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Overview

• The Intel SCC Many-core Processor

• Shared-Memory Models of the SCC

• Message-Passing on the SCC

• Selected Performance Results

• Outlook and Conclusions
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The Intel SCC Many-core Processor

• Intel Single-Chip Cloud Computer
 a Concept Vehicle for Many-core Software Research

• 48 Pentium-I Cores arranged in a 6x4 on-die Mesh
 2 Cores and 1 Router per Tile

• On-die Message-Passing Buffers (MBP) / 16kByte per Tile
 accessible as distributed on-die Shared-Memory

• 4 on-die Memory Controllers (MC1-4)
 max. 64GByte DDR3 off-die main memory
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• Strictly No Cache Coherency
 Cluster-on-Chip Architecture

• Private off-die DRAM Regions (one per Core)
 Caches enabled!  One Linux instance per Core!

• Shared / Global off-die DRAM Region
 Caches disabled per default!   e.g. for global shared data

• Shared on-die MPB Regions
 Cached in L1, L2 Bypass / Fast L1 Invalidation for MPB-Data

Shared off-die DRAM

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

Message Passing Buffer (8KB/core)

Shared-Memory Models of the SCC
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Shared-Memory Models of the SCC

• The RCCE Communication Library from Intel
 An Application Programming Interface (API) for the SCC

• Using Shared off-die DRAM Region:
void* RCCE_shmalloc(int size)

shmalloc() is a collective function call that returns pointers

to a new off-die shared region  (caches disabled per default!)

• Caches can be enabled on demand
 but the SCC does not provide any Cache Coherency!

Shared off-die Region:

RCCE_shmalloc(size) RCCE_shmalloc(size)

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM
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Shared-Memory Models of the SCC

• Using Shared on-die MPB Regions:
RCCE_put(void* mpb, void* src, int size, int rank)

RCCE_get(void* dst, void* mpb, int size, int rank)

• Local and Remote MPB Regions
 a core rank (or ID) is used for addressing a certain region

• Synchronization e.g. via 48 Test-and-Set Registers:
RCCE_acquire_lock(int rank)

RCCE_release_lock(int rank)

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

MPB

t&s t&s
RCCE_put(rank=0) RCCE_get(rank=0)
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Message-Passing on the SCC

• RCCE’s Two Sided Communication Interface:
 blocking send and receive functions

• Our Improvements:  iRCCE

 e.g. non-locking send and receive functions

iRCCE_isend(void* buf, int size, int rank, iRCCE_sreq *req)

iRCCE_irecv(void* buf, int size, int rank, iRCCE_rreq *req)

iRCCE_isend_test(iRCCE_sreq *req, int* flag)

iRCCE_isend_wait(iRCCE_sreq *req);

...

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

MPB

RCCE_send(rank=47) RCCE_recv(rank=0)
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Further Communication Improvements of iRCCE:

• Usage of Pentium-optimized  memcpy() routines

 assembler-coded Prefetching and Loop-Unrolling

• Applying of Pipelining for large messages
 divide local MPB into two sub-chunks and process in parallel

(1) Pipelining:

(2)

Message-Passing on the SCC

Sender Receiver

Local MBP

Sender Receiver

Local MBP

Sender Receiver

Local MBP

put()

get()

put() get()

sub-chunks
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Message-Passing on the SCC

½ L1$

½ L2$

Ping-Pong Measurements
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• MPI is the most popular Message-Passing Interface
 why not porting an MPI implementation to the SCC?

• Why not just using a TCP-based MPI implementation?
 the SCC’s TCP driver only utilizes slow off-die memory 

• The usage of the fast on-die MPB would speed-up the 
core-to-core communication
 why not implementing an SCC-customized MPI library?

• Currently, two of such SCC-MPI implementations exist:

 RCKMPI  (by Intel)

 SCC-MPICH (from our Institute)

MPI-based Message-Passing on the SCC
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• The Layered Design of SCC-MPICH:

MPI-based Message-Passing on the SCC
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• SCC-MPICH provides four Protocols
 the choice depends on the message length

• SHORT Protocol
 for short payload and signaling messages

• EAGER Protocol
 for mid-size messages (expected and unexpected)

• RENDEZVOUS Protocol
 for synchronous as well as for large messages

• SHM-EAGER Protocol
 second EAGER that utilizes the shared off-die memory

MPI-based Message-Passing on the SCC
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Message-Passing on the SCC

Ping-Pong Measurements
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SCC-MPICH vs. iRCCE vs. RCKMPI

Message-Passing on the SCC
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Selected Performance Results

• Selected Performance Results
 comparing different Programming Models for the SCC

• Benchmark Scenario?
 we have used a simple Jacobi Solver

• Dense System of Equations  (Ax=b)
 use the following Iterative Rule to solve: 
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Selected Performance Results

• The Shared-Memory Case:
 where to place A, b and x?

• Read-only Accesses for A and b
 off-die Shared-Memory and enable Caches for them

• Write Accesses for Vector x
 three thinkable approaches:

1. put x into the shared off-die memory (caches disabled)

2. enable caches and flush L1 and L2 after each iteration

3. put x into the MPB and flush L1 after each iteration

• The Message-Passing Case:
 use (i)RCCE or MPI to exchange x after each iteration
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Selected Performance Results

Jacobi Solver:  256x256 matrix, 865000 iterations

SCC-
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Selected Performance Results

Jacobi Solver:  256x256 matrix, 865000 iterations

SCC-
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Conclusions and Outlook

• Is the SCC a Many-core Processor?
 the SCC is at least a prototype for future architectures

• Do we really need to waive the Cache Coherency?
 it seems that cache coherency limits the scalability

• Is Message-Passing the Model of Choice?
 hybrid architectures need hybrid programming models

• How can I participate in this Many-core related Software 
Research?
 join the Intel Many-core Application Research Community

(MARC) http://communities.intel.com/community/marc



Thank you for your attention!
Any Questions?
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