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Abstract

Background: Alternatively spliced transcript isoforms are commonly observed in higher eukaryotes. The expression

levels of these isoforms are key for understanding normal functions in healthy tissues and the progression of disease

states. However, accurate quantification of expression at the transcript level is limited with current RNA-seq technologies

because of, for example, limited read length and the cost of deep sequencing.

Results: A large number of tools have been developed to tackle this problem, and we performed a comprehensive

evaluation of these tools using both experimental and simulated RNA-seq datasets. We found that recently developed

alignment-free tools are both fast and accurate. The accuracy of all methods was mainly influenced by the complexity

of gene structures and caution must be taken when interpreting quantification results for short transcripts. Using TP53

gene simulation, we discovered that both sequencing depth and the relative abundance of different isoforms affect

quantification accuracy

Conclusions: Our comprehensive evaluation helps data analysts to make informed choice when selecting

computational tools for isoform quantification.
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Background

Recent large genome-scale studies concluded that almost

all human multi-exon genes could be spliced into mul-

tiple transcript isoforms [1]. There are 58,037 annotated

human genes and 198,093 isoforms in Gencode v25 [2].

On average, there are 3.4 annotated transcripts per hu-

man gene and if only protein-coding genes are consid-

ered, the ratio increases to 7:1. However, the number of

annotated transcripts does not fully represent the com-

plexity of all alternative splicing events in cells. The

available databases only annotate transcripts that are

commonly observed. Novel transcripts are often discov-

ered by RNA-seq, even in well-annotated organisms like

human and mouse.

Isoform switching events are observed in various cellular

processes, including tissue differentiation and transition

from healthy to disease states [3–8]. Isoforms from the

same gene can be involved in distinct processes or even

play opposite roles. The p53 tumour suppressor gene also

known as Tumour Protein P53 (TP53) is well studied and

has a central role in the regulation of DNA-damaged cells.

TP53 is frequently mutated in most human cancer types

[9, 10]. However, not all TP53 isoforms have the same role

in tumour suppression. For instance, the roles of Δ133p53

and full-length p53β isoforms are opposite to each other.

The Δ133p53 isoform inhibits apoptosis of tumour cells in-

duced by the full-length p53β isoform [11, 12]. In such

cases, it is essential to obtain accurate quantification of ex-

pression at the transcript level to understand the relative

contribution of each isoform to a physiological state.

Our previous study [13] showed that a transcript-based

approach led to a significant improvement in the accuracy

of gene expression quantification over traditional union-

exon based methods such as HTseq [14] and featureCounts

[15]. Thus, transcript level quantification is recommended

for all RNA-seq data analysis. Moreover, isoform quantifica-

tion not only detects isoform-switching events that are

masked by gene level analysis, but also improves gene level
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quantification accuracy by aggregating the transcript level

quantification results [16, 17].

In recent years, RNA-seq has emerged as a powerful

transcriptome profiling technology that allows in-depth

analysis of alternative splicing [18]. In a typical RNA-seq

assay, extracted RNAs are reverse transcribed and frag-

mented into cDNA libraries, which are sequenced by high

throughput sequencers. Transcript isoforms coming from

the same gene are highly similar in sequence and share a

large percentage of overlapping regions. It is, therefore, a

challenging task to identify the true origin of the short se-

quencing reads, given that reads from overlapping regions

can come from any of the transcript isoforms.

A number of packages have been developed to quantify

expression at the transcript level [19]. RSEM [20] imple-

ments iterations of EM (Expectation-Maximization) algo-

rithms to assign reads to the isoforms from which they

originate. eXpress [21] is a more recent tool that utilizes

an online EM algorithm to improve the convergence

speed of standard EM methods. TIGAR2 [22] utilizes

Bayesian inference and aims to provide better accuracy for

longer reads. Cufflinks [3] is a popular tool for novel tran-

script discovery and quantification. It attempts to explain

the observed reads with a minimum number of isoforms.

The strategy is similar to one iteration of the EM algo-

rithm used in RSEM [20].

Most Recently, ultra-fast alignment-free methods, such

as Sailfish [23], Salmon [24] and Kallisto [25], have been

developed by exploiting the idea that precise alignments

are not required to assign reads to their origins. Kallisto

introduced a de bruijn graph to achieve efficient “pseudo-

alignment” by checking the compatibility between short

reads with transcripts. Sailfish was initially implemented

using a k-mer approach, but was later improved to incorp-

orate the same mapper from Salmon for “quasi-mapping”.

Salmon implemented a two-phase inference procedure in-

cluding both online and offline iterations of EM. Salmon

is also a flexible tool that has two modes of quantification.

It can either process sequence reads directly using its own

mapper, i.e. RapMap [26], or it can take transcriptome-

mapped BAM files as inputs. To distinguish these two

running modes, the two modes are evaluated separately,

with the former termed as “Salmon” and the latter termed

as “Salmon_aln” in the following discussion.

In this paper, we performed a comprehensive evalu-

ation of these tools using both experimental and simu-

lated datasets, and investigated the impact of gene

structural features on the accuracy of isoform quantifica-

tion. Our evaluation focused on isoform quantification

methods that aim to accurately quantify known tran-

scripts. Thus, those methods that focus on novel tran-

script discovery, such as Stringtie [27], SLIDE [28] and

iReckon [29], were excluded from this evaluation. After

careful literature review, a total of seven tools were

selected: Cufflinks, RSEM, TIGAR2, eXpress, Sailfish,

Kallisto and Salmon. We used RSEM simulated datasets

to measure the accuracy of methods, technical replicates

of experimental data to test the robustness, and simu-

lated transcripts from the TP53 gene to illustrate the

challenges of isoform quantification.

Methods

Datasets

The RNA-seq dataset for two technical replicates from

Universal Human Reference RNA (UHRR-C1 and UHRR–

C2) and two technical replicates from Human Brain Refer-

ence RNA (HBRR-C4 and HBRR-C6) were downloaded

from Illumina’s BaseSpace. The four samples were pre-

pared by a strand-specific protocol and deeply sequenced

on a HiSeq 2500 platform, with about 80 million paired-

end reads per sample. The RSEM package was used to

simulate 50 million reads from the HBRR-C4 sample in

the experimental dataset. The fraction of reads coming

from “noise” (theta0) was set to 0.007 in the simulation.

Workflow of quantification

The transcript expression levels in both simulated

and experimental datasets were quantified by the

workflow depicted in Fig. 1. For each algorithm, de-

tailed command line parameters are provided in the

Additional file 1: Supplementary Methods. The initial

input files for the workflow were sequence reads in

FASTQ/FASTA format and the final output files were the

summarized counts or TPM (Transcripts Per Million) ta-

bles. Some methods, including RSEM, TIGAR2, and eX-

press, require transcriptome-mapping BAM files as input,

Fig. 1 Workflow for transcript isoform quantification. Sequencing

reads were either mapped by STAR aligner or directly fed into

alignment-free methods, Salmon, Sailfish or Kallisto. The transcriptome

BAM files were quantified by Salmon_aln, eXpress, RSEM or TIGAR2. The

genome BAM files were quantified by Cuffquant and then Cuffnorm

from the Cufflinks package. The results are summarized into counts and

TPM tables for comparison
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while Cufflinks requires genome-mapping BAM files as in-

put. To minimize the influence of mapping on quantifica-

tion, we chose STAR [30] as the mapper, which has the

capability to output both transcriptome-mapping and

genome-mapping BAM files simultaneously. As we have

demonstrated previously, the choice of a gene model

has a dramatic impact on gene and isoform quantifi-

cation [31, 32]. Built upon Ensembl [33] with im-

proved coverage and accuracy, Gencode annotation

has been used by the ENCODE consortium as well as

many other projects (e.g., 1000 Genomes) as the reference

gene set. We therefore chose the latest Gencode annota-

tion (v25 at the time of writing) for this evaluation.

Evaluation protocol for RSEM simulated data

Estimated counts and TPM values were compared

against simulated “ground truth” values. Pearson correl-

ation coefficient (R2) and MARDS (Mean Absolute Rela-

tive Differences) were quantified and compared across

methods. Lowly expressed transcripts are “noisy” and all

estimated counts below 5 were considered not expressed

and were set to zero. Next, transcripts with 0 estimated

counts for all methods were removed, to prevent “infla-

tion” of MARDS and R2 calculation. Accordingly, 92,139

transcripts out of 198,093 annotated transcripts in Gen-

code v25 survived this filtering.

Raw counts and TPM values were log2 transformed

for R2 calculation. To avoid arithmetic error and large

negative values in log2 transformation, a pseudo-count

of 5 was added or 0.1 TPM were added to all transcripts

in the counts or TPM tables prior to transformation.

The purpose of adding a pseudocount is to avoid com-

putational error or a very large negative number in log2

transform when the expression is zero or very small. We

tried 0.01, 0.1, 0.5 and 1 as pseudo-counts, and the con-

clusion in this paper does not change.

For each transcript, let i be the simulated count and j be

the estimated count. Absolute relative difference (ARD)

was calculated as:

ARD ¼

j i−j j

iþ j
if iþ j≠0ð Þ

0 if i ¼ j ¼ 0ð Þ

8

<

:

Then, MARDS were calculated as the arithmetic mean

of ARD.

For false positive rate calculation, the counts table was

filtered to contain only non-expressed transcripts. There

were 99,202 transcripts with 0 simulated counts. A false

positive was determined when the simulated count is 0

but the estimated count is above 5. For TPM tables, 0.1

was used as the cut-off.

Evaluation protocol for experimental data

TPM values were estimated for each experimental dataset.

A pseudo-count of 0.1 was added to each transcript before

log2 transformation. No filtering was applied when calcu-

lating correlation between technical replicates. The correl-

ation between HBRR-C4 and HBRR-C6 was calculated

across methods, so was the correlation between UHRR-

C1 and UHRR-C2.

Next we compared the pairwise correlation across

methods by using the same sample, HBRR-C4. TPM

values estimated by all methods were summed up for

each transcript during analysis. Transcripts with a sum

less than 0.8 were considered “noisy” and thus excluded

from analysis. Since there are eight methods, the cutoff

0.8 amounts to 0.1 per sample, which is consistent with

the pseudocount added in log2 transformation.

TP53 transcripts simulation

The Bioconductor package, polyester [34], was used to

simulate paired-end strand-specific reads coming from

six isoforms (α, β, γ and Δ133α, Δ133β, Δ133γ) of the

TP53 gene with default options, and 100 simulated reads

were generated for each transcript at the base line. To

evaluate the impact of read depth, we then increased the

number of reads for all six transcripts 10 and 100 fold.

To evaluate the impact of relative abundance on the ac-

curacy of quantification, we increased only the number

of reads for FLα (full-length transcript α) 10 and 100

fold, while the number of reads for the other five tran-

scripts were kept at 100. Each condition was simulated

five times and MARDS were calculated from the mean

of the five replicates. All reads were randomized before

mapping and quantification, and fake quality scores were

added to all simulated reads. Because the total number

of reads in each simulation was small, the online-phase

“Burn-in” was turned off in Salmon and Salmon_aln by

setting “–numPreAuxModelSamples 0”.

Results
Fifty million paired-end reads were generated by the

RSEM RNA-seq simulator based upon the read distribu-

tion statistics taken from experimental sample HBRR-C4.

Table 1 summarizes the features and running metrics for

all the eight methods (seven packages plus Salmon_aln).

TIGAR2 required a lot more memory and more time than

the other methods, while the alignment-free methods (Sal-

mon, Sailfish and Kallisto) were clearly the fastest. All

methods use iterations of the EM algorithm for quantifica-

tion. RSEM, Kallisto, eXpress and Cufflinks use the Max-

imum Likelihood objective (ML), while TIGAR2 uses the

Variational Bayes objective (VB). Salmon and Sailfish

allow users to choose which objective to use. In this evalu-

ation, we used the default ML objective.
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Comparisons of isoform quantification accuracy across

methods

We first filtered out lowly expressed transcripts and log2
transformed the counts and TPM tables as described in

the Methods Section. Then, R2 and MARDS were calcu-

lated as accuracy measurements for expressed tran-

scripts using estimated read counts (Fig. 2a and b) and

TPM values (Additional file 1: Figure S1A and B). R2 is a

good metric for global agreements between two sets. It

is robust against outliers after log2-transformation, but

does not give a good estimate if there is strong linear

bias. MARDS, on the other hand, is a local measurement

for relative errors. It can detect global biases, but is not ro-

bust against outliers. By combining the two metrics, we

obtained a comprehensive view of the accuracy measure-

ment of the eight methods from the seven chosen tools.

We also calculated Spearman correlation coefficient and

RMSD (Root Mean Squared Distance) described by Teng

et al. [35] (Additional file 1: Figure S2A and B), however,

we did not observe any additional benefits.

Figure 2a and b show strong agreements between R2

and MARDS. In general, the higher the R2, the smaller the

corresponding MARDS. Overall, all methods had a good

performance by achieving R2 over 0.91 and MARDS less

than 0.3. Cufflinks and eXpress, showed worse scores in

both categories, and performed worse than the other

methods in this simulation. The accuracy difference was

small for the other six methods, achieving R2 over 0.95

and MARDS less than 0.2. The same conclusions can be

drawn using either counts or TPM values.

The impact of gene complexity on the accuracy of

isoform quantification

Next, we investigated what features impact the accuracy

of transcript quantification. One such feature is the

structural complexity of a gene. If a gene has a complex

structure, with a large number of highly similar tran-

script isoforms, it can be difficult for algorithms to cor-

rectly assign reads to their true origins. To quantify this

effect, we divided the transcripts evenly into four separ-

ate groups according to the number of isoforms of their

Table 1 Run time metrics of each method on 50 million paired-

end reads of length 76 bp in an high performance computing

cluster

Memory (Gb) Run time (min) Algorithm Multi-thread

Cufflinks 3.5 117 ML Yes

RSEM 5.6 154 ML Yes

eXpress 0.55 30 ML No

TIGAR2 28.3 1045 VB Yes

kallisto 3.8 7 ML Yes

Salmon 6.6 6 VB/ML Yes

Salmon_aln 3 7 VB/ML Yes

Sailfish 6.3 5 VB/ML Yes

For methods that support multi-threading, eight threads were used. For alignment-

free methods (Kallisto, Salmon and Sailfish), a mapping step was included. The best

performer in each category is underlined and the worst performer is in bold

ML Maximum Likelihood, VB Variational Bayes

Fig. 2 Comparisons of the overall performance among different methods and the impact of the number of transcripts on the accuracy of isoform

quantification. a Pearson correlation coefficient. b mean absolute relative differences and c-d) The above metrics were broken into separate groups

according to the number of annotated transcript isoforms for each gene. The number of transcripts in each group is shown in figure legends. The

accuracy metrics were calculated by comparing the estimated counts with the “ground truths” in simulated dataset
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corresponding genes (1–5, 6–10, 11–15 and above 15).

In general, a gene becomes more complex as the num-

ber of annotated isoforms increases. We measured the

R2 and MARDS for each group (Fig. 2c and d). There

was a solid trend that the quantification accuracy de-

creased as the number of isoforms increased. Cufflinks

had the smallest reduction in R2 and MARDS measure-

ments (R2 decreased by 0.013 and MARDS increased by

0.057). eXpress was most sensitive to gene structures,

with R2 decreased by 0.056 and MARDS increased by 0.

The number of annotated exons in a gene is another

good descriptor of gene structure complexity. We di-

vided the transcripts similarly according to the number

of exons in the transcripts (1–5, 6–10, 11–20 and above

20) and drew a similar conclusion that the quantification

accuracy decreases as the number of exons increases

(Additional file 1: Figure S3).

Disagreement in effective transcript length for short

transcripts

TPM values, calculated using the estimated read counts

normalized against effective transcript length and total

number of reads, are a good measurement of transcript ex-

pression levels in a sample and are recommended to re-

place FPKM values (Fragments Per Kilobase Per Million)

[36, 37]. In principle, the same conclusions should be

drawn regardless of the choice of counts or TPM values.

However, there are some cases where the counts are esti-

mated correctly but the corresponding TPM values are

not. Transcript SNGH25–002 is a case in point. Eight

reads were simulated for this transcript, and almost all

methods estimate the count accurately. However, the TPM

values range from 1.98 to 185.55, a difference of two orders

of magnitude (Fig. 3a and b). Other examples giving similar

results include transcripts RNY3–201 and Y_RNA.490–

201 (Additional file 1: Figure S4A, B, C and D). The tran-

scripts SNGH25–002 and RNY3–201 were found at top

when comparing the estimated TPMs across methods and

with ground truths, and thus were chosen to demonstrate

the issue with TPM estimation of short transcripts.

After further investigation, we noted that all three

transcripts (SNGH25–002, RNY3–201 and Y_RNA.490–

201,) have a transcript length around 100 nt and the het-

erogeneous TPM values result from disagreement in cal-

culations of the effective transcript length for short

transcripts. An effective transcript length is determined

by the transcript length and the empirical fragment

length distribution in a sample [21, 24]. It was intro-

duced to accommodate the limited range of cDNA frag-

ment sizes that can be sampled near the two ends of a

transcript. For large transcripts, the estimated effective

lengths were similar among different methods. However,

for transcripts with length close to or less than the aver-

age fragment length, there was no consensus model to

estimate the effective length. By plotting the transcript

length against estimated effective length, Fig. 3c shows

three different models that are commonly applied in this

situation and that produce vastly different estimates

when the transcript length is short. All methods gave

similar estimates for transcripts over 300 nt. For tran-

scripts of less than 300 nt, Kallisto and Salmon follow

the same model, while RSEM, Sailfish and eXpress use a

different model. While RSEM makes corrections for all

transcript lengths, eXpress uses the actual transcript

length as their effective length for transcripts less than

165 nt. For Sailfish, the cut-off is lower at about 100 nt.

Each model has its own merits and there is no “correct

answer”. All transcripts with length shorter than 200 nt

were extracted, and their corresponding accuracy metrics

(see Additional file 1: Figure S4E and F) were calculated

using counts and TPM values, respectively. Apparently,

the isoform quantification results for short transcript have

much lower Pearson correlation and larger MARDS, with

TPM values showing more heterogeneity. Transcripts

shorter than the fragment lengths are filtered out during

library preparation. Thus, RNA-seq is not a good method

for the measuring the expression of very short transcripts.

Comparisons of robustness and consistency of isoform

quantification across methods

Another important metric is the consistency between

technique replicates. Ideally, quantification results should

be close for technical replicates from the same RNA sam-

ple. HBRR and UHRR experimental datasets are selected

for this purpose. The scatter density plots for estimated

TPM values between UHRR-C1 and UHRR-C2, and those

between HBRR-C4 and HBRR-C6 are shown in Fig. 4a

and b, respectively. RNA sequencing is intrinsically a ran-

dom process, and estimated TPMs are not exactly the

same between replicates and some variations are expected,

especially for lowly expressed genes or transcripts. The

dark colour arrayed along the diagonal line indicates

good correlation between replicates for all methods.

While there is a certain amount of noise in estimating

lowly expressed transcripts, highly expressed transcripts

show strong concordance between replicates. The high

R2 values validate the robustness of each computational

method.

R2 values and density plots of estimated TPMs be-

tween each pair of methods for the sample HBRR-C4

are summarized in Fig. 5. Overall, methods showed

strong concordance with one another, especially for

highly expressed transcripts. eXpress produced the most

disparate results compared with the other methods. The

three alignment-free methods, Salmon, Sailfish and Kal-

listo, cluster tightly together with R2 > 0.96. Salmon_aln

and Salmon use the same quantification algorithms but

different aligners, and the strong agreement between
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their estimated counts (R2 = 0.936) indicates the choice of

mapping methods has only a mild impact on transcript

quantification. Interestingly, Salmon_aln showed stronger

agreement with RSEM than with Salmon (R2 = 0.997).

This is because Salmon_aln and RSEM both use STAR as

aligner and the EM algorithms implemented in these two

packages give very close estimations.

Impact of mapping algorithm on the accuracy of isoform

quantification

For fair comparisons, we chose STAR as the only aligner

for alignment-dependent quantification methods. How-

ever, the three alignment-free methods use their own

mappers for pseudo-alignment or quasi-mapping, which

gives an opportunity to explore the impact of different

mapping methods. In particular, Salmon gives the flexi-

bility of choosing either its internal RapMap mapper or

external aligners, while keeping the quantification step

similar. As shown in Fig. 5 for the sample HBRR-C4,

there is strong concordance among quantification results

from RSEM, Salmon, Salmon_aln, Kallisto and Sailfish

(R2 > 0.89), indicating that the impact of mappers on

isoform quantification is small.

By looking deeper into the RSEM simulation dataset, we

found a few cases in which the choice of mappers did make

a big difference. For instance, reads from transcript

RPS28P7–001 were vastly underestimated in all methods

using STAR aligner (Fig. 6a). We extracted all reads coming

from RPS28P7–001 and used STAR to map them to the

human genome. Surprisingly, the resulting BAM file indi-

cated that the majority of the reads were uniquely mapped

to the gene RPS28 instead of RPS28P7 (Fig. 6b). RPS28P7 is

a pseudogene of RPS28. Although the two transcripts share

the same partial sequence, RPS28–001 is a spliced isoform,

while RPS28P7–001 is not. STAR, by default, adds bonus

scores to spliced alignments to discourage mapping of

reads to pseudogenes. This strategy does well in most cases

in experimental datasets, because pseudogenes tend to have

no or low expression compared to their canonical counter-

parts. However, in our evaluation, it results in undesirable

mapping, and accordingly, dramatically underestimates the

expression level of the transcript RPS28P7–001.

Impact of sequencing depth and relative abundance on

the accuracy of isoform quantification

The TP53 gene encodes several different transcripts and

plays important roles in multiple cancer types. As illustrated

Fig. 3 Inconsistency in effective length calculation among methods for short transcripts. a Read counts were estimated correctly for the transcript

SNHG25–002. b Methods showed disagreement in estimating TPM values for the same transcript. c The relationship between the effective transcript

length estimated by each method and the corresponding transcript length. Only transcripts with length less than 400 nt are shown. Note the transcript

length at x-axis is the total number of nucleotides of the transcript in the Gencode Release v25
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in Fig. 7a, TP53 is encoded on the minus strand of human

chromosome 17. Alternative promoter usage results in ei-

ther a full-length (FL) or a truncated transcript (Δ133). Al-

ternative exon usage in the middle box region results in α, β

and γ variants. Canonical splicing events of this gene give

rise to six transcript isoforms (FL α, β, γ and Δ133 α, β, γ)

[9, 10]. Non-canonical transcript isoforms in Gencode v25

annotation are not included in this paper.

To further investigate the impact of sequencing depth

and relative abundance on the accuracy of isoform quanti-

fication, we chose TP53 and performed a controlled simu-

lation as detailed in the Methods Section. Figure 7b shows

the MARDS metrics for each transcript from each of the

seven methods at each simulated condition. Cufflinks

crashed when quantifying this simulation and was thus ex-

cluded from this comparison. The results corresponding

to the base line are shown in the third row of Fig. 7b.

As the sequencing depth increases (the top three rows

in Fig. 7b), the accuracy improved for RSEM, Salmon,

Salmon_aln and TIGAR2, but not for Sailfish and the ac-

curacy actually decreased for eXpress and Kallisto. After

discussions with the developer of Salmon and Sailfish,

we think this is caused by how reads are modelled in

their EM algorithms. While Kallisto and Sailfish consider

only the effective transcript length when assigning reads

that are compatible to more than one isoforms, RSEM

and Salmon also consider the current estimated abun-

dance of each isoform as the prior. The former model

performed well in most cases, as evident in the RSEM

simulated dataset in the previous sections, but in this

particular case, it had relatively poor performance when

the sequencing depth was high.

Genes tend to have one isoform highly expressed with

other isoforms expressed at low levels. For instance, the

Fig. 4 Correlation of estimated TPM values for all transcripts between technical replicates of experimental datasets. a UHRR-C1 (x-axis) and UHRR-

C2 (y-axis). b HBRR-C4 (x-axis) and HBRR-C6 (y-axis). The R
2 value is shown in each figure. Note, x and y-axes represent log2 transformed estimated

transcript TPM values
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Fig. 6 Significant difference in estimated read counts for transcript RPS28P7–001 resulting from STAR aligner. A total of 154 reads for RPS28P7–

001 were simulated. a The estimated read counts from all eight methods are shown, and they are severely underestimated by the methods using

STAR aligner. b The read coverage profiles (coloured in red) in RPS28P7–001 and RPS28–001. The peak paired-end read counts (both ends counted)

are shown in brackets. Only a small fraction of reads were mapped back to the RPS28P7 region while the majority of reads were incorrectly mapped to

the RPS28 gene

Fig. 5 Pairwise correlation of estimated TPM values for all transcripts between methods for the HBRR-C4 sample. The distribution of transcripts’

TPMs from each method was plotted on the diagonal panels. Pairwise density plots and R
2 values are shown in the lower and upper triangular

panels, respectively. R2 values over 0.9 are in bold. Methods are grouped using hierarchical clustering
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sum of TPM values of the most abundant isoform in

each gene takes up 76.6% of the total TPM values of all

transcripts in the HBRR-C4 sample. The detailed distri-

bution of the ratios of the TPM values between the most

abundant isoforms and their corresponding genes in

HBRR-C4 are shown in Additional file 1: Figure S5. The

impact of the relative abundance of different transcripts

on isoform quantification is less well explored in previ-

ous studies. According to our evaluation, the accuracy of

FLα improves consistently as the relative abundance of

FLα increases (see the bottom three rows of Fig. 7b),

while the accuracy of the other five transcripts decreases.

Kallisto, RSEM and Sailfish were the best performers

with MARDS <0.5 (bottom row) in the most imbalanced

situation. As imbalanced expression is commonly ob-

served in isoform expression profiles, the large error

rates in the bottom row suggest challenges remain for

accurate quantification of minor transcript isoforms.

Discussion
Caution on quantification of short transcript and lowly

expressed transcripts

All methods used in this study give highly reproducible

results when technical replicates are used, especially for

transcripts with high expression levels. In RSEM simula-

tion data, transcripts with estimated counts less than

100 have relatively high variance and the results should

be used with caution. Transcripts shorter than the frag-

ment lengths are excluded during library preparation. As

a result, caution must be taken when interpreting quan-

tification results for short transcripts. The RSEM simula-

tion was taken from an experimental dataset and only

138 transcripts of less than 200 nt were expressed in the

simulation, with only 37 having read counts over five. In

our simulation, the number of short transcripts included

was too small to significantly impact the overall conclu-

sion in the accuracy measurements.

Fig. 7 The impact of sequencing depth and relative abundance on the accuracy of isoform quantification. a Structures of six canonical transcripts

of the TP53 gene, and their corresponding identifier in GENCODE v25. b The accuracy of isoform quantification with each of the seven methods

under each simulation condition. MARDS was calculated using known and estimated read counts
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Impact of gene structure on the accuracy of quantification

Using an RSEM simulated dataset, we reached different

conclusions from Kanitz et al. on the impact of gene

structures on quantification accuracies [17]. Specifically,

in their simulated dataset, when the number of isoforms

or exons increased, there was no clear trend of decreas-

ing accuracies. We think the difference in conclusions is

due to different simulation strategies. In their Flux-simu-

lator [38] simulation, the transcripts to be expressed

were picked by random, many of which were short tran-

scripts. They also explained that 60% of the transcripts

with only one exon are short transcripts. Here, we

showed that there is no consensus for estimation of

these short transcripts and the results are inaccurate and

difficult to interpret. We think the existence of a large

number of short transcripts could obscure the trend that

was revealed in their study. In our simulation, expression

was determined from the HBRR-C4 sample. As men-

tioned above, only 138 short transcripts were included

in the simulated dataset. In this sense, our conclusion

holds true for the practical analysis of real experimental

RNA-seq datasets.

Impact of sequencing depth and relative abundance on

quantification

We discovered both sequencing depth and relative abun-

dances have strong impacts on quantification accuracy.

Surprisingly, not all methods perform better when the

absolute abundances increase. The abundance range ex-

plored here was close to true biological conditions, with

around 102TP53 reads in the HBRR datasets and

104TP53 reads in the UHRR datasets. Isoform expres-

sion levels for most transcripts are also imbalanced in

cells, with a few transcripts dominating the expression.

Our simulation demonstrates that even with reasonable

absolute abundances, all current methods have difficulty

in accurately quantifying the expression levels of those

isoforms whose relative abundancy is low.

Conclusion

After a comprehensive evaluation of seven packages for

isoform quantification, we found that alignment-free

methods, such as Salmon, Sailfish and Kallisto, require

less computational time while achieving similar or better

accuracies compared with other methods. Cufflinks and

eXpress, two alignment-dependent algorithms in our

evaluation, have inferior accuracy performance with an

RSEM simulated dataset. TIGAR2 has overall good per-

formance, but the run time and memory requirements

render the tool less popular for practical use. Consider-

ing both the accuracy and computational resources

needed, Salmon-aln and RSEM are the two best per-

formers among the alignment-dependent tools.

Additional file

Additional file 1: Supplementary Method. Detailed command line

parameters. Figure S1. Comparisons of the overall performance among

different methods using TPM measure. Figure S2. Comparisons of the

overall performance among different methods using counts measure.

Figure S3. The impact of the number of exons on the accuracy of

isoform quantification. Figure S4. Inaccuracy of isoform quantification for

short transcripts in RSEM simulated dataset. Figure S5. The distribution

of the ratios of TPM values between the most abundant isoforms and

their corresponding genes in the HBRR-C4 sample. (PDF 663 kb)
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