
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Evaluation and Implementation of Various
Persistent Storage Options for CMSWEB Services
in Kubernetes Infrastructure at CERN
To cite this article: Muhammad Imran et al 2023 J. Phys.: Conf. Ser. 2438 012035

 

View the article online for updates and enhancements.

You may also like
Microstructural evolution in S31042 heat-
resistant steel after service and the effect
on hardness
Xiao Jin, Xianxi Xia, Baoyin Zhu et al.

-

The use of kernel principal component
analysis and discrete wavelet transform to
determine the gas and oil interface
Mohammad Heidary

-

Estimation of anisotropy parameters for
shales based on an improved rock physics
model, part 2: case study
Feng Zhang

-

This content was downloaded from IP address 184.174.126.96 on 28/09/2023 at 04:04

https://doi.org/10.1088/1742-6596/2438/1/012035
/article/10.1088/1742-6596/2338/1/012001
/article/10.1088/1742-6596/2338/1/012001
/article/10.1088/1742-6596/2338/1/012001
/article/10.1088/1742-2132/12/3/386
/article/10.1088/1742-2132/12/3/386
/article/10.1088/1742-2132/12/3/386
/article/10.1088/1742-2140/aa5afa
/article/10.1088/1742-2140/aa5afa
/article/10.1088/1742-2140/aa5afa


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012035

IOP Publishing
doi:10.1088/1742-6596/2438/1/012035

1

Evaluation and Implementation of Various Persistent

Storage Options for CMSWEB Services in

Kubernetes Infrastructure at CERN

Muhammad Imran1,2, Valentin Kuznetsov3, Panos Paparrigopoulos1,
Spyridon Trigazis1 and Andreas Pfeiffer1

1 CERN, Geneva, Switzerland
2 National Centre for Physics, Islamabad, Pakistan
3 Cornell University, New York, USA

E-mail:
muhammad.imran@cern.ch,vkuznet@protonmail.com,panos.paparrigopoulos@cern.ch,

spyridon.trigazis@cern.ch,andreas.pfeiffer@cern.ch

Abstract. This paper summarizes the various storage options that we implemented for the
CMSWEB cluster in Kubernetes infrastructure. All CMSWEB services require storage for
logs, while some services also require storage for data. We also provide a feasibility analysis of
various storage options and describe the pros/cons of each technique from the perspective of
the CMSWEB cluster and its users. In the end, we also propose recommendations according to
the service needs. The first option is the CephFS which can be mounted multiple times across
various clusters and VMs and works very well with k8s. We use it both for data and the logs.
The second option is the Cinder volume. It is the block storage that runs the filesystem on top
of it. It can only be attached to one instance at a time. We use this option only for the data.
The third option is S3 storage. It is object storage that offers a scalable storage service that
can be used by applications compatible with the Amazon S3 protocol. It is used for the logs.
For S3, we explored two mechanisms. For the first scenario, we consider fluentd that runs as
a sidecar container in the service pods and sends logs to S3 bucket. For the second scenario,
we considered filebeat that runs as a sidecar container in the service pod and scaps those logs
to fluentd which runs as a daemonset in each node and sends those logs to S3 in the end. The
fourth option is EOS. We configured EOS inside the pods of the CMSWEB services. The fifth
option that we explored is to use dedicated VMs that have Ceph volume attached to them. In
EOS and VM, the logs from the service pods are sent to EOS/VM using the rsync approach.
The last option is to send service logs to Elasticsearch. It has been implemented using fluentd
that runs as a daemonset in each node. In parallel to the sending logs to S3 fluentd also sends
those logs to the Elasticsearch infrastructure at CERN.

1. Introduction
The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider
(LHC) at CERN, Geneva, Switzerland [1]. The CMS experiment runs hundreds of thousands
of jobs daily on its distributed computing system to simulate, reconstruct and analyse the
data taken during collision runs. A dedicated cluster (“CMSWEB”) is used to host essential
CMS central services which are responsible for the CMS data management, data discovery, and
various data bookkeeping tasks. The cluster was based on virtual machines (VMs) on the CERN



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012035

IOP Publishing
doi:10.1088/1742-6596/2438/1/012035

2

OpenStack cloud infrastructure. Recently, we migrated CMSWEB VM cluster to Kubernetes
(k8s) infrastructure to enhance the sustainability of CMSWEB services [2, 3].

This paper gives brief summary of the various storage options that we implemented and
explored for the CMSWEB cluster in k8s infrastructure. All CMSWEB services require storage
for logs, while some services also require storage for data. We provide a feasibility analysis
of various storage options and describe the pros/cons of each technique from the perspective
of the CMSWEB cluster and its users. As an outcome of this analysis, we also propose
recommendations of the storage option according to the service needs.

The remainder of this paper is organized as follows. Section 2 describes various persistent
storage options that we implemented for CMSWEB services in k8s infrastructure. Section 3
presents the feasibility analysis of these storage options. Finally, we conclude in Section 4.

2. Persistent Storage Options for CMSWEB Services
In this section, we briefly describe the various storage options that we evaluated for the
CMSWEB cluster in k8s infrastructure. These storage options are described below:

2.1. EOS
EOS Open Storage (EOS) is a software solution that aims to provide fast and reliable multi-PB
disk-only storage technology for both LHC and non-LHC use-cases at CERN [4]. In the VM
cluster, we used EOS for archiving logs while in the k8s cluster, we tested it by configuring
EOS inside the pods of the CMSWEB services. Logs from the pods are sent to EOS using
the rsync approach. The rsync is a utility for efficiently transferring and synchronizing files
across networked computers by comparing the modification times and sizes of files at predefined
interval as shown in Figure 1. Logs between intervals are lost if the service container restarts.

 
rync

EOS

Frontend Pod

Frontend Pod

Figure 1. Logs from services pods are
transferred to EOS using rsync approach
at interval

 
rync

Frontend Pod

Frontend Pod

Figure 2. Logs from services pods are
transferred to dedicated VM using rsync
approach at interval

2.2. Dedicated VM
In the VM cluster, we used a dedicated VM to provide few days of logs to users while in the
k8s cluster, we implemented the same technique using rsync approach to a dedicated VM. Logs
from the pods are sent to the dedicated VM at predefined interval as shown in Figure 2. Similar
to EOS, logs between intervals are lost if the service container restarts.

2.3. CephFS
The Ceph File System (CephFS), is a POSIX-compliant file system built on top of Ceph’s
distributed object store, RADOS. CephFS endeavors to provide a state-of-the-art, multi-use,



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012035

IOP Publishing
doi:10.1088/1742-6596/2438/1/012035

3

CephFS
Shares

Frontend Pod

Frontend Pod

Mounted

Figure 3. Data/logs from services pods are stored in CephFS shares which are mounted on
VM and become accessible to users.

Cinder Volume

 
Crabcache

 
Monitoring

Cinder Volume

Figure 4. Cinder volumes are attached to service pods in one to one relationship and can only
be accessed within a pod.

highly available, and performant file store for a variety of applications [5]. CephFS shares can
be mounted multiple times across various clusters/VMs, and works very well with k8s. We can
use it both for data and the logs. The data/logs are available to the users in real-time as shown
in Figure 3 where Apache logs and Filebeat data are stored. However, the service availability
depends upon CephFS shares. The other drawback is the slow grep operation for searching logs.

2.4. Cinder
Cinder is a Block Storage service for OpenStack that runs the filesystem on top of it. Cinder
virtualizes the management of block storage devices and provides end users with a self service
API to request and consume those resources without requiring any knowledge of where their
storage is actually deployed or on what type of device [6]. It can only be attached to one instance
at a time as shown in Figure 4 but it can be detached/reattached. We use this option where
a large amount of storage for the data is needed for singleton services. We cannot mount it to
any VM and it is accessible via services pod only.

2.5. S3 using Fluentd
S3 is an object storage that offers a scalable storage service that can be used by applications
compatible with the Amazon S3 protocol [7]. We tested it with the combination of fluentd which



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012035

IOP Publishing
doi:10.1088/1742-6596/2438/1/012035

4

AWS ClientsS3 Bucket

sync

Frontend Pod

 
Crabserver Pod

Figure 5. Services pods use fluentd to scrap logs to S3 bucket from where these become available
via AWS clients or synced to VM

AWS ClientsS3 Bucket

sync

 
Frontend Pod 

filebeat

 
Crabserver Pod

filebeat

Elasticsearch

Figure 6. Services pods use filebeat to scrap logs to fluentd which aggregates and sends them
to S3 bucket and elastic search in parallel fashion. Logs are accessed using AWS clients or are
synced to a VM.

we run as a sidecar container as shown in Figure 5. The fluentd is an open source data collector
for unified logging layer [8]. The fluentd scraps logs from container and sends them to the S3
bucket at predefined interval. The logs from S3 bucket are then copied to the dedicated VM
using sync or these can be fetched via AWS clients as shown in Figure 5. We tested this scheme
for the logs. This scheme has the drawback of data lost for the interval timespan if the service
container restarts.

2.6. S3 and Elasticsearch using Filebeat and Fluentd
The mechanism of this scheme is shown in Figure 6. Here services pod run filebeat as a sidecar
container. The filebeat is a lightweight shipper for logs [9]. The filebeat scraps logs to fluentd in
real time. The fluentd daemon sends logs in parallel to S3 bucket and elasticsearch at predefined



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012035

IOP Publishing
doi:10.1088/1742-6596/2438/1/012035

5

interval. The logs are then synced to VM from S3 bucket using AWS clients. Unlike the previous
S3 using fluentd technique, the logs are not lost with a container restart. Users can access logs
from Elasticsearch as well using a GUI. However, the main shortcoming of this strategy is an
extra metadata in the log entry, i.e. a podname and complex workflow which requires proper
setup and maintenance

3. Feasibility Analysis
In this section, we discuss about the feasibility analysis of various techniques that we
explored/implemented for CMSWEB services. This analysis is summarized in Table 1. The
logs are accessible in real time in case of CephFS and Cinder storage while for all other schemes
these are available after interval. We can use Cinder only for data as it can not be mounted on
any other VM while we can use CephFS for both data/logs as it can be mounted on separate VMs
from where users can access data/logs. All other schemes can be used only for logs. Searching
is slow in CephFS while in case of Cinder we can get access to data within pod only. For all
other cases, searching is efficient. Data can be lost in the scheme where container restarts for
some reason within predefined intervals. The services have dependencies for CephFS and Cinder
storages i.e., in case of any issues with the storage, service become unavailable.

From above analysis, we recommend the use of S3 and Elasticsearch using Filebeat and
Fluentd for maintaining logs, Cinder for large data volumes e.g. DB back-end, and CephFS for
service data storage e.g. cache.

Table 1. Feasibility analysis of various techniques with respect to different criteria
Storage Options Accessibility Usage Searching Data Lost Service Dependency
EOS At interval Logs Easy Yes No
Dedicated VM At interval Logs Easy Yes No
CephFS Real time Data/Logs Slow grep No Yes
Cinder Real time Data Only in pod No Yes
S3 using Fluentd At interval Logs Easy Yes No
S3 and Elasticsearch using
Filebeat and Fluentd At interval Logs Easy No No

4. Conclusions
In this paper, we investigated the feasibility of various persistent storage options for logs and
data for the CMSWEB k8s cluster. A number of different storage options such as file-system-like
(EOS), block storage (Cinder), shares (CephFS) and object-store-like (S3) were evaluated and
outline the benefits and drawbacks of each strategy from the CMSWEB cluster’s and users’
perspectives. From our analysis, we recommend the use of S3 and Elasticsearch using Filebeat
and Fluentd for maintaining logs, Cinder for large data volumes e.g. DB backend, and CephFS
for service data storage e.g. cache.

References
[1] CMS Collaboration 2008 Jinst 803 S08004
[2] Imran M and et al 2021 PoS ICHEP2020 911
[3] Imran M and et al 2021 Cluster Computing 1–15
[4] EOS Storage at CERN Website: https://github.com/cern-eos/eos last accessed: 29.11.2021
[5] Cephfs storage Website: https://docs.ceph.com/docs/master/cephfs last accessed: 04.14.2020
[6] Cinder storage in openstack Website: https://wiki.openstack.org/wiki/Cinder last accessed: 04.14.2020
[7] Mascetti L and et al 2020 EPJ Web of Conferences vol 245 (EDP Sciences) p 04038
[8] Fluentd Website: https://www.fluentd.org/ last accessed: 29.11.2021
[9] Filebeat middleware Website: https://www.elastic.co/beats/filebeat last accessed: 29.11.2021


