zl p;(sr (5)
s=1

The formula means the final routing probability p;,. comes
from the sum of the routing probability for each core p;g.

To compare the two approaches defined above, we run an
experiment. The experiment setup is shown in Table IV. We
use the probabilistic routing policy with routing probability of
20% for VM1, VM2, VM3 and 40% for VM4. For simplicity,
we call the two proposed methods OptimHalfD to refer to the
method based on (3) and OptimMultiQueue to refer to the
method based on (4)-(5). The number of user classes is 2,
which is listed in Table III and the number of users N, = 12
for each of the user. The think time is set to 4 seconds between
each request and session. The revenue I' and CPU utilization
is shown in Figure 2 together with the confidence intervals.
From the figures we can find that taking half demand of the
2-core instance has better revenue than the other approach.
Moreover, it has more balanced CPU utilization. Therefore in
the following experiments when we use a multi-core server,
we will scale the demand according to (3) while applying the
heuristic and optimization algorithms.

C. Experimental Result

In this subsection, we study the relations between proba-
bilistic routing (PR) and weighted round robin (WRR) policies
and introduce the result of the algorithms under different
number of users classes. The detailed setup is shown in
Table IV. We mainly test four different load balancing policies:
weights 1,1,1,2 respectively for VM1 to VM4 which are
proportional to the number of cores of the instances; weights
1,1,1,3.5 respectively for VM1 to VM4 which are proportional
to the number of ECUs (which a standard Amazon measure
of the processing power of an instance) of the instances;
weights returned from the heuristic algorithm and weights
returned from the optimization program. For simplicity we
identify the four cases as: 1112, 1113.5, Heur and Optim.

1.2
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CPU utilization

e
[N

OptimMultiQueue OptimHalfD OptimMultiQueue OptimHalfD
Test Test

(a) Revenue (b) CPU utilization

Fig. 2: Revenue and CPU utilization

TABLE IV: Experiment setup

VM No. CPU Location
DDA 1 ml.medium
Observer 1 ml.medium
Haproxy 1 ml.medium
VM1 (OFBiz) 1 ml.medium
VM2 (OFBiz) 1 ml.medium
VM3 (OFBiz) 1 ml.medium
VM4 (OFBiz) 2 c3.large
OFBenchl 4 c3.xlarge
OFBench2 4 c3.xlarge
OFBench3 4 c3.xlarge
OFBench4 4 c3.xlarge

Both the heuristic algorithm and the optimization algorithm
take the demands from the 7712 case with weighted round
robin policy since this policy is reasonably fair and balanced
for all the machines and the demands are correct. For the
heuristic algorithm, we follow the recommendations in [7] and
set m = 2 in Algorithm 1, a setting which guarantees the
existences of a solution.

1) Comparison Between PR and WRR: Here, we study
the relation between PR and WRR. Two different classes
of users are used. The detailed composition of the sessions
set in OFBench is shown in Table III. The number of users
N, is set to 40 for each user and the think time between
requests and sessions is set to 2 seconds. Each experiment lasts
one hour. The probabilities for both algorithms are shown in
Table V and VI. For the WRR policy, since Haproxy does
not support fractional numbers to be used as weights, we
round the ratio of the probabilities returned from heuristic
and optimization algorithms to integers. Since VM1, VM2
and VM3 are all installed in a ml.medium instance and we
found similar demands for all the requests, we average the
demands taken from the three VMs so that two OFBiz running
on the same m1.medium instance have identical demands. This
is because small differences in the demands can result in
macroscopic differences in the load balancing decisions of the
heuristic in particular. However if the VMs have the same
instance class but with different hardware, the demands would
be quite different even if the instance class is the same.

Discussion. The revenue, CPU utilization and the response
time of the sessions are shown in Figure 3, 4 and 5. From the
figures, we can see that the PR policy has a trend similar to
WRR. In particular, regarding the revenue, it can be noticed
that WRR has larger revenue than the PR policy for all the
tests. A larger total throughput also contributes to higher CPU
utilization for the WRR case than PR according to Little’s
law [24]. We think the reason behind this is that WRR is



TABLE V: Heur - 2 classes

PR WRR
M Session 1 Session 2 Session 1 | Session 2
VM1 0 1 0 1
VM2 0.1651 0 0.2143 0
VM3 0.1651 0 0.2143 0
VM4 0.6699 0 0.5714 0

TABLE VI: Optim - 2 classes

PR WRR
VM | Gession 1 | Session 2 || Session 1 | Session 2
VMT | 02843 0 03333 0.0133
VM2 | 02843 0 03333 0.0133
VM3 | 02843 0 03333 0.0133
VM4 | 0.1499 I 0 0.9600

a more balanced and stable policy for distributing requests
while PR relies on a probability distribution which may incur
oscillating load on the instances. Overall, the optimization
algorithm returns the best revenue for the PR and WRR
policies. The heuristic also returns good results compared
to other tests and its response time is quite balanced across
servers. We also show the per minute average response time
and the number of outstanding requests for the OPT policy in
Figure 6 and 7. From the figure we can see that the response
time remains stable and for each instance the response time is
very similar. PR shows a small peak in the response time due to
a peak of requests in Figure 6a. In summary, the results suggest
that the probability returned by the probabilistic algorithms is
well suited to assign the weights of WRR.

2) 4 Classes of Requests: Here, we study the load balanc-
ing for 4 classes of users. The detailed composition of the
sessions set in OFBench is shown in Table VII. The load to
the server increases from users of Session 1 to Session 4. The
number of users N, = 9 for each user and the think time
between requests and sessions is set to 2 seconds. We changed
the number of users compared to the 2 classes of requests
case because we have more user classes, which makes the
total number of users increase. To make sure the server is not
overloaded, we decrease the number of users for each class.
Since in the previous experiment we show that the probabilities
from heuristic and optimization algorithms could be directly
applied to the weighted round robin policy for setting the
weights, here we will only show the result of the WRR policy.
The probabilities of the two algorithms are demonstrated in
Table VIII and IX.

Discussion. The revenue, CPU utilization and the 95th
percentile of the response time of the sessions are shown in
Figure 8 and 9. For the 4 classes case, the observation is mostly
consistent with that of the 2 classes case. The optimization
program returns the best revenue among all the policies. and
the revenue is around 27% higher than others. Besides, the
optimization algorithm has a more balanced response time
compared to the heuristic because it assigns all the users of
session 2, 3, 4 to VM1 which makes the response time higher
for requests served by that VM instance. For the demand
estimated using the CI algorithm, we can see that VM4 has
larger demand than other instances which we believe is because
VM4 has the heaviest load of the 4 VMs.
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D. Discussion

The observations through the experimental study may be
summarized as the following points:

e PR returns similar results as the WRR policy

e  Setting weights of WRR from the probability of PR
is possible

e  OPT returns the best revenue

e  Heuristic gives better result than simple weight setting

For different weights assigning algorithms, OPT is com-
putationally expensive and requires more parameters than the
heuristic approach, such as the total number of users. It returns
the best system revenue compared with all the other approaches
shown in the experiment. The heuristic algorithm requires only
the demands but the problem is that it only works best for
heavy load. For the simple weights setting approaches, they
require the minimum effort to decide the weight, e.g. a value
proportional to the number of cores and their computation
power. However, they do not provide good system revenue
compared to algorithms that use queueing theoretic models.

V. CONCLUSION AND FUTURE WORK

The weighted round robin is a load balancing policy offered
by many popular cloud providers. However, there is a lack of
effective mechanisms to decide the weight assigned to each
server to achieve an overall optimal revenue of the system.
In this paper, we experimentally explore the relation between
probabilistic routing and weighted round robin policies. From
the experiment a similar behavior is found between these two,
which makes it possible to assign the weights according to the
routing probability estimated from queueing theoretic heuristic
and optimization algorithms in the literature. The algorithms
described also support multi-class workload which could be
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TABLE VII: Request setup for 4 classes of users

TABLE IX: Optimization method - 4 classes

VM Session 1 Session 2 Session 3 Session 4
VM1 0.3154 0.3333 0.3333 0
VM2 0.3154 0.3333 0.3333 0
VM3 0.3154 0.3333 0.3333 0
VM4 0.0539 0 0 1

Request Session 1 | Session 2 | Session 3 | Session 4
addtocartbulk 1 1 1
checkLogin 2 2 2 2
checkoutoptions 3 4
login 1 1 1 1
logout 1 1 1 1
main 2 3 3
orderhistory 1
quickadd 1 1 1

TABLE VIII: Heuristic method - 4 classes

VM Session 1 Session 2 Session 3 Session 4
VM1 0 1 1 1
VM2 0.3300 0 0 0
VM3 0.3485 0 0 0
VM4 0.3215 0 0 0

applied to applications with service level agreements differen-
tiated across users. Comparison against simple heuristics that
do not require to define stochastic models, but simply sends
load proportionally to the compute capacity, of the application
indicates that the optimization algorithm is able to provide
good routing decisions to optimize revenue.

In the future, we are planing to use OPT and the heuristic
as part of a self-adapting load balancing mechanism. We plan
to change the routing decision adaptively at run time and
possibly apply a load-dependent algorithm to compare with
the optimization and heuristic algorithms. In addition, it would
be interesting to perform a systematic comparison between the
optimization algorithm based weighted round robin policy and
other policies such as the LC and S policies.
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