
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

EVALUATION AND TESTING OF SEVERAL FREE/OPEN SOURCE WEB

VULNERABILITY SCANNERS

Nataša Šuteva Dragi Zlatkovski, Aleksandra Mileva

Faculty of Computer Science, UGD Faculty of Computer Science, UGD

Štip, Macedonia Štip, Macedonia

ABSTRACT

Web Vulnerability Scanners (WVSs) are software tools for

identifying vulnerabilities in web applications. There are

commercial WVSs, free/open source WVSs, and some

companies offer them as a Software-as-a-Service. In this

paper, we test and evaluate six free/open source WVSs using

the web application WackoPicko with many known

vulnerabilities, primary for false negative rates.

I. INTRODUCTION

Our everyday live heavily depends on using different web

applications, as web e-mail clients, web instant messaging

clients, Voice over IP services, e-learning portals, social

networks, electronic banking, e-commerce platforms, etc.

Because of this, the web applications became the most

interest target for attackers to gain an unauthorized account

access, steal sensitive data and identity, etc.

The OWASP (Open Web Application Security Project)

Top Ten 2013 [16] offers a list of the most critical Web

application vulnerabilities, including different types of

injection, broken authentication and session management,

cross-site scripting, cross-site request forgery, etc. This list is

often used also as a minimum standard for website

vulnerability assessment and PCI compliance according to

Payment Card Industry Data Security Standard (PCI DSS).

Classification of web application vulnerabilities can be found

also in Common Vulnerabilities and Exposures database [3]

and Web Application Security Consortium (WASC) Threat

Classification v2.0 [20].

Web Application Security Scanners (WASSs) or Web

Vulnerability Scanners (WVSs) are software tools for

identifying potential vulnerabilities in the web applications,

independently of the particular technology used for their

implementation. They access the web applications in the same

manner as user do, through the web front-end. Usually they

are black-box testers, because they do not have access to the

source code, so they detect vulnerabilities by actually

performing attacks or by looking for known vulnerabilities and

report potential exposures.

The beauty of WVSs hides in automatically and cost-

effective conduction of security checks and production of the

final report. Almost every report includes a remedy for found

vulnerability, which is necessary for PCI compliance. Today

there are more than 130 scanning vendors approved for PCI

compliance [11]. Vulnerability scanning is essential part of

maintaining security in a given organization and should be used

continuously, especially when new version of web application or

new equipment or technology is planning to use. But WVSs are

not all-in-one oracles, they are not capable of detecting all of

the possible vulnerabilities and attack vectors that exist. There

are several reports showing that today WVSs fail to detect a

significant number of vulnerabilities in test applications [1, 4,

12, 14, 15, 22]. Bau et al [1], testing eight WVSs, showed that

WVSs need to be improved in detection of the “stored” and

second-order forms of XSS and SQLI, and in understanding

of active content and scripting languages. Khoury [7, 8]

analyzed three state-of–art black box WVSs against stored

SQLI, and their results showed that stored (persistent) SQLI

are not detected even when these automated scanners are

taught to exploit the vulnerability. They propose also a set of

recommendations for increasing a detection rate in WVSs for

this type of vulnerability. Doupé et al [4] tested eleven WVSs,

and found that eight out of sixteen vulnerabilities were not

detected by any of the used scanners. They discuss also a

critical limitations of current WVSs, lack of better support for

well known, pervasive technologies as JavaScript and Flash,

and the need for more sophisticated algorithms to perform

“deep” crawling and track the state of the application under
test.

Kals et al [6] implement an automated black box scanner

SecuBat which targets XSS and SQLI vulnerabilities.

McAllister et al [10] also implement an automated black box

scanner which targets reflected and stored XSS utilizing user

interactions. Maggi et al [9] discuss techniques applicable to

black box testing, for reducing the number of false positives.

Fonseca et al [5] evaluated the XSS and SQLI detection

performance of three WVSs via automated software fault-

injection methods.

For evaluating and testing WVSs, vulnerable test

applications are needed. These applications need to have

exactly listed known vulnerabilities, so one can obtain the

false positive and false negative rates also. Unfortunately, no

standard test suite is currently available. There are several

well-known, publicly-available, vulnerable web applications

like DVWA (Dam Vulnerable Web Application) [13] and

WebGoat [17], but their design is focused more on teaching

web application security rather than testing WVSs. The

exception is the realistic and fully functional web application

WackoPicko [21] with 16 known vulnerabilities, created by

A. Doupé, and used in [4] for their testing. We use this web

application for our experiments. Additionally, WASC [19]

has published evaluation criteria for web application scanners.

Because most of the research papers are concentrated on

commercial WVSs, we decided to test and evaluate only

free/open source WVSs. After Introduction Section, Section

II is devoted to basic architecture of the black box WVSs. In

Section III we give brief explanation of used testbed

application, used six WVSs with their general characteristics

and input vector support, followed by used methodology and

obtained results on the false negative rates at the first place.

At the end, we give short concluding remarks.

221

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

II. BLACK BOX WEB VULNERABILITY SCANNERS

Conceptually, almost all WVSs consist of three main

components: a crawling component, an attacker component,

and an analysis component.

At the beginning of the scanning process, the user enters

at least one URL, with or without user credentials for the

given web application. Using these data, the crawling

component identifies all the reachable pages in the

application, and all the input points to the application, such as

the parameters of GET requests, the input fields of HTML

forms, etc. After user sets the scanning profile, scanners can

proceed automatically or with user interaction. We used only

automated mode for our experiments.

The attacker component analyzes discovered data and for

each web form, for each input and for each vulnerability type

for which the WVS has test vectors, the attacker module

generates values that are likely to trigger a vulnerability.

Then, the form content is send to the web server using either a

GET or POST request, and appropriate response is obtained

from the server via HTTP.

Next, the analysis module has to parse and interpret the

server response. Decision if a given attack was successful is

made by calculation of confidence value, by using attack-

specific response criteria and keywords.

III. EXPERIMENTS AND RESULTS

A. Vulnerable web application

Vulnerable WackoPicko application is a photo sharing and

photo-purchasing site. Users of WackoPicko can upload

photos, browse other user’s photos, comment on photos, and
purchase the rights to a high-quality version of a photo. It has

10 vulnerabilities accessible without authentication (reflected

and stored XSS, reflected XSS behind JavaScript, predictable

Session ID for admin, weak admin password, reflected SQLI,

command line injection, file inclusion, unauthorized file

exposure, and parameter manipulation), and 6 vulnerabilities

accessible after logging into the web site (multi-step stored

XSS, stored SQLI, directory traversal, forceful browsing,

logic flaw and reflected XSS behind Flash).

The web server hosting WackoPicko and used in our

experiments was run in the OWASP Broken Web

Applications Project virtual machine [18], which has

numerous intentionally vulnerable applications (we ignore

other applications). The following technologies are used:

Apache 2.2.14 (Ubuntu), PHP/5.3.2-1ubuntu4.5 with

Suhosin-Patch, and MySQL 5.0.67.

B. Tested Web Vulnerabilities Scanners

The scanners were run on a machine with a Pentium (R) Dual

Core 2 x 2.00GHz CPU, 4 GB of RAM, and Windows 7

Home Premium.

Table 1 lists the six free/open source WVSs used in our

study and their general characteristics. All have graphical user

interface and support for proxy mode (manual crawling).

Only NetSparker Community Edition and N-Stalker Free

2012 run only on Windows, and other four can be installed on

Linux and OS X also. W3Af additionally is available on

FreeBSD and Open BCD. Their input vector support are

given on Table 2. Many different characteristic comparisons

on older versions of these WVSs can be found on Chen’s web
site SecToolMarket [2].

Table 1: General characteristics of the evaluated scanners

N
e
tS

p
a
r
k

e
r

C
o
m

m
u

n
it

y

E
d

it
io

n

N
-S

ta
lk

e
r

F
r
e
e

2
0
1
2

O
W

A
S

P

Z
A

P

W
3
A

f

Ir
o
n

W
A

S
P

V
e
g
a

Company/

Creator

Mavituna

Security
N-Stalker OWASP

W3Af

Devel.

L.

Kuppan
Subgraph

Version 2.5 7.1.1.126 2.0.0 1.2-r6654 0.9.5.0
1.0

(beta)

Licence/

Technology

Freeware

.Net 3.5

Freeware

Unknown

(Win32)

ASF2

Java

1.6.x

GPL2

Python

2.6.x

GPL3

.Net 2.0

SP2

EPL1

Java 1.6.x

Operating

System
Windows Windows

Windows

Linux

OS X

Windows

Linux

OS X

FreeBSD

OpenBSD

Windows

Linux

OS X

Windows

Linux

OS X

Authent. Yes Yes Yes

Report Yes Yes Yes

Scan Log Yes Yes Yes Yes Yes

NetSparker Community Edition have many features

disabled, compared to its commercial version, but still you

can scan and exploit SQL injection vulnerabilities without

any false-positives.

N-Stalker Free 2012 provides a restricted set of features,

compared to its commercial version, and will inspect up to

500 pages within target application.

OWASP Zed Attack Proxy (ZAP) is an easy to use

integrated scanning and penetration testing tool, and it is

designed to be used by people with a wide range of security

experience.

Table 2: Supporting input vectors by the evaluated scanners

N
e
tS

p
a
r
k

e
r

C
o
m

m
u

n
it

y

E
d

it
io

n

N
-S

ta
lk

e
r

F
r
e
e

2
0
1
2

O
W

A
S

P

Z
A

P

W
3
A

f

Ir
o
n

W
A

S
P

V
e
g
a

HTTP Query String

Parameters
Yes Yes Yes Yes Yes Yes

HTTP Body

Parameters
Yes Yes Yes Yes Yes Yes

HTTP Cookie

Parameters
Yes Yes Yes

HTTP Headers Yes Yes Yes Yes
HTTP Parameter

Names
Yes

XML Element

Content
Yes Yes

XML Attributes Yes
XML Tags Yes
JSON Parameters Yes
Flash Action Message

Format
Yes

Custom Input Vector Yes

SUMMARY 3 4 2 5 10 3

W3Af stands for Web Application Attack and Audit

Framework, it is written in Python, and it was started

by Andres Riancho in March 2007. In July 2010, W3Af

222

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

announced its sponsorship and partnership with Rapid7. It

uses more than 130 plug-ins. Users have available

a command-line interface also.

IronWASP stands for Iron Web application Advanced

Security testing Platform, created by Lavakumar Kuppan. It

uses various external libraries, as IronPython, IronRuby,

Json.NET, Jint, etc, making it more powerful. It has a

scripting shell for both Python and Ruby giving full access to

the IronWASP framework, and this can be used by the pen

testers to write their own fuzzers, create custom crafted

request, analysis of logs, etc

Vega includes an automated scanner for quick tests and

an intercepting proxy for tactical inspection.

C Methodology

In our experiments, scanners that support authentication,

were run without logging and with logging, and only the

default values for configuration parameters were used. In the

NO_LOG mode, the scanner was directed to the initial page

of WackoPicko and told to scan for all vulnerabilities. In the

LOG mode, the scanner was given first a valid username and

password. We did not use proxy mode for scanners that have

support for it. For N-Stalker Free 2012 we start automated

mode with OWASP Policy. W3Af is run with activated

plugins: audit, auth, bruteforce, grep and mangle.

D. Results

Figure 1 plots the time needed for each scanner to scan

used web application. One can see, that running time ranges

from 3 minutes to 9 hours and 52 minutes.

Figure 1: Running times of evaluated scanners

Table 3: Numbers of vulnerabilities of the evaluated scanners

according to their severity without logging

N
e
tS

p
a
r
k

e
r

C
o
m

m
u

n
it

y

E
d

it
io

n

N
-S

ta
lk

e
r

F
r
e
e

2
0
1
2

O
W

A
S

P

Z
A

P

W
3
A

f

Ir
o
n

W
A

S
P

V
e
g
a

High

Vulnerabilites
7 2 4 1 45 3

Medium

Vulnerabilites
15 4 18 1 78 1

Low

Vulnerabilites
8 16 414 8 25

Informational

Vulnerabilites
12 21 177 9 2 17

SUMMARY 42 44 613 11 133 46

The number of found vulnerabilities classified according

to their severity is given on Table 3. The total number ranges

from 11 to 613 vulnerabilities. High values for founded

vulnerabilities do not mean better scanners.

From the evaluated scanners, we find that the report from

OWASP ZAP is very confusing, because it mixes

vulnerabilities with different severity.

At the start, we know that three scanners NetSparker

Community Edition, IronWasp and Vega, do not support

authentication, so they could not find any of the

vulnerabilities accessible after authentication.

Table 4 summarized obtained results. An empty cell

indicates that the given scanner did not discover the

vulnerability. No_LOG means that the given vulnerability

was found without authentication. One can see from the

obtained results, that for WVSs that support authentication

with scanning, the scanners did not find additional

vulnerabilities. Also, W3Af for example, did not find any of

the known vulnerabilities.

Table 4: Characteristics of the evaluated scanners

N
e
tS

p
a
r
k

e
r

C
o
m

m
u

n
it

y

E
d

it
io

n

N
-S

ta
lk

e
r

F
r
e
e

2
0
1
2

O
W

A
S

P

Z
A

P

W
3
A

f

Ir
o
n

W
A

S
P

V
e
g
a

Reflected

SQLI
No_LOG No_LOG No_LOG No_LOG

Stored

SQLI

Reflected

XSS
No_LOG No_LOG No_LOG No_LOG No_LOG

Stored

XSS
No_LOG No_LOG No_LOG

Reflected

XSS behind

JavaScript

No_LOG No_LOG

Reflected

XSS behind

Flash

Predictible

Session ID

Command

line

injections

No_LOG

File

inclusion
No_LOG No_LOG

File

Exposure

Parameter

Manipulation

Directory

Traversal

Logic Flow

Forceful

browsing

Weak

passwords

Table 5 summarized the numbers of found known

vulnerabilities and the number of false negatives. All

examined free/open source WVSs have very high rates of

false negatives, running from 68,8% for IronWasp to 100%

for W3Af. NetSparker can scan only SQLI and XSS

vulnerabilities without authentication, so it performed very

well, with finding all possible vulnerabilities of these kinds.

N-Stalker Free 2012 offer only reduced analysis of XSS

223

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

vulnerabilities, with or without authentication, so it found

only two out of five XSS vulnerabilities. Other modules are

disabled in this version.

Table 5: Number of false negative

Number of

found

vulnerabilities

Number

of false

negative

NetSparker

Community

Edition
4 12

N-Stalker

Free

2012

2 14

OWASP

ZAP
3 13

W3Af 0 16
Iron

WASP
5 11

Vega 3 13

IV. CONCLUSIONS

Because the web application WackoPicko is almost three

years old, and has only 16 known vulnerabilities, and because

it is only one of its type, there is a need of a new application

with more recent vulnerabilities, with versions other than

Apache/PHP/MySQL also. Also, OWASP Broken Web

Applications Project, need to be updated with the latest

versions of used technologies, because Apache 2.2.14

(Ubuntu) and PHP/5.3.2-1ubuntu4.5 with Suhosin-Patch have

known vulnerabilities and exploits, which have been detected

by WVSs, and have made our tasks harder. Because of this,

we did not gave the false positive rates.

REFERENCES

[1] J. Bau, E. Bursztein, D. Gupta and J. Mitchell, “State of the Art:

Automated Black-Box Web Application Vulnerability Testing”, In

Proceedings of the IEEE Symposium on Security and Privacy, May

2010.

[2] S. Chen, SecToolMarket, [Online]. Available: http://sectoolmarket.com/
[3] Common Vulnerabilities and Exposures. [Online]. Available:

http://cve.mitre.org.

[4] A. Doupe, M. Cova and G. Vigna, “Why Johnny Can’t Pentest: An
Analysis of Black-box Web Vulnerability Scanners”. In C. Kreibich, M.
Jahne (Eds.) Proceedings of the 7th International conference on

Detection of Intrusions and Malware, and Vulnerability Assessment -
DIMVA’10, pp. 111-131, Springer Berlin Heidelberg 2010.

[5] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web
vulnerability scanning tools for sql injection and xss attacks”, In
Proceedings of the 13th IEEE Pacific Rim International Symposium.

Dependable Computing (PRDC 2007), vol. 0, pp. 365–372, 2007.

[6] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: a web
vulnerability scanner”. In Procedings of the 15th International

Conference World Wide Web (WWW ’06), pp. 247–256, 2006.

[7] N. Khoury, P. Zavarsky, D. Lindskog and R. Ruhl, “Testing and
assessing web vulnerability scanners for persistent SQL injection

attacks”, First International Workshop on Security and Privacy

Preserving in e-Societies (SeceS '11), New York, NY, USA, 2011.
[8] N. Khoury, P. Zavarsky, D. Lindskog and R. Ruhl, “An Analysis of

Black-Box Web Application Security Scanners against Stored SQL

Injection”, In Proceedings of the IEEE Third International Conference
on Privacy, Security, Risk and Trust (PASSAT 2011) and 2011 IEEE

Third International Conference on Social Computing (SOCIALCOM

2011), Boston, USA, October 2011.
[9] F. Maggi, W. K. Robertson, C. Kr¨ugel, and G. Vigna, “Protecting a

moving target: Addressing web application concept drift”, In

Proceedings of the 12th Internationall Symposium Recent Advances in
Intrusion Detection (RAID’09), pp. 21–40, 2009.

[10] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging user interactions

for in-depth testing of web applications”, In Proceedings of the 11th

Internationall Symposium Recent Advances in Intrusion Detection

(RAID ’08), pp. 191–210, 2008.

[11] Payment Card Industry Security Standards Council. Approved Scanning
Vendors. [Online]. Available: https://www.pcisecuritystandards.org/

approved_companies_providers/approved_scanning_vendors.php.

[12] Peine, H.: Security Test Tools for Web Applications. Technical Report

048.06, Fraunhofer IESE (January 2006)

[13] RandomStorm OpenSource project, DVWA (Dam Vulnerable Web
Application), [Online]. Available: http://www.dvwa.co.uk/.

[14] L. Suto, “Analyzing the Effectiveness and Coverage of Web

Application Security Scanners”, [Online]. October 2007. Available:
http://www.stratdat.com/webscan.pdf.

[15] L. Suto, “Analyzing the Accuracy and Time Costs of Web Application

Security Scanners”, [Online]. Feb 2010. Available:
http://ha.ckers.org/files/Accuracy and Time Costs of Web App

Scanners.pdf

[16] Open Web Application Security Project, “OWASP Top Ten Project”
[Online]. Available: http://www.owasp.org/index.php/Category:

OWASP Top Ten Project.

[17] Open Web Application Security Project (OWASP), OWASP WebGoat
Project. [Online]. Available: http://www.owasp.org/index.php/

Category:OWASP WebGoat Project

[18] Open Web Application Security Project (OWASP), OWASP Broken
Web Applications Project. [Online]. Available:

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications

_Project#tab=Main
[19] Web Application Security Consortium, “Web Application Security

Scanner Evaluation Criteria”, [Online]. Available:

http://projects.webappsec.org/Web-Application-Security-Scanner-
Evaluation-Criteria.

[20] Web Application Security Consortium, “Web Application Security

Scanner Threat Classification”, [Online]. Available:
http://projects.webappsec.org/f/WASC-TC-v2_0.pdf.

[21] WackoPicko [Online]. Available:

https://github.com/adamdoupe/WackoPicko
[22] Wiegenstein, A., Weidemann, F., Schumacher, M., Schinzel, S.: Web

Application Vulnerability Scanners—a Benchmark. Technical Report,
Virtual Forge GmbH (October 2006)

224

The 10th Conference for Informatics and Information Technology (CIIT 2013)

