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Abstract

Background: The National Early Warning Score (NEWS2) is currently recommended in the UK for the risk

stratification of COVID-19 patients, but little is known about its ability to detect severe cases. We aimed to evaluate

NEWS2 for the prediction of severe COVID-19 outcome and identify and validate a set of blood and physiological

parameters routinely collected at hospital admission to improve upon the use of NEWS2 alone for medium-term

risk stratification.

Methods: Training cohorts comprised 1276 patients admitted to King’s College Hospital National Health Service

(NHS) Foundation Trust with COVID-19 disease from 1 March to 30 April 2020. External validation cohorts included

6237 patients from five UK NHS Trusts (Guy’s and St Thomas’ Hospitals, University Hospitals Southampton, University

Hospitals Bristol and Weston NHS Foundation Trust, University College London Hospitals, University Hospitals

Birmingham), one hospital in Norway (Oslo University Hospital), and two hospitals in Wuhan, China (Wuhan Sixth

Hospital and Taikang Tongji Hospital). The outcome was severe COVID-19 disease (transfer to intensive care unit

(ICU) or death) at 14 days after hospital admission. Age, physiological measures, blood biomarkers, sex, ethnicity,

and comorbidities (hypertension, diabetes, cardiovascular, respiratory and kidney diseases) measured at hospital

admission were considered in the models.
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Results: A baseline model of ‘NEWS2 + age’ had poor-to-moderate discrimination for severe COVID-19 infection at

14 days (area under receiver operating characteristic curve (AUC) in training cohort = 0.700, 95% confidence interval

(CI) 0.680, 0.722; Brier score = 0.192, 95% CI 0.186, 0.197). A supplemented model adding eight routinely collected

blood and physiological parameters (supplemental oxygen flow rate, urea, age, oxygen saturation, C-reactive

protein, estimated glomerular filtration rate, neutrophil count, neutrophil/lymphocyte ratio) improved discrimination

(AUC = 0.735; 95% CI 0.715, 0.757), and these improvements were replicated across seven UK and non-UK sites.

However, there was evidence of miscalibration with the model tending to underestimate risks in most sites.

Conclusions: NEWS2 score had poor-to-moderate discrimination for medium-term COVID-19 outcome which raises

questions about its use as a screening tool at hospital admission. Risk stratification was improved by including

readily available blood and physiological parameters measured at hospital admission, but there was evidence of

miscalibration in external sites. This highlights the need for a better understanding of the use of early warning

scores for COVID.

Keywords: NEWS2 score, Blood parameters, COVID-19, Prediction model

Key messages

� The National Early Warning Score (NEWS2),

currently recommended for stratification of severe

COVID-19 disease in the UK, showed poor-to-

moderate discrimination for medium-term outcomes

(14-day transfer to intensive care unit (ICU) or

death) amongst COVID-19 patients.

� Risk stratification was improved by the addition of

routinely measured blood and physiological

parameters routinely at hospital admission

(supplemental oxygen, urea, oxygen saturation, C-

reactive protein, estimated glomerular filtration rate,

neutrophil count, neutrophil/lymphocyte ratio)

which provided moderate improvements in a risk

stratification model for 14-day ICU/death.

� This improvement over NEWS2 alone was

maintained across multiple hospital trusts, but the

model tended to be miscalibrated with risks of

severe outcomes underestimated in most sites.

� We benefited from existing pipelines for informatics

at King’s College Hospital such as CogStack that

allowed rapid extraction and processing of electronic

health records. This methodological approach

provided rapid insights and allowed us to overcome

the complications associated with slow data

centralisation approaches.

Background
As of 9 December 2020, there have been > 67 million

confirmed cases of COVID-19 disease worldwide [1].

While approximately 80% of infected individuals have

mild or no symptoms [2], some develop severe COVID-

19 disease requiring hospital admission. Within the

subset of those requiring hospitalisation, early identifica-

tion of those who deteriorate and require transfer to an

intensive care unit (ICU) for organ support or may die is

vital.

Currently, available risk scores for deterioration of

acutely ill patients include (i) widely used generic ward-

based risk indices such as the National Early Warning

Score (NEWS2, [3]), (ii) the Modified Sequential Organ

Failure Assessment (mSOFA) [4] and Quick Sequential

Organ Failure Assessment [5] scoring systems, and (iii)

the pneumonia-specific risk index, CURB-65 [6] which

combines physiological observations with limited blood

markers and comorbidities. NEWS2 is a summary score

of six physiological parameters or ‘vital signs’ (respira-

tory rate, oxygen saturation, systolic blood pressure,

heart rate, level of consciousness, temperature and sup-

plemental oxygen dependency) used to identify patients

at risk of early clinical deterioration in the United

Kingdom (UK) National Health Service (NHS) hospitals

[7, 8] and primary care. Some components (in particular,

patient temperature, oxygen saturation, and supplemen-

tal oxygen dependency) have been associated with

COVID-19 outcomes [2], but little is known about their

predictive value for COVID-19 disease severity in hospi-

talised patients [9]. Additionally, a number of COVID-

19-specific risk indices are being developed [10, 11] as

well as unvalidated online calculators [12], but generalis-

ability is unknown [13]. A Chinese study has suggested a

modified version of NEWS2 with the addition of age

only [14] but without any data on performance. With

near-universal usage of NEWS2 in UK NHS Trusts since

March 2019 [15], a minor adaptation to NEWS2 would

be relatively easy to implement.

As the SARS-Cov2 pandemic has progressed, a num-

ber of risk prediction models to support clinical deci-

sions, triage, and care in hospitalised patients have been

proposed [13] incorporating potentially useful blood bio-

markers [2, 16–19]. These include neutrophilia and lym-

phopenia, particularly in older adults [11, 18, 20, 21];
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neutrophil-to-lymphocyte ratio [22]; C-reactive protein

(CRP) [13]; lymphocyte-to-CRP ratio [22]; markers of

liver and cardiac injury such as alanine aminotransferase

(ALT), aspartate aminotransferase (AST), and cardiac

troponin [23]; and elevated D-dimers, ferritin and fi-

brinogen [2, 6, 8].

Our aim is to evaluate the NEWS2 score and identify

which clinical and blood biomarkers routinely measured

at hospital admission can improve medium-term risk

stratification of severe COVID-19 outcome at 14 days

from hospital admission. Our specific objectives were as

follows:

1. To explore independent associations of routinely

measured physiological and blood parameters

(including NEWS2 parameters) at hospital

admission with disease severity (ICU admission or

death at 14 days from hospital admission), adjusting

for demographics and comorbidities

2. To develop a prediction model for severe COVID-

19 outcomes at 14 days combining multiple blood

and physiological parameters

3. To compare the discrimination, calibration, and

clinical utility of the resulting model with NEWS2

score and age alone using (i) internal validation and

(ii) external validation at seven UK and

international sites

A recent systematic review found that most existing

prediction models for COVID-19 had a high risk of bias

due to non-representative samples, model overfitting, or

poor reporting [13]. The analyses presented here build

upon our earlier work [24] which suggested that adding

age and common blood biomarkers to the NEWS2 score

could improve risk stratification in patients hospitalised

with COVID-19. While incorporating external valid-

ation, this preliminary work was limited in that the

training sample comprised 439 patients (the cohort

available at the time of model development). In the

present study, we (i) expand the cohort used for model

development to all 1276 patients at King’s College

Hospital (KCH), (ii) use hospital admission (rather than

symptom onset) as the index date, (iii) consider shorter-

term outcomes (3-day ICU/death), (iv) improve the

reporting of model calibration and clinical utility, and

(v) increase the number of external sites from three to

seven.

Methods
Study cohorts

The KCH training cohort (n = 1276) was defined as all

adult inpatients testing positive for severe acute respira-

tory syndrome coronavirus 2 (SARS-Cov2) by reverse

transcription polymerase chain reaction (RT-PCR)

between 1 March and 31 April 2020 at two acute hospi-

tals (King’s College Hospital and Princess Royal Univer-

sity Hospital) in South East London (UK) of Kings

College Hospital NHS Foundation Trust (KCH). All pa-

tients included in the study had symptoms consistent

with COVID-19 (e.g. cough, fever, dyspnoea, myalgia,

delirium, diarrhoea). For external validation purposes,

we used seven cohorts:

1. Guy’s and St Thomas’ Hospital NHS Foundation

Trust (GSTT) of 988 cases (3 March 2020 to 26

August 2020)

2. University Hospitals Southampton NHS Foundation

Trust (UHS) of 633 cases (7 March to 6 June 2020)

3. University Hospitals Bristol and Weston NHS

Foundation Trust (UHBW) of 190 cases (12 March

to 11 June 2020)

4. University College Hospital London (UCH) of 411

cases (1 February to 30 April 2020)

5. University Hospitals Birmingham (UHB) of 1037

cases (1 March to 31 June 2020)

6. Oslo University Hospital (OUH) of 163 cases (6

March to 13 June 2020)

7. Wuhan Sixth Hospital and Taikang Tongji Hospital

of 2815 cases (4 February 2020 to 30 March 2020)

Data were extracted from structured and/or unstruc-

tured components of electronic health records (EHR) in

each site as detailed below.

Measures

Outcome

For all sites, the outcome was severe COVID-19 disease

at 14 days following hospital admission, categorised as

transfer to the ICU/death (WHO-COVID-19 Outcomes

Scales 6–8) vs. not transferred to the ICU/death (scales

3–5) [25]. For nosocomial patients (patients with symp-

tom onset after hospital admission), the endpoint was

defined as 14 days after symptom onset. Dates of hos-

pital admission, symptom onset, ICU transfer, and death

were extracted from electronic health records or ascer-

tained manually by a clinician.

Blood and physiological parameters

We included blood and physiological parameters that

were routinely obtained at hospital admission and which

are routinely available in a wide range of national and

international hospital and community settings. Measures

available for fewer than 30% of patients were not consid-

ered (including Troponin-T, Ferritin, D-dimers and

glycated haemoglobin (HbA1c), Glasgow Coma Scale

score). We excluded creatinine since this parameter cor-

relates highly (r > 0.8) with, and is used in the derivation

of, estimated glomerular filtration rate. We excluded
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white blood cell count (WBCs) which is highly corre-

lated with neutrophil and lymphocyte counts.

The candidate blood parameters therefore comprised

albumin (g/L), C-reactive protein (CRP; mg/L), esti-

mated glomerular filtration rate (GFR; mL/min),

haemoglobin (g/L), lymphocyte count (× 109/L), neutro-

phil count (× 109/L), platelet count (PLT; × 109/L),

neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-

CRP ratio [22], and urea (mmol/L). The candidate

physiological parameters included the NEWS2 total

score, as well as the following parameters: respiratory

rate (breaths per minute), oxygen saturation (%), supple-

mental oxygen flow rate (L/min), diastolic blood pres-

sure (mmHg), systolic blood pressure (mmHg), heart

rate (beats/min), and temperature (°C). For all parame-

ters, we used the first available measure up to 48 h fol-

lowing hospital admission.

Demographics and comorbidities

Age, sex, ethnicity and comorbidities were considered.

Self-defined ethnicity was categorised as White vs. non-

White (Black, Asian, or other minority ethnic) and

patients with ethnicity recorded as ‘unknown/mixed/

other’ were excluded (n = 316; 25%). Binary variables

were derived for comorbidities: hypertension, diabetes,

heart disease (heart failure and ischemic heart disease),

respiratory disease (asthma and chronic obstructive pul-

monary disease (COPD)), and chronic kidney disease.

Data processing

King’s College Hospital

Data were extracted from the structured and unstruc-

tured components of the electronic health record (EHR)

using natural language processing (NLP) tools belonging

to the CogStack ecosystem [26], namely MedCAT [27]

and MedCATTrainer [28]. The CogStack NLP pipeline

captures negation, synonyms, and acronyms for medical

Systematised Nomenclature of Medicine Clinical Terms

(SNOMED-CT) concepts as well as surrounding

linguistic context using deep learning and long short-

term memory networks. MedCAT produces unsuper-

vised annotations for all SNOMED-CT concepts

(Additional file 1: Table S1) under parent terms Clinical

Finding, Disorder, Organism, and Event with disambigu-

ation, pre-trained on MIMIC-III [29]. Starting from our

previous model [30], further supervised training im-

proved detection of annotations and meta-annotations

such as experiencer (is the annotated concept experi-

enced by the patient or other), negation (is the concept

annotated negated or not), and temporality (is the con-

cept annotated in the past or present) with MedCAT-

Trainer. Meta-annotations for hypothetical, historical,

and experiencer were merged into “Irrelevant” allowing

us to exclude any mentions of a concept that did not

directly relate to the patient currently. Performance of

the NLP pipeline for comorbidities mentioned in the

text was evaluated on 4343 annotations in 146 clinical

documents by a clinician (JT). F1 scores, precision, and

recall are presented in Additional file 2: Table S2.

Guy’s and St Thomas’ NHS Foundation Trust

Electronic health records from all patients admitted to

Guy’s and St Thomas’ NHS Foundation Trust who had a

positive COVID-19 test result between 3 March and 21

May 2020, inclusive, were identified. Data were extracted

using structured queries from six complementary

platforms and linked using unique patient identifiers.

Data processing was performed using Python 3.7 [31].

The process and outputs were reviewed by a study

clinician.

University Hospitals Southampton

Data were extracted from the structured components of

the UHS CHARTS EHR system and data warehouse.

Data were transformed into the required format for val-

idation purposes using Python 3.7 [31]. Diagnosis and

comorbidity data of interest were gathered from the

International Statistical Classification of Diseases (ICD-

10) coded data. No unstructured data extraction was re-

quired for validation purposes. The process and outputs

were reviewed by an experienced clinician prior to

analysis.

University Hospitals Bristol and Weston NHS Foundation

Trust

Data were extracted from UHBW electronic health re-

cords system (Medway). ICD-10 codes were used for

diagnosis and comorbidity data. Data were transformed

in line with project specifications and exported for ana-

lysis in Python 3.7 [31].

University College Hospital London

Dates of hospital admission, symptom onset, ICU trans-

fer, and death were extracted from electronic health

records. The outcome (14-day ICU/death) was defined

in UCLH as ‘initiation of ventilatory support (con-

tinuous positive airway pressure, non-invasive ventila-

tion, high-flow nasal cannula oxygen, invasive

mechanical ventilation, or extracorporeal membrane

oxygenation) or death’ which is consistent WHO-

COVID-19 Outcomes Scales 6–8.

Wuhan cohort

Demographic, premorbid conditions, clinical symptoms

or signs at presentation, laboratory data, and treatment

and outcome data were extracted from electronic med-

ical records using a standardised data collection form by

a team of experienced respiratory clinicians, with double
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data checking and involvement of a third reviewer where

there was disagreement. Anonymised data was entered

into a password-protected computerised database.

University Hospitals Birmingham

Dates of hospital admission, symptom onset, ICU trans-

fer, and death were extracted from electronic health

records using the Prescribing Information and Commu-

nications System (PICS) system. The extracted data was

transformed into the required format for validation pur-

poses using Python 3.8 [31]. Diagnosis and comorbidity

data of interest were gathered from ICD-10 coded data.

The outcomes (3- and 14-day ICU/death) were defined

consistent with WHO-COVID-19 Outcomes Scales 6–8.

Oslo University Hospital

All admitted patients with confirmed COVID-19 by

positive SARS-CoV2 PCR were included in a quality

registry. Data input into the register was manual. Regis-

ter data was supplemented with test results from the la-

boratory information system (LIS) by matching exported

Excel files from the register with exported Excel files

from LIS. The fidelity of the match was checked against

the original data source manually for a small number of

patients. Only patients with symptoms consistent with

COVID-19 were included in the study.

Statistical analyses

All continuous parameters were winsorized (at 1% and

99%) and scaled (mean = 0; standard deviation = 1) to

facilitate interpretability and comparability [32]. Loga-

rithmic or square root transformations were applied to

skewed parameters. To explore independent associations

of blood and physiological parameters with 14-day ICU/

death (objective 1), we used logistic regression with

Firth’s bias reduction method [33]. Each parameter was

tested independently, adjusted for age and sex (model 1),

and then additionally adjusted for comorbidities (model

2). P values were adjusted using the Benjamini-

Hochberg procedure to keep the false discovery rate

(FDR) at 5% [34].

To evaluate NEWS2 and identify parameters that

could improve prediction of severe COVID-19 outcomes

(objectives 2 and 3), we used regularised logistic regres-

sion with a least absolute shrinkage and selection

operator (LASSO) estimator that shrinks parameters

according to their variance, reduces overfitting, and en-

ables automatic variable selection [35]. The optimal

degree of regularisation was determined by identifying a

tuning parameter λ using cross-validation. To avoid

overfitting and to reduce the number of false-positive

predictors, λ was selected to give a model with an area

under the receiver operating characteristic curve (AUC)

one standard error below the ‘best’ model. To evaluate

the predictive performance of our model on new cases

of the same underlying population (internal validation),

we performed nested cross-validation (10-folds the for

inner loop; 10-folds/1000 repeats for the outer loop).

Discrimination was assessed using AUC and Brier score.

Missing feature information was imputed using k-nearest

neighbour (kNN) imputation (k = 5). All steps (feature

selection, winsorizing, scaling, and kNN imputation)

were incorporated within the model development and

selection process to avoid data leakage that would other-

wise result in optimistic performance measures [36]. All

analyses were conducted with Python 3.8 [31] using the

statsmodels [37] and Scikit-Learn [38] packages.

We evaluated the transportability of the derived regu-

larised logistic regression model in external validation

samples from GSTT (n = 988), UHS (n = 633), UHBW

(n = 190), UCH (n = 411), UHB (n = 1037), OUH (n =

163), and Wuhan (n = 2815). Validation used LASSO lo-

gistic regression models trained on the KCH training

sample, with code and pre-trained models shared via

GitHub.1 Models were assessed in terms of discrimin-

ation (AUC, sensitivity, specificity, Brier score), calibra-

tion, and clinical utility (decision curve analysis, number

needed to evaluate) [32, 39]. Moderate calibration was

assessed by plotting model-predicted probabilities (x-

axis) against observed proportions (y-axis) with locally

estimated scatterplot smoothing (LOESS) and logistic

curves [40]. Clinical utility was assessed using decision

curve analysis where ‘net benefit’ was plotted against a

range of threshold probabilities. Unlike diagnostic per-

formance measures, decision curves incorporate prefer-

ences of the clinician and patient. The threshold

probability (pt) is where the expected benefit of treat-

ment is equal to the expected benefit of avoiding treat-

ment [41]. Net benefit was calculated by counting the

number of true positives (predicted risk > pt and experi-

enced severe COVID-19 outcome) and false positives

(predicted risk > pt but did not experience severe

COVID-19 outcome) and using the below formula:

Net benefit ¼
True positives

N
−

False positives

N
�

pt
1 − pt

Our model was developed as a screening tool, to iden-

tify at hospital admission patients at risk of more severe

outcomes. The intended treatment for patients with a

positive result from this model would be further examin-

ation by a clinician, who would make recommendations

regarding appropriate treatment (e.g. earlier transfer to

the ICU, intensive monitoring, treatment). We compared

the decision curve from our model to two extreme cases

of ‘treat none’ and ‘treat all’. The ‘treat none’ (i.e. routine

management) strategy implies that no patients would be

1https://github.com/ewancarr/NEWS2-COVID-19
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selected for further examination by a clinician; the ‘treat

all’ strategy (i.e. intensive management) implies that all

patients would undergo further assessment. A model is

clinically beneficial if the model-implied net benefit is

greater than either the ‘treat none’ or ‘treat all’ strategies.

Since the intended strategy involves a further examin-

ation by a clinician, and is therefore low risk, our

emphasis throughout is on avoiding false negatives (i.e.

failing to detect a severe case) at the expense of false

positives. We therefore used thresholds of 30% and 20%

(for 14-day and 3-day outcomes, respectively) to

calculate sensitivity and specificity. This gave a better

balance of sensitivity vs. specificity and reflected the

clinical preference to avoid false negatives for the pro-

posed screening tool.

Sensitivity analyses

We conducted five sensitivity analyses. First, to explore

the ability of NEWS2 to predict shorter-term severe

COVID-19 outcome, we developed models for ICU

transfer/death at 3 days following hospital admission. All

steps described above were repeated, including training

(feature selection) and external validation. Second, fol-

lowing recent studies suggesting sex differences in

COVID-19 outcome [18], we tested interactions between

each physiological and blood parameters and sex using

likelihood-ratio tests. Third, we repeated all models with

adjustment for ethnicity in the subset of individuals with

available data for ethnicity (n = 960 in the KCH training

sample). Fourth, to explore the differences between

community-acquired vs. nosocomial infection, we re-

peated all models after excluding 153 nosocomial pa-

tients (n = 1123). Finally, we considered an alternative

baseline model of ‘NEWS2 only’. Our primary analyses

used a baseline model of ‘NEWS2 + age’ because

NEWS2 is rarely used in isolation for prognostication

and treatment decisions will incorporate other patient

characteristics such as age.

Results
Descriptive analyses

The KCH training cohort comprised 1276 patients ad-

mitted with a confirmed diagnosis of COVID-19 (from 1

March to 31 April 2020) of whom 389 (31%) were trans-

ferred to the ICU or died within 14 days of hospital

admission, respectively. The validation cohorts com-

prised 6237 patients across seven sites. At UK NHS

trusts, 30 to 42% of patients were transferred to the ICU

or died within 14 days of admission. Disease severity was

lower in the Wuhan sample, where 4% were transferred

to the ICU or died. Table 1 presents the demographic

and clinical characteristics of the training and validation

cohorts. The UK sites were similar in terms of age and

sex, with patients tending to be older (median age 59–

74) and male (58 to 63%) but varied in the proportion of

patients of non-White ethnicity (from 10% at UHS to

40% at KCH and UCH). Blood and physiological param-

eters were broadly consistent across UK sites.

Logistic regression models were used to assess inde-

pendent associations between each variable and severe

COVID-19 outcome (ICU transfer/death) in the KCH

cohort. Additional file 3: Table S3 presents odds ratios

adjusted for age and sex (model 1) and comorbidities

(model 2), sorted by effect size. Increased odds of trans-

fer to the ICU or death by 14 days were associated with

NEWS2 score, oxygen flow rate, respiratory rate, CRP,

neutrophil count, urea, neutrophil/lymphocyte ratio,

heart rate, and temperature. Reduced odds of severe out-

comes were associated with lymphocyte/CRP ratio, oxy-

gen saturation, estimated GFR, and albumin.

Evaluating NEWS2 score for prediction of severe COVID-

19 outcome

Logistic regression models were used to evaluate a base-

line model containing hospital admission NEWS2 score

and age for the prediction of severe COVID-19 out-

comes at 14 days. Internally validated discrimination for

the KCH training sample was moderate (AUC = 0.700;

95% confidence interval (CI) 0.680, 0.722; Brier score =

0.192; 0.186, 0.197; Table 2). Discrimination remained

poor-to-moderate in UK validation sites (AUC = 0.623 to

0.729) but was moderate-to-good in Norway (AUC =

0.786) and Wuhan hospitals (AUC= 0.815) (Figs. 1 and 2).

Calibration was inconsistent with risks underestimated in

some sites (UHS, GSTT) and overestimated in others

(UHBW, UHB; Fig. 2).

Supplementing NEWS2 with routinely collected blood and

physiological parameters

We considered whether routine blood and physiological

parameters could improve risk stratification for

medium-term COVID-19 outcome (ICU transfer/death

at 14 days). When adding demographic, blood, and

physiological parameters to NEWS2, nine features were

retained following LASSO regularisation, in order of

effect size: NEWS2 score, supplemental oxygen flow

rate, urea, age, oxygen saturation, CRP, estimated GFR,

neutrophil count, and neutrophil/lymphocyte ratio. Not-

ably, comorbid conditions were not retained when added

in subsequent models, suggesting most of the variance

explained was already captured by the included parame-

ters. Internally validated discrimination in the KCH

training sample was moderate (AUC = 0.735; 95% CI

0.715, 0.757) but improved compared to ‘NEWS2 + age’

(Table 2). This improvement over NEWS2 alone was

replicated in validation samples (Fig. 1). The supple-

mented model continued to show evidence of substantial

miscalibration.
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Sensitivity analyses

For the 3-day endpoint, 13% of patients at KCH (n =

163) and between 16 and 29% of patients in the UK

and Norway were transferred to the ICU or died

(Table 1). The 3-day model retained just two parame-

ters following regularisation: NEWS2 score and sup-

plemental oxygen flow rate. For the baseline model

(‘NEWS2 + age’), discrimination was moderate at in-

ternal validation (AUC = 0.764; 95% CI 0.737, 0.794;

Additional file 4: Table S4) and external validation

(AUC = 0.673 to 0.755), but calibration remained poor

(Additional file 5: Figure S1). Moreover, the supple-

mented model (‘NEWS2 + oxygen flow rate’) showed

smaller improvements in discrimination compared to

those seen at 14 days. For the KCH training cohort,

internally validated AUC increased by 0.025: from

0.764 (95% CI 0.737, 0.794) for ‘NEWS2 + age’ to

0.789 (0.763, 0.819) for the supplemented model

(‘NEWS2 + oxygen flow rate’). At external validation,

improvements were modest (UHBW, OUH) or nega-

tive (GSTT) in some sites, but more substantial in

others (UHS, UCH). Moreover, model calibration was

considerably worse for the supplemented 3-day model

(Additional file 5: Figure S1).

We found no evidence of difference by sex (results not

shown) and the findings were consistent when addition-

ally adjusting for ethnicity in the subset of individuals

with ethnicity data and when excluding nosocomial

patients (Additional file 6: Table S5). Discrimination for

the alternative baseline model of ‘NEWS2 only’

(Additional file 7: Table S6) showed a similar pattern of

results as those for ‘NEWS2 + age’, except that improve-

ments in discrimination for the supplemented model

(‘All features’) were larger in most sites.

Decision curve analysis

Decision curve analysis for the 14-day endpoint is pre-

sented in Fig. 3. At KCH, the baseline model (‘NEWS2 +

age’) offered small increments in net benefit compared

to the ‘treat all’ and ‘treat none’ strategies for risk thresh-

olds in the range 25 to 60%. This was replicated in all

validation cohorts except for UHBW and OUH where

the net benefit for ‘NEWS2 + age’ was lower than the

‘treat none’ strategy beyond the 40% risk threshold. The

supplemented model (‘All features’) improved upon

‘NEWS2 + age’ and the two default strategies in most

sites across the range 20 to 80%, except for (i) UHBW,

where ‘treat none’ was superior beyond thresholds of

Table 2 KCH internally validated predictive performance (n = 1276) based on nested repeated cross-validation

NEWS2 + age, mean (95% CI) All features, mean (95% CI)

14-day ICU/death AUC 0.700 [0.680, 0.722] 0.735 [0.715, 0.757]

Brier score 0.192 [0.186, 0.197] 0.183 [0.177, 0.189]

Sensitivity1 0.778 [0.747, 0.815] 0.735 [0.702, 0.772]

Specificity1 0.478 [0.445, 0.509] 0.592 [0.562, 0.621]

1Calculated at 30% probability threshold. AUC based on repeated, nested cross-validation (inner loop, 10-folds; outer loop = 10-folds/1000 repeats). Missing values

imputed at each outer loop with k-nearest neighbour (kNN) imputation

Fig. 1 Improvement in the area under the curve (AUC) for supplemented NEWS2 model for 14-day ICU/death at training and validation sites
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55%, and (ii) GSTT, where ‘treat all’ was superior up to

a threshold of 30% and no improvement was seen for

the supplemented model.

For the 3-day endpoint, the improvement in net

benefit for the supplemented model over the two de-

fault strategies was smaller, compared to the im-

provements seen at 14 days (Additional file 8: Figure

S2). At three sites (UHBW, GSST, and Wuhan), nei-

ther the baseline (‘NEWS2 + age’) nor the supple-

mented (‘All features’) models offered any

improvement over the ‘treat all’ or ‘treat none’ strat-

egies. At KCH and UHS, net benefit for ‘NEWS2 +

age’ was higher than the default strategies for a

range of risk thresholds but was not increased fur-

ther by the supplemented (‘NEWS2 + oxygen flow

rate’) model.

Discussion
Principal findings

This study is amongst the first to systematically evaluate

NEWS2 for severe COVID-19 outcome and carry out

external validation at multiple international sites (five

UK NHS Trusts, one hospital in Norway, and two

hospitals in Wuhan, China). We found that while

‘NEWS2 + age’ had moderate discrimination for short-

term COVID-19 outcome (3-day ICU transfer/death), it

showed poor-to-moderate discrimination for the

medium-term outcome (14-day ICU transfer/death).

Thus, while NEWS2 may be effective for short-term (e.g.

24 h) prognostication, our results question its suitability

as a screening tool for medium-term COVID-19 out-

come. Risk stratification was improved by adding rou-

tinely collected blood and physiological parameters, and

Fig. 2 Calibration (logistic and LOESS curves) of supplemented NEWS2 model for 14-day ICU/death model at validation sites
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discrimination in supplemented models was moderate-

to-good. However, the model showed evidence of misca-

libration, with a tendency to underestimate risks in

external sites. The derived model for 14-day ICU trans-

fer/death included nine parameters: NEWS2 score, sup-

plemental oxygen flow rate, urea, age, oxygen saturation,

CRP, estimated GFR, neutrophil count, and neutrophil/

lymphocyte ratio. Notably, pre-existing comorbidities

did not improve risk prediction and were not retained in

the final model. This was unexpected but may indicate

that the effect of pre-existing health conditions could be

manifest through some of the included blood or physio-

logical markers.

Overall, this study overcomes many of the factors

associated with a high risk of bias in the develop-

ment of prognostic models for COVID-19 [13] and

provides some evidence to support the supplementa-

tion of NEWS2 for clinical decisions with these

patients.

Comparison with other studies

A systematic review of 10 prediction models for mortal-

ity in COVID-19 infection [10] found broad similarities

with the features retained in our models, particularly re-

garding CRP and neutrophil levels. However, existing

prediction models suffer several methodological

Fig. 3 Net benefit of supplemented NEWS2 model for 14-day ICU/death compared to default strategies (‘treat all’ and ‘treat none’) at training and

validation sites
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weaknesses including overfitting, selection bias, and reli-

ance on cross-sectional data without accounting for

censoring. Additionally, many existing studies have re-

lied on single-centre or ethnically homogenous Chin-

ese cohorts, whereas the present study shows

validation across multiple and diverse populations. A

key strength of our study is the robust and repeated

external validation across national and international

sites; however, evidence of miscalibration suggests we

should be cautious when attempting to generalise

these findings. Future research should include larger

collaborations and aim to develop ‘from onset’ popu-

lation predictions.

NEWS2 is a summary score derived from six

physiological parameters, including oxygen supple-

mentation. Lack of evidence for NEWS2 use in

COVID-19 especially in primary care has been

highlighted [9]. The oxygen saturation component of

physiological measurements added value beyond

NEWS2 total score and was retained following regu-

larisation for 14-day endpoints. This suggests some

residual association over and above what is captured

by the NEWS2 score and reinforces Royal College of

Physicians guidance that the NEWS2 score ceilings

with respect to respiratory function [42].

Cardiac disease and myocardial injury have been de-

scribed in severe COVID-19 cases in China [2, 23]. In

our model, blood Troponin-T, a marker of myocardial

injury, had additional salient signal but was only mea-

sured in a subset of our cohort at admission, so it was

excluded from our final model. This could be explored

further in larger datasets.

Strengths and limitations

Our study provides a risk stratification model for which

we obtained generalisable and robust results across

seven national and international sites with differing geo-

graphical catchment and population characteristics. It is

amongst the first to evaluate NEWS2 at hospital admis-

sion for severe COVID-19 outcome and amongst a

handful to externally validate a supplemented model

across multiple sites.

However, some limitations must be acknowledged.

First, there are likely to be other parameters not mea-

sured in this study that could substantially improve

the risk stratification model (e.g. radiological features,

obesity, or comorbidity load). These parameters could

be explored in future work but were not considered

in the present study to avoid limiting the real-world

implementation of the risk stratification model. Sec-

ond, our models showed better performance in UK

secondary care settings amongst populations with

higher rates of severe COVID-19 disease. Therefore,

further research is needed to investigate the suitability

of our model for primary care settings which have a

high prevalence of mild disease severities and in com-

munity settings. This would allow us to capture vari-

ability at earlier stages of the disease and trends in

patients not requiring hospital admission. Third, while

external validation across multiple national and inter-

national sites represents a key strength, we did not

have access to individual participant data and model

development was limited to a single site (KCH). Al-

though we benefited from existing infrastructure to

support rapid data analysis, we urgently need infra-

structure to support data sharing between sites to ad-

dress some of the limitations of the present study

(e.g. miscalibration) and improve the transferability of

these models. Not only would this facilitate external

validation, but more importantly, it would allow

multi-site prediction models to be developed using

pooled, individual participant data [43]. Fourth, our

analyses would have excluded patients who experi-

enced severe COVID-19 outcome at home or at an-

other hospital, after being discharged from a

participating hospital. Fifth, our model was restricted

to blood and physiological parameters measured at

hospital admission. This was by design and reflected

the aim of developing a screening tool for risk strati-

fication at hospital admission. However, future studies

should explore the extent to which risk stratification

could be improved by incorporating repeated mea-

sures of NEWS2 and relevant biomarkers.

Conclusions
The NEWS2 early warning score is in near-universal

use in UK NHS Trusts since March 2019 [15], but

little is known about its use for COVID-19 patients.

Here, we showed that NEWS2 and age at hospital

admission had poor-to-moderate discrimination for

medium-term (14-day) severe COVID-19 outcome,

questioning its use as a tool to guide hospital admis-

sion. Moreover, we showed that NEWS2 discrimin-

ation could be improved by adding eight blood and

physiological parameters (supplemental oxygen flow

rate, urea, age, oxygen saturation, CRP, estimated

GFR, neutrophil count, neutrophil/lymphocyte ratio)

that are routinely collected and readily available in

healthcare services. Thus, this type of model could

be easily implemented in clinical practice, and pre-

dicted risk score probabilities of individual patients

are easy to communicate. At the same time, al-

though we provided some evidence of improved dis-

crimination vs. NEWS2 and age alone, given

miscalibration in external sites, our proposed model

should be used as a complement and not as a re-

placement for clinical judgement.
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