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ABSTRACT

Evaluation of Chinese precipitation extremes is conducted based on large ensemble projections of the

present climate and 4-K-warmer climates derived from a high-resolution atmospheric general circula-

tion model. The model reproduced the overall trend and magnitude of total precipitation and extreme

precipitation events for China reasonably well, revealing that this dataset can represent localized pre-

cipitation extremes. Precipitation extremes are more frequent and more severe in future projections

under 4-K-warmer climates than in the representative concentration pathway 8.5 (RCP8.5) scenario of

phase 5 of the Coupled Model Intercomparison Project (CMIP5). Our results show that using a large-

ensemble simulation can improve the ability to estimate with high precision both the precipitation mean

and the precipitation extremes compared with small numbers of simulations, and the averaged maximum

yearly precipitation will be likely to increase by approximately 18% under a 14-K future in southern

China compared with the past. Finally, uncertainty evaluation in future precipitation projections indicates

that the component caused by the difference in six DSST patterns is more important in southern China

compared with the component due to the atmospheric internal variability. All these results could provide

valuable insights in simulating and predicting precipitation extremes in China.

1. Introduction

As the global climate changes, natural disasters caused

by extreme weather events are becoming more frequent

and leading to increasingly serious consequence around

the world (Seneviratne et al. 2012; Christidis et al. 2015;

Fischer and Knutti 2015). China is vulnerable to extreme

weather events (Sun et al. 2014; Duan et al. 2016;Wu et al.

2019). Thus, some researchers have investigated and

evaluated the changes of climate extremes in China

(Zhang et al. 2006; Ji and Kang 2015; Tang et al. 2016).

Based on the global climate model (GCM) outputs de-

rived from phases 3 and 5 of the Coupled Model In-

tercomparison Project (CMIP3 and CMIP5, respectively),

most of these studies generally indicate that cold weather

extremes exhibit a decreasing trend, warm weather ex-

tremes show an increasing trend, and extreme heavy pre-

cipitation is likely to becomemore severe (Chen et al. 2012;

Zhou et al. 2014; Li et al. 2017). However, most of these

results only reflect one or several GCM models with rela-

tively coarse resolution (.100km). To date, detailed

analysis of large ensemble climate simulations with high-

resolution GCMs for China has been limited.

The variabilities of the extreme events are generally

larger than the mean climate state (e.g., the annual

maximum daily precipitation has larger variance than

the annual mean precipitation). Large variances of ex-

treme events would produce hurdles in making robust
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projections of the future changes using small size en-

sembles of the climate model simulations (Li et al. 2015;

Mote et al. 2016). To overcome this hurdle, Mizuta et al.

(2017) have recently produced a large ensemble cli-

mate simulation with a high-resolution atmospheric

model—the ‘‘Database for Policy Decision-Making for

Future Climate Change’’ (d4PDF). This effort is similar to

weather@homewith large regional ensemble simulations

(Massey et al. 2015; Schaller et al. 2016; Freychet et al.

2018). The d4PDF database represents over 5000 years of

ensemble future climate simulation (90 ensembles 3 60

years) using a 60-km-resolution atmospheric general

circulation model (MRI-AGCM3.2) and dynamical

downscaling around Japan with a 20-km-resolution

nonhydrostatic regional climate model (NHRCM),

providing larger ensembles and higher horizontal reso-

lution than earlier projections (usually coarser than

100 km) (Collins et al. 2013), in which six climatological

sea surface temperature (SST) warming patterns (DSSTs)

from CMIP5 climate models are added to the observed

SST data to make the lower boundary conditions to

cover the most part of the uncertainty of the patterns in

all the CMIP5 models. These features enable us to fur-

ther explore variations of regional and global extreme

weather events as well as their uncertainty (Mizuta

et al. 2017).

Studies based on the d4PDF database are rapidly

appearing (Matsueda and Endo 2017; Mizuta et al.

2017; Yoshida et al. 2017). For example, Shiogama

et al. (2016) investigated the impacts of human activities

on historical changes in extreme weather events. Imada

et al. (2017) examined future changes in precipitation

extremes in East Asia and discussed their uncertainty

through an analysis of differences of internal variability

(including decadal variations in the ocean and intraseasonal

variation in the tropics) and differences among future SST

patterns. All in all, these studies suggest a good perfor-

mance in simulating climatology as well as extremes by

using these high-resolution AGCMs. However, most of

them focus regionally based on very few indices of ex-

treme events. Further research should be done to explore

the benefits of the large high-resolution ensemble.

The objectives of this study are 1) to evaluate the quality

of the d4PDF large ensemble in simulating precipitation

extremes by comparing with an observed high-resolution-

grid dataset in China, 2) to investigate future changes in

precipitation extremes under 4-K global warming, and

3) to discuss future projection uncertainty from internal

variability and future SST patterns. The paper begins

with a brief description of the datasets and methodology

in section 2, followed by the results of precipitation ex-

treme indices and a discussion, presented in section 3,

followed by conclusions in section 4.

2. Experimental design, data, and methods

a. Experimental design of d4PDF

The d4PDF consists of two parts: one is the global cli-

mate simulations derived froma60-km-resolutionAGCM

(MRI-AGCM3.2; Mizuta et al. 2012) and the other is

the regional downscaling simulations covering Japan

(20-km horizontal grid spacing; Mizuta et al. 2017).

We analyzed the outputs of the global model.

Three sets of time-slice experiments including a histor-

ical climate simulation, a 14-K future climate projection,

and a nonwarming simulation are performed by using the

MRI-AGCM3.2. Historical climate and nonwarming

simulations are comprised of 100-member ‘‘all forcing’’

(ALL) runs and 100-member ‘‘nonwarming trends’’ (NW)

runs for the period from 1951 to 2010 based on initial-value

perturbations of the atmosphere and short-term monthly

SST perturbations. Future climate is simulated according

to a constant warming condition roughly corresponding to

the level of year 2090 under the representative concen-

tration pathway 8.5 (RCP8.5) scenario adopted in CMIP5.

A 60-yr integration (2051–2110) with 90 members is pre-

sented to represent the future climate in which global-

mean surface air temperatures (SATs) are 4K warmer

than the preindustrial level. SST data for the future period

were developed by adding CMIP5 AOGCM-projected

SST anomalies (DSSTs) as a function of longitude, latitude,

and month to observed SST after removing the long-term

trend of the observed SSTs (1951–2010). Because of the

large variety in future SST projections, six different DSSTs

[CCSM4 (CC), GFDL CM3 (GF), HadGEM2-AO (HA),

MIROC5 (MI), MPI-ESM-MR (MP), and MRICGCM3

(MR)] were selected using cluster analysis with tropical

DSST spatial patterns [see Table S1 in the online sup-

plemental material; also, please see detailed information

from Mizuta et al. (2017)] to represent the range of un-

certainty in CMIP5 projections. A scaling factor was

multiplied for each pattern in order to produce a global-

mean surface air warming of 4K. Meanwhile, for each of

the six DSSTs, 15-member ensembles were run using

different initial atmospheric conditions and different

small random perturbations on SST (dSST) (i.e., 90

members in total). Data from the historical climate sim-

ulations and14-K future climate simulations in China are

extracted for analysis in this study.

b. Other datasets

1) OBSERVED DATASET

Observed daily precipitation data from 1961 to 2010

with 0.58 3 0.58 resolution were selected to assess model

performance at the regional scale for China. This dataset
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(hereafter referred to as CN05; see Fig. 1) was developed

from 2416 weather monitoring stations charged by the

National Climate Center, China Meteorological Admin-

istration (Wu and Gao 2013), which has a larger number

of stations compared to the previous 196 stations (Zhai

and Pan 2003) and 751 stations (Xu et al. 2009). But the

distribution of stations exhibits a diminishing scale from

east to west and from south to north; especially, it has

sparse distribution in northwest China (NWC) and

Qinghai–Tibet (SWC1). Using the method of ‘‘anomaly

approach’’ (New et al. 2000), the CN05 grid dataset was

constructed based on the gridded daily anomaly and the

gridded climatology [detailed steps can be found in Wu

and Gao (2013)]. Because of higher accuracy and reso-

lution, the CN05 has been employed successfully in de-

scribing more detailed information of regional climate

change and validating high-resolution climatemodel (Wu

and Gao 2013).

2) CMIP5 DATASETS

To better analyze performance of d4PDF simula-

tions, precipitation extremes from CMIP5 were used

to compare with d4PDF. CMIP5 provides a framework

for coordinated climate change experiments based on

dozens of GCMs under four representative concen-

tration pathway (RCP) scenarios, but has a coarse spa-

tial resolution and a low number of ensembles for each

model, which is difficult to disentangle uncertainty from

model formulation differences and internal climate

variability (Kay et al. 2015). A single (the first) ensemble

member of 34 models from CMIP5 (see Table S2 for

full list of expansions) was used in this study. All the

precipitation extreme indices from CMIP5 simulations

can be downloaded online (http://www.cccma.ec.gc.ca/

data/climdex/index.shtml; accessed March 2018).

c. Methodology

1) COMPUTATION OF CLIMATE INDICES AND

DATA PROCESSING

To describe and assess climate extremes, 27 widely

used climate indices were developed and recommended

by the Expert Team on Climate Change Detection and

Indices (ETCCDI) (available at https://www.climdex.org/

learn/indices/) (Zhang et al. 2011; Sillmann et al. 2013;

Duan et al. 2015). In this study, six indices (Table 1) in-

cluding the annual totalwet-dayprecipitation (PRCPTOT),

the maximum number of consecutive dry days (CDD),

the annual maximum 1-day precipitation (RX1day), the

annual total precipitation divided by the number of wet

days (SDII), the annual number of heavy precipitation

days (R10mm), and the annual total precipitation on

extremely wet days (R99p) were selected and com-

puted on an annual basis for observation data (CN05),

historical climate simulations (d4PDF and CMIP5),

and 14-K future climate simulations (d4PDF) to ana-

lyze extremes and detect future precipitation variations

in China.

Because of different resolutions between different

datasets, we regridded all precipitation indices to a

common 116 3 71 grid (about 0.56258 3 0.56258) for

China using a remapping procedure (Jones 1999). Ac-

cording to administrative boundaries and societal and

geographical conditions, we examined changes of spa-

tial patterns from eight regions including northeast

China (NEC), northern China (NC), eastern China

(EC), central China (CC), southern China (SC), south-

west China (SWC2), northwest China (NWC), and

Qinghai–Tibet (SWC1) (Fig. 1 and Table 2) (National

Report Committee 2007).

2) PERFORMANCE METRICS

To examine the performance of the AGCM precipi-

tation simulations in China, we first compared the sea-

sonal mean precipitation simulations with the gridded

observed precipitation averaged for the period 1981–2005.

The season was divided into winter [December–February

(DJF)], spring [March–May (MAM)], summer [June–

August (JJA)], and autumn [September–November

(SON)]. Taylor diagrams (Taylor 2001) were applied to

assess model performance for the precipitation indices to

present a concise statistical summary, suggesting matching

FIG. 1. Distribution of 2461 stations in China (CN) marked by

red dots, blue triangles, and green asterisks that are employed for

the CN05 grid dataset. The red dots indicate 196 stations used in

Zhai and Pan (2003), the blue triangles indicate the added stations

in the 751 stations (Xu et al. 2009) and the green asterisks indicate

the newly added observing stations in the 2416 stations. The

domains of eight subregions—northeast China (NEC); northern

China (NC); eastern China (EC); central China (CC); southern

China (SC); southwest China, region 1, or Qinghai–Tibet (SWC1);

southwest China, region 2 (SWC2); northwest China (NWC)—used

in the analysis are also shown. [Modified from Zhou et al. (2016).]
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degrees between the observed and simulated spatial pat-

terns through calculating correlation, root-mean-square

difference (RMSD) and ratio of their variances with

respect to observations.

3) CLIMATE CHANGE PROJECTIONS

The 20-yr time-slice future projections (2081–2100)

were compared to historic simulations to clarify future

changes in precipitation indices. The baseline historic

simulation reflects the period from 1981 to 2000. Pre-

cipitation changes are computed as the relative change

CR (%) between the projection period and baseline

period, according to the following equation:

C
R
5

Projection2Baseline

Baseline
. (1)

The ensemble change is computed as the mean of

100 (90) ensembles for the historical (future) runs for

60 years, and box-and-whisker plots are used to show

projected changes in the annual precipitation indices.

In addition, to reveal advantages of large ensembles

for evaluating extreme precipitation events, the single

ensemble and multiple ensembles are compared for all

of China.

4) ANALYSIS OF VARIANCE

Here, we applied a two-way analysis of variance

(ANOVA) (Sugi et al. 1997; Endo et al. 2017) to de-

compose the total variance ŝ
2
tot of future precipitation

extremes into that of the difference in six DSST pat-

terns ŝ2
DSST and the internal variability of the 15 dSST

ensemble ŝ
2
int:

ŝ
2
tot 5 ŝ

2
DSST 1 ŝ

2
int , (2)

where ŝ2
int represents the variance of the deviation of given

data from the ensemble mean of different atmospheric

initial conditions and dSST values, and ŝ
2
DSST indicates the

variance associated with the difference in six DSST pat-

terns, in which the variance of the ensemble mean of dif-

ferent atmospheric initial conditions and dSST values

ŝ
2
EM_dSST is corrected by extracting the effect of internal

variability. They can be estimated by Eqs. (3)–(5):

ŝ
2
int 5

1

N(n2 1)
�
N

i51
�
n

j51

(x
ij
2 x

i
)2 , (3)

ŝ
2
EM_dSST 5

1

N2 1
�
N

i51

(x
i
2 x)2 , (4)

ŝ
2
DSST 5 ŝ

2
EM_dSST 2

1

n
ŝ
2
int , (5)

where N represents the number of different DSSTs (i.e.,

N 5 6) and n is the number of ensemble members with

different atmospheric initial conditions and dSSTs (i.e.,

n 5 15). Here, xij represents the future change rate (%)

of a climatological-mean precipitation index for the ith

DSST pattern and jth member of the ensemble of dif-

ferent initial conditions and dSST values. Variable xi is

the ensemble mean of the ithDSST, and x
5

is the average

TABLE 2. Coordinates of the eight subregions and the whole of

China used in this study.

Name Abbreviation Coordinates

Northeast China NEC 398–548N, 1198–1348E

Northern China NC 368–468N, 1118–1198E

Eastern China EC 278–368N, 1168–1228E

Central China CC 278–368N, 1068–1168E

Southern China SC 208–278N, 1068–1208E

Qinghai–Tibet 1 SWC1 278–368N, 778–1068E

Southwest China SWC2 228–278N, 988–1068E

Northwest China NWC 368–468N, 758–1118E

Whole of China ALL 158–558N, 708–1408E

TABLE 1. Definitions of six precipitation indices used in this study. RR is daily precipitation. A wet day is defined when RR$ 1mm, and a

dry day when RR , 1mm.

ID Indicator name Definition Unit

PRCPTOT Annual total wet-day precipitation Annual total PRCP in wet days (RR $ 1mm) mm

CDD Consecutive dry days Maximum number of consecutive days with

RR , 1mm

day

RX1day Max 1-day precipitation amount Annual maximum 1-day precipitation mm

SDII Simple daily intensity index Annual total precipitation divided by the number

of wet days (defined as PRCP $ 1.0mm) in

the year

mmday21

R10mm Number of heavy precipitation days Annual count of days when PRCP $ 10mm day

R99p Extremely wet days Annual total PRCP when RR . 99th percentile

of precipitation on wet days in the 1961–90

period

mm
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of all data. The caret (̂ ) denotes the best estimator of a

population quantity.

3. Results and discussion

a. Evaluation of the present-day simulation

1) MEAN PRECIPITATION AMOUNTS

Figure 2 compares the simulated (ensemble mean) and

observed distributions ofmean seasonal precipitation from

1981 to 2005, showing a reasonable reproducibility in the

magnitudes of precipitation and its spatial patterns in all

seasons. Precipitation over China has distinct seasonal and

regional characteristics, and mainly concentrates in the

southeast during spring and summer for both d4PDF and

CN05 datasets because of the monsoon circulation, the

amount of which are roughly greater than 500mmyr21.

The bias in percent [(d4PDF2CN05)/CN053 100%]was

about130% for most regions for all seasons, especially in

summer (JJA) and autumn (SON). During winter, how-

ever, a distinct positive bias was found around the Tibetan

Plateau, where the topography strongly affects pre-

cipitation (the average elevation generally exceeds 4000m,

with mountain ranges over 6000m; Yin et al. 2008).

Table 3 shows the seasonal model biases for mean

precipitation and mean correlation coefficients be-

tween d4PDF and CN05 time-averaged spatial fields.

The bias was the largest in spring, up to 24.58mm

month21, while the smallest in autumnwith the value of

0.65mm month21. The spatial correlations for pre-

cipitation between d4PDF and CN05 were above 0.7

FIG. 2. Seasonal mean precipitation (mmmonth21) in 1981–2005 for (left to right) DJF, MAM, JJA, and SON from (top) CN05, (middle)

d4PDF, and (bottom) the bias [(d4PDF 2 CN05)/CN05] (%).
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for all seasons for China, with spring season being as

high as 0.93. Figure S1 indicates that the uncentered

correlations (Kiktev et al. 2007) were good for all

seasons in places like eastern and central China, but

had relatively low skill in southwest and northern

China. These results suggest that the simulations of

d4PDF reasonably captured the seasonal patterns of

the observed precipitation in China.

To deeply investigate the influence of topography on

simulated and observed precipitation, the winter (DJF)

and summer (JJA) precipitation cross sections along

30.88N (across the Qinghai–Tibet area) were examined.

From Fig. 3, we can see that elevation (black line) shows

as a decreasing ‘‘ladder,’’ revealing that the topography

of China is a three-step staircase stepping down from the

Qinghai–Tibet Plateau (with the 4000-m-high mountains)

in the southwest to the coastal belt in the east (below

1000m); the precipitation gradients from d4PDF along

the transect were roughly consistent with the CN05 in

winter and summer, but the simulations of d4PDF were

greater than the CN05 in the Qinghai–Tibet Plateau,

especially in the steepest region between the first and

the second staircases (around 83.88E), suggesting rela-

tively poor correspondences between the d4PDF simu-

lation and the CN05 over the eastern Qinghai–Tibet

Plateau. However, the observed precipitation in the

Qinghai–Tibet Plateauwas not perfect because of sparse

meteorological stations within this region (Fig. 1). The

results could be also illustrated by Fig. 2 and are con-

sistent with the analysis of CMIP5 (Su et al. 2013), which

also reflect the general weakness of rainfall prediction in

GCM simulations because topography is the main influ-

encing factor forcing rainfall patterns (Bader et al. 2008).

2) PRECIPITATION EXTREMES

To assess the extreme precipitation in d4PDF sim-

ulation, spatial distributions of mean six extreme-

precipitation indices from 1981 to 2005 are presented

in Fig. 4. Compared to CN05 and CMIP5, the d4PDF

simulation did well in catching the climatological

mean pattern of extreme precipitation events such as

represented by the annual total wet-day precipitation

(PRCPTOT; see Fig. 4a), the maximum number of

consecutive dry days (CDD; see Fig. 4b), the annual

maximum 1-day precipitation (RX1day; see Fig. 4c),

the annual total precipitation divided by the number

of wet days (SDII; see Fig. 4d), the annual number of

heavy precipitation days (R10mm; see Fig. 4e), and

the annual total precipitation on extremely wet days

(R99p; see Fig. 4f). The extreme precipitation indices

including PRCPTOT, RX1day, SDII, R10mm, and

R99p in southeast China were greater than that in

northwest China. The d4PDF simulations were gener-

ally better than CMIP5 simulations in most of China.

However, d4PDF simulations in RCPTOT, RX1day,

SDII, R10mm, and R99p overestimated the observa-

tions in many places, especially in the eastern Qinghai–

Tibet Plateau, which are consistent with the positive bias

seen in the mean precipitation amounts (see Fig. 2). In

contrast, Fig. 4b shows that all simulations including

d4PDF and CMIP5 underestimated CDD in most re-

gions, especially in northwest China, although d4PDF

TABLE 3. The 25-yr average (1981–2005) seasonal precipitation

(mm month21) from CN05 and d4PDF, the bias (model minus

observed), and the spatial correlation R over all of China.

Season Model Observed Bias R

DJF 21.27 12.81 8.46 0.79

MAM 70.01 45.43 24.58 0.93

JJA 113.52 105.47 8.05 0.85

SON 37.84 37.19 0.65 0.70

FIG. 3. Simulated d4PDF and observed CN05 (a) DJF precipitation (mm month21) and (b) JJA precipitation (mm month21) along a

west–east transect at 30.88N.
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FIG. 4. The 25-yr (1981–2005) averaged (a) PRCPTOT (mm), (b) CDD (day), RX1day (mm), (c) SDII (mmday21), (d) R10mm (day),

and (e) R99p (mm). (left to right) The results for CN05, d4PDF, CMIP5, d4PDF-CN05, and CMIP5-CN05 are displayed. The results for

d4PDF and CMIP5 are the ensemble mean.
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performs better than CMIP5. One possible reason for this

is that the increase of total precipitation would be likely to

contribute to the decline of CDD. Another possible cause

is the common problems of climate models in producing

too much light rain (e.g., drizzle).

To better evaluate the spatial distributions of

mean precipitation extremes from d4PDF simula-

tions, the spatial correlations between all pairs of

datasets in mean precipitation extreme indices were

calculated (Fig. 5). Figure 5 shows that the correlation

matrices confirm the generally good agreement between

the d4PDF simulations and CN05 dataset, with corre-

lation coefficients R being above 0.85 for most extreme

precipitation indices, which suggests d4PDF simulations

were reliable in reflecting the spatial distribution in an-

nual mean extreme precipitation events. Among these,

RX1day (Fig. 5c) has the highest correlation co-

efficients with the value of 0.93, followed by SDII (0.91)

and R99p (0.89) (see Figs. 5c,d,f). In addition, Fig. 5 also

clearly indicates that the spatial correlations between

d4PDF simulations andCN05 observations were better

than those of CMIP5 simulations for all six extreme

precipitation indices. For example, the spatial corre-

lation between d4PDF simulations and CN05 obser-

vations was 0.85, while it was 0.70 between CMIP5

simulations and CN05 observations (Fig. 5b). To better

represent the performance in different places between

d4PDF simulations and the observed CN05 dataset, we

developed Taylor diagrams for all indices in eight re-

gions, which are shown in Fig. S2. Figure S2 indicates that

the model performed relatively poorly in Qinghai–Tibet

(SWC1) and southwest China (SWC2) compared to other

regions, where precipitation is strongly influenced by

complex topography and meteorological monitoring

stations are scarce and unevenly distributed (Fig. 1).

In summary, d4PDF performs well in reproducing the

spatial patterns for all six precipitation indices in China,

and large ensemble simulations have tremendous ad-

vantages in investigating statistical properties for cli-

mate especially for impact-relevant extreme weather

FIG. 5. Spatial correlations R between all pairs of datasets (CN05, d4PDF, and CMIP5) in annual-mean (a) PRCPTOT, (b) CDD,

(c) RX1day, (d) SDII, (e) R10mm, and (f) R99p from 1981 to 2005. The color and size of the circles represent the magnitude of the

correlation.
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events, compared with observed datasets alone or a

handful of CMIP5 simulations.

b. Future changes

1) MEAN PRECIPITATION

Figure 6 shows the spatial distributions, histogram,

and density of future changes (%) in seasonal mean

precipitation over the period 2081–2100 relative to the

reference period 1981–2000. Except for summer, the

d4PDF future projections generally exhibited an in-

crease of 50% over China, and the increasing ampli-

tude was higher in the north than in the south. For

example, Fig. 6a shows that the increase in most regions

of the north of Chinawasmore than 50% inmost seasons;

in particular, a nearly double increase appeared around

the Tarim River basin in winter and autumn, and a more

than threefold increase occurred in the western Qinghai–

Tibet Plateau in summer. Figure 6b indicates that winter

had the largest mean increasing amplitude over China, up

to 54%, followed by autumn (43%) and spring (31%),

with the lowest mean increase in summer (25%). Com-

pared to other seasons, winter has the lowest average

seasonal precipitation. Therefore, the relative changes of

precipitation in winter are likely to become very big even

with a small amount of precipitation increase.

To further understand influences of SST patterns in

future projections, we compared the change of mean

seasonal mean precipitation between future projections

(2081–2100) from each SST pattern and the historic

simulations (1981–2000) (see Fig. S3). The MI SST

pattern was the weakest in projections of winter pre-

cipitation compared with other SST patterns (Fig. S3a),

mainly reflected in northwest China, while the MI and

MP SST patterns were the strongest in projections of

autumn precipitation in northwest China (Fig. S3d).

Also, from Fig. S3c we can see that the sensible in-

crease occurred in the western Qinghai–Tibet Plateau in

summer may mainly come from the contribution of

projections under MI and GF SST patterns.

2) PRECIPITATION EXTREMES

Changes in the spatial distribution of extreme pre-

cipitation indices for all ensemble members (100

for the historical runs and 90 for the future ones) are

shown in Fig. 7. Except for CDD (Fig. 7b), the other

five indices are projected to increase in the most of the

country. The projected percent increases in PRCPTOT,

R10mm, and R99p are larger in northwestern China

than in southeastern China. Also, PRCPTOT, R10mm,

and R99p will be likely to increase by 30%–50% in

most regions, and even about 200% in Tibet Plateau

(Figs. 7a,e,f); the consecutive dry days will be likely to

increase in southern China but decrease in northern

China (Fig. 7b). These tendencies are generally con-

sistent with the results from the CMIP5 simulation

(Zhou et al. 2014), but results obtained here have

FIG. 6. (a) Spatial distribution and (b) histogram and density map of future changes (ratio)

in seasonal mean precipitation over the period 2081–2100 relative to the reference period

1981–2000. The area in the red ellipse in (a) indicates where changes are negative, and the

vertical red line in (b) is for mean changes.
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higher resolution, making it easier to distinguish changes

for the eight subregions.

Figure 8 compares precipitation extreme indices for

all of China between a historical period (1981–2000)

and a future period (2081–2100). Except for CDD,

the other extreme indices are projected to increase for

all six SST patterns during 2081–2100, suggesting that

both total precipitation amount and extreme precipi-

tation events will be likely to increase in the future.

CDD represents maximum number of consecutive

days with precipitation ,1mm, so it should decrease

when the number of days with precipitation .1mm

increases (Fig. 7b). The median changes of PRCPTOT

is simulated to increase from 650 to 820mm, up to

approximately 26% (Fig. 8a), which is higher than the

increase of averaged wet day daily amount (SDII),

revealing that the main reason for increasing total

precipitation is the increasing intensity of precipita-

tion across China, not the variations of the number of

wet days. The predicted percentage increases in RX1day,

R10mm, and R99p are about 35% (from 44 to 54mm),

33% (from 18 to 24 days), and 40% (from 50 to 70mm)

higher than that of PRCPTOT, suggesting a sharp

increase in extreme weather events in the future and a

positive contribution to the total precipitation variation

due to the increased precipitation on very wet days. All

changes are much higher than the results under RCP8.5

for the 24 climate models from the CMIP5 simulation

(Zhou et al. 2014).

Figure 8 also clearly illustrates that future extreme

precipitation events are affected by different SST pat-

terns. Generally, a small difference [for median value,

(max 2 min)/min , 10%] was found in RX1day and

R99p indices, but a relatively large difference [for median

value, (max 2 min)/min . 10%] was found in the

PRCPTOT, SDII, CDD, and R10mm indices. The larg-

est increase in future precipitation amount (PRCPTOT)

is observed from the HA pattern, the median of which is

up to approximately 850mm. The lowest increase is

projected from GF pattern, the median of which is up to

approximately 780mm.

c. Assessment of benefits from a large ensemble

Besides the high resolution, the power of a large

ensemble in d4PDF is the improvement in estimations

of the mean and of statistical distributions. For brevity,

FIG. 7. Relative change (%) in precipitation indices for the future (2081–2110) for (left) 100 historical or 90 future

ensemble members and (right) 1 ensemble member. The 1981–2000 period is used as the base period. Areas with

white indicate where differences are not statistically significant at the 5% level using a Student’s t test.
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two indices, including PRCPTOT and SDII, were se-

lected to show the range in simulated values of re-

gional mean precipitation events with growing number

of ensembles, averaged over all of China for one

year (Fig. 9a). Figure 9a indicates that both the mean

deviation and the tails of the distribution decrease

rapidly with ensemble size, showing that one ensemble

member would give us within 2460 to 1720mm of the

precipitation deviation for China, while it would be

6400mm for 64 members. The same character can be

found for SDII. These advantages illustrate that large

ensemble simulations can reduce the uncertain range of

impact-relevant extreme weather events and be used to

conduct statistical analysis of extreme weather (Li et al.

2015) by improving the signal-to-noise ratio, especially

for capturing the main features of subregions (O’Brien

et al. 2011).

In addition, in Fig. 7, we can conclude that when all 100

historical ensemble members or 90 future ensemble

members are applied to evaluate changes in indices mea-

suring precipitation extremes, we can expect larger area

with statistically significant changes compared to the area

using one ensemble member. For example, areas with no

statistical significance (shown in white) are widely distrib-

uted across China for R99p when using one ensemble

member (Fig. 7f), while considerable areas show statistical

significance (shown in colors) when using 100 or 90 en-

semble members (Fig. 7f), similarly for both northwestern

and southeastern China for CDD and SDII. This advan-

tage may occur because the internal climate variability is

simulated by the unique expression in only one ensemble

member, but could be stated by lots of different expres-

sions in a large ensemble, which is line with the results

obtained from Kay et al. (2015) and Mote et al. (2016).

FIG. 8. Projected changes in all precipitation extremes over the period 2081–2100 relative to the reference period 1981–2000 along with

each delta SST pattern separately. Boxes indicate the interquartile model spread (25th and 75th quartiles) with the horizontal line

indicating the ensemble mean and the whiskers showing the extreme range of the d4PDF ensemble.
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With a large number of ensemble members, d4PDF

also has the ability to better simulate and predict the

probability of extreme climate events, which is shown in

Fig. 9b. From the figure, we can see that the result from

one ensemble member can capture only a small part

of the character of averaged annual maximum daily

precipitation between the historical period and a 14-K

future in southern China, such that the accurate proba-

bility of extreme climate events could not be obtained.

With the increase in the number of ensemble members,

however, the map of frequency histograms becomes

smoother, and it is clear when using 100 or 90 ensemble

members. So, by using a large ensemble, d4PDF provides

one possible way to accurately estimate the proba-

bility of extreme precipitation in both history and

future, and the averaged annual maximum daily pre-

cipitation will be likely to increase by approximately

18% under 14-K future in southern China compared

to the past.

d. Uncertainty analysis for future projection

Figure 10a shows spatial distribution of the total var-

iance ŝtot among all 90 ensemble members (15 ensemble

members 3 6 SST patterns) for the PRCPTOT), the

value of which is ;30% in northwestern China and

;8% in southeastern China. The variance ŝtot con-

tains two parts: one is the component caused by the

difference in six DSST patterns ŝDSST (Fig. 10a) and the

other is caused by the internal variability among 15 en-

semble ensembles ŝint (Fig. 10a). Figure 10a shows the

ratio of ŝDSST to ŝint, which suggests that variances

caused by the difference in six DSST patterns are

larger than those due to internal variability arising from

the chaotic nature of the atmosphere over China, espe-

cially in southern China. The uncertainty in southern

China is also more strongly influenced by differences in

DSST patterns than the internal variability for the ex-

treme precipitation indices (Fig. 10b). These results

clearly indicate the uncertainty in model simulations for

China, even with higher regional spatial resolution used

in this research (Endo et al. 2017; Mizuta et al. 2017).

Differences in DSST patterns are likely to affect pre-

cipitation through tropical cyclones and the Asian

monsoon, which is the main reason why more rainfall

is generally expected to hit southern, southeastern,

and eastern China (Ren et al. 2006).

To better understand the regional differences, two re-

gions with large uncertainty, southern China (208–278N,

1068–1208E) and the Qinghai–Tibet area (278–368N,

778–1068E), were selected to compare regional averages

of ŝtot, ŝDSST, and ŝint for extreme precipitation indices

(Fig. 10c). Except for Rx1day and CDD, the regional

magnitude of average uncertainty value in the Qinghai–

Tibet area is greater than for southern China, especially

for R10mm and R99p, revealing a great deal of com-

plexity and uncertainty in GCM future extreme pre-

cipitation events simulation at high altitudes. The SST

pattern ŝDSST is the major source of uncertainty for

PRCPTOT in these two areas, revealing that SST

patterns in tropical sea are likely to bring about the

changes of larger-scale circulation (e.g., Asian monsoon

activity) and may be the main factor for precipitation

changes. For consecutive dry days (CDD), ŝDSST is

higher than ŝint in southern China, but the opposite is

true in the Qinghai–Tibet area, indicating that the main

source of uncertaintymay be different in the eight regions

FIG. 9. (a) The distribution of the deviation, in the ensemble statistic from the population statistic with increasing

ensemble size for (top) PRCPTOTand (bottom) SDII for 2010 for all of China. Samples of 1, 4, 16, and 64members

were randomly selected from a set of 100 simulations. (b) Frequency histogram of averaged maximum yearly

precipitation between historical and 14-K future in southern China. The color lines represent the mean value.
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of China. These results could be useful when developing

and improving the AGCMs with high-resolution atmo-

spheric models to ensure realistic SST patterns (Endo

et al. 2012; Wuebbles et al. 2014) and some climate

phenomena (e.g., El Niño) (Thirumalai et al. 2017) for

projections.

4. Conclusions

This study evaluated properties of the precipitation

indices of China as simulated by a high-resolution

AGCMwith a large ensemble of projections. The major

findings of this study are summarized as follows: 1) the

overall trend and magnitude of precipitation amounts

and extreme precipitation events were reasonably well

characterized by the historic projections for China for all

four seasons, which is better than the historical simulation

of CMIP5, suggesting that the high-resolution AGCM

can represent localized precipitation extremes without

applying any statistical bias correction; 2) d4PDF future

projections for 4-K-warmer climates had higher resolu-

tion andmade distinguishing changes for eight subregions

compared to the RCP8.5 of CMIP5 simulations; 3) the

potential power of a large-ensemble was demonstrated in

improving simulation precision in both the precipitation

mean and the precipitation extremes; also, the averaged

maximumyearly precipitationwill be likely to increase by

approximately 18%under14-K future in southernChina

FIG. 10. (a) Decomposing of uncertainty for future PRCPTOT: (left to right) the component of ensemble spread

among all members ŝtot (%), the component due to the difference in DSST patterns ŝDSST (%), the component due

to the internal variability seen in the 15 ensemblemembers ŝint (%), and the ratio of ŝDSST to ŝint, in using analysis of

variance (ANOVA) without replication. (b) The ratio of sDSST to sint for precipitation extreme indices. (c)

Area-averaged values of stot, sDSST, and sint for the extreme precipitation indices over southern China (208–278N,

1068–1208E) and the Qinghai–Tibet area (278–368N, 778–1068E). Note that all the values are first calculated on the

original grid and then averaged over the domains.
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compared to the past; and 4) uncertainty in future pre-

cipitation projections was evaluated, suggesting that the

component caused by the difference in six DSST patterns

is more important for total precipitation in southern

China compared with that due to internal variability.

The uncertainty should be further studied combined

with tropical cyclones in future.
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