Evaluation and Improvements of Programming
Models for the Intel SCC Many-core Processor

Carsten Clauss, Stefan Lankes,
Pablo Reble, Thomas Bemmerl

International Workshop on New Algorithms and
Programming Models for the Many-core Era (APMM 2011)

As part of the 2011 International Conference on High Performance Computing & Simulation (HPCS 2011)

(F=S5 LEHRSTUHL FUR BETRIEBSSYSTEME RWNTHAACHEN
Univ.-Prof. Dr. habil. Thomas Bemmerl UNIVERSIW

CRE Overview B
* The Intel SCC Many-core Processor
« Shared-Memory Models of the SCC
 Message-Passing on the SCC

 Selected Performance Results

« Outlook and Conclusions

p APMM 2011

R\WNTHAACHEN
2 Chair for Operating Systems UNIVERSITY

U Worksho

rogramming Models for the |

lfE=%5 The Intel SCC Many-core Processor

 Intel Single-Chip Cloud Computer
- a Concept Vehicle for Many-core Software Research

« 48 Pentium-l Cores arranged in a 6x4 on-die Mesh
- 2 Cores and 1 Router per Tile

- On-die Message-Passing Buffers (MBP) / 16kByte per Tile
—> accessible as distributed on-die Shared-Memory

p APMM 2011 as

« 4 on-die Memory Controllers (MC1-4)

- max. 64GByte DDR3 off-die main memory
RWTHAACHEN
3 Chair for Operating Systems UNIVERSITY

U Worksho

rogramming Models for the Intel S

p APMM :

U Worksho

lf=55 Shared-Memory Models of the SCC N

 Strictly No Cache Coherency
—> Cluster-on-Chip Architecture

* Private off-die DRAM Regions (one per Core)
- Caches enabled! One Linux instance per Core!

Shared off-die DRAM

o)

Private DRAM [L2$|L1$| CPUO |----1 Private DRAM |L2$|L1$|CPU47
Message Passing Buffer (8KB/core)

- Shared / Global off-die DRAM Region
- Caches disabled per default! - e.g. for global shared data

- Shared on-die MPB Regions

- Cached in L1, L2 Bypass / Fast L1 Invalidation for MPB-Data

rogramming Models fo 4 Chair for Operating Systems

lf=% Shared-Memory Models of the SCC N

« The RCCE Communication Library from Intel
- An Application Programming Interface (API) for the SCC

« Using Shared off-die DRAM Region:

void* RCCE_shmalloc(int size)

Shared off-die Region:

RCCE_shmalloc (size) RCCE_shmalloc (size)

Private DRAM |L2$|L1$| CPUO f==---1 Private DRAM |L2$|L1$|CPU47

shmalloc () Is a collective function call that returns pointers
to a new off-die shared region (caches disabled per default!)

« Caches can be enabled on demand
—> but the SCC does not provide any Cache Coherency!

R\WNTHAACHEN
5 Chair for Operating Systems UNIVERSITY

p APMM 2011

U Worksho

rogramming Models for the |

lf=% Shared-Memory Models of the SCC N

« Using Shared on-die MPB Regions:
RCCE_put (void* mpb, wvoid* src, int size, int rank)
RCCE_get (void* dst, wvoid* mpb, int size, int rank)

Private DRAM |L2$ L1/$_ CPUO |- ----- Private DRAM |L2$|L 1 $‘CPU47

RCCE_put (rank=0)(

W

« Local and Remote MPB Regions
—> a core rank (or ID) is used for addressing a certain region

« Synchronization e.g. via 48 Test-and-Set Registers:
RCCE_acquire_lock (int rank)

RCCE_release_lock (int rank)

p APMM 201

R\WNTHAACHEN
6 Chair for Operating Systems UNIVERSITY

U Worksho

rogramming Models for the

(o[BG, Message-Passing on the SCC 8

« RCCE’s Two Sided Communication Interface:
- blocking send and receive functions

Private DRAM |L2$|L1$| CPUO f----1 Private DRAM [L2$|L1$|CPU47
/

RCCE_send (rank=47) L RCCE_recv (rank=0)/

« Our Improvements: IRCCE
—> e.g. non-locking send and receive functions

iRCCE_isend (void* buf, int size, int rank, iRCCE_sreq *req)
iRCCE_irecv(void* buf, int size, int rank, iRCCE_rreq *req)

iRCCE_isend_test (iRCCE_sreq *req, int* flag)
iRCCE_isend_wait (iRCCE_sreq *req);

p APMM 2011

(@)
<
£
(@)
= RWTHAACHEN
Programming Models for the | 7 Chair for Operating Systems UNIVERSITY

(o[BG, Message-Passing onthe SCC 8

Further Communication Improvements of iRCCE:

« Usage of Pentium-optimized memcpy () routines
—> assembler-coded Prefetching and Loop-Unrolling

« Applying of Pipelining for large messages
—> divide local MPB into two sub-chunks and process in parallel

Sender Receiver

(1) Pipelining:
put () Sender Receiver
\ Local MBP
Sender Receiver

S Local MBP
=
z get () N/
g sub-chunks
e Local MBP
= RWTHAACHEN
Programming Models for the 8 Chair for Operating Systems UNIVERSITY

=% Message-Passing on the SCCTIIIINN

Ping-Pong Measurements

175 | [[IIIII | I T TTTIT I I T TTTTT [| | O T | I | I O
I GO standard RCCE 1y LOG |]
; >
150~ 11 iIRCCE Memcpy) —
! %% pipelined iIRCCE i | ¥
125 = for messages >= 8kB :] z
) = % L1$: =)
@ 1/ ! “
= 100 s . 45
o 2 : ' =
E N B 1 x | | 8
© |
5 I S 3—45—&\7 o
o I3 S I 1 — S
% 1 [o
0 - : ! \\ - f
O—&)
o ¥ l 2 <
2 S0 . % S L 5
7 N m
- - < : : N8 B
© . | | =
= 25+ S | S =
Q] | O—C—@
S =
= i s : : S
E .;ﬁ: _!::ﬂ__—:.::’ ____S‘_:-—"%% | L 1Ll Ill | | 1 11 iiil I[| I 11 iill | ' | | I)
= 4 16 256 4096 64 K I M
(@]
{5
- Message Size (Byte)
=

Programming Models for the Intel SCC 9 Chair for Operating Systems UNIVERSITY

lf=% MPl-based Message-Passing on the SCCH

 MPI is the most popular Message-Passing Interface
- why not porting an MPI implementation to the SCC?

 Why not just using a TCP-based MPI implementation?
- the SCC’s TCP driver only utilizes slow off-die memory &

 The usage of the fast on-die MPB would speed-up the
core-to-core communication
- why not implementing an SCC-customized MPI library?

« Currently, two of such SCC-MPI implementations exist:
-> RCKMPI (by Intel)
- SCC-MPICH (from our Institute)

o
I3\
=
=
o
<
o

RWTHAACHEN

rogramming Models for th 10 Chair for Operating Systems UNIVERSITY

U Worksho

f=% MPI-based Message-Passing on the' SCCH

« The Layered Design of SCC-MPICH:

MPI Applikation

MPI Interface (API)

| Profiling Interface (PMPI) |

MPIR Layer
(platform independent)

| ADI2 Interface ™ |

MPID Layer
(platform dependent)

Generic Implementation
of the ADI Device

Channel Interface

P4 SHMEM SCC
Device Device Device
ch_p4 |ch_shmem| ch_scc

0S / HW Interface ST T
Operating System
& Hardware isend / irecv
= extensions!
2
<
o
= RWTH iEN
Programming Models for 11 Chair for Operating Systems UNIVERSITY

lf=% MPl-based Message-Passing on the SCCH

« SCC-MPICH provides four Protocols
—> the choice depends on the message length

« SHORT Protocol
—> for short payload and signaling messages

- EAGER Protocol
—> for mid-size messages (expected and unexpected)

« RENDEZVOUS Protocol
—> for synchronous as well as for large messages

« SHM-EAGER Protocol
- second EAGER that utilizes the shared off-die memory

p APMM 2011

RWTHAACHEN

12 Chair for Operating Systems UNIVERSITY

U Worksho

rogramming Models for the Int

=% Message-Passing on the SCCTIIIINN

Ping-Pong Measurements

T T T TTTT

125 I lllllll I I T TTTTT I I T T TTTI |

- | 3—+£1 IRCCE: blocking send/recv -
*—% MPI: SHORT protocol
100~ | 3—© MPI: EAGER protocol
LA MPI: RNDVZ protocol
" |+ MPIl: SHMEM protocol

OO TCPIP W
75— N

off-die memory

Bandwidth (MB/s)
Tile: 533MHz, Mesh: 800MHz, DDR: 800MHz

4096 64 K

Message Size (Byte)

—
©
o
(2]
©
-
=
o
Y
=
=
o
<<
Q
o
<
()
=<
=

Programming Models for the Intel SCC 13 Chair for Operating Systems UNIVERSITY

CHES

160

140 -

120

100 -

MB/sec

60

p APMM 2011 as Par

U Worksho

80 -

40 -

20 -

Message-Passing on the SCC Il
SCC-MPICH vs. iRCCE vs. RCKMPI

ey SCC-MPICH
e | RC CE
s RCKMPI

8 64 512 4096 32768 262144

bytes

rogramming Models for the Intel SCC 14 Chair for Operating Systems UNIVERSITY

B Selected Performance Results

- Selected Performance Results
- comparing different Programming Models for the SCC

« Benchmark Scenario?
- we have used a simple Jacobi Solver

 Dense System of Equations (Ax=b)
—> use the following lterative Rule to solve:

1
:UZ-”JF E a; jLE
i g

JFi

p APMM 2011 as

RWTHAACHEN

rogramming Models for the Intel 15 Chair for Operating Systems UNIVERSITY

U Worksho

B Selected Performance Results

 The Shared-Memory Case:
- where to place A, b and x?

 Read-only Accesses for A and b
—> off-die Shared-Memory and enable Caches for them

« Write Accesses for Vector x
—> three thinkable approaches:

1. put x into the shared off-die memory (caches disabled)
2. enable caches and flush L1 and L2 after each iteration

3. put x into the MPB and flush L1 after each iteration

« The Message-Passing Case:
- use (i)RCCE or MPI to exchange x after each iteration

p APMM 2011 a

RWTHAACHEN

rogramming Models for the Inte 16 Chair for Operating Systems UNIVERSITY

U Worksho

B Selected Performance Results

Jacobi Solver: 256x256 matrix, 865000 iterations

4500 . . . l
SCC- MPICH with iRCCE device (a) —+—
4000 | message passing (RCCE) + original memcpy (b) 1
| message passing (IRCCE) + improved memcpy (c) - v
I} shared memory + X in MPB (d) e
3500 shared memory + L2 flushing (e) T
3000 [i
@ 2500 | |
£ 2000]
1500 |]
& 1000 F .
500 1 g
2 0 ' . e B i — |
g 1 2 4 8 16 32

number of cores

U Worksho

RWTHAACHEN

rogramming Models for the Intel SC 17 Chair for Operating Systems UNIVERSITY

B Selected Performance Results

Jacobi Solver: 256x256 matrix, 865000 iterations

1400 SCC MPICH with iRCCE device (a) —r— |
message passing (RCCE) + original memcpy (b)
message passing (IRCCE) + improved memcpy éc) ----- veee
1200 F shared memory + Xin MPB (d) @ 1
1000 | |
4‘/
2. oo I
® K
§ 200 Eﬂ ___________ I e
= = e
= i i
: 2 4 8 16 32
S number of cores
& RWTHAACHEN
Programming Models for the Intel SCI 18 Chair for Operating Systems UNIVERSITY

CREBS Conclusions and Outlook S

* Is the SCC a Many-core Processor?
- the SCC is at least a prototype for future architectures

« Do we really need to waive the Cache Coherency?
- it seems that cache coherency limits the scalability

* |Is Message-Passing the Model of Choice?
—> hybrid architectures need hybrid programming models

 How can | participate in this Many-core related Software
Research?

—> join the Intel Many-core Application Research Community

(MARC) nttp://communities.intel.com/community/marc

p APMM 2011

R\WNTHAACHEN
19 Chair for Operating Systems UNIVERSITY

U Worksho

rogramming Models for the |

Thank you for your attention!
Any Questions?

Acknowledgement:
This research and development was
supported by Intel Corporation

International Workshop on New Algorithms and
Programming Models for the Many-core Era (APMM 2011)

As part of the 2011 International Conference on High Performance Computing & Simulation (HPCS 2011)

(F=S5 LEHRSTUHL FUR BETRIEBSSYSTEME RWNTHAACHEN
Univ.-Prof. Dr. habil. Thomas Bemmerl UNIVERSIW

