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Abstract. Particle sensing technology has shown great po-

tential for monitoring particulate matter (PM) with very few

temporal and spatial restrictions because of its low cost, com-

pact size, and easy operation. However, the performance of

low-cost sensors for PM monitoring in ambient conditions

has not been thoroughly evaluated. Monitoring results by

low-cost sensors are often questionable. In this study, a low-

cost fine particle monitor (Plantower PMS 5003) was colo-

cated with a reference instrument, the Synchronized Hybrid

Ambient Real-time Particulate (SHARP) monitor, at the Cal-

gary Varsity air monitoring station from December 2018 to

April 2019. The study evaluated the performance of this

low-cost PM sensor in ambient conditions and calibrated

its readings using simple linear regression (SLR), multiple

linear regression (MLR), and two more powerful machine-

learning algorithms using random search techniques for the

best model architectures. The two machine-learning algo-

rithms are XGBoost and a feedforward neural network (NN).

Field evaluation showed that the Pearson correlation (r) be-

tween the low-cost sensor and the SHARP instrument was

0.78. The Fligner and Killeen (F–K) test indicated a sta-

tistically significant difference between the variances of the

PM2.5 values by the low-cost sensor and the SHARP instru-

ment. Large overestimations by the low-cost sensor before

calibration were observed in the field and were believed to

be caused by the variation of ambient relative humidity. The

root mean square error (RMSE) was 9.93 when comparing

the low-cost sensor with the SHARP instrument. The calibra-

tion by the feedforward NN had the smallest RMSE of 3.91

in the test dataset compared to the calibrations by SLR (4.91),

MLR (4.65), and XGBoost (4.19). After calibrations, the F–

K test using the test dataset showed that the variances of the

PM2.5 values by the NN, XGBoost, and the reference method

were not statistically significantly different. From this study,

we conclude that a feedforward NN is a promising method to

address the poor performance of low-cost sensors for PM2.5

monitoring. In addition, the random search method for hy-

perparameters was demonstrated to be an efficient approach

for selecting the best model structure.

1 Introduction

Particulate matter (PM), whether it is natural or anthro-

pogenic, has pronounced effects on human health, visibil-

ity, and global climate (Charlson et al., 1992; Seinfeld and

Pandis, 1998). To minimize the harmful effects of PM pol-

lution, the Government of Canada launched the National Air

Pollution Surveillance (NAPS) program in 1969 to monitor

and regulate PM and other criteria air pollutants in populated

regions, including ozone (O3), sulfur dioxide (SO2), carbon

monoxide (CO), and nitrogen dioxide (NO2). Currently, PM

monitoring is routinely carried out at 286 designated air sam-

pling stations in 203 communities in all provinces and territo-

ries of Canada (Government of Canada, 2019). Many of the

monitoring stations use a beta attenuation monitor (BAM),

which is based on the adsorption of beta radiation, or a ta-

pered element oscillating microbalance (TEOM) instrument,
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which is a mass-based technology to measure PM concen-

trations. An instrument that combines two or more technolo-

gies, such as the Synchronized Hybrid Ambient Real-time

Particulate (SHARP) monitor, is also used in some monitor-

ing stations. The SHARP instrument combines light scatter-

ing with beta attenuation technologies to determine PM con-

centrations.

Although these instruments are believed to be accurate for

measuring PM concentration and have been widely used by

many air monitoring stations worldwide (Chow and Watson,

1998; Patashnick and Rupprecht, 1991), they have common

drawbacks: they can be challenging to operate, bulky, and

expensive. The instrument costs from CAD 8000 (Canadian

dollars) to tens of thousands of dollars (Chong and Kumar,

2003). The SHARP instrument used in this study as a refer-

ence method costs approximately CAD 40 000 (CD Nova In-

struments Ltd., 2017). Significant resources, such as special-

ized personnel and technicians, are also required for regular

system calibration and maintenance. In addition, the sparsely

spread stations may only represent PM levels in limited ar-

eas near the stations because PM concentrations vary spa-

tially and temporally depending on local emission sources

as well as meteorological conditions (Xiong et al., 2017).

Such a low-resolution PM monitoring network cannot sup-

port public exposure and health effects studies that are re-

lated to PM because these studies require high-spatial- and

temporal-resolution monitoring networks in the community

(Snyder et al., 2013). In addition, the well-characterized sci-

entific PM monitors are not portable due to their large size

and volumetric flow rate, which means they are not practical

for measuring personal PM exposure (White et al., 2012).

As a possible solution to the above problems, a large num-

ber of low-cost PM sensors could be deployed, and a high-

resolution PM monitoring network could be constructed.

Low-cost PM sensors are portable and commercially avail-

able. They are cost-effective and easy to deploy, operate, and

maintain, which offers significant advantages compared to

conventional analytical instruments. If many low-cost sen-

sors are deployed, PM concentrations can be monitored con-

tinuously and simultaneously at multiple locations for a rea-

sonable cost (Holstius et al., 2014). A dense monitoring net-

work using low-cost sensors can also assist in mapping hot

spots of air pollution, creating emission inventories of air pol-

lutants, and estimating adverse health effects due to personal

exposure to PM (Kumar et al., 2015).

However, low-cost sensors present challenges for broad

application and installation. Most sensor systems have not

been thoroughly evaluated (Williams et al., 2014), and the

data generated by these sensors are of questionable quality

(Wang et al., 2015). Currently, most low-cost sensors are

based on laser light-scattering (LLS) technology, and the ac-

curacy of LLS is mostly affected by particle composition,

size distribution, shape, temperature, and relative humidity

(Jayaratne et al., 2018; Wang et al., 2015).

Several studies have evaluated LLS sensors by compar-

ing the performance of low-cost sensors with medium- to

high-cost instruments under laboratory and ambient condi-

tions. For example, Zikova et al. (2017) used low-cost Speck

monitors to measure PM2.5 concentrations in indoor and out-

door environments, and the low-cost sensors overestimated

the concentration by 200 % for indoor and 500 % for out-

door compared to a reference instrument – the Grimm 1.109

dust monitor. Jayaratne et al. (2018) reported that PM10 con-

centrations generated by a Plantower low-cost particle sensor

(PMS 1003) were 46 % greater than a TSI 8350 DustTrak

DRX aerosol monitor under a foggy environment. Wang et

al. (2015) compared PM measurements from three low-cost

LLS sensors – Shinyei PPD42NS, Samyoung DSM501A,

and Sharp GP2Y1010AU0F – with a SidePack (TSI Inc.) us-

ing smoke from burning incense. High linearity was found

with R2 greater than 0.89, but the responses depended on

particle composition, size, and humidity. The Air Quality

Sensor Performance Evaluation Center (AQ-SPEC) of the

South Coast Air Quality Management District (SCAQMD)

also evaluated the performances of three Purple Air PA-II

sensors (model: Plantower PMS 5003) by comparing their

readings with two United States Environmental Protection

Agency (US EPA) Federal Equivalent Method (FEM) instru-

ments – BAM (MetOne) and Grimm dust monitors in lab-

oratory and field environments in southern California (Pa-

papostolou et al., 2017). Overall, the three sensors showed

moderate to good accuracy compared to the reference in-

strument for PM2.5 for a concentration range between 0 and

250 µg m−3. Lewis et al. (2016) evaluated low-cost sensors in

the field for O3, nitrogen oxide (NO), NO2, volatile organic

compounds (VOCs), PM2.5, and PM10; only the O3 sensors

showed good performance compared to the reference mea-

surements.

Several studies have developed calibration models using

multiple techniques to improve low-cost sensor performance.

For example, De Vito et al. (2008) tested feedforward neu-

ral network (NN) calibration for benzene monitoring and

reported that further calibration was needed for low con-

centrations. Bayesian optimization was also used to search

feedforward NN structures for the calibrations of CO, NO2,

and NOx low-cost sensors (De Vito et al., 2009). Zheng et

al. (2018) calibrated the Plantower low-cost particle sensor

PMS 3003 by fitting a linear least-squares regression model.

A nonlinear response was observed when ambient PM2.5 ex-

ceeded 125 µg m−3. The study concluded that a quadratic fit

was more appropriate than a linear model to capture this non-

linearity.

Zimmerman et al. (2018) explored three different calibra-

tion models, including laboratory univariate linear regres-

sion, empirical MLR, and a more modern machine-learning

algorithm, random forests (RF), to improve the Real-time Af-

fordable Multiple-Pollutant (RAMP) sensor’s performance.

They found that the sensors calibrated by RF models showed

improved accuracy and precision over time, with average rel-
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ative errors of 14 % for CO, 2 % for CO2, 29 % for NO2, and

15 % for O3. The study concluded that combing RF models

with low-cost sensors is a promising approach to address the

poor performance of low-cost air quality sensors.

Spinelle et al. (2015) reported several calibration meth-

ods for low-cost O3 and NO2 sensors. The best calibration

method for NO2 was an NN algorithm with feedforward ar-

chitecture. O3 could be calibrated by simple linear regression

(SLR). Spinelle et al. (2017) also evaluated and calibrated

NO, CO, and CO2 sensors, and the calibrations by feedfor-

ward NN architectures showed the best results. Similarly,

Cordero et al. (2018) performed a two-step calibration for

an AQmesh NO2 sensor using supervised machine-learning

regression algorithms, including NNs, RFs, and support vec-

tor machines (SVMs). The first step produced an explanatory

variable using multivariate linear regression. In the second

step, the explanatory variable was fed into machine-learning

algorithms, including RF, SVM, and NN. After the calibra-

tion, the AQmesh NO2 sensor met the standards of accuracy

for high concentrations of NO2 in the European Union’s Di-

rective 2008/50/EC on air quality. The results highlighted the

need to develop an advanced calibration model, especially

for each sensor, as the responses of individual sensors are

unique.

Williams et al. (2014) evaluated eight low-cost PM sen-

sors; the study showed frequent disagreement between the

low-cost PM sensors and FEMs. In addition, the study con-

cluded that the performances of the low-cost sensors were

significantly impacted by temperature and relative humid-

ity (RH). Recurrent NN architectures were also tested for

calibrating some gas sensors (De Vito et al., 2018; Espos-

ito et al., 2016). The results showed that the dynamic ap-

proaches performed better than traditional static calibration

approaches. Calibrations of PM2.5 sensors were also reported

in recent studies. Lin et al. (2018) performed two-step cali-

brations for PM2.5 sensors using 236 hourly data points col-

lected on buses and road-cleaning vehicles. The first step

was to construct a linear model, and the second step used

RF machine learning for further calibration. The RMSE after

the calibrations was 14.76 µg m−3 compared to a reference

method. The reference method used in this study was a Dy-

los DCI1700 device, which is not a US EPA federal refer-

ence method (FRM) or FEM. Loh and Choi (2019) trained

and tested the SVM, K-nearest neighbor, RF, and XGBoost

machine-learning algorithms to calibrate PM2.5 sensors us-

ing 319 hourly data points. XGBoost archived the best per-

formance with an RMSE of 5.0 µg m−3. However, the low-

cost sensors in this study were not colocated with the ref-

erence method, and the machine-learning models were not

tested using unseen data (test data) for predictive power and

overfitting.

Although there have been studies on calibrating low-cost

sensors, most of them focused on gas sensors or used short-

term data to calibrate PM sensors. To our best knowledge,

no one has reported studies on PM sensor calibration us-

ing random search techniques for the best machine-learning

model configuration under ambient conditions during dif-

ferent seasons. In this study, a low-cost fine particle mon-

itor (Plantower PMS 5003) was colocated with a SHARP

monitor model 5030 at Calgary Varsity air monitoring sta-

tion in an outdoor environment from 7 December 2018 to

26 April 2019. The SHARP instrument is the reference

method in this study and is a US EPA FEM (US EPA, 2016).

The objectives of this study are (1) to evaluate the perfor-

mance of the low-cost PM sensor in a range of outdoor envi-

ronmental conditions by comparing its PM2.5 readings with

those obtained from the SHARP instrument and (2) to assess

four calibration methods: (a) an SLR or univariate linear re-

gression based on the low-cost sensor values; (b) a multiple

linear regression (MLR) using the PM2.5, RH, and temper-

ature measured by the low-cost sensor as predictors; (c) a

decision-tree-based ensemble algorithm, called XGBoost or

Extreme Gradient Boosting; and (d) a feedforward NN archi-

tecture with a back-propagation algorithm.

XGBoost and NN are the most popular algorithms used on

Kaggle – a platform for data science and machine-learning

competition. In 2015, 17 winners in 29 competitions on Kag-

gle used XGBoost, and 11 winners used deep NN algorithms

(Chen and Guestrin, 2016).

This study is unique in the following ways.

1. To the best of our knowledge, this is the first compre-

hensive study using long-term data to calibrate low-cost

particle sensors in the field. Most previous studies fo-

cused on calibrating gas sensors (Maag et al., 2018).

There are two studies on PM sensor calibrations using

machine learning, but they used a short-term dataset that

did not include seasonal changes in ambient conditions

(Lin et al., 2018; Loh and Choi, 2019). The shortcom-

ings of the two studies were discussed above.

2. Although several studies have researched the calibration

of gas sensors using NN, this study explores multiple

hyperparameters to search for the best NN architecture.

Previous research configured one to three hyperparam-

eters compared to six in this study (De Vito et al., 2008,

2009, 2018; Esposito et al., 2016; Spinelle et al., 2015,

2017). In addition, this study tested the rectified linear

unit (ReLU) as the activation function in the feedfor-

ward NN. Compared to the sigmoid and tanh activation

functions used in previous studies for NN calibration

models, the ReLU function can accelerate the conver-

gence of stochastic gradient descent to a factor of 6

(Krizhevsky et al., 2017).

3. Previous NN and tree-based calibration models used a

manual search or grid search for hyperparameter tuning.

This study introduced a random search method for the

best calibration models. A random search is more effi-

cient than a traditional manual and grid search (Bergstra

and Bengio, 2012) and evaluates more of the search
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Figure 1. The low-cost sensor used in the study and the ambient

inlet of the reference method – SHARP model 5030.

space, especially when the search space is more than

three dimensions (Timbers, 2017). Zheng (2015) ex-

plained that a random search with 60 samples will find

a close-to-optimal combination with 95 % probability.

2 Method

2.1 Data preparation

One low-cost sensor unit was provided by the Calgary-based

company SensorUp and deployed at the Varsity station in the

Calgary Region Airshed Zone (CRAZ) in Calgary, Alberta,

Canada. The unit contains one sensor, one electrical board,

and one housing as a shelter. The sensor in the unit is the

Plantower PMS 5003, and it measured outdoor fine particle

(PM2.5) concentrations (µg m−3), air temperature (◦C), and

RH (%) every 6 s. The minimum detectable particle diameter

by the sensor is 0.3 µm. The instrument costs approximately

CAD 20 and is referred to as the low-cost sensor in this paper.

The low-cost sensor is based on LLS technology; PM2.5

mass concentration is estimated from the detected amount of

scattered light. The LLS sensor is installed on the electrical

board and then placed in the shelter for outdoor monitoring.

The unit has a wireless link to a router in the Varsity station.

A picture of the low-cost sensor and the monitoring environ-

ment in which the low-cost sensor unit and the SHARP in-

strument were colocated on the roof of the Varsity station is

provided in Fig. 1. The location of the Varsity station is pro-

vided in Fig. 2. The router uses cellular service to transfer the

data from the low-cost sensor to SensorUp’s cloud data stor-

age system. The measured outdoor PM2.5, temperature, and

RH data at a 6 s interval from 00:00 on 7 December 2018

to 23:00 on 26 April 2019 were downloaded from the cloud

data storage system for evaluation and calibration.

The reference instrument used to evaluate the low-cost

sensor is a Thermal Fisher Scientific SHARP model 5030.

Table 1. Ambient conditions measured by SHARP.

Meteorological parameters SHARP value

Temperature −31.4–19◦C

RH 10 %–99 %

Wind speed 4.3–37.1 km h−1 (at 10 m of altitude)

The SHARP instrument was installed at the Calgary Var-

sity station by CRAZ. The SHARP instrument continuously

uses two compatible technologies, light scattering and beta

attenuation, to measure PM2.5 every 6 min with an accu-

racy of ±5 %. The SHARP instrument is operated and main-

tained by CRAZ in accordance with the provincial gov-

ernment’s guidelines outlined in Alberta’s air monitoring

directive. The instrument was calibrated monthly. Hourly

PM2.5 data are published on the Alberta Air Data Ware-

house website (http://www.airdata.alberta.ca/, last access:

3 June 2019). The Calgary Varsity station also continuously

monitors CO, methane, oxides of nitrogen, non-methane hy-

drocarbons, outdoor air temperature, O3, RH, total hydro-

carbon, wind direction, and wind speed. Detailed informa-

tion on the analytical systems for the CRAZ Varsity station

can be found on their website (https://craz.ca/monitoring/

info-calgary-nw/, last access: 3 June 2019).

The meteorological parameters in this study measured by

the SHARP instrument are presented in Table 1.

The following steps were taken to process the raw data

from 00:00 on 7 December 2018 to 23:00 on 26 April 2019.

1. The 6 s interval data recorded by the low-cost sensor,

including PM2.5, temperature, and RH, were averaged

into hourly data to pair with SHARP data because only

hourly SHARP data are publicly available.

2. The hourly sensor data and hourly SHARP data were

combined into one structured data table. PM2.5, temper-

ature, and RH by the low-cost sensor as well as PM2.5

by SHARP columns in the data table were selected. The

data table then contains 3384 rows and four columns.

Each row represents one hourly data point. The columns

include the data measured by the low-cost sensor and

the SHARP instrument.

3. Rows in the data table with missing values were re-

moved – 299 missing values for PM2.5 from the low-

cost sensor and 36 missing values for PM2.5 from the

SHARP instrument. The reason for missing data from

the SHARP instrument is the calibration. However, the

reason for missing data from the low-cost sensor is un-

known.

4. The data used for NN were transformed by z standard-

ization with a mean of zero and a standard deviation

of 1.
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Figure 2. Location of the Varsity air monitoring station. The map was created using ArcGIS®. The administrative boundaries in Canada and

imagery data were provided by Natural Resources Canada (2020) and DigitalGlobe (2019).

Figure 3. Example of a neural network structure.

www.atmos-meas-tech.net/13/1693/2020/ Atmos. Meas. Tech., 13, 1693–1707, 2020
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Figure 4. Comparison of the hourly PM2.5 values between the low-cost PM sensor and SHARP. Based on 3050 hourly paired data points.

The low-cost sensor has 250 hourly data points greater than 30 µg m−3. SHARP has 174 hourly data points greater than 20 µg m−3. Bars

indicate the 25th and 75th percentile values, whiskers extend to values within 1.5 times the interquartile range (IQR), and dots represent

values outside the IQR. The box plot explanation on the right is adjusted from DeCicco (2016).

After the above steps, the processed data table with 3050

rows and four columns was used for evaluation and calibra-

tion. The data file is provided in the Supplement to this pa-

per. Each row represents one example or sample for training

or testing by the calibration methods.

2.2 Low-cost sensor evaluation

The Pearson correlation coefficient was used to compare the

correlation for PM2.5 values between the low-cost sensor and

the SHARP. SHARP was the reference method. The PM2.5

data by the low-cost sensor and SHARP were also compared

using root mean square error (RMSE), mean square error

(MSE), and mean absolute error (MAE).

The Fligner and Killeen test (F–K test) was used to eval-

uate the equality (homogeneity) of variances for PM2.5 val-

ues between the low-cost sensor and the SHARP instrument

(Fligner and Killeen, 1976). The F–K test is a superior op-

tion in terms of robustness and power when data are non-

normally distributed, the population means are unknown, or

outliers cannot be removed (Conover et al., 1981; de Smith,

2018). The null hypothesis of the F–K test is that all popu-

lations’ variances are equal; the alternative hypothesis is that

the variances are statistically significantly different.

2.3 Calibration

Four calibration methods were evaluated: SLR, MLR, XG-

Boost, and NN. Some predictions from the SLR, MLR, and

XGBoost have negative values because they extrapolate ob-

served values and regression is unbounded. When the pre-

dicted PM2.5 values generated by these calibration methods

were negative, the negative values were replaced with the

sensor data.

MLR, XGBoost, and feedforward NN use the PM2.5, tem-

perature, and RH data measured by the low-cost sensor as in-

puts. The PM2.5 measured by the SHARP instrument is used

as the target to supervise the machine-learning process. The

processed dataset, with 3050 rows and four columns, was

randomly shuffled and then divided into a training set, which

was composed of the data used to build models and minimize

the loss function, and a test set, which was composed of the

data that the model had never been run with before testing (Si

et al., 2019). The test dataset was only used once and gave an

unbiased evaluation of the final model’s performance. The

evaluation was to test the ability of the machine-learning

model to provide sensible predictions with new inputs (Le-

Cun et al., 2015). The training dataset had 2440 examples

(samples). The test dataset had 610 examples (samples).

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/
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Figure 5. PM2.5, relative humidity, and temperature data on the basis of a 24 h rolling average.

Figure 6. SHARP versus low-cost sensor PM2.5 concentration (µg m−3). The yellow dashed line is a 1 : 1 line. The solid blue line is a

regression line. Panel (a) is in full scale, and panel (b) is a zoom-in plot of panel (a). The green circle represents data density.

www.atmos-meas-tech.net/13/1693/2020/ Atmos. Meas. Tech., 13, 1693–1707, 2020



1700 M. Si et al.: Evaluation and calibration of a low-cost particle sensor in ambient conditions

Figure 7. PM2.5 versus relative humidity.

Figure 8. Data density comparison in the test dataset. Based on 610 test examples. NN: neural network, MLR: multiple linear regression,

SLR: simple linear regression. PM2.5 data greater than 30 µg m−3 are not shown in the figure. See the box plot explanation in Fig. 4.

2.3.1 Simple linear regression and multiple linear

regression

The calibration by an SLR used Eq. (1).

ŷ = β0 + β1 × PM2.5 (1)

β0 and β1 are the model coefficients and were calculated us-

ing the training dataset; ŷ is a model-predicted (calibrated)

value. PM2.5 is the value measured by the low-cost sensor.

The MLR used PM2.5, RH, and temperature measured by

the low-cost sensor as predictors because the low-cost sensor

only measured these parameters. The model is expressed as

Eq. (2).

ŷ = β0 + β1 × PM2.5 + β2 × T + β3 × RH (2)

The model coefficients, β0 to β3, were calculated using the

training dataset with SHARP-provided readings as ŷ. The

outputs of the models generated by the SLR and MLR were

evaluated by comparing to the SHARP readings in the test

dataset.

2.3.2 XGBoost

XGBoost is a scalable decision-tree-based ensemble algo-

rithm, and it uses a gradient boosting framework (Chen and

Guestrin, 2016). The XGBoost was implemented using the

XGBoost (version 0.90) and scikit-learn (version 0.21.2)

packages in Python (version 3.7.3). A random search method

(Bergstra and Bengio, 2012) was used to tune the hyperpa-

rameters in the XGBoost algorithm, and the hyperparameters

tuned include the following:

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/
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Figure 9. Data distribution comparison. Based on 610 test examples. NN: neural network, MLR: multiple linear regression, SLR: simple

linear regression.

Figure 10. Performances of different calibration methods. Based on 610 test examples. NN: neural network, MLR: multiple linear regression,

SLR: simple linear regression.

www.atmos-meas-tech.net/13/1693/2020/ Atmos. Meas. Tech., 13, 1693–1707, 2020
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Table 2. Calibration results by SLR and MLR using the test dataset.

Criteria Low-cost sensor SLR MLR

RMSE 9.93 4.91 4.65

MSE 98.62 24.09 21.61

MAE 5.63 3.21 3.09

Pearson r 0.74 0.74 0.77

p value in 7.062× 5.81× 9.90×

the F–K test 10−09 10−13 10−10

β0 – 2.49 8.47

β1 0.41 0.46

β2 −0.12

β3 −0.0055

Note: the test dataset contains 660 examples.

– the number of trees to fit (n_estimator);

– the maximum depth of a tree (max_depth);

– the step size shrinkage used in an update (learn-

ing_rate);

– the subsample ratio of columns when constructing each

tree (colsample_bytree);

– the minimum loss reduction required to make a further

partition on a leaf node of the tree (gamma);

– L2 regularization on weights (reg_lambda); and

– the minimum sum of instance weight needed in a child

(min_child_ weight).

A detailed explanation of each hyperparameter is provided in

the XGBoost documentation (XGBoost developers, 2019).

The 10-fold cross-validation was used to select the best

model with minimum MSE from the random search. The best

model was then evaluated against the SHARP PM2.5 data us-

ing the test dataset.

2.3.3 Neural network

A fully connected feedforward NN architecture was used in

the study. In a fully connected NN, each unit (node) in a layer

is connected to each unit in the following layer. Data from the

input layer are passed through the network until the unit(s)

in the output layer is (are) reached. An example of a fully

connected feedforward NN is presented in Fig. 3. A back-

propagation algorithm is used to minimize the difference be-

tween the SHARP-measured values and the predicted values

(Rumelhart et al., 1986).

The NN was implemented using the Keras (version 2.2.4)

and TensorFlow (version 1.14.0) libraries in Python (version

3.7.3). Keras and TensorFlow were the most referenced deep-

learning frameworks in scientific research in 2017 (RStudio,

2018). Keras is the front end of TensorFlow.

The learning rate, L2 regularization rate, number of hidden

layers, number of units in the hidden layers, and optimiza-

tion methods were tuned using the random search method

provided in the scikit-learn machine-learning library. A 10-

fold cross-validation was used to evaluate the models. The

model with the minimum MSE was considered to be the best-

fit model and then used for model testing.

3 Results and discussion

3.1 Sensor evaluation

3.1.1 Hourly data

The RMSE, MSE, and MAE between the low-cost sensor

and SHARP for the hourly PM2.5 data were 10.58, 111.83,

and 5.74. The Pearson correlation coefficient r value was

0.78. The PM2.5 concentrations by the sensor ranged from

0 to 178 µg m−3 with a standard deviation of 14.90 µg m−3

and a mean of 9.855 µg m−3. The PM2.5 concentrations by

SHARP ranged from 0 to 80 µg m−3 with a standard devia-

tion of 7.80 and a mean of 6.55 µg m−3. Both SHARP and the

low-cost sensor dataset had a median of 4.00 µg m−3 based

on hourly data (Fig. 4). The violin plot in Fig. 4 describes the

distribution of the PM2.5 values measured by the low-cost

sensor and SHARP using a density curve. The width of each

curve represents the frequency of PM2.5 values at each con-

centration level. The p value from the F–K test was less than

2.2 × 10−16, indicating that the variance of the PM2.5 val-

ues measured by the low-cost sensor was statistically signif-

icantly different from the variance of the PM2.5 values mea-

sured by the SHARP instrument.

3.1.2 24 h rolling average data

Over 24 h, the median value for SHARP was 5.38 µg m−3,

and for the low-cost sensor it was 5.01 µg m−3. Over

5 months (December 2018 to April 2019), the low-cost sen-

sor tended to generate higher PM2.5 values compared to the

SHARP monitoring data (Fig. 5)

When PM2.5 concentrations were greater than 10 µg m−3,

the low-cost sensor consistently produced values that were

higher than the reference method (Fig. 6). When the con-

centrations were less than 10 µg m−3, the performance of the

low-cost sensor was close to the reference method, producing

slightly smaller values (Fig. 6)

3.2 Calibration by simple linear regression and

multiple linear regression

The RMSE was 4.91 calibrated by SLR and 4.65 by MLR

(Table 2). The r value was 0.74 by SLR and 0.77 by MLR.
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Figure 11. Comparison between the NN predictions and SHARP. Based on 610 test examples. Panel (a) is in full scale. Panel (b) is a zoom-in

plot of panel (a). The solid blue line is a regression line. The yellow dashed line is a 1 : 1 line. The green circle represents data density. The

grey area along the regression line represents 1 standard deviation.

Figure 12. Comparison between the XGBoost predictions and SHARP. Based on 610 test examples. NN: neural network. Panel (a) is in full

scale. Panel (b) is a zoom-in plot of panel (a). The solid blue line is a regression line. The yellow dashed line is a 1 : 1 line. The green circle

represents data density. The grey area along the regression line represents 1 standard deviation.

The p values in the F–K test by the SLR and MLR were less

than 0.05, which suggested that the variances of the PM2.5

values were statistically significantly different.

3.3 Calibration by XGBoost

The hyperparameters selected by the random search for the

best model using XGBoost are presented in Table 3.

In the training dataset, the RMSE was 3.03, and the MAE

was 1.93 by the best XGBoost model. The RMSE in the test

dataset was reduced by 57.8 % using the XGBoost from 9.93

by the sensor to 4.19 (Table 4). The p value in the F–K test

using the test dataset was 0.7256, which showed no evidence

that the PM2.5 values varied with statistical significance be-

tween the XGBoost-predicted values and SHARP-measured

values.

3.4 Calibration by neural network

The hyperparameters for the best NN model are presented in

Table 5.
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Table 3. Hyperparameters for the best XGBoost model.

XGBoost hyperparameters Values

Number of trees to fit (n_estimator) 37

Maximum depth of a tree (max_depth) 9

Step size shrinkage used in an update (learning_rate) 0.33

Subsample ratio of columns when constructing each tree (colsample_bytree) 0.83

Minimum loss reduction required to make a further partition on a leaf node of the tree (gamma) 6.36

L2 regularization on weights (reg_lambda) 33.08

Minimum sum of instance weight needed in a child (min_child_weight) 25.53

Table 4. Table 4: calibration results by XGBoost using the test

dataset.

Criteria Low-cost sensor XGBoost

RMSE 9.93 4.19

MSE 98.62 17.61

MAE 5.63 2.63

Pearson r 0.74 0.82

p value in the F–K test 7.062 × 10−09 0.7256

Note: the test dataset contains 610 examples.

Table 5. Hyperparameters for the best neural network model.

NN hyperparameters Values

Learning_rate 0.001

L2 regularization 0.01

Numbers of hidden layer(s) 5

Numbers of units in the hidden layer(s) 32-32-32-32-32

Optimization method Nadam

Epochs 100

In the training dataset, the RMSE was 3.22, and the MAE

was 2.17 by the best NN-based model. The RMSE was re-

duced by 60 % using the NN from 9.93 to 3.91 in the test

dataset (Table 6). The p value in the F–K test was 0.43, which

suggested that the variances in the PM2.5 values were not

statistically significantly different between the NN-predicted

values and SHARP-measured values.

3.5 Discussion

3.5.1 Relative humidity impact

RH has significant effects on the low-cost sensor’s responses.

The RH trend matched the low-cost sensor’s PM2.5 trend

closely. The spikes in the low-cost sensor’s PM2.5 trend cor-

responded with increases in RH values, and the low-cost sen-

sor tended to produce inaccurately high PM2.5 values when

RH suddenly increased (Fig. 5). However, the relationship

between PM2.5 and RH was not linear (Fig. 7)

Table 6. Calibration results by the neural network using the test

dataset.

Criteria Low-cost sensor Neural network

RMSE 9.93 3.91

MSE 98.62 15.26

MAE 5.63 2.38

Pearson r 0.74 0.85

p value in the F–K test 7.062 × 10−09 0.43

Note: the test dataset includes 610 examples.

Table 7. Descriptive statistics by season.

Season Sample size (n) Mean1 Standard deviation

Winter 78 5.13 6.95

Spring 57 4.76 6.45

Note: (1) the mean is calculated by
∑n

i=1(| (sensordaily − SHARPdaily)|)/n.

3.5.2 Seasonal impact

We assessed the seasonal impact on the low-cost sensor

by comparing the means of absolute differences between

the daily average of sensor values and the daily average of

SHARP values in winter (December 2018 to February 2019)

and spring (March 2019 to April 2019). A descriptive statis-

tic is presented in Table 7.

We used a two-sample t test to assess whether the means of

absolute differences for winter and spring were equal. The p

value of the t test was 0.754. Because P = 0.754>α = 0.05,

we retained the null hypothesis. There was not sufficient evi-

dence at the α = 0.05 level to conclude that the means of ab-

solute differences between the low-cost sensor and SHARP

values were significantly different for winter and spring.

3.5.3 Calibration assessment

Descriptive statistics of the PM2.5 concentrations in the test

dataset for SHARP, the low-cost sensor, XGBoost, NN, SLR,

and MLR are presented in Table 8. The arithmetic mean of

the PM2.5 concentrations measured by the low-cost sensor
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Table 8. Descriptive statistics of PM2.5 concentrations using the test dataset.

PM2.5 concentration (µg m−3) SHARP Low-cost sensor XGBoost NN SLR MLR

Minimum 0.00 0.00 0.00 0.19 2.49 0

First quartile 2.00 0.083 2.09 1.78 2.83 3.27

Median 4.00 4.00 4.98 4.16 4.13 4.79

Mean 6.44 9.44 6.40 6.09 6.37 6.42

Third quartile 8.00 11.94 8.61 8.20 7.39 7.18

Maximum 49.00 103.33 39.94 47.19 44.97 48.56

SD 7.32 13.53 6.03 6.23 5.57 5.67

was 9.44 µg m−3. In contrast, the means of the PM2.5 concen-

trations were 6.44 µg m−3 by SHARP, 6.40 µg m−3 by XG-

Boost, and 6.09 µg m−3 by NN.

NN and XGBoost produced data distributions that were

similar to SHARP (Fig. 8). SLR had the worst performance.

Fig. 9 shows that SLR could not predict low concentrations.

The predictions made by NN and XGBoost ranged from 0.19

to 47.19 µg m−3 and from 0.00 to 39.94 µg m−3.

In the test dataset, the NN produced the lowest MAE of

2.38 (Fig. 10). The MAEs were 2.63 by XGBoost, 3.09 by

MLR, and 3.21 by SLR when compared with the PM2.5 data

measured by the SHARP instrument. The NN also had the

lowest RMSE score in the test dataset. The RMSEs were

3.91 for the NN, 4.19 for XGBoost, and 9.93 for the low-

cost sensor (Fig. 10). The Pearson r value by the NN was

0.85 compared to 0.74 by the low-cost sensor.

The XGBoost and NN machine-learning algorithms have

a better performance compared to traditional SLR and MLR

calibration methods. NN calibration reduced the RMSE by

60 %. Both NN and XGBoost demonstrated the ability to cor-

rect the bias for high concentrations made by the low-cost

sensor (Figs. 11 and 12). Most of the values that were greater

than 10 µg m−3 in the NN model fall closer to the yellow

1 : 1 line (Fig. 11). NN had slightly better performance for

low concentrations compared to XGBoost.

4 Conclusions

In this study, we evaluated one low-cost sensor against a ref-

erence instrument – SHARP – using 3050 hourly data points

from 00:00 on 7 December 2018 to 23:00 on 26 April 2019.

The p value from the F–K test suggested that the variances

in the PM2.5 values were statistically significantly different

between the low-cost sensor and the SHARP instrument.

Based on the 24 h rolling average, the low-cost sensor in this

study tended to report higher PM2.5 values compared to the

SHARP instrument. The low-cost sensor had a strong bias

when PM2.5 concentrations were greater than 10 µg m−3. The

study also showed that the sensor’s bias responses are likely

caused by the sudden changes in RH.

Four calibration methods were tested and compared: SLR,

MLR, NN, and XGBoost. The p values from the F–K tests

for the XGBoost and NN were greater than 0.05, which indi-

cated that, after calibration by the XGBoost and the NN, the

variances of the PM2.5 values were not statistically signifi-

cantly different from the variance of the PM2.5 values mea-

sured by the SHARP instrument. In contrast, the p values

from the F–K tests for the SLR and MLR were still less than

0.05. The NN generated the lowest RMSE score in the test

dataset with 610 samples. The RMSE by NN was 3.91, the

lowest of the four methods. RMSEs were 4.91 by SLR, 4.65

by MLR, and 4.19 by XGBoost.

However, a wide installation of low-cost sensors may still

face challenges, including the following.

– Durability of the low-cost sensor. The low-cost sensor

used in the study was deployed in the ambient envi-

ronment. We installed four sensors between 7 Decem-

ber 2018 and 20 June 2019. Only one sensor lasted ap-

proximately 5 months; the data from this sensor were

used in this study. The other three sensors only lasted

2 weeks to 1 month and collected limited data. These

three sensors did not collect enough data for machine

learning and were therefore not used in this study.

– Missing data. In this study, the low-cost sensor dataset

has 299 missing values for PM2.5 concentrations. The

reason for the missing data is unknown.

– Transferability of machine-learning models. The mod-

els developed by the two more powerful machine-

learning algorithms that were used to calibrate the low-

cost sensor data tend to be sensor-specific because of the

nature of machine learning. Further research is needed

to test the transferability of the models for broader use.
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