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Abstract
In complex analysis, the winding number measures the number of times a path (counter-
clockwise) winds around a point, while the Cauchy index can approximate how the path
winds. We formalise this approximation in the Isabelle theorem prover, and provide a tactic
to evaluate winding numbers through Cauchy indices. By further combining this approx-
imation with the argument principle, we are able to make use of remainder sequences to
effectively count the number of complex roots of a polynomial within some domains, such
as a rectangular box and a half-plane.

Keywords Interactive theorem proving · Isabelle/HOL · Computer algebra · Cauchy index ·
Winding number · Root counting · The Routh–Hurwitz stability criterion

1 Introduction

The winding number, given by

n(γ, z) = 1

2π i

∮
γ

dw

w − z
,

measures how the path γ winds around the complex point z. It is an important object in
complex analysis, and its evaluation is ubiquitous among analytic proofs.

However, when formally evaluating the winding number in proof assistants such as
Isabelle/HOL and HOL Light, unexpected difficulties arise, as pointed out by Harrison [8]
and Li et al. [14]. To address this problem, we formalise a theory of the Cauchy index on
the complex plane, thereby approximating how the path winds. When the path is a cycle and
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comprises line segments and parts of circles, we can now evaluate the winding number by
calculating Cauchy indices along those sub-paths.

In addition, by further combining our previous formalisation of the argument principle
[14] (which associates the winding number with the number of complex roots), we build
effective procedures to count the complex roots of a polynomial within some domains, such
as a rectangle box and a half-plane.

In short, the main contributions of this paper are

– a novel tactic to enable users to evaluate the winding number through Cauchy indices,
– and novel verified procedures to count complex roots of a polynomial.

The Isabelle sources of this paper are available from the Archive of Formal Proofs [11,12].
Formulations in this paper, such as the definition of the Cauchy index and statements

of some key lemmas, mainly follow Rahman and Schmeisser’s book [19, Chapter 11] and
Eisermann’s paper [6]. Nevertheless, we were still obliged to devise some proofs on our own,
as discussed later.

This paper continues as follows: we start with a motivating example (Sect. 2) to explain
the difficulty of formal evaluation of the winding number in Isabelle/HOL. We then present
an intuitive description of the link between the winding number and the Cauchy indices
(Sect. 3), which is then developed formally (Sect. 4). Next, we present verified procedures
that count the number of complex roots in a domain (Sect. 5), along with some limitations
(Sect. 6) and make some general remarks on the formalisation (Sect. 7). Finally, we discuss
related work (Sect. 8) and present conclusions (Sect. 9).

2 AMotivating Example

In the formalisation of Cauchy’s residue theorem [14], we demonstrated an application of
this theorem to formally evaluate an improper integral in Isabelle/HOL:

∫ ∞

−∞
dx

x2 + 1
= π. (1)

The idea is to embed this integral into the complex plane, and, as illustrated in Fig. 1, to
construct a linear path Lr from −r to r and a semi-circular path Cr centred at 0 with radius
r > 1:

Cr (t) = reiπ t for t ∈ [0, 1],
Lr (t) = (1 − t)(−r) + tr for t ∈ [0, 1].

Next, by letting

f (w) = 1

w2 + 1
,

and r → ∞, we can derive (1) through the following steps:
∫ ∞

−∞
dx

x2 + 1
=

∮
Lr

f (2)

=
∮
Lr+Cr

f (3)
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Fig. 1 Complex points (0, −i) and (0, i), and a closed path Lr + Cr

= n(Lr + Cr , i)Res( f , i) + n(Lr + Cr ,−i)Res( f ,−i) (4)

= π. (5)

Here Lr +Cr is formed by appending Cr to the end of Lr , and Res( f , i) is the residue of f
at i . Equation (3) is because

∮
Cr

f = 0 as r → ∞. The application of the residue theorem
is within (4); we exploit the fact that i and −i are the only two singularities of f over the
complex plane, since

1

w2 + 1
= 1

(w − i)(w + i)
.

While carrying out the formal proofs of (5), surprisingly, the most troublesome part of the
proof is to evaluate the winding numbers:

n(Lr + Cr , i) = 1 (6)

n(Lr + Cr ,−i) = 0. (7)

Equations (6) and (7) are straightforward to humans, as it can be seen from Fig. 1 that
Lr + Cr passes counterclockwise around the point i exactly one time, and around −i zero
times. However, formally deriving these facts was non-trivial.

Example 1 (Proof of n(Lr +Cr , i) = 1)We defined an auxiliary semi-circular pathC ′
r where

C ′
r (t) = reiπ(t+1) for t ∈ [0, 1]

as can be seen in Fig. 1a. AsCr +C ′
r forms a (full) circular path with i lying inside the circle,

we had

n(Cr + C ′
r , i) = 1. (8)

In addition, we further proved that Cr + C ′
r and Lr + Cr are homotopic on the space of the

complex plane except for the point i (i.e., on C − {i}), and hence

n(Lr + Cr , i) = n(Cr + C ′
r , i) (9)
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by using the following Isabelle lemma:

Lemma 1 (winding_number_homotopic_paths)

fixes z::complex and γ 1 γ 2::"real ⇒ complex"
assumes "homotopic_paths (-{z}) γ 1 γ 2"
shows "winding_number γ 1 z = winding_number γ 2 z"

where winding_number γ 1 z encodes the winding number of γ1 around z: n(γ1, z), and
homotopic_paths encodes the homotopic proposition between two paths. Putting (8) and
(9) together yields n(Lr + Cr , i) = 1, which concludes the whole proof.

Example 2 (Proof of n(Lr + Cr ,−i) = 0) We started by defining a ray L ′
r starting from −i

and pointing towards the negative infinity of the imaginary axis:

L ′
r (t) = (−i) − ti for t ∈ [0,∞)

as illustrated in Fig. 1b. Subsequently, we showed that

L ′
R does not intersect with Lr + Cr , (10)

and then applied the following lemma in Isabelle

Lemma 2 (winding_number_less_1)

fixes z w::complex and γ::"real ⇒ complex"
assumes "valid_path γ" and "z /∈ path_image γ" and "w �= z"

and not_intersection:"
∧
a::real. 0 < a �⇒ z + a*(w - z) /∈ path_image γ"

shows "|Re(winding_number γ z)| < 1"

where

– valid_path γ assumes that γ is piecewise continuously differentiable on [0, 1],
– z /∈ path_image γ asserts that z is not on the path γ ,
– the assumption not_intersection asserts that the ray starting at z ∈ C and through

w ∈ C ({z + a(w − z) | a > 0}) does not intersect with γ—for all a > 0, z + a(w − z)
does not lie on γ .

Note that the real part of a winding number Re(n(γ, z)) measures the degree of the winding:
in case of γ winding around z counterclockwise for exactly one turn, we have n(γ, z) =
Re(n(γ, z)) = 1. Essentially, Lemma 2 claims that a path γ can only wind around z for less
than one turn, |Re(n(γ, z))| < 1, if there is a ray starting at z and not intersecting with γ .
Joining Lemma 2 with (10) leads to

|Re(n(Lr + Cr ,−i))| < 1. (11)

Moreover, as Lr + Cr is a closed path,

n(Lr + Cr ,−i) ∈ Z (12)

By combining (11) and (12), we managed to derive n(Lr + Cr ,−i) = 0.
As can be observed in Examples 1 and 2, our proofs of n(Lr + Cr , i) = 1 and n(Lr +

Cr ,−i) = 0 were ad hoc, and involved the manual construction of auxiliary paths or rays
(e.g., C ′

R and L ′
R). Similar difficulties have also been mentioned by John Harrison when

formalising the prime number theorem [8]. In the next section, we will introduce an idea to
systematically evaluate winding numbers.
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z0
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Fig. 2 Left: a path γ crosses the line {z | Re(z) = Re(z0)} at γ (t0) such that Re(γ (t0)) > Re(z0). Right: the
image of f as a point travels through γ

3 The Intuition

The fundamental idea of evaluating a winding number n(γ, z0) in this paper is to reduce the
evaluation to classifications of how paths cross the line {z | Re(z) = Re(z0)}: continuously
or not and in which direction.

In a simple case, suppose a path γ crosses the line {z | Re(z) = Re(z0)} exactly once at
the point γ (t0) such that Im(γ (t0)) > Im(z0) (see Fig. 2 (left)), and let θ be the change in
the argument of a complex point travelling through γ . It should not be hard to observe that

0 < θ < 2π,

and by considering Re(n(γ, z0)) = θ/(2π) we can have

0 < Re(n(γ, z0)) < 1,

which is an approximation of Re(n(γ, z0)). That is, we have approximated Re(n(γ, z0)) by
the way that γ crosses the line {z | Re(z) = Re(z0)}.

To make this idea more precise, let

f (t) = Im(γ (t) − z0)

Re(γ (t) − z0)
.

The image of f as a point travels through γ is as illustrated in Fig. 2 (right), where f jumps
from +∞ to −∞ across t0. We can then formally characterise those jumps.

Definition 1 (Jump) For f : R → R and x ∈ R, we define

jump+( f , x) =

⎧⎪⎨
⎪⎩

1
2 if limu→x+ f (u) = +∞,

− 1
2 if limu→x+ f (u) = −∞,

0 otherwise,

jump−( f , x) =

⎧⎪⎨
⎪⎩

1
2 if limu→x− f (u) = +∞,

− 1
2 if limu→x− f (u) = −∞,

0 otherwise.

Specifically, we can conjecture that jump+( f , t0) − jump−( f , t0) captures the way that γ

crosses the line {z | Re(z) = Re(z0)} in Fig. 2, hence Re(n(γ, z0)) can be approximated
using jump+ and jump−:
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∣∣∣∣Re(n(γ, z0)) + jump+( f , t0) − jump−( f , t0)

2

∣∣∣∣ <
1

2
.

In more general cases, we can define Cauchy indices by summing up these jumps over an
interval and along a path.

Definition 2 (Cauchy index) For f : R → R and a, b ∈ R, the Cauchy index of f over a
closed interval [a, b] is defined as

Indba( f ) =
∑

x∈[a,b)

jump+( f , x) −
∑

x∈(a,b]
jump−( f , x).

Definition 3 (Cauchy index along a path) Given a path γ : [0, 1] → C and a point z0 ∈ C,
the Cauchy index along γ about z0 is defined as

Indp(γ, z0) = Ind10( f )

where

f (t) = Im(γ (t) − z0)

Re(γ (t) − z0)
.

In particular, it can be checked that the Cauchy index Indp(γ, z0) captures the way that γ

crosses the line {z | Re(z) = Re(z0)}, hence leads to an approximation of Re(n(γ, z0)):∣∣∣∣Re(n(γ, z0)) + Indp(γ, z0)

2

∣∣∣∣ <
1

2
.

More interestingly, by further knowing that γ is a loop we can derive Re(n(γ, z0)) =
n(γ, z0) ∈ Z and Indp(γ, z0)/2 ∈ Z, following which we come to the core proposition
of this paper:

Proposition 1 Given a valid path γ : [0, 1] → C and a point z0 ∈ C, such that γ is a loop
and z0 is not on the image of γ , we have

n(γ, z0) = − Indp(γ, z0)

2
.

That is, under some assumptions, we can evaluate a winding number through Cauchy indices!
A formal proof of Proposition 1will be introduced in Sect. 4.1. Here, given the statement of

the proposition, we can have alternative proofs for n(Lr+Cr , i) = 1 and n(Lr+Cr ,−i) = 0.

Example 3 (Alternative proof of n(Lr + Cr , i) = 1) As Lr + Cr is a loop, applying Propo-
sition 1 yields

n(Lr + Cr , i) = − Indp(Lr + Cr , i)

2
= −1

2
(Indp(Lr , i) + Indp(Cr , i)),

which reduces n(Lr + Cr , i) to the evaluations of Indp(Lr , i) and Indp(Cr , i). In this case,
by definition we can easily decide Indp(Lr , i) = −1 and Indp(Cr , i) = −1 as illustrated in
Fig. 3a. Hence, we have

n(Lr + Cr , i) = −1

2
((−1) + (−1)) = 1

and conclude the proof.
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Fig. 3 Evaluating n(Lr + Cr , i) and n(Lr + Cr ,−i) through the way that the path Lr + Cr crosses the
imaginary axis

Example 4 (Alternative proof of n(Lr +Cr ,−i) = 0) As shown in Fig. 3b, we can similarly
have

n(LR + CR,−i) = − Indp(Lr + Cr ,−i)

2

= −1

2
(Indp(Lr ,−i) + Indp(Cr ,−i))

= −1

2
(1 + (−1)) = 0

by which the proof is completed.

Compared to the previous proofs presented in Examples 1 and 2, the alternative proofs in
Examples 3 and 4 are systematic and less demanding to devise once we have a formalisation
of Proposition 1, which is what we will introduce in the next section.

4 EvaluatingWinding Numbers

The previous section presented an informal intuition to systematically evaluate winding
numbers; in this section, we will report the formal development of this intuition. We will
first present a mechanised proof of Proposition 1 (Sect. 4.1), which includes mechanised
definitions of jumps and Cauchy indices (i.e., Definition 1, 2 and 3) and several related
properties of these objects. After that, we build a tactic in Isabelle/HOL that is used to
mechanise proofs presented inExample 3 and4 (Sect. 4.2). Finally,wediscuss some subtleties
we encountered during the formalisation (Sect. 4.3).
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4.1 A Formal Proof of Proposition 1

For jump− and jump+ (see Definition 1), we have used the filter mechanism [9] to define a
function jumpF:

definition jumpF::"(real ⇒ real) ⇒ real filter ⇒ real" where
"jumpF f F ≡ (if (LIM x F. f x :> at_top) then 1/2 else

if (LIM x F. f x :> at_bot) then -1/2 else 0)"

and encoded jump−( f , x) and jump+( f , x) as

jumpF f (at_left x) and jumpF f (at_right x),

respectively. Here, at_left x, at_right x, at_top, and at_bot are all filters, where a
filter is a predicate on predicates that satisfies certain properties. Filters are extensively used
in the analysis library of Isabelle to encode varieties of logical quantification: for example,
at_left x encodes the statement “for a variable that is sufficiently close to x from the left",
and at_top represents “for a sufficiently large variable". Furthermore, LIM x (at_left

x). f x :> at_top encoded the proposition

lim
u→x− f (u) = +∞, (13)

and this encoding can be justified by the following equality in Isabelle:

(LIM x (at_left x). f x :> at_top) = (∀z. ∃b<x. ∀y>b. y < x −→ z ≤ f y)

where ∀z. ∃b<x. ∀y>b. y < x −→ z ≤ f y matches the usual definition of (13) in
textbooks.

We can then encode Indba( f ) and Indp(γ, z0) (see Definitions 2 and 3) as cindexE and
cindex_pathE respectively:

definition cindexE::"real ⇒ real ⇒ (real ⇒ real) ⇒ real" where
"cindexE a b f =

(
∑

x∈{x. jumpF f (at_right x) �= 0 ∧ a ≤ x ∧ x < b}. jumpF f
(at_right x))

- (
∑

x∈{x. jumpF f (at_left x) �= 0 ∧ a < x ∧ x ≤ b}. jumpF f
(at_left x))"

definition cindex_pathE::"(real ⇒ complex) ⇒ complex ⇒ real" where
"cindex_pathE γ z0 = cindexE 0 1 (λt. Im (γ t - z0) / Re (γ t - z0))"

Note, in the definition of Indba( f ) we have a term∑
x∈[a,b)

jump+( f , x)

which actually hides an assumption: that only a finite number of points within the interval
[a, b) contribute to the sum. This assumption is made explicit when cindexE is defined by
summing jumps over the following set:

{x. jumpF f (at_right x) �= 0 ∧ a ≤ x ∧ x < b}.

If the set above is infinite (i.e., the sum
∑

x∈[a,b) jump+( f , x) is not mathematically well-
defined) we have

(
∑

x∈{x. jumpF f (at_right x) �= 0 ∧ a ≤ x ∧ x < b}. jumpF f
(at_right x)) = 0.
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In other words, Isabelle/HOL deems the sum over an infinite set to denote zero.
Due to the issue of well-defined sums, many of our lemmas related to cindexE should

assume a finite number of jumps:

definition finite_jumpFs::"(real ⇒ real) ⇒ real ⇒ real ⇒ bool" where
"finite_jumpFs f a b = finite {x. (jumpF f (at_left x) �= 0

∨ jumpF f (at_right x) �= 0) ∧ a ≤ x ∧ x ≤ b}"

which guarantees the well-definedness of cindexE.
Now, suppose that we know that Indp is well-defined: there are only a finite number of

jumps over the path.What strategy canwe employ to formally prove Proposition 1?Naturally,
we may want to divide the path into a finite number of segments (subpaths) separated by
those jumps, and then perform inductions on these segments. To formalise the finiteness of
such segments, we defined an inductive predicate:

inductive finite_Psegments::"(real ⇒ bool) ⇒ real ⇒ real ⇒ bool"
for P where

emptyI: "a≥b �⇒ finite_Psegments P a b"|
insertI_1: "[[s∈{a..<b}; s=a ∨ P s; ∀t∈{s<..<b}. P t;

finite_Psegments P a s]] �⇒ finite_Psegments P a b"|
insertI_2: "[[s∈{a..<b}; s=a ∨ P s; ∀t∈{s<..<b}. ¬P t;

finite_Psegments P a s]] �⇒ finite_Psegments P a b"

definition finite_ReZ_segments::"(real ⇒ complex) ⇒ complex ⇒ bool" where
"finite_ReZ_segments γ z0 = finite_Psegments (λt. Re (γ t - z0) = 0) 0 1"

The idea behind finite_ReZ_segments is that a jump of

f (t) = Im(γ (t) − z0)

Re(γ (t) − z0)

takes place only if λt . Re(γ (t) − z0) changes from 0 to �= 0 (or vice versa). Hence, each of
the segments of the path γ separated by those jumps has either λt . Re(γ (t) − z0) = 0 or
λt . Re(γ (t) − z0) �= 0.

As can be expected, the finiteness of jumps over a path can be derived by the finiteness of
segments:

Lemma 3 (finite_ReZ_segments_imp_jumpFs)

fixes γ::"real ⇒ complex" and z0::complex
assumes "finite_ReZ_segments γ z0" and "path γ"
shows "finite_jumpFs (λt. Im (γ t - z0)/Re (γ t - z0)) 0 1"

where path γ asserts that γ is a continuous function on [0..1] (so that it is a path). Roughly
speaking, Lemma 3 claims that a path will have a finite number of jumps if it can be divided
into a finite number of segments.

By assuming such a finite number of segments we have well-defined cindex_pathE, and
can then derive some useful related properties:

Lemma 4 (cindex_pathE_subpath_combine)

fixes γ::"real ⇒ complex" and z0::complex
assumes "finite_ReZ_segments γ z0"and "path γ"

and "0≤a" and "a≤b" and "b≤c" and "c≤1"
shows "cindex_pathE (subpath a b γ) z0 + cindex_pathE (subpath b c γ) z0

= cindex_pathE (subpath a c γ) z0"
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where subpath a b γ gives a sub-path of γ based on parameters a and b:

definition subpath :: "real ⇒ real ⇒ (real ⇒ ’a) ⇒ real
⇒ ’a::real_normed_vector"

where "subpath a b γ ≡ (λt. γ((b - a) * t + a))"

Essentially, Lemma 4 indicates that we can combine Cauchy indices along consecutive
parts of a path: given a path γ and three parameters a, b, c with 0 ≤ a ≤ b ≤ c ≤ 1, we
have

Indp(γ1, z0) + Indp(γ2, z0) = Indp(γ3, z0).

where γ1 = λt . γ ((b − a)t + a), γ2 = λt . γ ((c − b)t + b) and γ3 = λt . γ ((c − a)t + a).
More importantly, we now have an induction rule for a path with a finite number of

segments:

Lemma 5 (finite_ReZ_segments_induct)

fixes γ::"real ⇒ complex" and z0::complex
and P::"(real ⇒ complex) ⇒ complex ⇒ bool"

assumes "finite_ReZ_segments γ z0"
and sub0:"

∧
g z. (P (subpath 0 0 g) z)"

and subEq:"(
∧
s g z. [[s ∈ {0..<1}; s=0 ∨ Re (g s) = Re z;

∀t ∈ {s<..<1}. Re (g t) = Re z;
finite_ReZ_segments (subpath 0 s g) z;
P (subpath 0 s g) z]] �⇒ P g z)"

and subNEq:"(
∧
s g z. [[s ∈ {0..<1}; s=0 ∨ Re (g s) = Re z;

∀t ∈ {s<..<1}. Re (g t) �= Re z;
finite_ReZ_segments (subpath 0 s g) z;
P (subpath 0 s g) z]] �⇒ P g z)"

shows "P γ z0"

where P is a predicate that takes a path γ and a complex point z0, and

– sub0 is the base case that P holds for a constant path;
– subEq is the inductive casewhen the last segment is right on the line {x | Re(x) = Re(z)}:

∀t ∈ (s, 1). Re(g(t)) = Re(z);
– subNEq is the inductive case when the last segment does not cross the line {x | Re(x) =

Re(z)}: ∀t ∈ (s, 1). Re(g(t)) �= Re(z).

Given a path γ with a finite number of segments, a complex point z0 and a predicate P that
takes a path and a complex number and returns a boolean, Lemma 5 provides us with an
inductive rule to derive P(γ, z0) by recursively examining the last segment.

Before attacking Proposition 1, we can show an auxiliary lemma about Re(n(γ, z0)) and
Indp(γ, z0) when the end points of γ are on the line {z | Re(z) = Re(z0)}:
Lemma 6 (winding_number_cindex_pathE_aux)

fixes γ::"real ⇒ complex" and z0 :: complex
assumes "finite_ReZ_segments γ z0" and "valid_path γ"

and "z0 /∈ path_image γ" and "Re (γ 1) = Re z0"
and "Re (γ 0) = Re z0"

shows "2 * Re(winding_number γ z0) = - cindex_pathE γ z0"

Here, Lemma 6 is almost equivalent to Proposition 1 except for that more restrictions haven
been placed on the end points of γ .

Proof of Lemma 6 As there are a finite number of segments along γ (i.e., finite_ReZ_
segments γ z0), by inducting on these segments with Lemma 5 we end up with three cases.
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g(1)

g(0)

g(s)

z

(a)

g(1)

g(0)

g(s)

z

(b)

Fig. 4 Inductive cases when applying Lemma 5

The base case is straightforward: given a constant path g : [0, 1] → C and a complex point
z ∈ C, we have Re(n(g, z)) = 0 and Indp(g, z) = 0, hence 2 Re(n(g, z)) = − Indp(g, z).

For the inductive case when the last segment is right on the line {x | Re(x) = Re(z)},
there is ∀t ∈ (s, 1). Re(g(t)) = Re(z) as illustrated in Fig. 4a. Let

g1(t) = g(st)

g2(t) = g((1 − s)t).

We have

n(g, z) = n(g1, z) + n(g2, z), (14)

and, by the induction hypothesis,

2 Re(n(g1, z)) = − Indp(g1, z). (15)

Moreover, it is possible to derive

2 Re(n(g2, z)) = − Indp(g2, z), (16)

since n(g2, z) = 0 and Indp(g2, z) = 0. Furthermore, by Lemma 4 we can sum up the
Cauchy index along g1 and g2:

Indp(g1, z) + Indp(g2, z) = Indp(g, z) (17)

Combining Eqs. (14), (15), (16) and (17) yields

2 Re(n(g, z)) = 2(Re(n(g1, z)) + Re(n(g2, z)))

= − Indp(g1, z) − Indp(g2, z)

= − Indp(g, z)

(18)

which concludes the case.
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γ(0) = γ(1)

z0

(a)

γ(0) = γ(1)

γ(s)

z0

(b)

Fig. 5 To derive n(γ, z0) = − Indp(γ,z0)
2 when γ is a loop

For the other inductive case when the last segment does not cross the line {x | Re(x) =
Re(z)}, without loss of generality, we assume

∀t ∈ (s, 1). Re(g(t)) > Re(z), (19)

and the shape of g is as illustrated in Fig. 4b. Similar to the previous case, by letting g1(t) =
g(st) and g2(t) = g((1 − s)t), we have n(g, z) = n(g1, z) + n(g2, z) and, by the induction
hypothesis, 2 Re(n(g1, z)) = − Indp(g1, z). Moreover, by observing the shape of g2 we have

2Re(n(g2, z)) = jump−( f , 1) − jump+( f , 0) (20)

Indp(g2, z) = jump+( f , 0) − jump−( f , 1) (21)

where f (t) = Im(g2(t) − z)/Re(g2(t) − z). Combining (20)with (21) leads to 2 Re(n(g2, z))
= − Indp(g2, z), following which we finish the case by deriving 2 Re(n(g, z)) =
− Indp(g, z) in a way analogous to (18). ��

Finally, we are ready to formally derive Proposition 1 in Isabelle/HOL:

Theorem 1 (winding_number_cindex_pathE)

fixes γ::"real ⇒ complex" and z0::complex
assumes "finite_ReZ_segments γ z0" and "valid_path γ"

and "z0 /∈ path_image γ" and "γ 0 = γ 1"
shows "winding_number γ z0 = - cindex_pathE γ z0 / 2"

Proof By assumption, we know that γ is a loop, and the point γ (0) = γ (1) can be away from
the line {z | Re(z) = Re(z0)} which makes Lemma 6 inapplicable. To resolve this problem,
we look for a point γ (s) on γ such that 0 ≤ s ≤ 1 and Re(γ (s)) = Re(z0), and we can
either fail or succeed.

In the case of failure, without loss of generality, we can assume Re(γ (t)) > Re(z0) for
all 0 ≤ t ≤ 1, and the shape of γ is as illustrated in Fig. 5a. As the path γ does not cross the
line {z | Re(z) = Re(z0)}, we can evaluate

Indp(γ, z0) = 0
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n(γ, z0) = Re(n(γ, z0)) = Im(Ln(γ (1) − z0)) − Im(Ln(γ (0) − z0))

2π
= 0

where Ln is the principle value of a complex logarithm function with its branch being the
negative real axis and −π < Im(Ln(z)) ≤ π for all z. Hence, n(γ, z0) = − Indp(γ, z0)/2
which concludes the case.

In the case of success, as illustrated in Fig. 5b, we have Re(γ (s)) = Re(z0). We then
define a shifted path γs :

γs(t) =
{

γ (t + s) if s + t ≤ 1,

γ (t + s − 1) otherwise,

such that Re(γs(0)) = Re(γs(1)) = Re(z0). By applying Lemma 6, we obtain a relationship
between Re(n(γs, z0)) and Indp(γs, z0):

2 Re(n(γs, z0)) = − Indp(γs, z0),

following which we have n(γ, z0) = − Indp(γ, z0)/2, since n(γs, z0) = n(γ, z0) and
Indp(γs, z0) = Indp(γ, z0). ��

4.2 A Tactic for EvaluatingWinding Numbers

With Proposition 1 formalised, we are now able to build a tactic to evaluate winding numbers
using Cauchy indices. The idea has already been sketched in Examples 3 and 4. We have
built a tactic eval_winding, for goals of the form

n(γ1 + γ2 + · · · + γn, z0) = k, (22)

where k is an integer and γ j (1 ≤ j ≤ n) is either a linear path:

γ j (t) = (1 − t)a + tb where a, b ∈ C

or a part of a circular path:

γ j (t) = z + rei((1−t)a+tb) where a, b, r ∈ R and z ∈ C.

The tactic eval_winding will transform (22) into

γ j (1) = γ j+1(0) for all 1 ≤ j ≤ n − 1, and γn(1) = γ1(0), (23)

z0 /∈ {γ j (t) | 0 ≤ t ≤ 1} for all 1 ≤ j ≤ n, (24)

Indp(γ1, z0) + Indp(γ2, z0) + · · · + Indp(γn, z0) = −2k, (25)

where (23) ensures that the path γ1 + γ2 + · · · + γn is a loop; (24) certifies that z0 is not on
the image of γ1 + γ2 + · · · + γn .

To achieve this transformation, eval_winding will first perform a substitution step on
the left-hand side of Eq. (22) using Theorem 1. As the substitution is conditional, we will
need to resolve four extra subgoals (i.e., (26), (27), (28) and (29) as follows) and Eq. (22) is
transformed into (30):

finite_ReZ_segments (γ 1 +++ γ 2 +++ ... +++γ n) z0, (26)

valid_path (γ 1 +++ γ 2 +++ ... +++γ n), (27)
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z0 /∈ path_image (γ 1 +++ γ 2 +++ ... +++γ n), (28)

(γ 1 +++ γ 2 +++ ... +++γ n) 0 = (γ 1 +++ γ 2 +++ ... +++γ n) 1, (29)

- cindex_pathE (γ 1 +++ γ 2 +++ ... +++γ n) z0 / 2 = k. (30)

To simplify (26), the tactic will keep applying the following introduction rule:1

Lemma 7 (finite_ReZ_segments_joinpaths)

fixes γ 1 γ 2 :: "real ⇒ complex" and z0 :: complex
assumes "finite_ReZ_segments γ 1 z0" and "finite_ReZ_segments γ 2 z0"

and "path γ 1" and "path γ 2" and "γ 1 1 = γ 2 0"
shows "finite_ReZ_segments (γ 1+++γ 2) z0"

to eliminate the path join operations (+++) until the predicate finite_ReZ_segments is only
applied to a linear path or a part of a circular path, and either of these two cases can be directly
discharged because these two kinds of paths are proved to be divisible into a finite number
of segments by the imaginary axis:

Lemma 8 (finite_ReZ_segments_linepath)

"finite_ReZ_segments (linepath a b) z"

Lemma 9 (finite_ReZ_segments_part_circlepath)

"finite_ReZ_segments (part_circlepath z0 r st tt) z"

In terms of other subgoals introduced when applying Lemma 7, such as path γ 1, path γ 2

and γ 1 1 = γ 2 0, we can discharge them by the following introduction and simplification
rules (all of which have been formally proved):

– [[path γ 1; path γ 2; γ 1 1 = γ 2 0]] �⇒ path(γ 1 +++ γ 2),
– path (part_circlepath z0 r st tt),
– path (linepath a b),
– (γ 1 +++ γ 2) 1 = γ 2 1,
– (γ 1 +++ γ 2) 0 = γ 1 0.

As a result, eval_winding will eventually simplify the subgoal (26) to (23).
Similar to the process of simplifying (26) to (23), the tactic eval_winding will also

simplify

– (27) to (23),
– (28) to (24),
– and (29) to (23).

Finally, with respect to (30), we can similarly rewrite with a rule between the Cauchy index
(cindex_pathE) and the path join operation (+++):

1 Applying an introduction rule will replace a goal by a set of subgoals derived from the premises of the rule,
provided the goal can be unified with the conclusion of the rule.
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Lemma 10 (cindex_pathE_joinpaths)

fixes γ 1 γ 2 :: "real ⇒ complex" and z0 :: complex
assumes "finite_ReZ_segments γ 1 z0" and "finite_ReZ_segments γ 2 z0"

and "path γ 1" and "path γ 2" and "γ 1 1 = γ 2 0"
shows "cindex_pathE (γ 1 +++ γ 2) z0 = cindex_pathE γ 1 z0 + cindex_pathE

γ 2 z0"

to convert the subgoal (30) to (23) and (25).
After building the tactic eval_winding, we are now able to convert a goal like Eq. (22)

to (23), (24) and (25). In most cases, discharging (23) and (24) is straightforward. To derive
(25), we will need to formally evaluate each Indp(γ j , z0) (1 ≤ j ≤ n) when γ j is either a
linear path or a part of a circular path.

When γ j is a linear path, the following lemma grants us a way to evaluate Indp(γ j , z0)
through its right-hand side:

Lemma 11 (cindex_pathE_linepath)

fixes a b z0 :: complex
assumes "z0 /∈path_image (linepath a b)"
shows "cindex_pathE (linepath a b) z0 = (

let c1 = Re a - Re z0;
c2 = Re b - Re z0;
c3 = Im a * Re b + Re z0 * Im b + Im z0 * Re a - Im z0 * Re b

- Im b * Re a - Re z0 * Im a;
d1 = Im a - Im z0;
d2 = Im b - Im z0

in if (c1>0 ∧ c2<0) ∨ (c1<0 ∧ c2>0) then
(if c3>0 then 1 else -1)

else
(if (c1=0 ←→ c2�=0) ∧ (c1=0 −→d1�=0) ∧ (c2=0 −→ d2�=0) then

if (c1=0 ∧ (c2 >0 ←→ d1>0)) ∨ (c2=0 ∧ (c1 >0 ←→ d2<0))
then 1/2 else -1/2

else 0))"

AlthoughLemma 11may appear terrifying, evaluating its right-hand side is usually automatic
when the number of free variables is small. For example, in a formal proof of Example 3 in
Isabelle/HOL, we can have the following fragment:

lemma
fixes R::real
assumes "R>1"
shows "winding_number (part_circlepath 0 R 0 pi +++ linepath (-R) R) i

= 1"
proof (winding_eval, simp_all)

...
have "i /∈ path_image (linepath (- R) (R::complex))" by ...
from cindex_pathE_linepath[OF this] 〈R>1〉
have "cindex_pathE (linepath (-R) (R::complex)) i = -1" by auto
...

qed

wherewinding_eval is first applied to convert the goal into (23), (24) and (25), andsimp_all
subsequently simplifies those newly generated subgoals. In the middle of the proof, we
show that the complex point i is not on the image of the linear path Lr (i.e., linepath
(-R) (R::complex)) in Isabelle/HOL), following which we apply Lemma 11 to derive
Indp(Lr , i) = −1: the evaluation process is automatic through the command auto, given
the assumption R>1.

123



346 W. Li, L. C. Paulson

When γ j is a part of a circular path, a similar lemma has been provided to facilitate the
evaluation of Indp(γ j , z0).

4.3 Subtleties

The first subtlety we have encountered during the formalisation of Proposition 1 is about the
definitions of jumps and Cauchy indices, for which our first attempt followed the standard
definitions in textbooks [2,16,19].

Definition 4 (Jump) For f : R → R and x ∈ R, we define

jump( f , x) =

⎧⎪⎨
⎪⎩
1 if limu→x− f (u) = −∞ and limu→x+ f (u) = +∞,

−1 if limu→x− f (u) = +∞ and limu→x+ f (u) = −∞,

0 otherwise.

Definition 5 (Cauchy index) For f : R → R and a, b ∈ R, the Cauchy index of f over an
open interval (a, b) is defined as

Indba( f ) =
∑

x∈(a,b)

jump( f , x).

The impact of the difference between the current definition of the Cauchy index (i.e.,
Definition 2) and the classic one (i.e., Definition 5) is small when formalising the Sturm–
Tarski theorem [10,13], where f is a rational function. In this case, the path γ intersects with
the line {z | Re(z) = Re(z0)} a finite number of times, and for each intersection point (see
Fig. 6a, b), by letting f (t) = Im(γ (t) − z0)/Re(γ (t) − z0), we have

jump( f , t) = jump+( f , t) − jump−( f , t),

hence
∑

x∈(a,b)

jump( f , x) =
∑

x∈[a,b)

jump+( f , x) −
∑

x∈(a,b]
jump−( f , x),

provided jump+( f , a) = 0 and jump−( f , b) = 0. That is, the classic Cauchy index and the
current one are equal when f is a rational function and does not jump at both ends of the
target interval.

Naturally, the disadvantages of Definition 5 are twofold:

– The function λt . Re(γ (t)−z0) cannot vanish at either end of the interval. That is, we need
to additionally assume Re(γ (0) − z0) �= 0 as in Rahman and Schmeisser’s formulation
[19, Lemma 11.1.1 and Theorem 11.1.3], and Proposition 1 will be inapplicable in the
case of Fig. 6c where Re(γ (0)) = Re(γ (1)) = Re(z0).

– The function λt . Im(γ (t) − z0)/Re(γ (t) − z0) has to be rational, which makes Propo-
sition 1 inapplicable for cases like in Fig. 6d (if we follow Definition 5). To elaborate, it
can be observed in Fig. 6d that n(γ, z0) = −1, while we will only get a wrong answer
by following Definition 5 and evaluating via Proposition 1:

−1

2

⎛
⎝ ∑

x∈(0,1)

jump( f , x)

⎞
⎠ = − jump( f , t2)

2
= −1

2
,
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γ(t0)

z0

(a)

γ(t0)

z0

(b)

γ(0) = γ(1)

z0

(c)

γ(t1)

γ(t0)

γ(t2)

z0
γ(0) = γ(1)

(d)

Fig. 6 Different ways a path γ can intersect with the line {z | Re(z) = Re(z0)}

where f (t) = Im(γ (t) − z0)/Re(γ (t) − z0). In comparison, Definition 2 leads to the
correct answer:

n(γ, z0) = −1

2

⎛
⎝ ∑

x∈[0,1)
jump+( f , x) −

∑
x∈(0,1]

jump−( f , x)

⎞
⎠

= −1

2

(
jump+( f , t2) + jump+( f , t1) − jump−( f , t2) − jump−( f , t0)

)

= −1

2

(
1

2
+ 1

2
− (−1

2
) − (−1

2
)

)

= −1.

Fortunately, Eisermann [6] recently proposed a new formulation of the Cauchy index that
overcomes those two disadvantages, and this new formulation is what we have followed (in
Definitions 1 and 2).
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Another subtlety we ran into was the well-definedness of the Cauchy index. Such well-
definedness is usually not an issue and left implicit in the literature, because, in most cases,
the Cauchy index is only defined on rational functions, where only finitely many points can
contribute to the sum. When attempting to formally derive Proposition 1, we realised that
this assumption needed to be made explicit, since the path γ can be flexible enough to allow
the function f (t) = Im(γ (t) − z0)/Re(γ (t) − z0) to be non-rational (e.g., Fig. 6d). In our
first attempt of following Definition 5, the Cauchy index was formally defined as follows:

definition cindex::"real ⇒ real ⇒ (real ⇒ real) ⇒ int" where
"cindex a b f = (

∑
x∈{x. jump f x �=0 ∧ a<x ∧ x<b}. jump f x)"

and its well-definedness was ensured by the finite number of times that γ crosses the line
{z | Re(z) = Re(z0)}:
definition finite_axes_cross::"(real ⇒ complex) ⇒ complex ⇒ bool" where

"finite_axes_cross γ z0 =
finite {t. (Re (γ t - z0) = 0 ∨ Im (γ t - z0) = 0) ∧ 0 ≤ t ∧ t ≤ 1}"

where the part Re (γ t - z0) = 0 ensures that jump f t is non-zero only at finitely many
points over the interval [0, 1]. When constrained by finite_axes_cross, the function
f (t) = Im(γ (t) − z0)/Re(γ (t) − z0) behaves like a rational function. More importantly,
the path γ , in this case, can be divided into a finite number of ordered segments delimited
by those points over [0, 1], which makes an inductive proof of Proposition 1 possible. How-
ever, after abandoning our first attempt and switching to Definition 2, the well-definedness
of the Cauchy index is assured by the finite number of jump+ and jump− of f (i.e., Def-
inition finite_jumpFs in Sect. 4.1), with which we did not know how to divide the path
γ into segments and carry out an inductive proof. It took us some time to properly define
the assumption of a finite number of segments (i.e., Definition finite_ReZ_segments) that
implied the well-definedness using Lemma 3 and provided a lemma for inductive proofs (i.e.,
Lemma 5).

5 Counting the Number of Complex Roots

The previous section described away to evaluate winding numbers via Cauchy indices. In this
section, we will further explore this idea and propose verified procedures to count the number
of complex roots of a polynomial in some domain such as a rectangle and a half-plane.

Does a winding number have anything to do with the number of roots of a polynomial?
The answer is yes. Thanks to the argument principle, we can calculate the number of roots
by evaluating a contour integral:

1

2π i

∮
γ

p′(x)
p(x)

dx = N (31)

where p ∈ C[x], p′(x) is the first derivative of p and N is the number of complex roots of
p (counted with multiplicity) inside the loop γ . Also, by the definition of winding numbers,
we have

n(p ◦ γ, 0) = 1

2π i

∮
γ

p′(x)
p(x)

dx . (32)

Combining Eqs. (31) and (32) gives us the relationship between a winding number and the
number of roots of a polynomial:
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a1 a2

a3a4

L1

L2

L3

L4

Fig. 7 Complex roots of a polynomial (red dots) and a rectangular path (L1 + L2 + L3 + L4) on the complex
plane. (Color figure online)

n(p ◦ γ, 0) = N . (33)

And the question becomes: can we evaluate n(p ◦ γ, 0) via Cauchy indices?

5.1 Roots in a Rectangle

Let N be the number of complex roots of a polynomial p inside the rectangle defined by
its lower left corner a1 and upper right corner a3. As illustrated in Fig. 7, we can define four
linear paths along the edge of the rectangle:

L1(t) = (1 − t)a1 + ta2

L2(t) = (1 − t)a2 + ta3

L3(t) = (1 − t)a3 + ta4

L4(t) = (1 − t)a4 + ta1

where a2 = Re(a3) + i Im(a1) and a4 = Re(a1) + i Im(a3). Combining Proposition 1 with
Eq. (33) yields

N = n(p ◦ (L1 + L2 + L3 + L4), 0)

= −1

2
Indp(p ◦ (L1 + L2 + L3 + L4), 0)

= −1

2
(Indp(p ◦ L1, 0) + Indp(p ◦ L2, 0) + Indp(p ◦ L3, 0) + Indp(p ◦ L4, 0)) .

(34)

Here, the path p ◦ L j : [0, 1] → C (1 ≤ j ≤ 4) is (mostly) neither a linear path nor a part of
a circular path, which indicates that the evaluation strategies of Sect. 4.2, such as Lemma 11,
will no longer apply. Thankfully, the Sturm–Tarski theorem [10,13] came to our rescue.

In general, the Sturm–Tarski theorem is about calculating Tarski queries through sign
variations and signed remainder sequences: let p, q ∈ R[x], a and b be two extended real
numbers such that a < b and are not roots of p, we have
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TaQ(q, p, a, b) = Var(SRemS(p, p′q); a, b) (35)

where

– p′ is the first derivative of p,
– the Tarski query TaQ(q, p, a, b) defined as follows:

TaQ(q, p, a, b) =
∑

x∈(a,b),p(x)=0

sgn(q(x)),

– SRemS(p, q) is the signed remainder sequence started with p and q .
– Let [p1, p2, . . . , pn] be a sequence of polynomials, Var([p1, p2, . . . , pn]; a, b) is the

difference in the number of sign variations when evaluating [p1, p2, . . . , pn] at a and b:

Var([p1, p2, . . . , pn]; a, b)

= Var([p1(a), p2(a), . . . , pn(a)]) − Var([p1(b), p2(b), . . . , pn(b)]). (36)

Note that when q = 1, (35) becomes the famous Sturm’s theorem, which counts the number
of distinct real roots over an interval. For example, by calculating

TaQ(1, (x − 1)(x − 2), 0, 3) = Var(SRemS(x2 − 3x + 2, 2x − 3); 0, 3)
= Var([x2 − 3x + 2, 2x − 3, 1/4]; 0, 3)
= Var([x2 − 3x + 2, 2x − 3, 1/4]; 0)

− Var([x2 − 3x + 2, 2x − 3, 1/4]; 3)
= Var([2,−3, 1/4]) − Var([2, 3, 1/4])
= 2 − 0 = 2,

we know that the polynomial x2−3x+2 has two distinct real roots within the interval (0, 3).
In our previous formal proof of the Sturm–Tarski theorem [10,13], we used the Cauchy

index to relate the Tarski query and the right-hand side of (35). Therefore, as a byproduct, we
can also evaluate the Cauchy index through sign variations and signed remainder sequences:

Indba

(
λt .

q(t)

p(t)

)
= Var(SRemS(p, q); a, b), (37)

where p, q ∈ R[x], a, b are two extended real numbers such that a < b and are not roots of
p.

Back to the case of Indp(p ◦ L j , 0), we have

Indp(p ◦ L j , 0) = Ind10

(
λt .

Im(p(L j (t)))

Re(p(L j (t)))

)
,

and both Im(p(L j (t))) and Re(p(L j (t))) happen to be polynomials with real coefficients.
Therefore, combining Eqs. (34) and (37) yields an approach to count the number of roots
inside a rectangle.

While proceeding to the formal development, the first problem we encountered was that
the Cauchy index in Eq. (37) actually follows the classic definition (i.e., Definition 5), and is
different from the one in Eq. (34) (i.e., Definitions 2 and 3). Subtle differences between these
two formulations have already been discussed in Sect. 4.3. Luckily, Eisermann [6] has also
described an alternative sign variation operator so that our current definition of the Cauchy
index (i.e., Definition 2) can be computationally evaluated:
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Lemma 12 (cindex_polyE_changes_alt_itv_mods)

fixes a b::real and p q::"real poly"
assumes "a < b" and "coprime p q"
shows "cindex_polyE a b q p = changes_alt_itv_smods a b p q / 2"

Here, cindex_polyE a b q p encodes our current definition of the Cauchy index
Indba(λt . q(t)/p(t)), and changes_alt_itv_smods a b p q stands for

V̂ar(SRemS(p, q); a, b) (38)

where the alternative sign variation operator V̂ar is defined as follows:

V̂ar([p1, p2, . . . , p3]; a, b) = V̂ar([p1, p2, . . . , p3]; a) − V̂ar([p1, p2, . . . , p3]; b),
V̂ar([p1, p2, . . . , p3]; a) = V̂ar([p1(a), p2(a), . . . , p3(a)]),

V̂ar([]) = 0,

V̂ar([x1]) = 0,

V̂ar([x1, x2, . . . , xn]) = |sgn(x1) − sgn(x2)| + V̂ar([x2, . . . , xn]).
The difference between V̂ar and Var is that Var discards zeros before calculating variations
while V̂ar takes zeros into consideration. For example, Var([1, 0,−2]) = Var([1,−2]) = 1,
while V̂ar([1, 0,−2]) = 2.

Before implementing Eq. (34), we need to realise that there is a restriction in our strategy:
roots are not allowed on the border (i.e., the image of the path L1 + L2 + L3 + L4). To
computationally check this restriction, the following function is defined

definition no_proots_line::"complex poly ⇒ complex ⇒ complex ⇒ bool"
where

"no_proots_line p a b = (proots_within p (closed_segment a b) = {})"

which will return “true” if there is no root on the closed segment between a and b, and “false”
otherwise.Here,closed_segment a b is defined as the set {(1−u)a+ub | 0 ≤ u ≤ 1} ⊆ C,
and the function proots_within p s gives the set of roots of the polynomial p within the
set s:

definition proots_within::"’a::comm_semiring_0 poly ⇒ ’a set ⇒ ’a set"
where

"proots_within p s = {x∈s. poly p x=0}"

The next step is to make the definition no_proots_line executable. This is achieved by
proving a code equation, where the left-hand side of the equation is the target definition and
the right-hand side is an executable expression. In the case of no_proots_line, the code
equation is the following lemma:

Lemma 13 (no_proots_line_code[code])

"no_proots_line p a b = (if poly p a �= 0 ∧ poly p b �= 0 then
(let pc = p ◦p [:a, b - a:];

pR = map_poly Re pc;
p I = map_poly Im pc;
g = gcd pR p I

in if changes_itv_smods 0 1 g (pderiv g) = 0
then True else False)

else False)"

where ◦p is the polynomial composition operation and map_poly Re and map_poly Im,
respectively, extract the real and imaginary parts of the complex polynomial pc.
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Proof of Lemma 13 Supposing L : [0, 1] → C is a linear path from a to b: L(t) = (1 −
t)a + tb, we know that p ◦ L is still a polynomial with complex coefficients. Subsequently,
we extract the real and imaginary parts (pR and pI , respectively) of p ◦ L such that

p(L(t)) = pR(t) + i pI (t).

If there is a root of p lying right on L , we will be able to obtain some t0 ∈ [0, 1] such that

pR(t0) = pI (t0) = 0,

hence, by letting g = gcd(pR, pI ) we have g(t0) = 0. Therefore, the polynomial p has no
(complex) root on L if and only if g has no (real) root within the interval [0, 1], and the latter
can be computationally checked using Sturm’s theorem. ��

Finally, we define the function proots_rectangle that returns the number of complex
roots of a polynomial (counted with multiplicity) within a rectangle defined by its lower left
and upper right corner:

definition proots_rectangle::"complex poly ⇒ complex ⇒ complex ⇒ int"
where

"proots_rectangle p a1 a3 = proots_count p (box a1 a3)"

where proots_count p s denotes the number of roots of the polynomial p within the set s:

definition proots_count::"’a::idom poly ⇒ ’a set ⇒ nat" where
"proots_count p s = (

∑
r∈proots_within p s. order r p)"

The executability of the function proots_rectangle can be established with the following
code equation:

Lemma 14 (proots_rectangle_code1[code])

"proots_rectangle p a1 a3 =
(if Re a1 < Re a3 ∧ Im a1 < Im a3 then

if p �=0 then
if no_proots_line p a1 (Complex (Re a3) (Im a1))

∧ no_proots_line p (Complex (Re a3) (Im a1)) a3
∧ no_proots_line p a3 (Complex (Re a1) (Im a3))
∧ no_proots_line p (Complex (Re a1) (Im a3)) a1 then

(
let p1 = p ◦p [:a1, Complex (Re a3 - Re a1) 0:];

pR1 = map_poly Re p1; p I 1 = map_poly Im p1; g1 = gcd pR1 p I 1;
p2 = p ◦p [:Complex (Re a3) (Im a1), Complex 0 (Im a3 - Im a1):];
pR2 = map_poly Re p2; p I 2 = map_poly Im p2; g2 = gcd pR2 p I 2;
p3 = p ◦p [:a3, Complex (Re a1 - Re a3) 0:];
pR3 = map_poly Re p3; p I 3 = map_poly Im p3; g3 = gcd pR3 p I 3;
p4 = p ◦p [:Complex (Re a1) (Im a3), Complex 0 (Im a1 - Im a3):];
pR4 = map_poly Re p4; p I 4 = map_poly Im p4; g4 = gcd pR4 p I 4

in
- (changes_alt_itv_smods 0 1 (pR1 div g1) (p I 1 div g1)

+ changes_alt_itv_smods 0 1 (pR2 div g2) (p I 2 div g2)
+ changes_alt_itv_smods 0 1 (pR3 div g3) (p I 3 div g3)
+ changes_alt_itv_smods 0 1 (pR4 div g4) (p I 4 div g4)) div 4

)
else Code.abort (STR ”proots_rectangle fails when there is

a root on the border.”) (λ_. proots_rectangle p a1 a3)
else Code.abort (STR ”proots_rectangle fails when p=0.”)

(λ_. proots_rectangle p a1 a3)
else 0

)"
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Fig. 8 A complex point i and a
rectangle defined by its lower left
corner −1 and upper right corner
2 + 2i

i

−1

2 + 2i

−r r

Cr

Lr

Fig. 9 Complex roots of a polynomial (red dots) and a linear path (Lr ) concatenated by a semi-circular path
(Cr ) on the complex plane. (Color figure online)

The proof of the above code equation roughly follows Eqs. (34) and (37), where
no_proots_line checks if there is a root of p on the rectangle’s border. Note that the
gcd calculations here, such as g1 = gcd pR1 p I 1, are due to the coprime assumption in
Lemma 12.

Example 5 Given a rectangle defined by (−1, 2+2i) (as illustrated in Fig. 8) and a polynomial
p with complex coefficients:

p(x) = x2 − 2i x − 1 = (x − i)2

we can now type the following command to count the number of roots within the rectangle:

value "proots_rectangle [:-1, -2*i, 1:] (-i) (2+2*i)"

which will return 2 as p has exactly two complex roots (i.e., i with multiplicity 2) in the area.

5.2 Roots in a Half-plane

For roots in a half-plane, we can start with a simplified case, where we count the number
of roots of a polynomial in the upper half-plane of C:

definition proots_upper::"complex poly ⇒ int" where
"proots_upper p = proots_count p {z. Im z>0}"
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As usual, our next step is to set up the executability of proots_upper. To achieve that, we
first define a linear path Lr (t) = (1 − t)(−r) + tr and a semi-circular path Cr (t) = reiπ t ,
as illustrated in Fig. 9. Subsequently, let

Cp(r) = p ◦ Cr

L p(r) = p ◦ Lr ,

and by following Eq. (33) we have

Nr = n(p ◦ (Lr + Cr ), 0)

= Re(n(L p(r), 0)) + Re(n(Cp(r), 0))
(39)

where Nr is the number of roots of p inside the path Lr + Cr . Note that as r approaches
positive infinity, Nr will be the roots on the upper half-plane (i.e., proots_upper p), which
is what we are aiming for. For this reason, it is natural for us to examine two cases:

lim
r→+∞Re(n(L p(r), 0)) = ?

lim
r→+∞Re(n(Cp(r), 0)) = ?.

For the case of limr→+∞ Re(n(L p(r), 0)), we can have

Lemma 15 (Re_winding_number_poly_linepth)

fixes p::"complex poly"
defines "Lp ≡ (λr::real. poly p o linepath (-r) r)"
assumes "lead_coeff p=1" and "∀x∈{x. poly p x=0}. Im x �=0"
shows "((λr. 2*Re (winding_number (Lp r) 0) + cindex_pathE (Lp r) 0)

−−−→ 0) at_top"

which essentially indicates

lim
r→+∞Re(n(L p(r), 0)) = −1

2
lim

r→+∞ Indp(L p(r), 0), (40)

provided that the polynomial p is monic and does not have any root on the real axis.
Next, for limr→+∞ Re(n(Cp(r), 0)), we first derive a lemma about Cr :

Lemma 16 (Re_winding_number_tendsto_part_circlepath)

fixes z z0::complex
shows "((λr. Re (winding_number (part_circlepath z r 0 pi ) z0))

−−−→ 1/2) at_top"

that is, limr→+∞ Re(n(Cr , 0)) = 1/2, following which and by induction we have

Lemma 17 (Re_winding_number_poly_part_circlepath)

fixes z::complex and p::"complex poly"
defines "C p ≡ (λr::real. poly p o part_circlepath z r 0 pi)"
assumes "degree p>0"
shows "((λr. Re (winding_number (C p r) 0)) −−−→ degree p/2) at_top"

which is equivalent to

lim
r→+∞Re(n(Cp(r), 0)) = deg(p)

2
, (41)

provided deg(p) > 0.
Putting Eqs. (40) and (41) together yields the core lemma about proots_upper in this

section:
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Lemma 18 (proots_upper_cindex_eq)

fixes p::"complex poly"
assumes "lead_coeff p=1" and "∀x∈{x. poly p x=0}. Im x �=0"
shows "proots_upper p =

(degree p - cindex_poly_ubd (map_poly Im p) (map_poly Re p))/2"

where cindex_poly_ubd (map_poly Im p) (map_poly Re p) is mathematically inter-
preted as Ind+∞−∞(λt . Im(p(t))/Re(p(t))), which is derived from limr→∞ Indp(L p(r), 0) in
Eq. (40) since

lim
r→+∞ Indp(L p(r), 0) = lim

r→+∞ Indp(L p(r), 0)

= lim
r→+∞ Ind10

(
λt .

Im(L p(r , t))

Re(L p(r , t))

)

= lim
r→+∞ Indr−r

(
λt .

Im(p(t))

Re(p(t))

)

= Ind+∞−∞
(

λt .
Im(p(t))

Re(p(t))

)
.

Finally, following Lemma 18, the executability of the function proots_upper is estab-
lished:

Lemma 19 (proots_upper_code1[code])

"proots_upper p =
(if p �= 0 then

(let pm= smult (inverse (lead_coeff p)) p;
p I= map_poly Im pm;
pR= map_poly Re pm;
g = gcd p I pR

in
if changes_R_smods g (pderiv g) = 0
then

(degree p - changes_R_smods pR p I) div 2
else

Code.abort (STR ”proots_upper fails when there is a root
on the border.”) (λ_. proots_upper p)

)
else

Code.abort (STR ”proots_upper fails when p=0.”)
(λ_. proots_upper p))"

where

– smult (inverse (lead_coeff p)) p divides the polynomial p by its leading coeffi-
cient so that the resulting polynomial pm is monic. This corresponds to the assumption
lead_coeff p=1 in Lemma 18.

– changes_R_smods g (pderiv g) = 0 checks if p has no root lying on the real axis,
which is due to the second assumption in Lemma 18.

– changes_R_smods pR p I evaluates

Ind+∞−∞
(

λt .
Im(pI (t))

Re(pR(t))

)

by following Eq. (37).

As for the general case of a half-plane, we can have a definition as follows:
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Fig. 10 Complex roots of a
polynomial (red dots) and a
vector (0, i). (Color figure online)

0

i

−1

−1 + i

definition proots_half::"complex poly ⇒ complex ⇒ complex ⇒ int" where
"proots_half p a b = proots_count p {w. Im ((w-a) / (b-a)) > 0}"

which encodes the number of roots in the left half-plane of the vector b − a. Roots of p in
this half-plane can be transformed to roots of p ◦p [:a, b-a:] in the upper half-plane of
C:

Lemma 20 (proots_half_proots_upper)

fixes a b::complex and p::"complex poly"
assumes "a�=b" and "p �=0"
shows "proots_half p a b = proots_upper (p ◦p [:a, b-a:])"

And so we can naturally evaluate proots_half through proots_upper:

Lemma 21 (proots_half_code1[code])

"proots_half p a b =
(if a�=b then
if p �=0 then

proots_upper (p ◦p [:a, b - a:])
else Code.abort (STR ”proots_half fails when p=0.”)

(λ_. proots_half p a b)
else 0)"

Example 6 We can now use the following command

value "proots_half [:1-i, 2-i, 1:] 0 i"

to decide that the polynomial

p(x) = x2 + (2 − i)x + (1 − i) = (x + 1)(x + 1 − i)

has exactly two roots within the left half-plane of the vector (0, i), as shown in Fig. 10.

Despite our naive implementation, both proofs_half and proots_rectangle are appli-
cable for small or medium examples. For most polynomials with coefficient bitsize up to 10
and degree up to 30, our complex root counting procedures terminate within minutes.
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6 Limitations and FutureWork

There are, of course, several improvements that can be made on both the evaluation tactic of
Sect. 4.2 and the root counting procedures of Sect. 5. As the tactic is intended to be applied
to winding numbers with variables, full automation with this tactic is unlikely in most cases,
but we can always aim for better automation and an enhanced interactive experience for users
(e.g., presenting unsolved goals in a more user-friendly way).

Regarding the two root-counting procedures in Sect. 5, a key limitation is that they do not
allow cases where any root is on the border. There are two possible solutions to this problem:

– To generalise the definition of winding numbers. The current formulation of winding
numbers in Isabelle/HOL follows the one in complex analysis:

n(γ, z) = 1

2π i

∮
γ

dw

w − z

which becomes undefined when the point z is on the image of the path γ . With more
general formulations ofwinding numbers, such as the algebraic version byEisermann [6],
we may be able to derive a stronger version of the argument principle that allows zeros
on the border.

– To deploy a more sophisticated strategy to count the number of times that the path winds.
Recall that the underlying idea in this paper is to reduce the evaluation ofwinding numbers
to classifications of how paths cross some line. The Cauchy index merely provides one
classification strategy, which we considered simple and elegant enough for formalisation.
In contrast, Collins andKrandick [4] propose amuchmore sophisticated strategy for such
classifications. Their strategy has, in fact, been widely implemented in modern systems,
such as Mathematica and SymPy, to count the number of complex roots.

Neither of these two solutions are straightforward to incorporate, hence we leave them for
future investigation.

Besides rectangles and half-planes, it is also possible to similarly count the number of
roots in an open disk and even a sector:

sector (z0, α, β) = {z | α < arg(z − z0) < β}
where arg(−) returns the argument of a complex number. Informal proofs of root counting
in these domains can be found in Rahman and Schmeisser [19, Chapter 11].

7 Potential Applications

Rahman and Schmeisser’s book [19, Chapter 11] and Eisermann’s paper [6] are the two main
sources that our development is built upon. Nevertheless, there are still some differences in
formulations:

– Rahman and Schmeisser formulated the Cauchy index as in Definitions 4 and 5, and
we used their formulation in our first attempt. However, after we realised the subtleties
discussed in Sect. 4.3, we abandoned this formulation and switched to Eisermann’s (i.e.,
Definition 2). As a result, the root counting procedures presented in this paper are more
general than the ones in their book, having fewer preconditions.

– Eisermann formulated a winding number n(γ, z0) in a real-algebraical sense where γ

is required to be a piecewise polynomial path (i.e., each piece from the path needs to
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be a polynomial). In comparison, n(γ, z0) in Isabelle/HOL follows the classic definition
in complex analysis, and places fewer restrictions on the shape of γ (i.e., piecewise
continuously differentiable is less restrictive than being a piecewise polynomial) but does
not permit z0 to beon the imageofγ (whileEisermann’s formulationdoes).Consequently,
Eisermann’s root counting procedure works in more restrictive domains (i.e., he only
described the rectangle case in his paper) but does not prevent roots on the border.

Another point worth mentioning is the difference between informal and formal proofs. In this
development, we generally treated their lemma statements as bald facts: we had to discover
our own proofs. For instance, when proving Proposition 1, we defined an inductive data type
for segments and derived an induction rule for it, which was nothing like the informal proof.
Such situations also happened when we justified the root counting procedure in a half-plane.
Overall, the formal proofs are about 12,000 lines.

Interestingly, the root-counting procedure in a half-plane is also related to the stability
problems in the theory of dynamical systems. For instance, let A ∈ R

n×n be a square matrix
with real coefficients and y : [0,+∞) → R

n be a function that models the system state over
time. A linear dynamical system can be described as an ordinary differential equation:

dy(t)

dt
= Ay(t) (42)

with an initial condition y(0) = y0. The system of (42) is considered stable if all roots of the
characteristic polynomial of A lie within the open left half-plane (i.e., {z | Re(z) < 0}), and
this stability test is usually referred as the Routh–Hurwitz stability criterion [1, Section 23],
[16, Chapter 9]. As has been demonstrated in Example 6, counting the number of roots in
the left half-plane is within the scope of the procedure proots_half. For this reason, we
believe that the development in this paper will be beneficial for reasoning about dynamical
systems in Isabelle/HOL.

It is worth mentioning that root counting in a rectangle is usually coupled with a classic
problem in computer algebra, namely, complex root isolation. The basic idea is to keep bisect-
ing a rectangle (vertically or horizontally) into smaller ones until a sub-rectangle contains
exactly one root or none (provided the target polynomial is square-free). Following this idea,
it is possible to build a simple and verified procedure for complex root isolation similar to
Wilf’s algorithm [20]: we start with a large rectangle and then repeatedly apply the verified
procedure to count roots during the rectangle bisection phase. However, compared to modern
complex procedures [4,21], this simplistic approach suffers from several drawbacks:

– Our root counting procedure is based on remainder sequences, which are generally con-
sidered much slower than those built upon Descartes’ rule of signs.

– Modern isolation procedures are routinely required to deliver isolation boxes whose sizes
meet some user-specified limit, hence they usually keep refining the isolation boxes even
after the roots have been successfully isolated. The bisection strategy still works in the
root refinement stage, but dedicated numerical approaches such as Newton’s iteration are
commonly implemented for efficiency reasons.

– Modern isolation procedures sometimes prefer a bit-stream model in which the coeffi-
cients of the polynomial are approximated as a bit stream. This approach is particularly
beneficial when the coefficients have extremely large bit-width or consist of algebraic
numbers.

– Modern implementations usually incorporate numerous low-level optimisations, such as
hash tables, which are hard to implement as verified procedures in a theorem prover.
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Therefore, it is unlikely that our verified root counting procedures will ever deliver high
performance. Nevertheless, they can be used to certify results from untrusted external root
isolation programs, as in the certificate-based approach to solving univariate polynomial
problems [13].

8 RelatedWork

Formalisations of the winding number (from an analytical perspective) are available in
Coq [3], HOLLight [7] and Isabelle/HOL. To the best of our knowledge, our tactic of evaluat-
ing winding numbers through Cauchy indices is novel. As both HOL Light and Isabelle/HOL
have a relatively comprehensive library of complex analysis (i.e., at least including Cauchy’s
integral theorem), our evaluation tactic could be useful when deriving analytical proofs in
these two proof assistants.

The ability to count the real roots of a polynomial only requires Sturm’s theorem, so this
capability is widely available among major proof assistants including PVS [18], Coq [15],
HOL Light [17] and Isabelle [5,10,13]. However, as far as we know, our procedures to count
complex roots are novel, as they require a formalisation of the argument principle [14], which
is only available in Isabelle at the time of writing.

9 Conclusion

In this paper, we have described a novel tactic winding_eval to evaluate winding numbers
via Cauchy indices: given a goal of the form

n(γ1 + γ2 + · · · + γn, z0) = k,

the tactic converts the target into an equality about Cauchy indices:

Indp(γ1, z0) + Indp(γ2, z0) + · · · + Indp(γn, z0) = −2k.

This can be then solved by individually evaluating Indp(γ1, z0), . . . , Indp(γn, z0). As open
variables may occur in those Cauchy indices, the evaluation of them is unlikely to be fully
automatic, but we provide lemmas (e.g., Lemma 11) to mitigate the laborious process. The
tactic winding_eval has greatly helped us with the motivating proofs shown in Sect. 2, and
we believe that it should be also beneficial in similar situations when dealing with winding
numbers in a formal framework.

We have further related Cauchy indices to the argument principle and developed novel
verified procedures to count the complex roots of a polynomial within the areas of rectangles
and half-planes. Despite the limitations of not allowing roots on the border (which we will
solve in future work), the ability to formally count complex roots is believed to lay the
foundations for conducting stability analysis (e.g., the Routh–Hurwitz stability criterion) in
the framework of the Isabelle theorem prover.
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