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∗

Abstract

In modern modeling tools used for model-driven development, the valida-
tion of several well-formedness constraints is continuously been carried out by
exploiting advanced graph query engines to highlight conceptual design flaws.
However, while models are still under development, they are frequently par-
tial and incomplete. Validating constraints on incomplete, partial models
may identify a large number of irrelevant problems. By switching off the val-
idation of these constraints, one may fail to reveal problematic cases which
are difficult to correct when the model becomes sufficiently detailed.

Here, we propose a novel validation technique for evaluating well-formed-
ness constraints on incomplete, partial models with may and must semantics,
e.g. a constraint without a valid match is satisfiable if there is a completion
of the partial model that may satisfy it. To this end, we map the problem of
constraint evaluation over partial models into regular graph pattern matching
over complete models by semantically equivalent rewrites of graph queries.

Keywords: partial models, model validation, graph patterns

1 Introduction

Context In Model-Driven Development (MDD), models are the main design ar-
tifacts, from which documentation, system configuration, or even source code can
be automatically generated. MDD is widely used in industry in various domains
including business modeling, avionics and automotive [38] as it provides early val-
idation and advanced automation. When developing complex systems, multiple
design rules and well-formedness constraints have to be checked repeatedly over
large (graph) models [4] in order to ensure the validity of models throughout the
entire design process starting from an early stage of design.

During development, the level of uncertainty represented in the models gradu-
ally decreases until all critical design decisions have been made. However, certain
constraints can only be checked at the right level of abstraction, i.e. after some
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design decisions have already been made. When a new constraint is violated, engi-
neers may need to rethink some parts of the system and reiterate on some previous
design decisions taken earlier. The uncertainty, which is inherently present in high-
level initial models, make design decisions drawn from them especially risky.

Problem statement Partial models have been introduced in [14] to formally cap-
ture uncertainty in various design phases. Existing techniques for partial models
allow a modeler to explicitly express model uncertainty, or assess possible design
candidates [31], but they do not provide sufficient support for the evaluation of
well-formedness constraints over partial models. While there is efficient tool sup-
port for defining and checking well-formedness constraints and design rules over
regular model instances by using graph pattern matching, the evaluation of the
same constraints have only been addressed by SMT/SAT solving tools, which have
major scalability problems as the size of the models starts to grow.

Objective Our goal is to evaluate well-formedness constraints over incomplete,
partial models by graph pattern matching instead of SAT/SMT solving. The key
conceptual challenge is that while existing model query and transformation tools
evaluate graph constraints over models with closed world semantics (i.e. the model
is assumed to be complete), evaluating constraints on partial models necessitates
an open world semantics, as new elements may be added to the model later on,
which may satisfy (or violate) the constraints. Instead of proposing dedicated
graph pattern matching algorithm that operates over partial models, we rewrite the
original graph constraints (to be matched with open world semantics over partial
models) into an equivalent constraint (to be matched with traditional closed world
semantics over regular models).

Contribution Here we present a novel technique for evaluating well-formedness
constraints on partial models. Our technique uses the partial snapshots [32] to rep-
resent incomplete partial models, and it is compatible with EMF (Eclipse Modeling
Framework) [36] which is the de facto industrial modeling standard in MDD. Well-
formedness constraints are captured as graph queries using the pattern language of
Viatra [4]. From an input graph query, our approach generates an extended, but
semantically equivalent graph query.

Added value Using this technique, design rules specified for concrete models
can be automatically checked for incomplete, unfinished models to (i) detect in-
valid elements, and (ii) identify invalid design options during the development.
Additionally, this technique can be used to (iii) enumerate all possible ways to cor-
rect currently invalid partial instance model, or (iv) list all options to inject errors
by extending a currently valid model. Lastly, our approach uses approximations
and an efficient graph query engine, which enables the use of this technique directly
on an existing modeling environment. Performing such an analysis was unfeasible
previously with logic solvers [33].
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As a long term benefit, model generation techniques [33, 31] can be supported
efficiently, as we can reuse existing graph pattern matching tools like the Viatra

framework to evaluate well-formedness constraints over incomplete, partial models,
just as we do for for regular, complete models.

Structure of the Paper The rest of the paper is structured as follows: In
Section 2 we summarize the necessary modeling concepts and introduces a case
study for partial models. In Section 3 we provide an overview on how to evaluate
model queries with open-world semantics, then in Section 4 we show how graph
patterns can be transformed to their open-world equivalent. In Section 5 we provide
comparison with other approaches in the literature. Lastly, in Section 6 we draw
conclusion and make suggestions for future work.

2 Preliminaries

2.1 Motivating example: Yakindu Statecharts

Yakindu Statecharts Tools [39] is an industrial integrated modeling environment
developed by Itemis AG for the development of reactive, event-driven systems based
on the concept of statecharts captured in combined graphical and textual syntax.
Yakindu simultaneously supports static validation of well-formedness constraints as
well as the simulation of (and code generation from) statechart models. Examples
in this paper are illustrated by the validation of partial Yakindu models.

The behavior model of a sample coffee machine is illustrated in Figure 1. In Step
I, an initial statechart is developed, highlighting the key phases of the operation.
Initially, the machine starts in state Ready. Then, after inserting coins, a drink can
be selected in state Select. After the selection the machine start filling the coffee,
and gives back the change in state Service. When the drink is ready, and the change
is returned, the coffee machine goes back to the initial state.

Step I. Step II: Refinement of Service

ServiceReady Select

drinkSelectedmoney

Service

drink filling

TODO

change management

Change Back

Ready Select

drinkSelectedmoney

Figure 1: Example statechart model under developement.

Next, in Step II of Figure 1, the developer makes the first steps to refine the
Service state by adding two new regions, namely one that manages the filling of the
drink (drink filling), and one that manages the change (change management). When
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both regions are ready, then the two regions synchronize to the initial state. At
present, the model in Step II is only an unfinished partial model.

There are several well-formedness constraints (aka design rules) in the develop-
ment environment to validate statecharts. Two examples are the following:

1. Each region needs to have exactly one entry, which has a transition to a state
in the same region.

2. The target and source states of a synchronization have to be contained in the
same parent state.

Both constraints are defined for complete models, and while they can be evaluated
on partial models, it provides less relevant information during development:

1 The first constraint is invalid for regions drink filling and change management

as they do not have initial states. However, as design decisions about internal
states and entries have not yet been made, these are not real errors of the
model, but a direct consequence of the incomplete model.

2 However, the synchronization in Step II synchronizes states that are not
parallel, thus it is a design flaw that will be present in any possible completion.

2.2 Metamodels, Models, Partial Models

A metamodel defines the main concepts, relations and the basic structure of a
domain-specific language (DSL). In this paper, domain models are captured by the
Eclipse Modeling Framework (EMF) [36], which is frequently used in industrial
modeling tools.

An extract of metamodel for Yakindu statecharts describing the state graph is
illustrated in Figure 2. A state machine consists of Regions, which in turn con-
tain states (called Vertexes) and Transitions. An abstract state Vertex is further
refined into RegularStates (like State) and PseudoStates like Entry and Synchroniza-

tion states. Note that we intentionally kept the generalization hierarchy unchanged
and we simplified the original metamodel by by removing certain elements.

Pseudostate

Vertex RegionTransition

StatechartEntry Synchronization State

RegularState CompositeElement

[0..*] vertices

[0..*] regions
[1..1] target[0..*] incomingTransitions

[1..1] source[0..*] outgoingTransitions

Figure 2: Simplified Yakindu state graph metamodel.

Metamodel elements are mapped to a set of logic relations as defined in [32, 20],
which are revisited below:
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• Classes (CLS): An EClass captures some core concepts in a DSL. In EMF,
EClasses can be instantiated to EObjects, where the set of objects of a model
M is denoted by ObjectsM . If o is an instance of a type C, it is denoted by
C(o).

• References (REF): EReferences between classes S and T capture a binary
relation R(S, T ) of the metamodel. When two objects o and t are in a relation
R, an EReference is instantiated leading from o to t denoted by R(o, t).

• Attributes (ATT): EAttributes enrich a class C with values of predefined
primitive types like integers and strings, etc. by binary relations A(C, V ). If
an object o stores a value v as attribute A it is denoted as A(o, v).

Further structural restrictions implied by a metamodel (and formalized in [32])
include (1) Generalization (GEN), which expresses the fact that a more specific
(child) class has every structural feature of the more general (parent) class, (2)
Type compliance (TC) requires that for any relation R(o, t), its source and target
objects o and t need to have compliant types, (3) Abstract (ABS): If a class is
defined as abstract, it is not allowed to have direct instances, (4) Multiplicity
(MUL) of structural features can be limited with upper and lower bounds in
the form of “lower..upper” and (5) Inverse (INV), which states that two parallel
references of opposite direction always occur in pairs. Finally EMF instance models
are often expected to be arranged into a containment hierarchy, which is a directed
tree along references marked in the metamodel as containment (e.g. regions or
vertices).

Model M is a valid instance of a metamodel Meta (denoted by M |= Meta) if
(i) all classes, references and attributes are defined in Meta and (ii) satisfies the
structural constraints (1) − (5) [32].

Partial models Partial (or incomplete) models arise when we are still planning
to add more elements to a model, thus certain constraints can be violated. P is a
partial model of a (partial or complete) model M (denoted as P ⊆ M) if M contains
P as a submodel, so M can be created from P by adding model elements to P ,
Formally: P ⊆ M holds if (i) P satisfies structural constraints (1)− (4) above with
the possible exception of lower multiplicity in (MUL) and (ii) there is an injective
morphism f : ObjectsP → ObjectsM which satisfies the following constraints:

1. For each object o1 and o2: o1 = o2 ⇔ f(o1) = f(o2).

2. For each class C and each object o ∈ ObjectsP : C(o) ⇔ C(f(o)).

3. For each reference R and each object pair s, t ∈ ObjectsP : R(s, t) ⇒
R(f(s), f(t)).

4. Finally, for each attribute type A and attribute value v and each object
o ∈ ObjectsP : A(o, v) ⇒ A(f(o), f(v))
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In a standard EMF model it is not specified which part of the model is complete,
and which one is under development. Therefore, a partial model can be extended
in any part: new references or attribute values can be added to any objects, or
new child objects of any type can be added to the model, as long as structural
constraints (1) − (4) are not violated.

2.3 Graph Patterns

Well-formedness constraints are often captured by graph patterns (GP) [37, 4],
which is an expressive formalism used for various purposes in model-driven devel-
opment alternatively for standard OCL constraints [23]. A graph pattern is a graph-
like structure representing several conditions (or constraints) matched against an
instance model.

In the Viatra pattern language, a graph pattern q(p1, . . . , pn) = def is de-
fined by a name q and symbolic parameters p1, . . . , pn, and constraints over the
parameters (captured by body). A pattern may have multiple bodies with con-
straints, and may introduce additional local variables beside the parameters. The
constraints available in the pattern language include:

• Classifier constraint: checks whether a variable is an instance of a class, i.e.
checks whether C(o) true.

• Path constraint: requires a specific reference, an attribute, or a path of ref-
erence and attribute sequence between two variables.

• Equality constraint: specifies that two variables have to be mapped to the
same model element.

• Pattern call constraint: enables the composition of multiple patterns. The
positive pattern call refers to another pattern and specifies that the called
pattern must be satisfied in the context of the actual parameters. Addition-
ally, a pattern may be composed negatively (neg keyword), which means that
the target negative pattern is not allowed to have a valid match along the
actual parameters. Finally, it is possible to compute the transitive closure of
a two-parameter pattern by the + symbol.

• Count expression: counts the number of matches of a pattern.

• Check constraint or eval: evaluates a specific attribute expression on the
variables of the pattern and accepts matches only if the result of an attribute
condition is true.

A match m of pattern q(p1, . . . , pn) = def over model M maps each symbolic
parameter pi to a model element (object, enum literal or primitive) from the target
model M . A match is valid if it satisfies each constraint in a body of the pattern def :
∀m : M |=

∨

body∈def body(m(params)). A partial match is a partial function mp

where only a subset of parameters is mapped to model elements.
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1 pattern entryInRegion(r, e) {
2 Entry(e);
3 Region.vertices(r,e);
4 }
5 pattern noEntry(r) {
6 Region(r);
7 neg find entryInRegion(r,_e);
8 }
9 pattern multipleEntry(r) {

10 find entryInRegion(r, e1);
11 find entryInRegion(r, e2);
12 e1 != e2;
13 }

entryInRegion(r, e) :=
Entry(e) ∧ vertices(r, e)

noEntry(r) := ∀ e :
Region(r) ∧ ¬entryInRegion(r, e)

multipleEntry(r) := ∃e1, e2 :
entryInRegion(r, e1)∧
entryInRegion(r, e2)∧
e1 6= e2

Figure 3: Example validation patterns

A match of a pattern is marked by M,m |= p. Furthermore, we use [M,m |= p]
as a predicate over matches, which is evaluated to true if m is a valid match of p
in M , and ¬[M,m |= p] means m is not a valid match of p.

The main task of a graph query engine is to evaluate graph pattern over a
model by gradually extending partial matches to a complete match. When a graph
pattern is evaluated on a model, one distinguishes between zero or more matches:
in the first case the query evaluates to false, while in the second case, it evaluates
to true.

Example Three graph patterns are illustrated in Figure 3 along with their math-
ematical formalization. Pattern entryInRegion collects all entry nodes e of a re-
gion r, and constructed from a classifier constraint (Entry(e)) and a path constraint
(vertices(r, e)). Pattern noEntry identifies regions r without an entry node by nega-
tive composition (call) to entryInRegion (using a negative predicate
¬entryInRegion(r, e)). Lastly, pattern multipleEntry highlights regions r with more
than a single entry node.

3 Matching Graph Queries on Incomplete Models

When evaluating a graph query over an incomplete partial model, the pattern
matching may have multiple outcomes: a graph pattern may, must or cannot have
a match on a partial model depending on whether the partial model can possibly
be extended by adding model elements to fulfill the graph condition of the pattern.

Below, we introduce a novel graph rewriting technique for evaluating standard
queries on incomplete, partial models. There are several challenges related to this
matching problem. First, it has to cover an infinite number of possible instance
models, which causes decidability issues [32], and necessitates the use of approxima-
tion techniques [33]. Also, the result set has to be calculated efficiently, as checking
how a pattern may or may not match can cause a combinatorial explosion even for
small partial models.
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3.1 Partial Matches on Incomplete Models

When matching patterns on a complete model, the matches refer to real objects of
the model in accordance with closed world semantics. However, when only a partial
model is to be matched, a match may refer to currently non-existing objects, which
are created in a later state of the development. Therefore, we rely upon projections
of a full match of a complete model M to partial matches of partial model P where
undefined elements refer to new elements added to M later.

A projection of a match on a partial model P is defined by a function πP ,
which maps fully defined matches of an extended models M (P ⊆ M) to a partial
match of P by excluding parameter bindings that are unavailable in P (but they
remain defined for all parameters which maps an element of P to a parameter).
Formally, πP (m) = m′ if

m′(param) =

{

m(param) if m(param) ∈ ObjectsP
undefined otherwise

Example For example, Figure 4a shows a partial model of a simple statechart
with a single State, an Entry in a Region and a Transition. Some possible extensions
are marked with a dashed line: either new Regions or new Entries can be added to
the model, or they can be linked with vertices references.

(a) Example partial model with pos-
sible extensions.

pattern entryInRegion(r:Region , e:Entry) {
Region.vertices(r,e);

}

Matches r:Region e:Entry

m1 r1 e1

m2 r1 new Entry

m3 new Region e1

m4 new Region new Entry

(b) Pattern entryInRegion and its possible
matches.

Figure 4: Pattern matching for partial models

The graph pattern entryInRegion collects regions with their entry states. Figure
4b also enumerates the possible kind of matches:

m1 is a complete match where all parameters are bound to an existing object of
the partial model (e.g. r1 and e1) which satisfy the condition of the pattern.

m2,m3 are incomplete matches which represent a possible satisfaction of the pattern
between some existing and some future objects. For example, m2 represents
a case where a new Entry needs to be added to r1 region with a new vertices

reference to form a match.
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m4 is a symbolic match on a completely new partition of a model (where all of the
elements are new), which represents all other matches that are independent
from the partial model.

The use of symbolic values and match projection in the context of a partial
model allows one to cover an infinite number of possible matches. In the following,
we formalize when a pattern must, may or cannot be matched on a partial model.

3.2 Must and May Modality of Graph Queries

Now we will introduce two kinds of modalities to calculate possible matches of
pattern p on partial model P . A must-match (denoted as �[P,m |= p]) is a match
which exists in every possible M extension of P (including P itself). Formally:

�[P,m |= p] := ∀M : [P ⊆ M ] ⇒ M,m |= p

A may-match (denoted as ♦[P,m |= p]) represents a case where a m is a pro-
jected match of an extension of P (even if the match does not exist directly in P ).
Formally:

♦[P,m |= p] := ∃M : P ⊆ M ∧M,m′ |= p ∧m = πP (m′)

Example Table 1 collects the must and may-matches of pattern entryInRegion

shown in Figure 4b, when it is matched on the partial model of Figure 4a. In this
example, the r1 and e1 pair is the only must-match: this match will exist in any
possible extension of the partial model, i.e. it cannot be removed by adding new
elements. The may-matches, as always, also contain the must-match, and addi-
tionally contain two cases with new elements: a new entry in r1 may create a new
match, and a completely new region with an entry may also create matches. How-
ever, match m3 requires the creation of an additional Region to the existing Entry

is not a may-match, because the pattern requires a vertices containment reference
and the creation of a second parent to e1, which would violate the containment
hierarchy.

Table 1: Must and may-matches of an example model query on partial model

must r:Region e:Entry

m1 r1 e1

missing r:Region e:Entry

m4 new Region e1

may r:Region e:Entry

m1 r1 e1

m2 r1 new Entry

m3 new Region new Entry
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Combination of may- and must-matches Table 2 summarizes the possible
combinations of may- and must-matches. If the partial model can be extended to a
valid model (so ∃M : P ⊆ M), a must-match implies a may-match (�[P,m |= p] ⇒
♦[P,m |= p]), so a must and may-match simply means a must-match. If a match
is a must-match, but not a may-match it means inconsistency (marked with an X).
Because P ⊆ P is true, if there is an actual match on the partial model, then, by
definition, the must-matches and may-matches have to contain this match. Cases
where this condition does not hold are marked with an X. A may-match but not
must-match combination has the weakest consequence; namely a pattern might or
might not be satisfied in an extension of the partial model. And finally, if an m is
not a may-match it means that it cannot be matched in any possible extension of
the model.

Table 2: Combination of concrete, must- and may-matches

♦[P,m |= p] ¬♦[P,m |= p]
[P,m |= p] ¬[P,m |= p] [P,m |= p] ¬[P,m |= p]

�[P,m |= p] ∀M : P ⊆ M X X X

⇒ [M,m |= p]
(Constant match)

¬�[P,m |= p] [P,m |= p], ¬[P,m |= p], ∀M : P ⊆ M

∃M : P ⊆ M ∃M : P ⊆ M ⇒ ¬[M,m |= p]
∧¬[M,m |= p] ∧[M,m |= p] X

(Possibly disap- (Possibly appear- (Impossible
pearing match) ing match) match)

Here, it is necessary to examine the semantics of must- and may-matches in
the context of well-formedness constraints. If a pattern has a must-match of an
ill-formedness pattern, then it marks an invalid model that cannot be repaired by
adding new elements. If a partial model has a may-match (♦[P,m |= p]), and the
pattern has an actual match on the partial model ([P,m |= p]) it means that the
model is currently ill-formed, but it might be repaired by adding new elements.
Otherwise, if there is a may-match (♦[P,m |= p]), but there no actual matches
(¬[P,m |= p]), it means that the model is currently well-formed, but the may-
match highlights possible ways to inject errors.

4 Rewriting Model Queries with Open-World Se-

mantics

Next, we introduce a novel technique that is able to produce must- and may-
matches from existing model queries that are defined on complete models. The
approach is based on a graph pattern rewriting technique that creates over- and
under-approximated patterns to evaluate must-matches and may-matches.
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4.1 Approximation of Must- and May-Matches

Unfortunately, to decide whether a provisional match of pattern p on a partial
model P can be extended to a complete match for a model M where P ⊆ M is
a complicated problem. In general, it requires complex logic analysis [32], which
scales poorly with respect to the size of the partial model [33], and may have
undecidability issues. Therefore, we will introduce approximations to tackle this
problem.

In our approach, must- and may-matches are approximated with regular pattern
matching problems that can be efficiently evaluated on complete and partial models.
A pattern matching problem PU ,mU |= pU under-approximates a must-matching
problem, if it satisfies the following constraint:

[PU ,mU |= pU ] ⇒ �[P,m |= p]

Similarly, a pattern matching problem PO,mO |= pO over-approximates a may-
matching problem, if the following constraint is satisfied:

♦[P,m |= p] ⇒ [PO,mO |= pO]

These formulae define a conservative approximation of must- and may-matches
over partial models (see Table 3) with two potential inaccuracies: (1) a must-match
might not be detected in a partial model, or (2) the unsatisfiability of a match might
not be proved. In our approach, these inaccurate cases are collected in the same
category as the may-matches. In other words, the match result is approximated in
the direction of may-matches, which also collects the unknown cases. This is a safe
compromise in most application areas like model validation.

Table 3: Consequences of approximated matches

[PO,mO |= pO] ¬[PO,mO |= pO]
[PU ,mU |= pU ] �[P,m |= p] X

¬[PU ,mU |= pU ] ♦[P,m |= p] ¬♦[P,m |= p]
+ Unknown

In our approach, must- and may-matches are produced in four steps:

1. Approximated models PU and PO are created from the original partial model
P (Section 4.2).

2. Approximated patterns pU and pO are constructed from p (Section 4.4) with
the help of uncertain model indexers (Sections 4.3).

3. The approximated pattern matching problems are executed as normal pattern
matching problems.
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4. The matches of the approximated pattern matching problem mU , mO are
interpreted as may- and must-matches of the original pattern p (Section 4.5).

In the following, we provide a constructive way for creating approximated
models and patterns for a must/may matching problem, along with a technique
for transforming over- and under-approximated matches back to must- and may-
matches.

4.2 Representation of Partial Models

Now we will show how approximated models PO and PU can be created from a
partial model P which will serve as a basis for evaluating approximated patterns
over it later on. In our approach, standard Ecore [36] models are used to define par-
tial models enriched with special annotations on model elements which are adapted
from [14]. In our current implementation, both PO and PU are created in the same
way from a PartialModel, which is illustrated in Figure 5.

PartialModel

openWorld : EBoolean = false

EObject

EBoolean

[0..*] elements

[0..*] newElements

Figure 5: Helper metamodel for partial models.

This partial model representation has three important characteristics. These
are:

• The reference elements represents the objects of the partial model. Our tech-
nique incorporates objects only if they are referred by the partial model with
this reference. Hence it is easy to temporarily exclude elements from an exist-
ing model to create experimental variations of the model without modifying
it.

• A partial model contains additional symbolic (newly created) elements along
the newElements reference. A new element in a may-match represents a new
object that needs to be created (in a proper context) in order to satisfy the
condition of the match. Typically, a partial model contains a new element for
each concrete (non-abstract) object of the metamodel. However, the analysis
can be restricted by removing objects, thus forbidding the creation of this
kind of object.

• The semantic interpretation of the partial model can be switched between
open-world and close-world by setting the value of the attribute openWorld.

4.3 Open-World Indexing of Model Elements

The construction of the over- and under-approximated patterns is separated into
two layers: (1) first an uncertain property indexer collects the possible variations
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of model properties (like objects and references), and (2) an uncertain pattern
layer that combines those uncertain properties into over- and under-approximated
patterns. There we present the uncertain property indexer.

There are four kinds of basic properties of a partial model: (1) what the objects
are (i.e. ObjectsP ) (2) what the type of objects in the model is (C(o)) (3) where
references are between the objects (R(s,t)), and (4) what the attribute values are
in the model (A(o,v)). In the following, we describe how these basic properties can
be over- and under-approximated by appropriate graph patterns.

Objects First, the objects of an extended model are either objects that are
present in the partial model (referred by elements) or newly created objects (con-
tained by newElements). However, for newly created elements referred in projected
matches it is not decidable that the new objects are different or equal. Therefore
the equivalence of the objects needs to be over- and under-approximated. Figure
6 illustrates a pattern for which under- and over-appriximating the equivalence of
two objects, which are matched by mustEqual and mayEqual patterns. Objects e1
and e2 must be equals in all possible extensions of PU , if they are equal in the
partial model. However, two objects may be equal if they are represented by the
same prototype object.

pattern mustEqual(p,e1 ,e2) {
PartialModel.elements(p,e1);
e1 == e2;

}
pattern mayEqual(p,e1 ,e2) {

PartialModel.openWorld(p,true);
PartialModel.newElements(p,e2);
e1 == e2;

} or {
find mustEqual(p,e1 ,e2);

}

Figure 6: Approximation of equiva-
lences

pattern mustType_C(p,e) {
C(e); PartialModel.elements(p,e);

}
pattern mayType_C(p,e) {

C(e);
PartialModel.newElements(p,e);
PartialModel.openWorld(p,true);

} or {
find mustType_C(p,e);

}

Figure 7: Approximation of type
predicates

Types of objects It can be decided whether an object o must be of class C by
simply evaluating the predicate C(o), which is a safe under-approximation. How-
ever, in the case of partial models, the set of instances of class C may include some
elements from the symbolic instances with compatible types. Figure 7 illustrates
the schema of patterns that match objects which are necessary or possible instances
of class C.

References and attributes The indexing of possible and necessary references
and attributes is a more complex case, as illustrated in the pattern template in
Figure 8. First, in Figure 8, R(s,t) must be true if the reference is present in
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the partial model, so it is a safe under-approximation. However, possible pairs of
objects included in an over-approximation of R(s,t) have to satisfy several structural
constraints (see Section 2.2 for more details):

1. Type compliance: If there is a reference between a source class S and
a target class T, then a possible reference can only be instantiated between
possible instances of S and T, so if the types are not correct, R(s,t) is excluded
from the over-approximation.

2. Upper multiplicity: If there is an upper multiplicity defined for the refer-
ence (in the form of min..max), then the number of outgoing references must
be less than max in order to possibly create a new reference. If this constraint
fails, R(s,t) is excluded from the over-approximation.

3. Upper multiplicity of inverse: Similarly, if the reference S has an inverse
reference I with an upper bound max, then the number of incoming R refer-
ences to the target (which is the same as the number of outgoing I references
from the target) must be less than max in order to possibly create a new
reference.

4. Containment reference, multiple parent: There are two ways of violat-
ing the containment hierarchy with an additional reference. The first case
is when an additional parent is created for an object. So, if there is a con-
tainment reference to a target object, then it is not possible to add another
containment reference.

5. Containment reference, circular containment: Another way of violat-
ing the containment hierarchy is to create a circle with a new containment
reference. Therefore it is not possible to create a containment reference be-
tween object s and t if there is a path of containments from t to s.

6. Inverse of a containment reference: If the inverse of R is a containment
reference, then a may match has to satisfy multiple parent and circular
containment rules.

In the following, we describe how the previous properties indexed with may and
must modalities can be combined to create approximated patterns.

4.4 Transforming Approximated Patterns

A pattern p defines several structural constraints on a match m of model M ; it is
satisfied when then the pattern condition holds, which is denoted by [M,m |= p].
The condition of a pattern is defined as a disjunction of pattern bodies, which is
defined by a set of constraints that has to be simultaneously satisfied:

[M,m |= p] ⇔
∨

bodies

∃var :
∧

constraints

constraint(m, var)
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pattern mustReference_R(p, s, t) {
PartialModel.elements(p, s); PartialModel.elements(p, t); S.R(s, t);

}
pattern mayReference_R(p, s, t) {

// The partial model is Open World
PartialModel.openWorld(p,true);
// There are s and t with the correct types
find mayType_S(p,s); find mayType_T (p,t);
// Upper multiplicity of R allows the addition of a new reference
numberOfExistingReferences == count find mustReference_R(p, s, _);
check(numberOfExistingReferences < {upper multiplicity of R});
// Upper multiplicity of the inverse reference I allows the addition
numberOfOppositeReferences == count find mustReference_I(p, _, t);
check(numberOfOppositeReferences < {upper multiplicity of I});
// If R is a containment relation , the new reference cannot create
// 1. Multiple parents
neg find mustContains(p,_,t);
// 2. Circle in the containment hierarchy
neg find mustTransitiveContains(p,t,s);
// If I is the inverse of R, and R is a containment relation ,
// then the new reference cannot create
// 1. Multiple parents
neg find mustContains(p,s,_);
// 2. Circle in the containment hierarchy
neg find mustTransitiveContains(p,s,t);

} or {
find mustReference_R(p, s, t);

}

// Support patterns , where R1 . . . Rn are containment references
pattern mustContains(p,s,t)

{mustReference_R1(p,s,t);} or ... or {mustReference_Rn(p,s,t);}
pattern mustTransitiveContains(p,s,t) {

find mustContains +(p,s,t);}

Figure 8: An approximation of reference predicates

Our approach is to create an over- and under-approximated version of the pat-
tern condition by using the previously over- and under-approximated versions of
atomic constraints. So an over-appriximated version of a pattern is created by
over-approximating each constraint in it, which creates a valid overapproximation
of the pattern:

♦[P,m |= p] = ♦

[

P,m |=
∨

bodies

∃var :
∧

constraints

constraint(m, var)
]

⇒

[

PO,mO |=
∨

bodies

∃var :
∧

constraints

[constraint(m, var)]O
]

= [PO,mO |= pO]

And similarly, an under-approximated version of a pattern is created when each
constraint is replaced by an under-approximated one:

�[P,m |= p] = �[M,m |=
∨

bodies

∃var :
∧

constraints

constraint(m, var)] ⇐
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1 // Original pattern
2 pattern noEntry(r : Region) {
3 neg find entryInRegion(r, _);
4 }
5

6 // Must version
7 pattern mustPattern_noEntry(p,r)
8 {
9 find mustType_Region(p,r);

10 neg find mayPattern_entryInRegion
11 (p,r,_);
12 }
13 // May version
14 pattern mayPattern_noEntry(p,r)
15 {
16 find mayType_Region(p,r);
17 neg find mustPattern_entryInRegion
18 (p,r,_);
19 }

20 // Original pattern
21 pattern multipleEntry(r) {
22 find entryInRegion(r, e1);
23 find entryInRegion(r, e2);
24 e1 != e2; }
25 // Must version
26 pattern mustPattern_multipleEntry(p,r){
27 find mustPattern_entryInRegion(
28 p,r,e1);
29 find mustPattern_entryInRegion(
30 p,r,e2);
31 neg find mayEqual(p,e1 ,e2); }
32 // May version
33 pattern mayPattern_multipleEntry(p,r){
34 find mayPattern_entryInRegion(
35 p,r,e1);
36 find mayPattern_entryInRegion(
37 p,r,e2);
38 neg find mustEqual(p,e1 ,e2); }

Figure 9: Examle under- and overapproximated patterns

[PU ,mU |= pU ] = [MU ,mU |=
∨

bodies

∃var :
∧

constraints

[constraint(m, var)]U ],

where [constraint ]U symbolizes the under-approximated (must) version of con-
straint, and [constraint ]O denotes the over-approximated (may) version of it. In
the latter modality, the variables and parameters can be bound to symbolic ob-
jects, which is handled by our open world indexing implementation by matching
newElements prototypes. The only remaining task is to replace constraints of the
original match by calling the must or may variant of the corresponding constraint.
In Figure 9, there are two patterns with under- and over-approximated patterns:

• Pattern: Newly created patterns are prefixed with mustPattern_ or
mayPattern_ and add a parameter p for the PartialModel object. For instance,
as shown in Figure 9, mustPattern_noEntry(p,r) is the under-approximated
version of noEntry(r).

• Classifier Constraint: We replace all C(e) constraints by new pattern calls
to find mustType_C(p,e) or find mayType_C(p,e).

• Path Constraint: We split path expressions into single reference and at-
tribute constraints, and replace all occurrences of a single R(s,t) constraint
by either find mustReference_R(p,s,t) or find mayReference_R(p,s,t).

• Equality Constraints: in the case of equality constraints, replace all a==b
by find mustEqual(p,a,b) or find mayEqual(p,a,b). However, in the
case of inequality (a!=b), the modality has to be changed to the dual:

– [a!=b]U is replaced by neg find mayEqual(p,a,b)

– [a!=b]O is replaced by neg find mustEqual(p,a,b)
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For example, the constraint e1!=e2 in line 24 of Figure 9 expresses the fact,
that the two entries are different. In the must version of the pattern, it is re-
placed by neg find mayEqual(p,e1,e2), which excludes matches where the
two entries can be mapped to the same element. However, in the may ver-
sion of the pattern, it is replaced by neg find mustEqual(p,e1,e2), which
exclude matches only where it is certain that the two matches are equal.

• Pattern Call Constraints: There are different rules to map pattern calls:

– Positive call: a positively called pattern find ref (par) is mapped to
find mustPattern_ref (p,par) or find mayPattern_ref (p,par). For
instance, find entryInRegion(r, e1); in line 22 of Figure 9 is re-
placed by find mustPattern_entryInRegion(p,r,e1) in the must vari-
ant of the pattern.

– Negative call: In the case of a negative pattern call (neg find), the
modality of the called pattern has to be changed to the opposite:

* [neg find ref (par)]U replaced by neg find mayPattern_ref (p,par)

* [neg find ref (par)]O replaced by neg find mustPattern_ref (p,par)

For example, the negative pattern call neg find entryInRegion(r,_)

in line 3 of Figure 9 is transformed to a negative may-pattern call
neg find mayPattern_entryInRegion(p,r,_) constraint in the must
version of the pattern, which forbids all possible matches where the en-
try can be in the checked region. Conversely, in the may version, it is
transformed to neg find mustPattern_entryInRegion(p,r,_), which
filters the matches only where it is certain that there is an entry in the
region.

– Transitive closure: A transitive closure call find ref +(par) is trans-
formed to either an under-approximated find mustPattern_ref +(p,par)
or an over-approximated find mayPattern_ref +(p,par).

• Count find: The number of occurrences of a pattern may be under- and
over-approximated in several cases by replacing C==count find ref (par)
by C<=count find mustPattern_ref (par) or C>=count find mayPattern_

ref (par). However, as the count of the matches (i.e. the value of C) can be
used in other constraints, this constraint is supported only when C is a con-
stant integer.

• Eval, check: In those features language that cannot be supported automat-
ically, under- and over-approximated versions of the embedded expressions
need to be created manually.

4.5 Interpretation of approximated matches

Calculating approximated matches The over- and under-approximated ver-
sions of matches can be matched on partial models (as regular instance models)
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by traditional graph pattern matching approaches. For this purpose, we have been
using the incremental graph pattern matching engine of the VIATRA framework
[4]. Since the approximated patterns are more complex than the original pattern,
we expect that matching partial models will be slower. According to our initial
experiments, we expect a quadratic decrease in performance - which is still more
efficient than using SAT/SMT solvers for the same purpose.

Interpreting approximated matches The calculated matches of approximated
patterns on partial models need to be interpreted as must- and may-matches by
projecting them onto the original partial model (m = πP (mO) and m = πP (mU )).
This projection is not computationally intensive since matches are only filtered but
never extended.

4.6 Validation of the approach

In order to validate our approach, we developed automated transformations to (1)
rewrite models into partial models, and (2) rewrite graph patterns into approx-
imated patterns. We executed these transformations in the context of Yakindu
statecharts (i.e. the running example of our paper).

Evaluating must and may matches on a partial model is always decidable, and
the problem has polynomial time complexity (as it can be reduced to a subgraph
isomorphism problem [27]). In contrast, logic analysis of graph patterns and partial
models is, in general, undecidable [32]. Also, industrial graph query engines like [4]
are able to efficiently evaluate graph queries over large models with thousands of
objects. In our example, the execution time of this compilation step (i.e. the rewrite
and execution of transformations) was negligible. Still, our previous experience
showed that advanced SAT and SMT solvers failed to solve partial model analysis
with the same metamodel and size [33].

Besides the abov, we systematically developed a test set with full metamodel
coverage [6] and full inclusion of well-formedness constraints defined for Yakindu
statecharts, which consists of prototype graph patterns. This test set is listed in the
Appendix, and the generated output and further details are available in GitHub1.
We generated both a may- and a must-approximation from the graph pattern of
the designated constraint, and we evaluated these patterns on sample prototypical
instance models. The correctness of the generation was established by manually
inspecting the retrieved result set of the may and must patterns. In the future, we
intend to carry out a more systematic performance evaluation of our approach.

1https://github.com/FTSRG/publication-pages/wiki/Evaluating-Well-Formedness-

Constraints-on-Partial-Models
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5 Related Work

5.1 Analysis of Uncertain Models

Partial models are a subclass of uncertain models, which offer a rich specification
language [14, 28] amenable to analysis. Uncertain models provide a more expres-
sive language compared to partial models, but without handling additional WF
constraints. Such models document semantic variation points generically via by
means of annotations on a regular instance model. Most uncertain model analysis
approaches focus on the generation of possible concrete models or the refinement
of partial models. A potential concrete models compliant with an uncertain model
may be synthesized by the Alloy Analyzer and its back-end SAT solvers [31, 30],
or be refined by graph transformation rules [29].

The most similar approaches [15, 16] analyze the possibility of model trans-
formation rule matching and execution on partial models by using a SAT solver
(MathSAT4) or by automated graph approximation (referred to as “lifting”). The
main difference is that in their approach inspects possible partitions of a concrete
model (so checking all possible P -s for a given M with P ⊆ M), instead of possible
extensions of a partial model. Therefore, it cannot be used to support a mostly
incremental development process with growing models.

There is an extensive tool support for editing and analyzing advanced uncertain
models [5]. In contrast, our approach may be applied on (unfinished) EMF models
directly [4] in their own editors, to indicate must- and may-matches of ill-formedness
constraints as errors and warnings.

5.2 Verification of Model Transformations

Besides uncertain models, there are several formal methods available that seek to
evaluate graph patterns on abstract graph models (either abstract interpretation[25]
or predicate abstraction [26]) in order to detect possible concretizations matches.
Those techniques typically employ similar techniques called pre-matching to create
may-matches that are further analyzed.

5.3 Logic Solver Approaches

There are several approaches available that map partial models and WF constraints
into a logic problem, which are solved by underlying SAT/SMT-solvers. With these
techniques the implication between a partial model and the satisfaction of a well-
formedness constraint can be directly evaluated in order to reason about must- and
may-matches.

Complete frameworks with standalone specification languages include Formula
[20] (which uses the Z3 SMT- solver [13]), Alloy [19] (which relies on SAT solvers
like Sat4j[22]) and Clafer [2] (using backend reasoners like Alloy).

There are several approaches which seeks to validate standardized engineer-
ing models enriched with OCL constraints [17] by relying upon different back-end



706 Oszkár Semeráth and Dániel Varró

logic-based approaches such as constraint logic programming [11, 10, 8], SAT-based
model finders (like Alloy) [34, 1, 9, 21, 35], first-order logic [3], constructive query
containment [24], higher-order logic [7, 18], and rewriting logics [12]. Partial snap-
shots and WF constraints can be uniformly represented as constraints [32].

The scalability of all these approaches are limited to small models / counter-
examples. Furthermore, these approaches are either a priori bounded (where the
search space needs to be explicitly restricted) or they have decidability issues [33].

6 Conclusions and Future Work

Here we presented a novel validation technique that is able to check unfinished,
partial models with well-formedness constraints that are defined for fully defined
models. The outcome of searching a malformed model partitions can be either a
must-match (which detects whether a partial model already contains a conceptual
flaw), a may-match (which means that a possible extension may become invalid,
and highlights all possible threats), or no match (which proves that the partial
model already satisfies a validation rule). The approach is based on an approxima-
tion technique that reduces must- and may-matching to regular pattern matching
problems, which can be executed by graph query engines.

As a future work we are planning to integrate our pattern matching technique
with advanced partial modeling formalisms like [14] to increase the expression power
of the analysis. Also, we intend to carry out a systematic performance evaluation,
and experiment with guiding incremental model generators processes [33] by eval-
uating must- and may-matches on intermediate solutions.
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710 Oszkár Semeráth and Dániel Varró

Appendix

pattern entryInRegion(r:Region , e:Entry) {
Region.vertices(r,e); }

@Constraint pattern noEntryInRegion(r:Region) {
neg find entryInRegion(r,_); }

@Constraint pattern multipleEntryInRegion(r) {
find entryInRegion(r,e1); find entryInRegion(r,e2);
e1 != e2; }

pattern transition(t,src ,trg) {
Transition.source(t,src); Transition.target(t,trg); }

@Constraint pattern incomingToEntry(t, e:Entry) {
find transition(t,_,e); }

@Constraint
pattern noOutgoingTransitionFromEntry(e:Entry) {

neg find transition(_,e,_);
}
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@Constraint pattern multipleTransitionFromEntry(e:Entry ,t1 ,t2) {
find transition(t1 ,e,_); find transition(t2 ,e,_);
t1! == t2;

}

@Constraint
pattern outgoingTrainsitionToDifferentRegion(e:Entry ,trg ,r) {

find transition(_,e,trg);
Region.vertices(r1 ,e);
Region.vertices(r2 ,trg);
r1 != r2;

}

@Constraint hasNoIncomingOrOutgoing(s:Synchronization) {
neg find transition(_,_,s);

} or {
neg find transition(_,s,_);

}

private pattern hasMultipleOutgoingTrainsition(v) {
find transition(_,v,trg1); find transition(_,v,trg2); trg1 != trg2; }

private pattern hasMultipleIncomingTrainsition(v) {
find transition(_,src1 ,v); find transition(_,src2 ,v); src1 != src2; }

@Constraint notSynchronizingStates(s:Synchronization) {
neg find hasMultipleOutgoingTrainsition(s);
neg find hasMultipleIncomingTrainsition(s); }
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@Constraint
pattern SynchronizedVerticesInSameRegion(s:Synchronization ,v1 ,v2) {

find transition(t,v1 ,s);
find transition(t,v2 ,s);
Region.vertices(r,v1);
Region.vertices(r,v2);

} or {
find transition(t,s,v1);
find transition(t,s,v2);
Region.vertices(r,v1);
Region.vertices(r,v2);

}
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@Constraint
pattern SynchronizedRegionsAreNotSiblings(s:Synchronization ,v1 ,v2) {

find transition(t,v1 ,s);
find transition(t,v2 ,s);
CompositeElement.regions.vertices(r1 ,v1);
CompositeElement.regions.vertices(r2 ,v2);
r1 != r2;

} or {
find transition(t,s,v1);
find transition(t,s,v2);
CompositeElement.regions.vertices(r1 ,v1);
CompositeElement.regions.vertices(r2 ,v2);
r1 != r2;

}


